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We introduce consideration of a new factor, synchronization of spacetime mixmaster oscillations, that
may play a simplifying role in understanding the nature of the general inhomogeneous cosmological
solution to Einstein’s equations. We conjecture that, on approach to a singularity, the interaction of
spacetime mixmaster oscillations in different regions of an inhomogeneous universe can produce a
synchronization of these oscillations through a coupling to their mean field in the way first demonstrated by
the Kuramoto coupled oscillator model.
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I. INTRODUCTION

The search for an understanding of parts of the general
inhomogeneous solution of the Einstein equations on
approach to a cosmological singularity has been strongly
influenced by the work of Belinskii, Khalatnikov, and
Lifshitz (BKL) [1] on the evolution of the spatially
homogeneous Bianchi type IX (“mixmaster”) universe,
first introduced by Misner [2]. The Einstein equations
for this cosmological model are not integrable but clearly
exhibit chaotic behavior in vacuum and with perfect fluids
whose pressure and density obeys p < ρ, [3,4]. The smooth
nonseparable invariant measure for its complete discrete
dynamics has been solved exactly by Chernoff and Barrow
[5] and simplifies to a double continued-fraction shift map
[6,7]. The general behavior of the mixmaster model within
the framework of spatially homogeneous cosmological
solutions of Einstein’s equations has led to claims that a
general inhomogeneous solution looks like the spatially
homogeneous type IX at the leading order in a series
approximation, or in which the defining constants (four in
vacuum) become independent slowly varying arbitrary
functions of the three spatial variables. This proposal is
not as straightforward as it sounds. We know that compact
vacuum and radiation-dominated universes with Killing
vectors, like Bianchi IX, are not linearization stable. This
means that small perturbations around an exact spatially
homogeneous solution of the defining equations are open
dense in first-order series expansions that do not form the
leading term of any series that converges to a true solution
of those equations. This phenomenon is familiar in non-
linear dynamics [8,9]. As discussed in Ref. [10], Marsden,
Fischer, Moncrief, and Arms [11–14] have proved that
compact vacuum solutions of Einstein’s equations with
Killing symmetries have this subtle property, which is
manifested in various other nonlinear systems. In fact,
in the four-function space of the general cosmological

solution, small open neighborhoods around the homo-
geneous type IX solution will be dense in spurious
linearizations that are not approximations to a true inho-
mogeneous solution. The reason for this is that in the four-
function space spanning cosmological vacuum solutions
the points with Killing vectors are conical and so there are
an infinite number of tangents that can be drawn through
the conical point that represents the spatially homogeneous
solution. Only those tangents that run down the sides of
the cone correspond to linearizations of true solutions:
the others form a dense set of spurious linearizations. The
nonspurious perturbations must satisfy the Taub constraint
[15] to ensure they lie down the sides of the cone. This
situation has been examined in detail in the context of
perturbations of the Einstein static universe in Refs. [16,17],
although the latter paper makes no reference to linearization
instability.
This situation alerts us to the possibility that the behavior

of the inhomogeneous general solution might not just look
like slightly different type IX models from place to place.
Since the behavior of the type IX model is formally chaotic,
it is hard to imagine how different locally chaotic regions
are stitched together and remain so as the local oscillations
in each get erratically out of synchronization. Other inves-
tigators have also drawn attention to additional unusual
features, even in the homogeneous models, like “spikes”
[18,19] caused by steep spatial gradients in other simpler
inhomogeneous cosmologies, that were not part of the
first BKL models. However, although these spikes do arise
in many partial differential equations, they might not be
generic [20].
Motivated by this situation, we propose one new phe-

nomenon that might play a part in the general solution near
Bianchi type IX and alleviate the “stitching problem” of
joining different chaotic oscillatory regions,. This is described
in Sec. II and is followed by concluding discussion and
suggestions for further investigations in Sec. III.
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II. SYNCHRONIZATION

The scenario suggested by BKL and adopted by other
investigators is that on approach to the singularity different
subregions of space will behave like separate type IX
universes [21]. Let us imagine what might happen to one of
those oscillating subregions on approach to the singularity.
In vacuum, it will experience the collective oscillatory
gravitational-wave perturbations of its neighboring regions.
These perturbations might be expected to be out of phase
and effectively random, but the strength of their effects on
our single specimen subregion will grow in strength as the
singularity is approached and each subregion responds to
the mean field created by the oscillations of other regions.
This situation is familiar in many areas of science and

has been well described by the famous Kuramoto model of
synchronized oscillators [22–24]. The separate oscillators
can become synchronized if the strength of coupling between
different oscillators exceeds a critical value. They become
synchronized because each responds to the mean field
created by the oscillations. A simple familiar example is
the hand-clapping of an audience. Clapping starts randomly,
but if it strong enough, then soon everyone seems to be
clapping in unison. A plethora of such examples are known,
especially in the biological world. We propose that the same
phenomenon occurs in an inhomogeneous general cosmo-
logical solution. Although different regions might seem like
separate type IX universes, the coupling of their mixmaster
oscillations enables them all to respond to the mean field and
the oscillations should become synchronized. The critical
coupling strength will inevitably be reached on approach to
the singularity. Recall that on any open interval of mixmaster
evolution around the singularity at t ¼ 0 there are an infinite
number of spacetime oscillations and they occur far faster
than the rate of evolution of the mean volume (we ignore
quantum gravitational effects).
The Bianchi IX vacuum equations in standard Hubble-

normalized variables are [25–27]

N0
1 ¼ ðq − 4ΣþÞN1; ð1Þ

N0
2 ¼ðqþ 2Σþ þ 2

ffiffiffi
3

p
Σ−ÞN2; ð2Þ

N0
3 ¼ðqþ 2Σþ − 2

ffiffiffi
3

p
Σ−ÞN3; ð3Þ

Σ0þ ¼ −ð2 − qÞΣþ − 3Sþ; ð4Þ

Σ0
− ¼ −ð2 − qÞΣ− − 3S−; ð5Þ

where

q≡ 2ðΣ2þ þ Σ2
−Þ; ð6Þ

Sþ ≡ 1

2
½ðN2 − N3Þ2 − N1ð2N1 − N2 − N3Þ�; ð7Þ

S− ≡
ffiffiffi
3

p

2
½ðN3 − N2ÞðN1 − N2 − N3Þ�; ð8Þ

with the constraint (the generalized vacuum Friedmann
equation)

Σ2þ þ Σ2
− þ 3

4
½N2

1 þN2
2 þN2

3 − 2ðN1N2 þN2N3 þN1N3Þ�
¼ 1: ð9Þ

Here, ΣþðτÞ and Σ−ðτÞ are the dimensionless shear
variables, N1ðτÞ, N2ðτÞ, and N3ðτÞ define the Bianchi
group structure and the anisotropic 3-curvature compo-
nents. In Bianchi IX, the 3-curvature can change sign and
is only positive when the dynamics are close to isotropy.
The 0 denotes differentiation with respect to a time
coordinate τ, which is related to the comoving proper time
by dt=dτ ¼ 1=H,where H is the mean Hubble expansion
rate. Typically, H ≃ 1=3t as Bianchi IX approaches the
initial singularity at t ¼ 0, but the ratios of the three
expansion scale factors tend to infinity. Since τ ≃ 1

3
lnðtÞ,

the initial singularity lies at τ ¼ −∞. In the Friedmann
universes, Σþ ¼ Σ− ¼ N1 ¼ N2 ¼ N3 ¼ 0. However, note
that this is not an exact solution of the constraint equation,
(9), because there is no closed vacuum Friedmann universe.
An axisymmetric, nonchaotic solution exists with N2 ¼ N3

and S− ¼ 0, but this is not of interest for our discussion as it
is nonoscillatory.
Using the constraint equation we have a 4-dimensional

set of autonomous time-dependent ordinary differential
oscillator equations of the form

x0i ¼ fðxiÞ; i ¼ 1;…4: ð10Þ
This simple form allows us to conjecture what the effects

of interactions between different varieties of type IX
dynamics in different places might be (in effect, allowing
the Σþ, Σ− and N1, N2, N3 to be both space and time
variables).
Wewant to consider the effects of neighboring oscillatory

regions on one particular subregion as the singularity is
approached. The Kuramoto model imagines that N oscil-
latory cycles are interacting with a coupling strength that is
the same for each pair of oscillatory regions. It creates the
simplest possible setting for this problem and has turned out
to have unexpectedly wide applications. The oscillators
have natural frequencies, ωjϵð−∞;∞Þ, and their phases
are θjϵ½0; 2π�. They are assumed to be coupled by the phase
differences of the oscillators in the following simple way:

dθj
dτ

¼ ωj þ
K
N

XN
k¼1

sinfθkðτÞ − θjðτÞg; ð11Þ

where the coupling constant is K ≥ 0. The coherence of
the phases, and the mean field created by the coupled
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oscillators, is conveniently measured by the complex order
parameter, defined by

r exp½iψ �≡ 1

N

XN
j¼1

exp½iθjðτÞ�; ð12Þ

where jrj measures the degree of coherence: perfect syn-
chronization occurs when jrj ¼ 1 and perfect incoherence,
with the θj uniformly distributed on ½0; 2πÞ, occurs when
jrj ¼ 0; ψ is the average phase.
In terms of r, the Eqs. (11) now become

dθj
dτ

¼ ωj þ K ImðrðτÞ exp½iθjðτÞ�Þ: ð13Þ

This shows how the instantaneous mean field of all the
oscillators leads to the evolution of the phases of the
oscillators. The crucial effect of the phase couplings is that
as K is allowed to increase a critical transition occurs when
K ¼ Kcr: when K > Kcr the oscillator frequencies start to
become synchronized by virtue of their common responses
to the perturbations by the mean field, although their phases
can be different. Kuramoto showed that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Kc

K

r
; ð14Þ

for all K > Kcr [28].
We suggest that a similar effect occurs in an inhomo-

geneous generalization of the type IX universe, if it exists.
The effects of many separate local regions, each under-
going mixmaster oscillations, can synchonize the mix-
master oscillations of each. The effective coupling will
always grow stronger on approach to the singularity at
τ ¼ −∞ and a critical coupling,Kcrit, will always be passed
so long as the dynamics are not cut off and replaced by a
different quantum cosmological behavior at and below the
Planck scale—only a finite number of mixmaster oscil-
lations will then occur and Kcrit will probably not be
reached. On moving away from the singularity, the cou-
pling will decline and synchronization will eventually
break down. There is an indication that synchronized
behavior will arise in the dynamics because in general
the shear and Weyl curvature components will oscillate
indefinitely on approach to the singularity [29]. Consider
the dimensionless shear variables, Σ− and Σþ, in Eqs. (4)
and (5) and put

Σþ ¼ ρ cos θ; Σ− ¼ ρ sin θ: ð15Þ
Then, Eq. (9) determines the evolution of the new variable
ρ, while Eqs. (4) and (5) show that the angular variable, θ,
satisfies

dθ
dτ

¼ 3

ρ
ðSþ sin θ − S− cos θÞ; ð16Þ

that is,

dθ
dτ

¼ 3

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þ þ S2−

q
sinðθ − ψÞ; ð17Þ

where

tanψ ¼ S−
Sþ

: ð18Þ

A comparison with Eq. (11) shows that the interaction
between the phases θ and ψ suggests a Kuramoto system of
equations leading to synchronization. The behavior is more
complicated than the basic Kuramoto model because the
coupling is now τ dependent (see Ref. [30]).

III. DISCUSSION

Our discussion is of a possible toy model for couplings
between different mixmaster oscillations. It is a possible
effect that has not been considered previously in attempts to
model an inhomogeneous BKL scenario by expansions
around the spatially homogeneous mixmaster model. It is
a picture that has proven to have very wide applicability in
the study of interacting oscillators in ways that are not
specific to individual details of the physics being modeled.
We hope that it will stimulate investigations of new effects
in the general cosmological solutions of the Einstein
equations. There are several obvious features that can be
made more realistic. The constantsωj andK in Eq. (11) can
be made time dependent or stochastic with external forcing.
Studies of various time-dependent Kuramoto dynamics have
been considered in Ref. [30]. A time delay might also be
introduced to account for gravitational-wave propagations,
as in Ref. [31] and a Hamiltonian formulation may be more
suited for a general relativistic application, see [32].We have
discussed only the vacuum solution but the situation in
models with pressure and density such that p < ρ will be
similar. In the p ¼ ρ case the chaotic oscillations always die
out on approach to the singularity and the synchronization
will probably never begin, and very soon end if it does. The
mixmaster oscillations inside a long era where two scale
factors oscillate approximate to periodic sine and cosine
oscillations of the scale factors when the number of oscil-
lations is very large, but becomes doubly periodic for smaller
numbers of oscillations [33,34]. This will introduce other
features of the oscillator couplings which will be reported on
elsewhere.
In conclusion, we have introduced consideration of a

new factor, synchronization of spacetime mixmaster oscil-
lations, that may play a simplifying role in understanding
the nature of the general inhomogeneous cosmological
solution to Einstein’s equations.
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