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We calculate energy carried by a massless spin-2 field using Fierz-Lanczos representation of the theory.
For this purpose Hamiltonian formulation of the field dynamics is thoroughly analyzed. Final expression
for the energy is very much analogous to the Maxwell energy in electrodynamics (spin-1 field) and displays
the locality property. This quantity, known as a “superenergy” in gravity theory, differs considerably from
the well understood gravitational field energy (represented in linear gravity by the quadratic term in Taylor
expansion of the Arnowitt-Deser-Misner energy) which cannot be localized.
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I. INTRODUCTION: FIERZ-LANCZOS
FIELD EQUATIONS

Linear gravity is a gauge-type field theory. The space-
time metric is split into a fixed “background metric” gμν
and a “small perturbation” hμν playing a role of the
configuration variable and admitting gauge transforma-
tions:

hμν → hμν þ £ξgμν; ð1:1Þ

where the Lie derivative with respect to the vector field ξ
describes an “infinitesimal coordinate transformation”
xμ → xμ þ ξμðxÞ. Linearized Einstein equations are
second order differential equations imposed on the metric
variable hμν.
A substantial, technical simplification of the theory is

obtained if we formulate it in terms of gauge-invariants. In
case of the flat Minkowski background, an elegant gauge-
invariant formulation is obtained in terms of components of
the (linearized) Weyl tensorWλμνκ, i.e., the traceless part of
the (linearized) curvature tensor

Rλ
κμν ¼ ∇μΓλ

κν −∇νΓλ
κμ; ð1:2Þ

where Γ represents the (linearized) connection coefficients
of the total metric gþ h:

Γλ
μν ¼

1

2
gλκðhκμ;ν þ hκν;μ − hμν;κÞ; ð1:3Þ

where both “∇” and “;” denote covariant derivative with
respect to the background geometry g (see, e.g., [1–3]).
Due to metricity condition (1.3), Riemann tensor sat-

isfies the following identities:

Rλμνκ ¼ −Rμλνκ ¼ −Rλμκν ¼ Rνκλμ; ð1:4Þ

R½λμνκ� ¼ 0: ð1:5Þ

Note that for tensors fulfilling (1.4), identity (1.5) is
equivalent to first-type Bianchi identity:

Rλ½μνκ� ¼ 0: ð1:6Þ

Identity (1.4) leaves 21 independent components, so the
Riemann tensor has 20 independent components. Half of
them are carried by the Ricci tensor

Rμν ≔ Rλ
μλν; ð1:7Þ

which is symmetric (again—due to metricity of the con-
nection). Hence, the traceless part of the Riemann tensor:

Wλκμν ¼ Rλκμν −
1

2
ðgλμRκν − gλνRκμ þ gκνRλμ − gκμRλνÞ

þ 1

6
Rðgλμgκν − gλνgκμÞ; ð1:8Þ

PHYSICAL REVIEW D 102, 024015 (2020)

2470-0010=2020=102(2)=024015(17) 024015-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3306-9453
https://orcid.org/0000-0001-7652-6744
https://orcid.org/0000-0001-5761-5055
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.024015&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevD.102.024015
https://doi.org/10.1103/PhysRevD.102.024015
https://doi.org/10.1103/PhysRevD.102.024015
https://doi.org/10.1103/PhysRevD.102.024015


called Weyl tensor, has 10 independent components. The
complete list of its identities is

Wλμνκ ¼ −Wμλνκ ¼ −Wλμκν ¼ Wνκλμ; ð1:9Þ

W½λμνκ� ¼ 0; ð1:10Þ

Wλ
μλκ ¼ 0: ð1:11Þ

It can be proved that the gauge-invariant content of
linearized Einstein equations is equivalent to the “con-
tracted 2nd type Bianchi”:

∇λWλμνκ ¼ 0: ð1:12Þ

In particular, the existence of the metric field hμν, such
that all the quantities arising here can be obtained by its
appropriate differentiation, is guaranteed [4] by (1.12).
Spin-two-particle quantum mechanics can also be for-

mulated in a similar language (cf. [5]). Originally, the
particle’s “wave function” is described by the totally
symmetric, fourth order spin-tensor. However, there is a
one-to-one correspondence between such spin-tensors and
tensors Wλμνκ satisfying identities (1.9)–(1.11) (the trans-
formation between the two pictures can, e.g., be found
in [6]). Moreover, evolution of a massless particle is
governed by the same field equation (1.12). In this
representation, the theory is often referred to as the
Fierz-Lanczos theory. Here, identities (1.9)–(1.11) are
not treated as a consequence of any “metricity” (there is
a priori no metric here) but are a straightforward conse-
quence of the transformation from the spinorial to the
tensorial language.
Fierz-Lanczos theory can also be derived from a varia-

tional principle and the corresponding “potentials” are
known as Lanczos potentials [7–18]. In the present paper
we propose a substantial simplification of this theory on
both the Lagrangian and the Hamiltonian levels. Finally, we
calculate the field energy equal to the value of the field
Hamiltonian and prove its local character. This means that
if the region V ¼ V1 ∪ V2 is a union of two disjoint regions
V1 and V2 then the corresponding field energies sum up:

EV ¼ EV1
þ EV2

: ð1:13Þ

Our main result is: the energy of the Fierz-Lanczos field
[19] is entirely different from the well understood Arnowitt-
Deser-Misner-energy of the gravitational field. Linear
expansion of the field dynamics in a neighborhood of
the background metric gμν corresponds to the quadratic
expansion of the Arnowitt-Deser-Misner energy (“mass”)
which has been calculated by Brill and Deser [8], see also
[20–22]. Anticipating results which will be presented in the
next paper, let us mention that gravitational energy cannot
be localized: identity (1.13) cannot be valid in gravity

theory because the gravitational interaction energy between
the two energies (masses) has to be taken into account on
the right-hand-side [23].
We conclude that linear gravity and the Fierz-Lanczos

theory differ considerably. They can be described by the
same field W and the same field equations (1.12), but the
corresponding phase spaces carry entirely different canoni-
cal (symplectic) structures. Consequently, energy carried
by the field is entirely different in both theories. Graviton is
not a simple “massless spin-two particle.”

II. FIERZ-LANCZOS FIELD THEORY
IN (3 + 1)-FORMULATION

Quantum mechanics of a spin-two particle can be
written either in the spinor or in the tensor language.
The relation between the two equivalent formalisms can be
found, e.g., in the Taub paper [6]. Here, we shall use the
tensor formalism. This means that the field configuration
is described by the “Weyl-like” tensor fulfilling identities
(1.9)–(1.11) typical for the Weyl tensor of a metric
connection.
In what follows we describe properties of the theory

on a flat four-dimensional Minkowski space [signature
ð−;þ;þ;þÞ] whose metric gμν is used to rise and lower
tensor indices.
Weyl-like tensorW can be nicely described in a (3þ 1)-

decomposition. Denoting by t ¼ x0 the time variable and
by ðxkÞ, k ¼ 1, 2, 3, the remaining space variables [24],
10 independent components of W are uniquely described
by two three-dimensional symmetric, traceless tensors
(cf. [17,25]):

Dkl ¼ W0k0l; Bji ¼ 1

2
εjklW0i

kl: ð2:1Þ

Trace Dijgij vanishes due to identity (1.11), whereas (1.6)
implies vanishing of Bijgij. Antisymmetric part of B is
given by W0k

kl, so it vanishes because Weyl tensor is
traceless. In Cartesian coordinates components of the
tensor density ϵjkl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ηmn
p

εjkl are equal to the corre-
sponding components of the Levi-Civita tensor εjkl ¼
ϵjkl=

ffiffiffiffiffiffiffiffiffiffiffiffi
det ηkl

p
because det ηkl ¼ 1.

Field equations ∇λWλμνκ ¼ 0 can be written in a way
similar to Maxwell electrodynamics:

divD ¼ 0; ð2:2Þ

divB ¼ 0; ð2:3Þ

_D ¼ curlB; ð2:4Þ

_B ¼ −curlD; ð2:5Þ
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where “dot” denotes the time derivative ∂0. Moreover,
the following differential operators of rank 1, acting on
symmetric, traceless tensor fieldsKij have been introduced:

ðdivKÞl ¼ ∇kKk
l; ð2:6Þ

ðcurlKÞij ¼
1

2
ðεikl∇kKlj þ εj

kl∇kKliÞ
¼ ∇kKlðjεiÞkl: ð2:7Þ

It is obvious that curlK is also a symmetric, traceless tensor.
For transverse-traceless tensors D i B [i.e., fulfilling

constrains (2.2)–(2.3)], symmetrization in formula (2.7) is
not necessary because the antisymmetric part of εikl∇kKlj

vanishes:

εnijεi
kl∇kKlj ¼ εijnεi

kl∇kKlj

¼ ðgjkgnl − gjlgnkÞ∇kKlj

¼ ∇kKnk −∇nKj
j ¼ 0: ð2:8Þ

III. A SIMPLE VARIATIONAL PRINCIPLE
(NOT OBEYING LORENTZ-INVARIANCE)

Similarly as in electrodynamics, field equations (2.2)–(2.5)
can be derived from a variational principle. For this purpose
we use the following simple observation (see Appendix for
an easy proof):
Lemma: Given a symmetric, transverse-traceless field B

on a 3D-Euclidean space (i.e., the Cauchy surface ft ¼ 0g),
there is a symmetric, transverse-traceless field p such that

B ¼ curlp: ð3:1Þ

The field p is unique up to second derivatives ∂i∂jφ of a
harmonic function: Δφ ¼ 0.
Corollary: Given field configuration ðD;BÞ satisfying

field equations (2.2)–(2.5) on Minkowski spacetime M,
there is a symmetric, transverse-traceless field p on each
Cauchy hypersurface ft ¼ constg which fulfills not
only (3.1) but, moreover,

D ¼ − _p: ð3:2Þ

The field p satisfies wave equation

p̈ ¼ Δp: ð3:3Þ

Proof. At each hypersurface ft ¼ constg choose any p̃
satisfying (3.1). Due to field equations we have:

curlðDþ _̃pÞ ¼ curlDþ _B ¼ 0:

Hence, at each instant of time ðDþ _̃pÞ differs from zero by
∂i∂jφ, where Δφ ¼ 0. Integrating with respect to time, we
can find α such that _α ¼ φ and Δα ¼ 0. Whence:

Dþ _̃p ¼ ∂i∂j _α:

We conclude that

p ≔ p̃ − ∂i∂jα ð3:4Þ

fulfills (3.2). Taking into account that curl curl ¼ −Δ on
symmetric, transverse-traceless fields, we obtain:

p̈ ¼ − _D ¼ −curlB ¼ −curl curlp ¼ Δp:

▪
Remark:The object p is analogous to the vector potential

Ak in electrodynamics. Condition divp ¼ 0 plays a role
of the Coulomb gauge. Condition (3.2) plays a role of
the additional axial gauge A0 ¼ 0, which can always be
imposed on the Coulomb gauge.
Similarly as in electrodynamics, we can assume that the

first pair of “Maxwell equations” is satisfied a priori and
derive the remaining equations from a variational principle.
For this purpose we treat p as a field potential, equa-
tions (3.1) and (3.2) as definition of D and B, and take the
following Lagrangian function [26]:

Lðp; _pÞ ≔ α ·
D2 − B2

2
: ð3:5Þ

Indeed, we have:

δ

Z
L ¼ α

Z
ð _pδ _p − ðcurlpÞδðcurlpÞÞ

¼ α

Z
ð−Dδ _pþ ΔpδpÞ; ð3:6Þ

which implies (3.3) as the Euler-Lagrange equation for L.
Moreover, quantity −αD ¼ ∂L

∂ _p plays a role of the momen-
tum canonically conjugate to p. To simplify notation,
we shall skip the constant α in what follows (e.g., using
appropriate physical units in which α ¼ 1).
Formula (3.5) implies the following Hamiltonian density

of the field:

H ≔ ð−DÞ _p − L ¼ D2 −
D2 − B2

2
¼ D2 þ B2

2
; ð3:7Þ

which generates the Hamiltonian field dynamics

− _p ¼ δH
∂ð−DÞ ; − _D ¼ δH

∂p
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according to:

δH ¼ DδDþ BδðcurlpÞ
¼ − _pδð−DÞ − ðcurlBÞδpþ fboundary termsg: ð3:8Þ

Remark: Quantity

EV ≔
Z
V
H ð3:9Þ

may be identified with the amount of field contained in V,
provided the boundary term vanishes when integrating
(3.8) over ∂V. For this purpose appropriate boundary
conditions have to be imposed (cf. [27]). Physically, control
of boundary data ensures adiabatical insulation of the
interior of V from its exterior. From the functional-analytic
point of view boundary conditions are necessary for the
self-adjointness of the evolution operator (the Laplacian Δ
in our case) which guarantees the existence and uniqueness
of the Cauchy problem [28] within V.
Hamiltonian description of the field evolution leads,

therefore, to the phase space of initial data parameterized
by the configuration p and the canonical momentum −D.
This means that the space carries the following symplectic
structure:

Ω ¼
Z
V
δp ∧ δD; ð3:10Þ

and the Hamiltonian (3.9) generates field dynamics
(3.2)–(3.3).
Being correct from the Hamiltonian point of view, above

Lagrangian version of the theory is not satisfactory because
it is not relativistic invariant. Indeed, field equations (1.12)
are relativistically invariant. Lorentz transformations of
Wλκμν uniquely imply transformation laws for D and B.
But, like in electrodynamics, transformation law for the
“Coulomb-gauged” potential p is not only nonrelativistic
but obviously nonlocal. In electrodynamics, Lorentz trans-
formations can be applied correctly to the four-potential Aμ.
They mix different gauges. Here, one could relax the
Coulomb gauge divp ¼ 0 by adding a “symmetric-
traceless part of a gradient”, namely:

TSð∇bÞij ≔ 1

2
ð∂ibj þ ∂jbiÞ − 1

3
gij∂kbk; ð3:11Þ

where b is a three-vector field. This would be an analog of
the “gradient gauge” ∂kφ in electrodynamics which can
be added to Ak without changing the field B. If, moreover,
we add _φ to A0, also the field D does not change.
Unfortunately, here only divergencefree fields ∂kbk ¼ 0
can be used in (3.11) if we want to keep equation
curlp ¼ B. Such a nonrelativistic condition does not allow

us to organize both p and b into a single, local, fully
relativistic object.
The unique remedy for this disease which exists in the

literature is the use of the so called Lanczos potentials, i.e.,
further relaxation of (3.1) and (3.2).

IV. LANCZOS POTENTIALS AND THE
RELATIVISTIC INVARIANT
VARIATIONAL PRINCIPLE

Since Weyl tensor is obtained by differentiating con-
nection coefficients Γλ

μν, they are natural candidates for
potentials describing Lanczos field. But—contrary to linear
gravity—there is a priori no metric h here. Hence, what we
obtain by this procedure from a generic connection:

Rλκμν ¼ −Γλκμ;ν þ Γλκν;μ ð4:1Þ

does not satisfy symmetry conditions (1.9) (to simplify
further considerations we have lowered first index of the
connection: Γλμν ¼ gλσΓσ

μν). To produce Lanczos field we
must use appropriate symmetrization:

rλκμν ≔ R½λκ�μν þ R½μν�λκ; ð4:2Þ

and finally eliminate traces:

wαβμν ≔ rαβμν −
1

2
ðrαμηβν − rανηβμ þ ηαμrβν − ηανrβμÞ

þ 1

6
ðηαμηβν − ηανηβμÞr; ð4:3Þ

where we denoted:

rαβ ¼ rμαμβ; r ¼ rμνημν: ð4:4Þ

This object already fulfills identities (1.9)–(1.11), i.e., is a
genuine Fierz-Lanczos field.
Decomposing Γλμν into irreducible parts, we see that

only one of them enters into definition (4.3) of w. Taking
into account its symmetry: Γλμν ¼ ΓλðμνÞ, we first decom-
pose it into the totally symmetric part and the remaining
part whose totally symmetric part vanishes:

Γλμν ¼ ΓðλμνÞ þ Γ̃λμν; ð4:5Þ

with Γ̃ðλμνÞ ¼ 0. This way 40 independent components of Γ
split into 20 components of the totally symmetric, rank 3
tensor and the remaining 20 components of Γ̃. The first part
drops out from (4.1).
Instead of Γ̃, in most papers devoted to Lanczos

potentials, the authors use its antisymmetrization in first
indices:

Ãλμν ≔ Γ̃½λμ�ν: ð4:6Þ
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Vanishing of the totally symmetric part of Γ̃ implies
vanishing of the totally antisymmetric part of the new
object: Ã½λμν� ¼ 0. We stress, however, that both objects are
equivalent: no information is lost during such an antisym-
metrization, because there is a canonical isomorphism
between both types of tensors. Indeed, it is easy to check
that the inverse transformation (from Ã to Γ̃) is given by the
symmetrization operator:

Γ̃λμν ¼
3

4
ÃλðμνÞ: ð4:7Þ

We see that (4.1) and (4.2) imply:

rλκμν ≔ −Ãλκμ;ν þ Ãλκν;μ − Ãμνλ;κ þ Ãμνκ;λ: ð4:8Þ

Finally, when passing to the Fierz-Lanczos field (4.3),
the trace Ãλ ≔ Ãλμνgμν drops out. Hence, we define the
Lanczos potential as the traceless part of Ã:

Aλμν ≔ Ãλμν −
1

3
ðÃλgμν − ÃμgλνÞ: ð4:9Þ

This object fulfills the following algebraic identities:

Aλμν ¼ −Aμλν; ð4:10Þ

A½λμν� ¼ 0; ð4:11Þ

Aλμ
μ ¼ 0 ð4:12Þ

(see also [9,10]). It has 16 independent components,
because 4 among the original 20 were carried by the
trace Ãλ.
The field w written explicitly in terms of A looks as

follows (see [10]):

wαβμν ¼ 2Aαβ½ν;μ� þ 2Aνμ½α;β� − ðAσðαμÞ;σηβν − AσðανÞ;σηβμ

þ AσðβνÞ;σηαμ − AσðβμÞ;σηανÞ: ð4:13Þ

Let Γ̃λ ≔ Γ̃λμ
μ. Observe that γλμν defined as the traceless

part of Γ̃λμν:

γλμν ¼ Γ̃λμν −
1

3
ðΓ̃λgμν − Γ̃ðμgνÞλÞ;

contains the same information as Aλμν:

Aλμν ¼ γ½λμ�ν; γλμν ¼
3

4
AλðμνÞ: ð4:14Þ

This object fulfills the following algebraic identities:

γλμν ¼ γλνμ; ð4:15Þ

γðλμνÞ ¼ 0; ð4:16Þ

γλμ
μ ¼ 0; ð4:17Þ

and the corresponding expression for the Fierz-Lanczos
field reads:

wαβμν ¼ 2γ½αβ�½ν;μ� þ 2γ½νμ�½α;β�

−
3

4
ðγσαμ;σηβν − γσαν;σηβμ þ γσβν;σηαμ − γσβμ;σηανÞ:

ð4:18Þ

Hence, there are two equivalent versions of potentials
for the Fierz-Lanczos field. In what follows, we shall
use Aλμν—the version proposed by Lanczos, as it is more
popular in the literature.

V. A RELATIVISTIC VARIATIONAL PRINCIPLE
FOR FIERZ-LANCZOS THEORY

Take an invariant Lagrangian density L ¼ LðwÞ. It
depends upon potentials and its first derivatives via w,
exclusively. Euler-Lagrange’a equations

δL
δAλμν

¼ 0 ð5:1Þ

can be written in a “symplectic” way

δLðA; ∂AÞ ¼ ∂κðWλμνκδAλμνÞ
¼ ð∂κWλμνκÞδAλμν þWλμνκδAλμν;κ; ð5:2Þ

or, equivalently:

∂κWλμνκ ¼ ∂L
∂Aλμν

; ð5:3Þ

Wλμνκ ¼ ∂L
∂Aλμν;κ

: ð5:4Þ

Canonical momentum W is a tensor density, because L
was a scalar density and we can equivalently use tensor W,
such that W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp

W. These equations can be for-
mulated in a covariant form. We observe for this purpose,
that expression WλμνκδAλμν is a vector density, so its
(partial) divergence is equal to covariant divergence.
Therefore, Eq. (5.2) can be rewritten:

δLðA; ∂AÞ ¼ ∇κðWλμνκδAλμνÞ
¼ ð∇κWλμνκÞδAλμν þWλμνκδAλμν;κ: ð5:5Þ
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But L does not contain components of A explicit but
only covariant derivatives of A. Hence, we obtain field
equations:

∇κWλμνκ ¼ 0; ð5:6Þ

Wλμνκ ¼ ∂L
∂Aλμν;κ

: ð5:7Þ

First equation is universal, but relation between w and
its momentum W is implied by a specific form of the
Lagrangian. Define derivative of L with respect to w by the
following identity:

δL ¼ ∂L
∂wλμνκ

δwλμνκ: ð5:8Þ

The quantity ∂L
∂wλμνκ

belongs to the (vector) space of contra-

variant tensor densities. Due to the spacetime metric g,
it is equipped with the (pseudo-)Euclidean, nondegenerate
structure. Splitting this vector space into a direct sum of
tensors having the same symmetries as the Weyl tensor and
its orthogonal complement (we denote by Pw and P⊥

w ,
respectively, the corresponding projections), we write

∂L
∂wλμνκ

¼ Pw

� ∂L
∂wλμνκ

�
þ P⊥

w

� ∂L
∂wλμνκ

�
ð5:9Þ

and, consequently,

δL ¼
�
Pw

� ∂L
∂wλμνκ

�
þ P⊥

w

� ∂L
∂wλμνκ

��
δwλμνκ

¼ Pw

� ∂L
∂wλμνκ

�
δwλμνκ:

We see that condition ∂L
∂wλμνκ

¼ Pwð ∂L
∂wλμνκ

Þ is necessary to give
an unambiguous meaning to the definition (5.8): it must
fulfil the same algebraic identities as w does. Whence:

δL ¼ ∂L
∂wλμνκ

δwλμνκ ¼
∂L

∂wλμνκ
δrλμνκ ¼ 4

∂L
∂wλμνκ

δAλμκ;ν;

which means that:

Wλμκν ¼ 4
∂L

∂wλμνκ
: ð5:10Þ

Taking (cf. [17])

L ¼ 1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκwλμνκ ð5:11Þ

we obtain

δL ¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκδwλμνκ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκδAλμκ;ν;

so finally:

Wλμνκ ¼ −Wλμκν ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκ: ð5:12Þ

VI. (3 + 1)-DECOMPOSITION OF THE LANCZOS
POTENTIALS. ANALOGY WITH

ELECTRODYNAMICS

In (3þ 1)-decomposition the “velocity tensor” w can be
represented by two 3D symmetric, traceless tensors [29],
which we call E and B:

Ekl ¼ w0k0l; Bji ¼ 1

2
ϵjklw0i

kl: ð6:1Þ

In analogy with electrodynamics, the corresponding com-
ponents [30] of the “momentum tensor” W could be called
D and H [cf. (2.1)], but the Lagrangian (5.11) implies
the “constitutive equations” (5.12) equivalent to: D ¼ E,
H ¼ B. It is easy to show (proof in the Appendix), that

wλμνκwλμνκ ¼ 8ðE2 − B2Þ
⇓

L ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp ðE2 − B2Þ:
ð6:2Þ

The Lanczos potential A, which has 16 independent
components, splits into two symmetric, traceless, three-
dimensional tensors Pij and Sij and two three-dimensional
covectors ai and bi. The latter are defined via decom-
position of the three-dimensional two-form Aij0:

ai ¼ −A0i0; ð6:3Þ

bi ¼ −
1

2
εiklAkl0 ⇔ Aij0 ¼ −bmεmij; ð6:4Þ

whereas P and S are defined as a symmetric part of A0kl

and Aijkε
ij
l, respectively. Antisymmetric parts of them are

already given by a and b, due to identities fulfilled by A.
More precisely, we have (proof in the Appendix):

A0kl ¼ −2Pkl þ
1

2
bjεjkl; ð6:5Þ

1
2
Aijkε

ij
l ¼ −2Skl þ 1

2
ajεjkl

⇕

Aijk ¼ −2Sklεlij þ 1
2
ðaiηjk − ajηikÞ:

ð6:6Þ
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Relation (4.3) between potentials A and the field w can
be written in terms of these three-dimensional objects.
We obtain (proof in the Appendix):

Ekl ¼ w0k0l

¼ −∂0Pkl þ ∂iSjðkεlÞij þ
3

4
ð∂lak þ ∂kalÞ −

1

2
ηkl∂iai;

Bkl ¼
1

2
εijlwk0ij

¼ ∂0Skl þ ∂iPjðkεlÞij −
3

4
ð∂lbk þ ∂kblÞ þ

1

2
ηkl∂ibi:

These relations can be written shortly as:

E ¼ − _Pþ curlSþ 3

2
TSð∇aÞ;

B ¼ _Sþ curlP −
3

2
TSð∇bÞ; ð6:7Þ

where by “TSð∇bÞ” we denote the traceless, symmetric
part of ∇b. Hence, in Lorentzian coordinates, Lagrangian
density of the theory can be expressed in terms of
potentials as:

L ¼ 1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκwλμνκ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðE2 − B2Þ

¼ 1

2

��
_P − curlS −

3

2
TSð∇aÞ

�
2

−
�
_Sþ curlP −

3

2
TSð∇bÞ

�
2
�
: ð6:8Þ

We see, that constraints (2.2)–(2.3) are obtained from
variation of L with respect to a and b, whereas dynamical
equations (2.4)–(2.5) from variation with respect to P
and S. This equations expressed by potentials ðP; S; a; bÞ
have the following form:

3

2
TS

�
∇
�
_aþ 1

2
curlb

��
¼ P̈þ curl curlP; ð6:9Þ

3

2
TS

�
∇
�
_b −

1

2
curla

��
¼ S̈þ curl curlS: ð6:10Þ

VII. FIERZ-LANCZOS FORMULATION OF
MAXWELL ELECTRODYNAMICS

In (3þ 1)-decomposition, Fierz-Lanczos theory shows a
far reaching analogy with electrodynamics. The only
difference is that in FL theory we have two “vector
potentials” (P and S) instead of one (Ak) in electrodynam-
ics, and two “scalar potentials” (a and b) instead of
one (A0) in electrodynamics. To clarify this structure, we
show in this section how to formulate classical

electrodynamics in a similar way, i.e., using two indepen-
dent potentials.
Conventionally, classical (linear or nonlinear) electro-

dynamical field is described by two differential two-forms:
f ¼ fμνdxμ ∧ dxν and F ¼ 1

2
F μνϵμναβdxα ∧ dxβ. First pair

of Maxwell equations: df ¼ 0 and the second pair: dF ¼ J
are universal, whereas “constitutive equations,” i.e., rela-
tion between f and F depends upon a model. In particular,
linear Maxwell theory corresponds to the relation F ¼ �f,
where by “�” we denote the Hodge “star operator.”
Usually, we derive the theory from the variational

principle, where the first pair of Maxwell equations is
assumed a priori. For this purpose we substitute:
f ¼ dA, or

fμν ¼ ∂μAν − ∂νAμ ¼ Aν;μ − Aμ;ν

in coordinate notation, where A ¼ ðAμÞ is a four-potential
one-form and Aν;μ ≔ ∂μAν. In (3þ 1)-decomposition,
electric and magnetic fields are then defined by compo-
nents of f:

ðfk0Þ ¼ E⃗ ¼ − _A⃗þ ∇⃗A0;

1

2
ðϵmklfklÞ ¼ B⃗ ¼ curlA⃗; ð7:1Þ

whereas inductions: D⃗ and H⃗ arise as corresponding
canonical momenta. More precisely, variational principle
can be written as follows:

δLðAν; Aν;μÞ ¼ ∂μðF νμδAνÞ
¼ ð∂μF νμÞδAν þ F νμδAν;μ; ð7:2Þ

equivalent to

∂μF νμ ¼ ∂L
∂Aν

¼ Jν;

F νμ ¼ ∂L
∂Aν;μ

¼ 2
∂L
∂fμν ; ð7:3Þ

where the components of the canonical momentum tensor
F are

F 0k ¼ −F k0 ¼ Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gmn

p
Dk;

F kl ¼ ϵklmHm; Hm ¼ 1

2
ϵmklF kl: ð7:4Þ

For linear (Maxwell) theory the Lagrangian density of the
theory equals:

L ¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
fμνfμν ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðE2 − B2Þ; ð7:5Þ

LOCALIZING ENERGY IN FIERZ-LANCZOS THEORY PHYS. REV. D 102, 024015 (2020)

024015-7



and, whence, F νμ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp
fμν or, equivalently, F ¼ �f.

Consequently, “momenta” are equal to “velocities”:D ¼ E
and H ¼ B.
In absence of currents (i.e., when J ¼ 0), both the

electric and magnetic fields play a symmetric role. This
means that the Hodge-star operator “�” is an additional
symmetry of the theory [31] and we could, as well, begin
with a potential ðCμÞ ¼ ðC0; C⃗Þ for the dual form h ¼ �f:

ðhk0Þ ¼ −B⃗ ¼ − _C⃗þ ∇⃗C0;
1

2
ðϵmklhklÞ ¼ E⃗ ¼ curlC⃗:

ð7:6Þ

Variational principle

δLðCν; Cν;μÞ ¼ ∂μðHνμδCνÞ ¼ ð∂μHνμÞδCν þHνμδCν;μ;

ð7:7Þ

of the same Lagrangian density

L ¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
hμνhμν ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðE2 − B2Þ; ð7:8Þ

gives now the same field equations:

∂μHνμ ¼ ∂L
∂Cν

¼ 0; Hνμ ¼ ∂L
∂Cν;μ

¼ 2
∂L
∂hμν ; ð7:9Þ

withD ¼ E andH ¼ B playing a role of the corresponding
canonical momenta H ¼ �h ¼ � � f ¼ −f:

H0k ¼ −Hk0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gmn

p
Hk; Hkl ¼ ϵklmDm;

Dm ¼ 1

2
ϵmklHkl: ð7:10Þ

The sum of (7.5) and (7.8) would imply the theory of two
independent copies of electromagnetic field, say f and f̃,
such that �h ¼ f̃:

δL¼1

2
½ð∂μF νμÞδAνþð∂μHνμÞδCνþF νμδAν;μþHνμδCν;μ�:

ð7:11Þ

To have only one copy, we must impose constraint:
H ¼ �F . The constraint is equivalent to the requirement
that L depends only upon the sum “f þ �h” and not upon
the two potentials independently. Indeed, due to constraint
we have:

F νμδAν;μ þHνμδCν;μ ¼ F νμδAν;μ þ ð�F ÞνμδCν;μ

¼ F νμδðAν;μ þ ð�CÞν;μÞ

¼ 1

2
F νμδðf þ �hÞμν: ð7:12Þ

Hence, for linear electrodynamics, we can take

LðAν; Cν; Aν;μ; Cν;μÞ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðE2 − B2Þ

¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðf þ �hÞμνðf þ �hÞμν

¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðdAþ �ðdCÞÞμνðdAþ �ðdCÞÞμν;

ð7:13Þ

which leads to a single copy of Maxwell electrodynamics
with the Faraday tensor φ ≔ f þ �h defined in terms of the
two independent four-potentials A and C:

φ ¼ dAþ �dC: ð7:14Þ

Moreover,

F νμ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
φμν ð7:15Þ

and

L ¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
φμνφ

μν:

Equation (7.14) in (3þ 1)-decomposition, reads:

E⃗ ¼ − _A⃗þ curlC⃗þ ∇⃗A0; B⃗ ¼ _C⃗þ curlA⃗ − ∇⃗C0:

ð7:16Þ

Unlike in the standard variational formulation of electro-
dynamics: (1) the variation is performed with respect to two
independent potentials: Aμ and Cμ, and (2) the first pair of
Maxwell equations is not imposed a priori but obtained
from the variational principle. So, the complete set of
Maxwell equations

divD ¼ 0 ð7:17Þ

divB ¼ 0 ð7:18Þ

_D ¼ curlB ð7:19Þ

_B ¼ −curlD; ð7:20Þ
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is derived, not imposed a priori. Expressed in terms of
potentials ðA⃗; C⃗; A0; C0Þ, these equations read:

∇ _A0 ¼ ̈A⃗þ curl curlA⃗; ð7:21Þ

∇ _C0 ¼ ̈C⃗þ curl curlC⃗: ð7:22Þ

The gauge group of such a theory is much bigger than the
usual “gradient gauge”: it is composed of all the trans-
formations of the four-potentials which do not change the
value of the field φ. Hence, not only “A → Aþ dϕ” and
“C → Cþ dψ”, with two arbitrary functions ϕ and ψ but,
more generally, any transformation of the type

A → Aþ ξ; C → Cþ η; ð7:23Þ

where the four-covector fields ξ ¼ ðξμÞ and η ¼ ðημÞ
satisfy equation:

dξþ �dη ¼ 0: ð7:24Þ

It is obvious that both such dξ and dη fulfill free Maxwell
equations. In particular, the case dξ ¼ dη ¼ 0 corresponds
to the standard “gradient gauge.”
We show in the sequel that, from the Hamiltonian point

of view, such an exotic formulation of electrodynamics is
perfectly equivalent to the standard formulation, using a
single four-potential ðAμÞ.

VIII. HAMILTONIAN PICTURE
AND FIELD ENERGY

A. Electromagnetic field energy
in conventional formulation

Field energy is defined as the Hamiltonian function
generating time evolution of the field. To calculate its value,
a (3þ 1)-decomposition has to be chosen and the Legendre
transformation between “velocities” and “momenta” must
be performed in the Lagrangian generating formula. In
conventional formulation of electrodynamics we begin,
therefore, with formula (7.2):

δL ¼ ∂μðF νμδAνÞ ¼ ∂0ðF ν0δAνÞ þ ∂kðF νkδAνÞ
¼ ∂0ðF k0δAkÞ þ ∂kðF 0kδA0 þ F lkδAlÞ
¼ −∂0ðDkδAkÞ þ ∂kðDkδA0 þ F lkδAlÞ
¼ − _DkδAk −Dkδ _Ak þ ∂kðDkδA0 þ F lkδAlÞ
¼ _AkδDk − _DkδAk − δðDk _AkÞ
þ ∂kðDkδA0 þ F lkδAlÞ: ð8:1Þ

Putting the complete derivative δðDk _AkÞ on the left-hand
side, we obtain

−δð−Dk _Ak − LÞ ¼ _AkδDk − _DkδAk

þ ∂kðDkδA0 þ F lkδAlÞ; ð8:2Þ

which is analogous to the Hamiltonian formula −δðp _q −
LÞ ¼ _pδq − _qδp in mechanics, where −D⃗ is the momen-
tum canonically conjugate to A⃗ andH ¼ −Dk _Ak − L is the
Hamiltonian density. The boundary term ∂kðDkδA0 þ
F lkδAlÞ is usually neglected by sufficiently strong fall-
off conditions at infinity. We stress, however, that the above
symplectic approach enables one to localize energy within
a (not necessary infinite) 3D volume V with boundary ∂V.
For this purpose we integrate (8.2) over V and obtain

−δHV ¼
Z
V
ð _AkδDk − _DkδAkÞ þ

Z
∂V

ðD⊥δA0 − F⊥lδAlÞ;

ð8:3Þ

where by “⊥” we denote the component perpendicular to
the boundary and HV ¼ R

V H. Imposing boundary con-

ditions for A0 and for Ak (components of A⃗ tangent to ∂V),
we obtain an infinitely dimensional Hamiltonian system
generated by the Hamiltonian functional equal to the
“Noether energy” HV [32]. Whereas controlling Ak at
the boundary means to control B⊥, the control of the scalar
potential A0 means “electric grounding” of the boundary.
This is not an adiabatic insulation of the field from the
external world but rather a “thermal bath,” with the Earth
and its fixed scalar potential playing a role of the “thermo-
stat.” Hence, HV is not the internal energy of the physical
system: “electromagnetic field contained in V,” but rather
its free energy: the uncontrolled flow of electric charges
between ∂V and the Earth plays the same role as the
uncontrolled heat flow between the body and the thermostat
during the isothermal processes. To avoid exchange of
energy between the thermostat and the system, we must
insulate it adiabatically. For this purpose we perform an
extra Legendre transformation between D⊥ and A0 at the
boundary (cf. [27]):

D⊥δA0 ¼ δðD⊥A0Þ − A0δD⊥

and we obtain:

−δH̃V ¼
Z
V
ð _AkδDk − _DkδAkÞ

þ
Z
∂V

ð−A0δD⊥ − F⊥kδAkÞ; ð8:4Þ

where
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H̃V ¼ HV þ
Z
∂V

D⊥A0

¼
Z
V
−L −Dk _Ak þ ∂kðDkA0Þ

¼
Z
V
−LþDkð− _Ak þ ∂kA0Þ

¼
Z
V
DkEk − L: ð8:5Þ

In linear Maxwell electrodynamics we obtain the standard,
local, Maxwell energy density [33]:

−LþDkEk ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðE2 − B2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
E2

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðD2 þ B2Þ: ð8:6Þ

The boundary term in (8.4) vanishes if we control D⊥
and B⊥ on ∂V. Cauchy data are, therefore, described by:
(1) electric induction D⃗ satisfying constraints (7.17), and:

(2) equivalence class of A⃗ modulo the gradient gauge ∇⃗A0

[each class uniquely represented by the magnetic field B⃗
satisfying constraints (7.18)]. These Cauchy data form the
phase space of the system equipped with the symplectic
form

Ω ¼
Z
V
δAk ∧ δDk; ð8:7Þ

which is gauge-independent due to boundary conditions:
δD⊥j∂V ¼ 0. Due to this gauge-invariance, each class of
equivalent field configurations can be uniquely represented
by, e.g., the Coulomb-gauged potential Ãk fulfilling the
Coulomb gauge condition: divÃ ¼ 0. Such a representant
is unique if we impose the boundary condition δÃ⊥j∂V ¼ 0.
It can be proved that boundary conditions transform the
Hamiltonian (8.6) into a genuine self-adjoint operator H̃V,
governing the field evolution on an appropriately chosen
Hilbert-Kähler space of Cauchy data in V, and the
symplectic form becomes: Ω ¼ R

V δÃk ∧ δDk.

B. Phase space of Cauchy data

The same conclusion may be obtained if we work
directly with the field Cauchy data. To simplify notation,
we use Lorentzian coordinates (

ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp ¼ 1). According
to (7.1), we have:

L ¼ 1

2
ðE⃗2 − B⃗2Þ ¼ 1

2
fð∇⃗A0 −

_A⃗Þ2 − ðcurlA⃗Þ2g: ð8:8Þ

We see that A0 is a gauge variable because its momentum
vanishes identically. Moreover, momentum canonically
conjugate to 3D vector potential A⃗ equals:

−D⃗ ≔
∂L
∂ _A⃗

¼ −E⃗: ð8:9Þ

Consequently, variation of L with respect to A0 implies
constraints:

−
δL
δA0

¼ ∂kDk ¼ 0: ð8:10Þ

Hence, we have:

δL ¼ Dkδð− _Ak þ ∂kA0Þ − Bkδðϵkij∂iAjÞ
¼ δfDkð− _Ak þ ∂kA0Þg þ ð _Ak − ∂kA0ÞδDk

þ ∂iðϵikjBkδAjÞ − ðϵjik∂iBkÞδAj: ð8:11Þ

Putting the complete divergence δðDkEkÞ on the left-hand
side, we obtain:

−δðDkEk − LÞ ¼ _AkδDk − _DkδAk

þ ∂ið−A0δDi þ ϵikjBkδAjÞ;

which finally implies (8.6) and (8.4). The boundary term
vanishes if we control D⊥ and B⊥ ¼ curlAk on ∂V.

C. Symplectic reduction in the FL formulation
of electrodynamics

In Fierz-Lanczos formulation we have more potentials,
but also the gauge group (7.23)–(7.24) is much bigger. In
this section we prove that—when reduced with respect to
constraints—both formulations are perfectly equivalent.
Hence, the Hamiltonian formulation and the notion of
field energy does not depend upon a choice of a particular
variational principle. Indeed, consider Lagrangian density
(7.8) and the corresponding Euler-Lagrange equations (7.9):

divD⃗ ¼ 0 ð8:12Þ

divB⃗ ¼ 0 ð8:13Þ

_D⃗ ¼ curlH⃗ ð8:14Þ

_B⃗ ¼ −curlE⃗ ð8:15Þ

D⃗ ¼ E⃗ ð8:16Þ

H⃗ ¼ B⃗: ð8:17Þ

For fields satisfying these equations (i.e., on shell), inte-
gration by parts implies:
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δ

Z
V
L ¼

Z
V
fD⃗δð− _A⃗þ curlC⃗þ ∇⃗A0Þ

− H⃗δð _C⃗þ curlA⃗ − ∇⃗C0Þg ð8:18Þ

¼
Z
V
f−D⃗δ

_A⃗þ curlD⃗δC⃗ − H⃗δ
_C⃗ − curlH⃗δA⃗g

ð8:19Þ

¼ −
Z
V
ðD⃗δ

_A⃗þ _D⃗δA⃗þ H⃗δ
_C⃗þ _H⃗δC⃗Þ

¼ −
Z
V
∂0ðD⃗δA⃗þ H⃗δC⃗Þ: ð8:20Þ

Here, we have neglected the boundary integrals. They
vanish because of appropriate boundary conditions which
assure the adiabatic insulation of V.[34] Hence, fields D⃗
and H⃗ play a role of (minus) momenta canonically
conjugate to A⃗ and C⃗, respectively. To perform correctly
Legendre transformation and obtain the value of the
Hamiltonian function, we must reduce this symplectic
structure to independent, physical degrees of freedom.
For this purpose we use the Hodge decomposition of
the space of three-dimensional vector fields X⃗ into two
subspaces:

X⃗ ¼ X⃗v þ X⃗s; ð8:21Þ

where X⃗v is sourceless (i.e., divX⃗v ¼ 0) and curlX⃗s ¼ 0. In
particular, assuming trivial topology of the region V, we
obtain that there exist a vector field W⃗ and a function f such

that X⃗v ¼ curlW⃗ and X⃗s ¼ ∇⃗f.
Putting aside all the functional-analytic issues, consider

field configuration having compact boundary in V.
Integrating by parts, we see that X⃗v and X⃗s are mutually
orthogonal [35] in the Hilbert space L2:

ðX⃗vjY⃗sÞ ¼
Z
V
X⃗v · Y⃗s ¼ 0:

From (8.12)–(8.13) and (8.16)–(8.17) we have

D⃗v ¼ D⃗ ¼ E⃗ ¼ E⃗v; ð8:22Þ

H⃗v ¼ H⃗ ¼ B⃗ ¼ B⃗v: ð8:23Þ

The sourceless parts of Eqs. (7.21)–(7.22) imply wave
equations for both A⃗v and C⃗v. Define a sourceless vector
potential W for Cv, i.e., curlW ¼ Cv. Applying again the
curl to this equation, we conclude that Ẅ ¼ −curl curlW,
i.e., □W ¼ 0.
Now, integrating by parts and using orthogonality

relations, we reduce (8.19) as follows:

−δ
Z
V
L¼

Z
V
∂0ðD⃗δA⃗þ H⃗δC⃗Þ

¼
Z
V
ðD⃗δ

_⃗Aþ _⃗HδC⃗þ H⃗δ
_⃗Cþ _⃗DδA⃗Þ

¼
Z
V
fD⃗δ

_⃗A− curlD⃗δC⃗þ H⃗δ
_⃗Cþ curlH⃗δA⃗g

¼
Z
V
fD⃗δ

_⃗A
v
− D⃗δcurlC⃗v þ H⃗δ

_⃗C
v þ _⃗DδA⃗vg

¼
Z
V
fD⃗δ

_⃗A
v
− D⃗δcurl curlW⃗þ H⃗δcurl _⃗Wþ _⃗DδA⃗vg

¼
Z
V
fD⃗δ

_⃗A
v þ D⃗δ ̈W⃗þ curlH⃗δ _⃗W þ _⃗DδA⃗vg

¼
Z
V
fD⃗δ

_⃗A
v þ D⃗δ ̈W⃗þ _⃗Dδ _⃗Wþ _⃗DδA⃗vg

¼
Z
V
fD⃗δð _⃗Av þ ̈W⃗Þ þ _⃗DδðA⃗v þ _⃗WÞg

¼
Z
V
ðD⃗δ

_⃗
Ãþ _⃗Dδ ⃗̃AÞ ¼

Z
V
∂0ðD⃗δ ⃗̃AÞ;

where we have defined the following, sourcefree, field:
⃗Ã ≔ A⃗v þ _W⃗.
Hence, our original phase space ðA⃗; C⃗; D⃗; H⃗Þ of Cauchy

data, equipped with a symplectic form ω ¼ δA⃗ ∧ δD⃗þ
δC⃗ ∧ δH⃗, reduces on shell to ð ⃗Ã; D⃗Þwith a symplectic form

ω̃ ¼ δ ⃗Ã ∧ δD⃗, identical with the structure (8.7) derived in
Sec. VIII A from the conventional variational principle.

D. Electromagnetic field energy in the FL formalism

We see that the reduced (with respect to constraints)
phase space in Fierz-Lanczos formulation can be described

by pair ð ⃗Ã; D⃗Þ, where ⃗Ã ¼ A⃗V þ _W⃗ plays a role of the field
configuration, whereas −D⃗ plays a role of its canonically
conjugate momentum. It is, therefore equivalent to the
corresponding phase space in the conventional formulation.
Hence, Legendre transformation to the Hamiltonian picture
goes exactly as in Sec. VIII A:

H ¼ −L − D⃗ ·
_⃗Ã

¼ −
1

2
ðE2 − B2Þ − D⃗ · ð _A⃗v þ ̈W⃗Þ

¼ 1

2
ðB2 −D2Þ − D⃗ · ð _A⃗v

− curl curlW⃗Þ

¼ 1

2
ðB2 −D2Þ þ D⃗ð− _A⃗

v þ curlCvÞ

¼ 1

2
ðB2 −D2Þ þ D⃗ · E⃗v ¼ 1

2
ðD2 þ B2Þ;
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where we used the sourceless part of the first equation

in (7.16): E⃗v ¼ − _A⃗
v þ curlCv.

Reduction of the Fierz-Lanczos Lagrangian proposed
in [17] [see our formula (6.8)] can be obtained in a way
entirely analogous to what was done above.

E. Symplectic reduction of the
spin-2 Fierz-Lanczos theory

Take

L ¼ 1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
wλμνκwλμνκ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðD2 − B2Þ

¼ 1

2

��
_P − curlS −

3

2
TSð∇aÞ

�
2

−
�
_Sþ curlP −

3

2
TSð∇bÞ

�
2
�
:

Euler-Lagrange equations [cf. (2.2) and (5.12)] implied
by L read:

divD ¼ 0 ð8:24Þ

divB ¼ 0 ð8:25Þ

_D ¼ curlH ð8:26Þ

_B ¼ −curlE ð8:27Þ

D ¼ E ð8:28Þ

H ¼ B: ð8:29Þ

For fields contained in a region V, satisfying proper
boundary conditions, we can integrate δL by parts and
obtain on shell:

δ

Z
V
L ¼

Z
V
fDδð− _Pþ curlSþ TSð∇aÞÞ

−Hδð _Sþ curlP − TSð∇bÞÞg ð8:30Þ

¼
Z
V
f−Dδ _Pþ curlDδS −Hδ _S − curlHδPg

ð8:31Þ

¼ −
Z
V
ðDδ _Pþ _DδPþ H⃗δ _Sþ _H⃗δC⃗Þ

¼ −
Z
V
∂0ðDδPþ H⃗δSÞ: ð8:32Þ

Hence, fields D and H play a role of (minus) momenta
canonically conjugate to P and S, respectively. However,
to perform correctly Legendre transformation and obtain
Hamiltonian, we must reduce this symplectic structure to
independent, physical degrees of freedom. For this
purpose, we use decomposition of three-dimensional
tensors of rank 2. Following Straumann (see [36]), an
arbitrary 3D symmetric, traceless tensor tkl can be
decomposed into three parts (called: tensor, vector and
scalar parts, respectively):

tkl ¼ ttkl þ tvkl þ tskl;

where

divtt ¼ 0; trðttÞ ¼ 0; tvkl ¼ TSð∇ξÞkl;

divξ ¼ 0; tskl ¼ f;kl −
1

3
Δfηkl ð8:33Þ

for some function f and a covector ξ. For field configu-
ration having compact boundary in V (more generally: for
fields fulfilling appropriate boundary conditions on ∂V),
the decomposition is unique and the three components:
tt, tv and ts are mutually orthogonal with respect to
the L2-scalar product: ðtjsÞ ¼ R

V t · s.
From (8.24)–(8.25) and (8.28)–(8.29) we have

Dt ¼ D ¼ E ¼ Et; Ht ¼ H ¼ B ¼ Bt: ð8:34Þ

By taking transverse-traceless part of Eqs. (6.9) and (6.10),
we have that Pt and St fulfill wave equations. So, if we
define h as a tensor, such that

curlh ¼ S ð8:35Þ

than h fulfills □h ¼ 0, too. (Existence and uniqueness of
such h is proved in Appendix A.) This equation is
obviously equivalent to ḧ ¼ −curl curlh.
Now, we reduce expression (8.31), integrating by parts

and using orthogonality relations:
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−δL ¼
Z
V
∂0ðDδPþHδSÞ

¼
Z
V
ðDδ _Pþ _DδPþHδ _Sþ _HδSÞ

¼
Z
V
ðDδ _Pt þ _DδPt þHδ _St þ _HδStÞ

¼
Z
V
ðDδ _Pt þ _DδPt þ curlHδ _h −DδcurlStÞ

¼
Z
V
ðDδ _Pt þ _DδPt þ _Dδ _h −Dδcurl curlhÞ

¼
Z
V
ðDδð _Pt þ ḧÞ þ _DδðPt þ _hÞÞ

¼
Z
V
ðDδ _pþ _DδpÞ ¼

Z
V
∂0ðDδpÞ;

where we denoted p ≔ Pt þ _h. Hence, our symplectic
structure ðP; S;D;HÞ with a symplectic form ω ¼
δP ∧ δDþ δS ∧ δH, became reduced to ðp;DÞ with a
symplectic form ω̃ ¼ δp ∧ δD, derived in Sec. III from our
naive variational principle [cf. (3.10)].

F. Field energy in the Fierz-Lanczos theory

In this formulation the transition to the Hamiltonian
picture is straightforward and gives results identical
with the ones obtained in Sec. III. If p ¼ Pt þ _h is the
configuration field, and −D its canonical momentum then
the Legendre transformation reads:

H ¼ −L −D · _p ¼ −
1

2
ðE2 − B2Þ −D · ð _Pt þ ḧÞ

¼ 1

2
ðB2 −D2Þ −D · ð _Pt − curl curlhÞ

¼ 1

2
ðB2 −D2Þ þDð− _Pt þ curlStÞ

¼ 1

2
ðB2 −D2Þ þD · Et ¼ 1

2
ðD2 þ B2Þ;

where we have used the tensor part of the first equation
in (6.7): curlSt − _Pt ¼ Et.

G. Poynting vector and energy flux
in Fierz-Lanczos theory

Similarly as in electrodynamics, the energy flux can also
be localized. For this purpose we define the Poynting
vector:

Sk ¼ ðE × BÞk ≔ ϵklmEliBm
i; ð8:36Þ

fulfilling the following identity:

divS ¼ ∂kðϵklmEliBm
iÞ

¼ ðϵklm∂kEliÞBi
m þ Eliðϵklm∂kBi

mÞ
¼ ðcurlEjBÞ − ðEjcurlBÞ
¼ −ð _BjBÞ − ðEj _EÞ

¼ −∂0

�
E2 þ B2

2

�
¼ − _H;

equivalent to the continuity equation:

divS þ _H ¼ 0: ð8:37Þ

Integrating over any volume V, we obtain

_HV ¼ d
dt

Z
V
H ¼ −

Z
∂V

S⊥: ð8:38Þ

Hence, we are able to control the energy transfer through
each portion of the boundary ∂V.

IX. CONCLUSIONS

In this paper we were able to calculate the amount of
energy EV carried by the massless spin-two field and
contained within a space region V ⊂ R3. For this purpose
we have used consequently definition of energy as the
Hamiltonian function generating field evolution within V.
A priori, evolution within V is not unique because it can be
arbitrarily influenced by exterior of V. To make the system
autonomous, we must insulate it adiabatically from this
influence: appropriate conditions have to be imposed on the
behavior of the field at the boundary ∂V. Mathematically,
control of boundary conditions selects among possible self-
adjoint extensions of the evolution operator (typically: the
Laplace operator) a single one which is positive. Moreover,
it enables us to organize the phase space of the field Cauchy
data into a strong Hilbert-Kähler structure, where the “well-
posedness” of the initial value problem is equivalent to the
self-adjointness of the evolution operator. The use of
specific representations of the theory (tensorial Fierz-
Lanczos versus spinorial one, symplectic reduction by
means of the Straumann decomposition versus imposing
“Coulomb gauge” etc.) is irrelevant in this context: two
such representations are isomorphic in a strong, functional-
analytic sense. This way we have shown that the theory
admits the “local energy density” H ¼ D2þB2

2
such that

EV ¼
Z
V
H:

Moreover, the flux of energy through boundary can also be
localized by means of the Poynting vector (8.36). We stress
that—contrary to the common belief—such a local char-
acter of the field energy is rather exceptional. In particular,
theories of gravitation (both the complete Einstein theory
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and its linearized version) do not exhibit any such “energy
density”(or local flux represented by Poynting vector).
Nevertheless, in both versions of the theory, energy EV and
its flux can be uniquely defined by our procedure, even if
the locality property (1.13) is not valid. The complete
functional-analytic framework of our approach will be
presented in the next paper.
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APPENDIX A: EXISTENCE OF TENSOR
POTENTIAL FOR TRANSVERSE-TRACELESS

TENSORS

Lemma 1. Given a symmetric, transverse-traceless field
B on a 3D-Euclidean space (i.e., the Cauchy surface
ft ¼ 0g), there is a symmetric, transverse-traceless field
p such that

B ¼ curlp: ðA1Þ

The field p is implied by B up to second derivatives ∂i∂jφ
of a harmonic function: Δφ ¼ 0.
Proof. Since for every k ¼ 1, 2, 3 the vector B•k is

divergence-free, we can solve equation curla•k ¼ B•k. This
means that there is a matrix aij satisfying equation:

ϵlij∂iajk ¼ Blk: ðA2Þ

Each solution is given uniquely up to a gradient. This
means that for any triple ϕk of functions, the matrix

ãjk ≔ ajk þ ∂jϕ
k;

is also a solution of (A2). To make the matrix ã symmetric,
we must fulfill three equations:

0 ¼ ϵnjkãjk ¼ ϵnjkðajk þ ∂jϕkÞ; ðA3Þ

or, equivalently

curlϕ⃗ ¼ ψ⃗ ; ðA4Þ

where we have defined vector fields ϕ⃗ ¼ ðϕkÞ and
ψ⃗ ¼ ðψkÞ, where ψn ≔ −ϵnjkajk. A sufficient condition
for the solvability is: divψ ¼ 0. But, due to (A2), we have:

−divψ⃗ ¼ ∂nϵ
njkajk ¼ ϵknj∂najk ¼ Bk

k ¼ 0; ðA5Þ

and, whence, the condition is fulfilled and the solution of
(A4) is given uniquely, up to a gradient of a function, say φ.
This means that ϕk is given uniquely up to ∂kφ. We
conclude that there is a solution of (A2) which is sym-
metric. It is given up to ∂j∂kφ. This nonuniqueness can be
used to make the solution traceless. For this purpose we put

pij ¼ ãij þ ∂i∂jφ; ðA6Þ

and impose condition

0 ¼ pi
i ¼ ãii þ Δφ; ðA7Þ

which we solve for φ. This way we have pwhich is another
solution of (A2) and is: (1) symmetric and (2) traceless.
But, it is also divergencefree because of the following
identity:

0 ¼ ϵnlkBlk ¼ ϵnlkϵ
lij∂iajk

¼ ðδikδjn − δinδ
j
kÞ∂iajk

¼ ∂kank − ∂nakk ¼ ∂kank:

The Lemma is, therefore, proved and the solution pij is
given up to ∂i∂jφ, where Δφ ¼ 0. ▪

APPENDIX B: SQUARE OF THE WEYL TENSOR
IN (3 + 1)-DECOMPOSITION

Equalities (6.1):

Ekl ¼ w0k0l; Bji ¼
1

2
εj

klw0
ikl

imply also

w0k0l ¼ Ekl; w0kij ¼ −Bklε
l
ij; w0kij ¼ Bklεl

ij:

Weyl property: − 1
4
εγδαβwαβμνε

μνπρ ¼ wγδπρ implies

wijmn ¼ −εijkEklεmnl:

Finally, we obtain

wαβμνwαβμν

¼ 4w0k0lw0k0l þ 2w0kijw0kij þ 2wij0kwij0k þ wijklwijkl

¼ 4EklEkl − 4εlijBklεm
ijBkm þ εijmEmnεklnε

ijaEabε
klb

¼ 4EklEkl − 8BklBkl þ 4EmnEmn

¼ 8ðE2 − B2Þ:
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APPENDIX C: (3 + 1)-DECOMPOSITION
OF THE LANCZOS POTENTIAL

If we define

Pkl ¼ −A0ðklÞ

Skl ¼ −
1

2
AijðkεijlÞ

ai ¼ −A0i0

bi ¼ −
1

2
εiklAkl0 ⇔ Aij0 ¼ −bmεmij

then we obtain

A0kl ¼ A0ðklÞ þ A0½kl� ¼ −Pkl þ
1

2
ðA0kl − A0lkÞ

¼ −Pkl þ
1

2
ðA0kl þ Alk0 þ Ak0lÞ

¼ −Pkl þ
1

2
Alk0 ¼ −Pkl þ

1

2
bmεmkl:

Tensor Aij½kεl�ij is antisymmetric, so there exists a vector cm

such that

Aij½kεl�ij ¼ cmεmkl:

Multiplying this equation by εklm, we have

Aijkðηimηjk − ηikηjmÞ ¼ 2cm;

so

cm ¼ 1

2
ðAmj

j − Ajm
jÞ ¼ −Ajm

j ¼ A0m
0 ¼ −A0

m
0 ¼ am:

Now we decompose tensor Aijkε
ij
l onto symmetric and

antisymmetric part:

Aijkε
ij
l ¼ AijðkεijlÞ þ Aij½kεijl� ¼ −2Skl þ ajεjkl:

Multiplying this equality by εlmn leads to the following
result:

2Amnk ¼ −2Sklεlmn þ a½mηn�k:

Now, using (4.13), we can express E and B in terms of
P, S, a, and b:

Ekl ¼ w0k0l ¼ A0kl;0 − A0k0;l þ Al00;k − Al0k;0 − ðAi
00;iηkl þ A0ðklÞ;0η00 þ AiðklÞ;iη00Þ

¼ −2 _Pkl þ 2aðk;lÞ − aiiηkl þ _Pkl − εjiðkSlÞj;i þ
1

2
ðai;iηkl − aðk;lÞÞ

¼ − _Pkl þ ðcurlSÞkl þ
3

2
aðk;lÞ −

1

2
ai;iηkl;

Bkl ¼
1

2
εijlwk0ij ¼

1

2
εijlðAk0j;i − Ak0i;j þ Aij0;k − Aijk;0 − A0ð0jÞ;0ηki − Amð0jÞ;mηki þ A0ð0iÞ;0ηkj þ Amð0iÞ;mηkjÞ

¼ −εijlA0kj;i − bl;k þ _Skl −
1

2
εmkl _am þ 1

2
εikl _ai −

1

2
εiklAm

0i;m −
1

2
εiklAm

i0;m

¼ εijlPkj;i −
1

2
εijlεkjmbm;i − bl;k þ _Skl þ εiklPm

i;m þ 1

4
εiklε

nm
ibn;m −

1

2
εiklε

nm
ibn;m

¼ ðcurlPÞkl − εiklPm
i;m −

1

2
bk;l þ

1

2
bi;iηkl − bl;k þ _Skl þ εiklPm

i;m −
1

4
bk;l þ

1

4
bl;k

¼ _Skl þ ðcurlPÞkl −
3

2
bðk;lÞ þ

1

2
bi;iηkl:
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