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We study the free motion of a massive particle moving in the background of a Finslerian deformation of a
plane gravitational wave in Einstein’s general relativity. The deformation is a curved version of a one-
parameter family of relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a
certain deformation of Cohen and Glashow’s very special relativity group ISIMð2Þ. The partially broken
Carroll symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics
equations. The transverse coordinates of timelike Finsler geodesics are identical to those of the underlying
plane gravitational wave for any value of the Bogoslovsky-Finsler parameter b. We then replace the
underlying plane gravitational wave with a homogeneous pp-wave solution of the Einstein-Maxwell
equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaître model.
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I. INTRODUCTION

Our present fundamental physical theories are based on
local Lorentz invariance, and hence on local isotropy. This
leads naturally to the introduction of pseudo-Riemannian
geometry and its associated metric tensor. It has long
been known, however, that a “principle of relativity” can be
made compatible with anisotropy by deforming the Lorentz
group by the inclusion of dilations [1] (although the
experiments of Hughes and Drever indicate that the
anisotropy must be very weak [2]).
Currently, there is also a great deal of activity in

exploring the astrophysics and cosmology of alternative
gravitational theories based on standard Lorentzian geom-
etry. Laboratory tests of local Lorentz invariance are very
well developed and have reached impressive levels of
precision.
Riemann himself envisaged more general geometries.

An elegant construction combining these ideas was pro-
vided some time ago by Bogoslovsky [3,4] (for more recent
accounts, see Ref. [5]). In what is now known as Finsler
geometry, the line element is a general homogeneous

function of degree 1 in displacements, rather than the
square root of a quadratic form.
The theory proposed by Bogoslovsky, which is the

main subject of interest of this paper, has turned out to
be relevant for attempts to accommodate a proposal of
Cohen and Glashow [1], accounting for weak CP violation
in the standard model of particle physics, in the gravita-
tional background [6,7].
The first significant application of Finsler geometry to

physics is due to Randers [8], who pointed out that the
world line of a particle of mass m and electric charge e
extremizes the action

S0 ¼
Z

L0dλ ¼ −
Z

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdxμdxν

q
þ eAμdxμ; ð1:1Þ

where λ is an arbitrary parameter and Aμ is the electro-
magnetic potential. Randers applied this idea to Kaluza-
Klein theory. Further studies followed [9–12]; it has also
been applied to the gravitomagnetic effects occurring in
stationary spacetimes [13]. For more recent work on Finsler
spaces, see Refs. [14–24]. Null geodesics and causality are
considered in particular in Ref. [24].
The aim of the present paper is to contribute to the

physical applications of the Finslerian generalization of
general relativity by exploring the motion of freely moving
massive particles in the background of Bogoslovsky-
Finsler deformations of plane gravitational waves and
spatially flat Friedmann-Lemaître cosmologies.
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II. FINSLER SPACES

In this section, we shall briefly summarize some earlier
results [9–12]. An excellent general reference to Finsler
geometry used by these authors is Ref. [25], to which we
refer the reader for more details of the general theory. If
Fðxμ; yνÞ is a Finsler function,1 then it is assumed that
F2ðx; yÞ may be written such that [9]

F2ðx; yÞ ¼ F ðx; yÞgμνyμyν; ð2:1Þ

where F ðx; yÞ is a positive function which is positively
homogeneous in the velocities. Moreover [9], if
HðxÞα1;α2;…αN

is a totally symmetric tensor of rank N
which is covariantly constant with respect to the Levi-
Civita covariant derivative of the metric gμν, then if

ω ¼ gðxÞμνyμyν=ðHα1;α2;…;αNy
α1yα2 � � � yαN Þ2=N and

F ðx; yÞ ¼ F ðωÞ; ð2:2Þ

then the set of Finsler geodesics of F and the set of standard
Riemannian geodesics of gμν coincide [see Eq. (20) in
Ref. [9] ]. Further aspects are considered in Refs. [22,23].
The case of Finsler pp-waves [15,16] occurs whenH is a

covariantly constant null covector and gμν is the metric of a
pp-wave, a special case of which is a plane gravitational
wave. This was in effect pointed out by Tavakol and Van
den Bergh [12] in 1986 and elaborated and extended by
Roxburgh in 1991. Bogoslovky’s original flat Finsler
metric [3,4] is a special case of their work, but no mention
of Bogoslovsky is made in Refs. [9,11,12], and so one
assumes that they were unaware of it.
We next recall some basic definitions and notation used

in Refs. [9,11,12]. Given a Finsler function Fðx; yÞ, one
may define the Finsler metric tensor

fμνðx; yÞ ¼
1

2

∂2F2ðx; yÞ
∂yμ∂yν ; ð2:3Þ

which is homogeneous of degree 0 in yμ. That is, fμνðx; yÞ
depends only upon the direction. Differentiating the iden-
tity F2ðxα; λyμÞ ¼ λ2Fðxα; yμÞ twice with respect to λ
implies that

fμνyμyν ¼ F2ðx; yÞ: ð2:4Þ

The Finsler line element or arc length ds along a curve γ
with tangent vector yμ ¼ dxμ

dλ is given by

ds2 ¼ F2ðxμ; dxμÞ ¼ fμνðx; yÞdxμdxν; ð2:5Þ

and a Finsler geodesic is one for which δ
R
γ Fðx; dxμÞ ¼

δ
R
γ ds ¼ 0. The Euler-Lagrange equations are

d2xμ

ds2
þ γμαβ

dxα

ds
dxβ

ds
¼ 0; ð2:6Þ

where

γμνκ ¼
1

2

�∂fκν
∂xμ þ∂fμκ

∂xν −
∂fμν
∂xκ

�
; γμνκ ¼ fμσγνσκ ð2:7Þ

are the analogues of Christoffel symbols of the first and
second kind, respectively. In deriving the Euler-Lagrange

equations, one uses the fact that yκ ∂fαβ
∂yκ ¼ 0 because fμν is

homogeneous of degree 0 in yμ. Evidently, under a change
of parameter s → λ ¼ λðsÞ, we have d

ds ¼ λ0 d
dλ, fμν → fμν,

since fμν is homogeneous of degree 0 in velocities. Thus, as
in the standard Lorentzian situation,

d2xμ

dλ2
þ γμαβ

dxα

dλ
dxβ

dλ
¼ −

λ00

λ0
dxμ

dλ
: ð2:8Þ

If λ00 ¼ 0, λ is called an affine parameter, and in what
follows, unless otherwise stated, λ will denote an affine
parameter.
In Refs. [9,11,12], the quantities

Gμ ¼ 1

2
γμyνyκ; Gμ

νκ ¼ ∂2Gμ

∂yν∂yκ ð2:9Þ

are introduced. Although in general Gμ
νκ ≠ γμνκ, by virtue of

the homogeneity of degree 0 of γμνκ in yμ, one has

Gμ
νκyνyκ ¼ γμνκyνyκ; ð2:10Þ

and therefore Euler-Lagrangian equations may be
rewritten as

d2xμ

dλ2
þ Gμ

νκ
dxν

dλ
dxκ

dλ
¼ 0: ð2:11Þ

In general, Gμ
νκ depends upon the direction [12]; a

Berwald-Finsler manifold is one for which Gμ
νκ is inde-

pendent of the direction—i.e.,

Gμ
νκ ¼ Gμ

νκðxÞ: ð2:12Þ

The motivation for Refs. [9,11,12] came from a classic
paper of Ehlers, Pirani, and Schild [26] examining the
fundamental assumptions justifying the use of pseudo-
Riemannian geometry adapted in Einstein’s general rela-
tivity. Roughly speaking, the idea was that
(1) The principle of the universality of free fall endows

spacetimeMwith a projective structure—that is, an

1See Refs. [9,11,12,25]; yμ is a four-velocity, and ðxμ; yμÞ are
local coordinates on TM, the tangent bundle of the spacetime
manifold M.
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equivalence class of curves, γ∶λ ∈ R → M—up to
reparametrization.

(2) The principle of Einstein causality endows space-
time with a causal structure such that light rays are
determined by some connection.

They conjectured that the only way of achieving this
was that freely falling particles and null rays follow the
geodesics of a pseudo-Riemannian metric, and in the case
of particles, that the curves carry a privileged parametriza-
tion given by proper time with respect to the pseudo-
Riemannian metric along their paths in spacetime, whether
freely falling or not.
In Refs. [11,12], Tavakol and Van den Bergh sought to

show that one could pass to a Finsler structure as well,
provided one assumes
(1) fAig

F2ðx; yÞ ¼ e2σðx;yÞgμνðxÞyμyν; ð2:13Þ

where gμνðxÞ is a Lorentzian metric and σðxα; yμÞ is
homogeneous of degree 0 in yμ.
This condition ensures that the conformal struc-

tures of the Finsler metric and the Lorentzian metric
agree locally, in the spirit of Ref. [26]. It is pointed
out in Ref. [12] that Eq. (2.13) is not equivalent to

fμν ¼ e2σðx;yÞgμν; ð2:14Þ

because it this were true, then σ would only depend
upon x, and hence fμν and gμν would be conformally
related, citing Ref. [25].2

(2) fAiig

Gμ
νκ ¼

�
μ

νκ

�
; ð2:15Þ

where f μ
νκ g are the Christoffel symbols of the

Lorentzian metric gμν. This condition ensures that
the projective structures of the Finsler structure
Fðx; yÞ and the Lorentzian structure gμν agree
locally, again in the spirit of Ref. [26].

Tavakol and Van den Bergh [12] claimed that the
necessary and sufficient condition on σðx; yÞ is

∂σ
∂xμ − yν

∂σ
∂yκ

�
κ

μν

�
¼ 0 ð2:16Þ

and referred to it as the metricity condition. The name
originates in the theory of the so-called Cartan connection.
One defines

Cμνκ ¼
1

2

∂fμν
∂yκ ; ð2:17Þ

which is from Eq. (2.3), as totally symmetric in μ, ν, κ.
Then one defines

Γμνκ ¼ γμνκ−
�
Cσκν

∂Gσ

∂yμ þCσκμ
∂Gσ

∂yν −Cμσν
∂Gσ

∂yκ
�
: ð2:18Þ

Acting on a vector Wμðx; yÞ, the Cartan covariant
derivative is defined by

∇Cartan
;κWμ ¼ ∂Wμ

∂xκ þ −yσΓλ
σκ
∂Wμ

∂yκ þ Γμ
νσWσ ð2:19Þ

and extended to tensors of arbitrary valence in the obvious
way. The Cartan connection satisfies

∇Cartan
κ fμν ¼ 0: ð2:20Þ

This is equivalent to

∂F2

∂xκ −
∂F2

∂yσ
∂Gσ

∂yκ ¼ 0 ð2:21Þ

and ensures that the norms of the vector remain constant
under parallel transport along different routes. In Ref. [9], it
is written as

∂F
∂xκ −

∂F
∂yσ

∂Gσ

∂yκ ¼ 0: ð2:22Þ

In Ref. [12], it was suggested that

gμνxμdxν ¼ −2dudvþ αðuÞdx2 þ βðuÞdy2; ð2:23Þ

with ðx1; x2; x3; x4Þ ¼ ðx; y; u; vÞ, which they call a
plane wave, might lead to a solution. They find [in their
Eq. (34)] that

σ ¼ σ

�
α_x2 þ β _y2 − 2_u _v

_u2

�
; ð2:24Þ

and they claim that it is indeed a solution.
The treatment of Ref. [9] starts with the helpful obser-

vation that the sums, products, and ratios of solutions are
again solutions. Roxburgh investigated Lorentzian metrics
with covariantly constant vector fields and pointed out that
pp-waves are a special case.

III. BOGOSLOVSKY-FINSLER-F METRICS

Bogoslovsky’s theory [3,4] was based on the Finsler line
element such that the proper time τ along a future-directed
timelike world line xμðτÞ in flat Minkowski spacetime is
obtained by combining the Minkowski line element with
what we call here the Bogoslovsky factor,

2In fact, Eq. (2.13) is obviously equivalent to Eq. (2.1), which
is the form used by Ref. [9] (who appears to regard it as always
true), although gμν is not necessarily unique.
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dτ ¼ ð−ημνdxμdxνÞ1−b2 ð−ημνlμdxνÞb; ð3:1Þ

where 0 ≤ b < 1 is a dimensionless constant, ημν is the flat
Minkowski metric tensor (with a mainly positive signa-
ture), and lμ is a constant future-directed null vector—i.e.,

∂μlν ¼ 0; ημνlμlν ¼ 0; l0 > 0; ð3:2Þ

where ∂μ ¼ ∂
∂xμ. The Bogoslovsky factor makes Eq. (3.1)

homogeneous of degree 1—i.e., Finslerian.
The parameter b introduces spatial anisotropy which

might be relevant at the early stages of the Universe
[27]. The constant b is very small by Hughes-Drever-type
experiments [2]; Bogoslovsky argues that b < 10−10 [28].
For b ¼ 0, we recover the Minkowski proper time element,
cf. Eq. (1.1) with Aμ ¼ 0.
Bogoslovsky’s Finsler line element has an obvious

generalization: in Eq. (3.1), one replaces ημν with a curved
pseudo-Riemannian metric gμνðxÞ and lμ with a future-
directed null vector such that

∇μlν ¼ 0; gμνlμlν ¼ 0; ð3:3Þ

where ∇μ is the Levi-Civita connection of the Lorentzian
metric gμν. This idea has recently been explored in
Refs. [15–17,21], where such spacetimes are called
“Finsler pp-waves.”
Such spacetimes are also referred to as Brinkman [29] or

Bargmann [30] spacetimes. They admit Brinkmann coor-
dinates Xμ ¼ ðV;U;XiÞ such that

gμνdXμdXν ¼ 2dVdU þ dXidXi − 2HðXi;UÞdU2; ð3:4Þ

where the spacetime dimension is dþ 1 and i ¼ 1; 2;…;
d − 1. HðXi; UÞ is an arbitrary, not identically vanishing
function of its arguments.3 U, V may be written as

V¼X−¼ 1ffiffiffi
2

p ðXd−X0Þ; U¼Xþ ¼ 1ffiffiffi
2

p ðXdþX0Þ:

ð3:5Þ

We have lμ∂μ ¼ −∂V so that −gμνlμdXν ¼ dU. Then the
Finsler pp-line element is

dτ ¼ ð−gμνdXμdXνÞ1−b2 ð−gμνlμdXνÞb ¼ ð−gμνdXμdXνÞ1−b2 ðdUÞb; ð3:6Þ

where gμν is the pp-wave metric.
Returning to the pp-waves, we recall that the metric is

Ricci flat if and only if HðXi; UÞ is a harmonic function of
the coordinates Xi; it may, however, have arbitrary depend-
ence upon U. It then represents a left-moving (i.e., in the
negative Xd direction) gravitational wave such that Xi’s are
transverse to the direction of motion. The wave fronts U ¼
constant are null hypersurfaces, and the covariantly con-
stant and hence Killing null vector field ∂V lies in the wave
fronts.
If, in addition, HðXi; UÞ is quadratic in the transverse

coordinates, then we have a plane gravitational wave. If
d ¼ 3, which we assume from now on, then

−2H ¼ AþðUÞðX2
1 − X2

2Þ þA×ðUÞ2X1X2 ¼ KijðUÞXiXj;

ð3:7Þ

where AþðUÞ and A×ðUÞ are the amplitudes of the two
plane polarization states.

For general AþðUÞ and A×ðUÞ, there is a five-
dimensional isometry group G5 which acts multiply tran-
sitively on the three-dimensional wave fronts U¼ constant
[31,32]. This group is a subgroup of the six-dimensional
Carroll group Carrð2Þ in three spacetime dimensions
[33,34] in which the SO(2) subgroup is omitted [35].
The Carroll group Carrð2Þ may be regarded as a

subgroup of the Poincaré group ISOð3; 1Þ defined by
freezing out U-translations [34]; it acts on the null hyper-
planesU ¼ constant. If we label the Killing vector fields of
the Poincaré group as

Pμ ¼
∂

∂Xμ ; Lμν ¼ XμPν − XνPμ; ð3:8Þ

then the Carroll group is generated by

P− ¼ ∂
∂V ; Pi ¼

∂
∂Xi ; ð3:9aÞ

Lij¼XiPj−XjPi; L−i ¼X−Pi−XiP−¼UPi−XiP−;

ð3:9bÞ

i ¼ 1, 2, and each hyperplane U ¼ const: is left variant.
The generators in Eq. (3.9) are translations, whereas those
in Eq. (3.9a) are planar rotation and boosts. Since d ¼ 3,
we may relabel the generators Lij ¼ J, and theU − V boost

3Our choice of sign for gUV has the advantage that raising and
lowering the indices entails no minus signs—merely swapping U
and V—and is consistent with our previous papers. It has,
however, the consequence that if we choose a time orientation
such that U increases to the future, then V decreases to the future.
In other words, ∂

∂U is a future-directed null vector field and ∂
∂V is a

past-directed vector field.
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N0 ¼ Lþ− ¼ XþP− − X−Pþ ¼ VP− −U−Pþ; where

Pþ ¼ ∂
∂U ; ð3:10Þ

and find that the four generatorsN0; J; L−i generate a group
which is abstractly isomorphic to the group SIMð2Þ, the
group of similarities—that is, dilations, rotations, and
translations of the Euclidean plane E2. SIMð2Þ is the
largest proper subgroup of the Lorentz group SOð3; 1Þ.
Adjoining the generators Pþ; P−; Pi gives rise to the eight
generators of ISIM(2), which is a subgroup of the Poincaré
group. The group ISIMð2Þ sacts multiply transitively on
Minkowski spacetime E3;1.
It was suggested by Cohen and Glashow [1] that

ISIMð2Þ, which may be thought of as the subgroup of
ISOð3; 1Þ leaving invariant a null direction, could explain
weak CP violation while being compatible with tests of
Lorentz invariance, since it would rule out spurions—that
is, tensor vacuum expectation values.
In Ref. [36], it was pointed out that Ricci flat pp-waves

are strongly universal. In particular, they have nonvanish-
ing scalar invariants constructed from the Riemann tensor
and as a consequence satisfy almost any set of covariant
field equations. Quantum corrections to the metric vanish.
Thus, this property may be thought of as the analogue for
the proposed curved Bogoslovsky-Finsler structures with a
Ricci flat metric gμν of Cohen and Glashow’s “no spurions”
condition.
In Ref. [6], an attempt was made to find a link with

general relativity in which Minkowski spacetime E3;1 may
be regarded as the coset ISOð3; 1Þ=SOð3; 1Þ. The only
two deformations of the Poincaré group led to the two
de Sitter groups SOð4; 1Þ and SOð3; 2Þ for which trans-
lations act in a noncommutative fashion on the cosets’ de
Sitter spacetime dS4 ¼ SOð4; 1Þ=SOð3; 1Þ and anti–de
Sitter spacetime AdS4 ¼ SOð3; 2Þ=SOð3; 1Þ.
They therefore investigated the deformations of

ISIMð2Þ and found that there exists a family of deforma-
tions depending upon two dimensionless parameters a
and b. However, for all a and b, the translations
Pþ; P−; Pi failed to commute. In general, the rotation J
became a noncompact generator unless a ¼ 0, leaving
DISIMbð2Þ depending on a dimensionless parameter b.
They then observed that this is precisely the symmetry of
Bogoslovsky’s Finsler metric [Eq. (3.1)]. For a review
of these ideas and their relation to the much earlier work of
Voigt [37], the reader is directed to the recent review in
Ref. [38]. For a recent discussion of Bogoslovsky-Finsler
deformations in the light of the ideas of Segal, see Ref. [39].
In a recent paper (Ref. [15]), the authors have shown,

among other things, that the Bogoslovsky-Finsler pp-
waves enjoy the same universal properties with respect
to generalizations of the Einstein equations to Finsler-
Einstein equations as those in the pseudo-Riemannian case
discussed in Ref. [36].

IV. GEODESICS

The geodesics of a Finsler metric with Finsler function
Fðxμ; _xμÞ, where F is homogeneous of degree 1 in _xμ, are
extrema of

I ¼
Z

F
�
xμ;

dxμ

dλ

�
dλ: ð4:1Þ

In the case we are considering, we restrict our attention to
future-directed timelike curves for which both gμνlμ _xμ and
−gμν _xμ _xν are strictly positive in order to ensure that F is
real. For a particle of mass m, the action with respect to
Lagrangians is

Sb ¼ −m
Z

Fdλ; ð4:2Þ

where F is the Bogoslovsky-Finsler-F line element
[Eq. (3.6)]. The integral is independent of the parameter

λ. Therefore, if pμ ¼ ∂ð−mFÞ
∂ _xμ , then H ¼ pμ _xμ þmF is a

constant of the motion. This is indeed true, but because
Fðxμ; _xμÞ is homogeneous of degree 1 in _xμ, one has
_xμ ∂F

∂ _xμ ¼ F, and consequently the constant vanishes iden-
tically. Standard Riemannian or Lorentzian metrics are, of
course, a special case of this general fact.
Now we analyze the motion along geodesics in

Bogoslovsky-Finsler plane gravitational waves, adapting
the discussion for the standard Einstein case given in
Refs. [35,40]. First, we find it convenient to pass to
Baldwin-Jeffery-Rosen (BJR) coordinates xμ ¼ ðv; u; xiÞ,
defined by

Xi ¼ Pijxj; U ¼ u; V ¼ v −
1

4

daij
du

xixj; ð4:3Þ

where a≡ðaijÞ ¼ PtP, and the matrix P satisfies the matrix
Sturm-Liouville equation

d2P
du2

¼ KP; Pt dP
du

¼ dP
du

t
P; ð4:4Þ

where K ¼ ðKijÞ is the profile in Brinkmann coordinates;
see Eq. (3.7).
In BJR coordinates, we have

gμνdxμdxν¼ 2dudvþaijðuÞ_xi _xj; lμ
∂
∂xμ ¼−

∂
∂v: ð4:5Þ

Here _xμ ¼ dxμ
dλ , where λ is an arbitrary parameter. The

Lagrangian is proportional to the Bogoslovsky-Finsler
function:

Lb ¼ −mF; where F ¼ ð−2_u _v−aijðuÞ_xi _xjÞ12ð1−bÞð _uÞb :
ð4:6Þ
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For the curve to be timelike, we must have _u _v < 0 and
_u > 0. Since the integral (4.1) is independent of the choice
of the parameter λ, we are entitled to make the choice λ ¼ u
and extremize

Z �
−2

dv
du

− aijðuÞ
dxi

du
dxj

du

�1
2
ð1−bÞ

du: ð4:7Þ

With this choice of parametrization, the integrand of (4.7) is
now no longer homogeneous in the velocities dv

du and
dxi
du , but

because aij depends on the “time” u, there is no conserved
analogue of the quantity H. The symmetry aspects will be
further investigated in Sec. V.
Before analyzing the general case, we recall, for later

comparison, some aspects of the geodesics of a pp-wave
described by the square-root Lagrangian [Eq. (1.1)].

A. Geodesics in a pp-wave

Let us thus first consider a pp-wave written in BJR
coordinates, whose geodesics are described by Eq. (1.1)
with Aμ ¼ 0:

L0 ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
¼ −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−aijðuÞ_xi _xj − 2_u _v

q
: ð4:8Þ

The canonical momenta pμ ¼ ∂L0∂ _xμ are

pu ¼
m _vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _xμ _xν
p ; pi ¼

maij _xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

p ;

pv ¼
m _uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _xμ _xν
p ; ð4:9Þ

of which pi and pv are constants of the motion, since
aij ¼ aijðuÞ. For a u-dependent profile, pu is not con-
served, though. The geodesic equations of motion are

ü ¼ _u
d
dλ

ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _xμ _xν
q �

; ð4:10aÞ

ẍi þ _uaija0jk _x
k ¼ _xi

d
dλ

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q �
; ð4:10bÞ

v̈ −
1

2
a0ij _x

i _xj ¼ _v
d
dλ

ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _xμ _xν
q �

; ð4:10cÞ

where a0ij ¼ daij
du . Using the first equation, the two remain-

ing ones simplify to4

ẍi þ _uaija0jk _x
k ¼ _xi

ü
_u
; ð4:11aÞ

v̈ −
1

2
a0ij _x

i _xj ¼ _v
ü
_u
: ð4:11bÞ

An ingenious way to solve these equations is to use the
conserved quantities. We first define the constants of the
motion by setting

Pi ¼
pi

pv
¼ aij _xj

_u
: ð4:12Þ

The resulting first-order differential equation for xi is
solved at once as

xiðuÞ ¼ SijðuÞPj þ xi0; ð4:13Þ

where S≡ Sij is the Souriau matrix [35], defined by

dSðuÞ
du

¼ a−1ðuÞ: ð4:14Þ

pv in Eq. (4.9) provides us in turn with a first-order
equation for v:

_v ¼ −
1

2
aijPiPj _u −

1

2
μ20 _u; where μ0 ¼

m
pv

: ð4:15Þ

This equation is then solved as

v ¼ −
1

2
PiPjSijðuÞ −

1

2
μ20uþ v0: ð4:16Þ

The transverse motion (4.13) is the same for all values of
the massm, which enters only the vmotion (4.16) by a shift
which is linear in u and proportional to the mass-quotient
term μ0 in Eq. (4.15), familiar from Ref. [41].

B. Finsler geodesics

Let us now consider the Bogoslovsky-Finsler-F
Lagrangian Lb in Eq. (4.6). Its canonical momenta are

pu ¼ mð _uÞb−1ð−2_u _v−aij _xi _xjÞ−1þb
2 ðð1þ bÞ _u _vþbaij _xi _xjÞ;

ð4:17aÞ

pi ¼ mð1 − bÞðaij _xjÞ _ubð−2_u _v−aij _xi _xjÞ−1þb
2 ; ð4:17bÞ

pv ¼ mð1 − bÞ _ubþ1ð−2_u _v−aij _xi _xjÞ−1þb
2 : ð4:17cÞ

pi and pv are constants of the motion as before, and we
have the dispersion relation in Eq. (18) of Ref. [6]:

p2 ≡ gμνpμpν ¼ −m2ð1 − b2Þ _u2bð−2_v − aij _xi _xjÞ−b:
ð4:18Þ4Choosing the affine parameter λ ¼ u, the rhs would vanish.
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The geodesic equations,

ðbþ 1Þü ¼ _u
d
dλ

lnð−2_u _v−aij _xi _xjÞ1þb
2 ; ð4:19aÞ

ẍi þ _uaija0jk _x
k þ b

ü
_u
_xi ¼ _xi

d
dλ

lnð−2_u _v−aij _xi _xjÞ1þb
2 ;

ð4:19bÞ

v̈þ 3b−1

2ð1þbÞa
0
ij _x

i _xjþ 2b
_uð1þbÞaij _x

i _xj

¼ 1

bþ1

�
_vþ 2b

1þb
aij _xi _xj

��
d
dλ

lnð−2_u _v−aij _xi _xjÞ1þb
2

�
;

ð4:19cÞ

reduce to Eq. (4.10) when b ¼ 0.
The remarkable fact is that using Eq. (4.19a), the two

remaining equations become the same [Eq. (4.11)], as for
the square root Lagrangian [Eq. (4.8)].
This does not imply identical solutions, though, as seen

by solving the geodesics equations along the same lines as
before. Setting once again Pi ¼ pi

pv
provides us with the

transverse motion

xiðλÞ ¼ SijðuðλÞÞPj þ xi0; ð4:20Þ

which is again Eq. (4.13). Then, from Eq. (4.17b), we
infer that

_v ¼ −
1

2
ðaijPiPj þ μ2bÞ _u; where μb ¼

�
m
pv

ð1 − bÞ
� 1

1þb

;

ð4:21Þ

whose integration yields

v ¼ −
1

2
SijðuÞPiPj −

1

2
μ2buþ v0: ð4:22Þ

Let us observe that this takes the same form as for
Eq. (4.16)—however, with a new, b-dependent mass-
quotient term, μb. For b ¼ 0, the latter reduces to μ0, and
the massive Eq. (4.16) is recovered.
The family of pp-wave geodesics are given by

Eqs. (4.13) and (4.16) and are labeled by the constants
of integration Pi, xi0, v0, and μ0. The Finsler geodesics are
given by Eqs. (4.20) and (4.22) and are labeled by the
constants of integration Pi, xi0, v0, and μb. It is clear that the
two sets of geodesics are identical up to a b-dependent
relabeling of the last constant of integration.
In the massless case m ¼ 0 (photons), the b-dependent

term drops out from Eq. (4.22). Letting b → 1 turns off the
mass-quotient term, μb → 0, and all geodesics behave as if

they were massless, consistently with Eq. (4.18). See Fig. 1
in Sec. VII for an illustration.
Another way to see the surprising identity of the geo-

desics is to consider the Euler-Lagrange equations

Eμ ¼
∂L0

∂xμ −
d
dt

�∂L0

∂ _xμ
�

¼ 0 and

Ẽμ ¼
∂Lb

∂xμ −
d
dt

�∂Lb

∂ _xμ
�

¼ 0 ð4:23Þ

of the two Lagrangians L0 and Lb in Eqs. (4.8) and (4.6),
respectively.
Both systems can be described by three independent

equations, since the following identities hold: _xμEμ ≡ 0,
_xμẼμ ≡ 0. Then the combinations are as follows:
(1) For the first system:

ð−gμν _xμ _xνÞ1=2
m

�
2_v
_u
Ev þ

_xi

_u
Ei

�
¼ 0; ð4:24Þ

ð−gμν _xμ _xνÞ1=2
m

�
_xi

_u
Ev − aijEj

�
¼ 0: ð4:25Þ

FIG. 1. Consistently with Eq. (4.13), the Bogoslovsky-Finsler
geodesics project to the same curve in 2D transverse space for all
values of the parameter b while their v coordinates differ,
according to Eq. (4.22), in a b-dependent term, which is linear
in retarded time, u. Experiments indicate that the anisotropy, and
hence b, is very small. When b → 1, the trajectory approaches the
massless one (in heavy black), consistently with Eq. (4.22).
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(ii) For the second system:

ð−gμν _xμ _xνÞ1þb
2

m

	
1

ð1 − b2Þ _ubþ2
ð2_u _v−baij _xi _xjÞẼv

þ _xi

ð1 − bÞ _ubþ1
Ẽi



¼ 0; ð4:26Þ

ð−gμν _xμ _xνÞ1þb
2

m

	
_xi

ð1−bÞ _ubþ1
Ẽvþ

aij

ðb−1Þ _ub Ẽj



¼ 0;

ð4:27Þ

(where i, j ¼ 1, 2) yield both parts of Eq. (4.11).

V. PARTIALLY BROKEN CARROLL SYMMETRY

Generic plane gravitational waves are invariant under the
same five-parameter group we denote by G5 [31,32].
Expressed in BJR coordinates, G5 is implemented as [35]

u → u; x → xþ SðuÞbþ c;

v → v − b · x −
1

2
b · SðuÞbþ f; ð5:1Þ

where S is Souriau’s matrix [Eq. (4.14)]. The 2-vectors
b and c and f are constants, interpreted as boosts, and as
transverse and vertical translations. These same transfor-
mations are isometries also for the Bogoslovsky-Finsler-F
metric [Eq. (3.6)] because u is fixed, and the pp isometries
leave the pp-wave metric—and hence their powers—
invariant. The transformations in Eq. (5.1) are generated
by the vector fields

Bi ¼ SijðuÞ∂j − xi∂v; ∂i and ∂v; ð5:2Þ

respectively. The only nonvanishing Lie bracket is

½∂i; Bj� ¼ −δij∂v: ð5:3Þ

Rotations, generated by Lij ¼ xi∂j − xj∂i, are not sym-
metries in general.
The restriction of a pp-wave to the u ¼ 0 hypersurface

C0 carries a Carroll structure. The “vertical” coordinate v is
interpreted as “Carrollian time” [33,34,42]. C0 is left
invariant by the action (5.1), and the generators then satisfy
the Carroll algebra in two space dimensions with rotations
omitted [35]. Then Eq. (5.1) tells us how the Carroll group
is implemented on any hypersurface u ¼ u0 ¼ const.
In the flat case, aij ¼ δij, we have further symmetries.

In particular, adding the vector fields ∂u, Lij, and Lþ− ¼
v∂v − u∂u yields the Lie algebra of an eight-parameter
subgroup of the Poincaré group. We now have

½v∂v − u∂u; ∂v� ¼ −∂v; ð5:4Þ

and so the direction of the null Killing vector field ∂v is
preserved. The eight-dimensional group they generate is
ISIMð2Þ. Omitting the translations ∂v, ∂u, ∂i gives SIMð2Þ,
the largest proper subgroup of the Lorentz group SOð3; 1Þ.
This is the symmetry of Cohen and Glashow’s very special
relativity [1].
Returning to the case of general pp-waves and their

Bogoslovsky-Finsler-F version [Eq. (3.6)], we emphasize
that the BJR matrix a ¼ ðaijÞ, and thus the Souriau matrix
S, depends on the pp-wave metric only, but not on the
deformation parameter b. Therefore, the isometries in
Eq. (5.1) act, for Eq. (3.6), exactly as for standard
plane waves.
The invariance of the Bogoslovsky-Finsler-F model

can be confirmed with respect to the partially broken
Carroll group. The infinitesimal version of Eq. (5.1) is
Y iso in Eq. (5.2). The linear momenta in Eq. (4.17) are
readily recovered; using Eq. (5.2) for boosts, we get in turn

ki ¼ pvxi − Sijpj; ð5:5Þ

just as for a gravitational wave [35]. Its conservation
follows from Noether’s theorem, and can also be confirmed
by a direct calculation. The dependence on b is hidden in
the momenta in Eq. (4.17). The initial position xi0 in
Eq. (4.13) is the conserved value of ki.
For b ¼ 0, the flat Bogoslovsky-Finsler model has one

more isometry, identified with the U − V boost N0 ¼ Lþ−
in Eq. (3.10). For b ≠ 0, this generator is broken but not
entirely lost. Let us explain how this comes about.
As said above, the (rotationless) Carroll isometry group

G5 in Eq. (5.1) of the initial pp-wave remains a symmetry
with identical generators for its Bogoslovsky-Finsler-F
extension.
To see what happens to U − V boosts, we start with the

Minkowski metric, ημνdxμdxν ¼ δijdxidxj þ 2dudv. A
U − V boost, implemented as

u → λ−1u; xi → xi; v → λv; ð5:6Þ

where λ ¼ const > 0, is an isometry. Moreover, its b-
dependent deformation of Eq. (5.6),

u → λb−1u; xi → λbxi; v → λbþ1v; ð5:7Þ

is readily seen to leave the Bogoslovsky-Finsler-F line
element (3.1) invariant—although for b ≠ 0 it is only a
conformal transformation for the Minkowski metric,
ημνdxμdxν → λ2bημνdxμdxν, and not an isometry.5 We rec-
ord for later use that the b-deformed boost [Eq. (5.7)] is
generated by

5Noting that λb−1 ¼ ðλbÞb−1b shows that Eq. (5.7) has dynamical
exponent z ¼ 1 − 1

b < 0, which corresponds to the conformal
Galilei algebra labeled by z [43,44].
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Nb ¼ ðb − 1Þu∂u þ ðbþ 1Þv∂v þ bxi∂i: ð5:8Þ

Both Eqs. (5.6) and (5.7) leave the hypersurface u ¼ 0
invariant, and extend the Carroll action (5.1). We note that
the restriction to C0 of the deformedU − V boost [Eq. (5.7)]
scales the Carrollian time, v → λbþ1v. Therefore, it is only
the direction of ∂v (and not ∂v itself) which is preserved—
the isometry [Eq. (3.1)] is “chronoprojective” [40,45]:

∂v → λ−1−b∂v: ð5:9Þ

In the flat case, two more isometries—namely u-
translations and rotations complete the algebra to one with
eight parameters. With some abuse, we will still refer to G5

extended with U-translations (but with no rotations) as
“Carroll” for simplicity and denote it by G6. Its further
extension by U − V boosts will be called chrono-Carroll
[40] and denoted by G7.
The Lie algebra structure is most easily checked by

taking the commutators of the vector fields in Eqs. (3.9) and
(3.10) and comparing with those given in Eq. (9) of
Ref. [6], which gives the structure constants of the
deformed group DISIMbð2Þ; those of ISIMð2Þ are obtained
by setting b ¼ 0.
Further insight is gained by decomposing the deformed

U − V boost generator Nb in Eq. (5.8) into the sum of
the undeformed expression N0 ¼ Lþ− and a relativistic
dilation D:

Nb¼v∂v−u∂uþbðu∂uþv∂vþxi∂iÞ¼N0þbD: ð5:10Þ

For b ≠ 0, N0 is broken, and it is only the above
combination of U − V boosts and dilations which is a
symmetry—a situation familiar from gravitational plane
waves [35,40,46].
It is instructive to see how this comes about. In the flat

Minkowski case, aij ¼ δij and Eq. (4.17) yield

pi ¼ ð_xi= _uÞpv and pu ¼
ð1þ bÞ _u _v−b_xi _xi

ð1 − bÞ _u2 pv:

Then, for D ¼ Dμpμ and N 0 ¼ Nμ
0pμ, we have

_D ¼ ð2_u _vþ_xi _xiÞ
ð1 − bÞ _u pv and

_N 0 ¼ −b
ð2_u _vþ_xi _xiÞ
ð1 − bÞ _u pv ¼ −b _D; ð5:11Þ

so that the combination of the two expressions is
conserved:

_N b ¼ 0 for N b ¼ N 0 þ bD: ð5:12Þ
Now we turn to the curved case. Let us consider a

conformal transformation f of a pp-wave with metric gμν:

f⋆gμν ¼ Ω2gμν; ð5:13Þ

where f⋆ is the pullback map. This changes the “pp factor”
in Eq. (4.5), as

ðgμνdxμdxνÞ12ð1−bÞ → Ω1−bðgμνdxμdxνÞ12ð1−bÞ: ð5:14Þ

The change can be compensated by the “B-F factor,”
though. Assuming that f⋆lμ ¼ Ωalμ for some constant a
yields

ðlμdxμÞbðgμνdxμdxνÞ12ð1−bÞ
→ Ωabþ1−bðlμdxμÞbðgμνdxμdxνÞ12ð1−bÞ: ð5:15Þ

In the undeformed case b ¼ 0, this is a conformal
transformation with conformal factor Ω; obtaining an
isometry requires f to be an isometry for the pp-wave.
This is consistent with our findings in the flat case for the
U − V boost [Eq. (5.6)].
For b ≠ 0, we have another option. If the exponent of Ω

in Eq. (5.15) vanishes,

ab ¼ b − 1; ð5:16Þ

then we do get an isometry again. For the b-deformed
U − V boost in Eq. (5.7), we have Ω ¼ λb, consistently
with Eq. (5.16).
In the case of plane gravitational waves, one drops the

angular momentum J and ∂U, and then the issue is what to
do about Nb. Our only certainty so far is that the flat-space
implementation [Eq. (5.8)] does not work.
The symmetry of the Bogoslovsky-Finsler-F model

is in fact of the very special relativity (VSR) type—more
precisely, a subgroup of the eight-parameter DISIMbð2Þ,
where 0 < b < 1 is a deformation parameter [7,43].
DISIMbð2Þ is isomorphic to the conformal Galilei group
with dynamical exponent [44]

z ¼ 1 −
1

b
: ð5:17Þ

For b ≠ 0, U − V boosts (which are isometries for the
Minkowski case) are deformed to Eq. (5.8), a combination
of U − V boosts and relativistic dilations.
One can be puzzled about whether the “deformation

trick” can work also for a nontrivial profile. The answer is
that it might work for a particular profile. Let us consider,
for example, a pp-wave [Eq. (3.4)] written in Brinkmann
coordinates with the (singular) profile

2HðXi; UÞ ¼ −
K0

ij

U2
XiXj; K0

ij ¼ const: ð5:18Þ

This wave has a six-parameter isometry group [32,40,
46,47]. It is, in particular, invariant under a U − V boost
[Eq. (5.6)]. Then we find that the deformed U − V boost,
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U → ΛU; X → Λ b
b−1X; V → Λbþ1

b−1V; ð5:19Þ

leaves the Bogoslovsky-Finsler-F line element

dsBF ¼
�
−2dUdV − dX2 −

K0
ij

U2
XiXjdU2

�1−b
2 ðdUÞb

ð5:20Þ
invariant. The usual U − V boost is recovered for b ¼ 0.
Writing λ ¼ Λ b

b−1 shows, moreover, that when b ≠ 0, the
dynamical exponent is z ¼ −1þ 1

b, minus that in Eq. (5.17).
Note that Eq. (5.19) is, once again, a conformal trans-
formation of the pp-wave metric [Eqs. (3.4)–(5.18)] with
conformal factor Ω2 ¼ Λ 2b

b−1.

VI. PROLONGATION VECTORS
AND SYMMETRIES

The connection of the aforementioned symmetries to
integrals of the motion is established through Noether’s
first theorem [48]: each generator of any finite-dimensional
Lie group of transformations which leaves the action form-
invariant up to a surface term [49] is associated with a
conserved quantity.
Consider, for example, a dynamical system with depen-

dent and independent variables xμðλÞ and λ, respectively.
The most general point transformation one can have is

ϒ ¼ σðλ; xÞ ∂
∂λþ Yμðλ; xÞ ∂

∂xμ ; ð6:1Þ

where the coefficient σðλ; xÞ accounts for transformations
which might also involve the parameter λ. This vector
can be extended to the space of the first derivatives,
_xμ ¼ dxμ

dλ — i.e., we can consider the first prolongation of
ϒ, defined as [50,51]

prð1Þϒ¼ϒþΦμ ∂
∂ _xμ ; whereΦμ ¼ dYμ

dλ
− _xμ

dσ
dλ

: ð6:2Þ

The coefficient Φμ here is to guarantee the correct
transformation law for the derivatives. Given, for example,
the generator (6.1), up to first order in the transformation
parameter (say ϵ) we may write

λ̄ ∼ λþ ϵσðλ; xÞ; x̄μ ∼ xμ þ ϵYμðλ; xÞ; ð6:3Þ

which furthermore implies

dx̄μ

dλ̄
∼
dðxμþ ϵYμÞ
dðλþ ϵσÞ ∼

�
dxμ

dλ
þ ϵ

dYμ

dλ

��
1− ϵ

dσ
dλ

�
≃ _xμþ ϵΦμ:

ð6:4Þ

With the use of the extended vector prð1Þϒ, the initial
requirement of Noether’s theorem, written as

δðLdλÞ ¼ dΣ; ð6:5Þ

where Σ ¼ Σðλ; xÞ is some function, can be cast in
infinitesimal form as

prð1ÞϒðLÞ þ L
dσ
dλ

¼ dΣ
dλ

: ð6:6Þ

To an appropriate generator ϒ and a function Σ satisfying
the above relation, there corresponds a conserved quantity:

I ¼ Yμ ∂L
∂ _xμ − σ

�
_xα

∂L
∂ _xα − L

�
− Σ: ð6:7Þ

The geodesic system is invariant under arbitrary
changes of the parameter λ; therefore the inclusion of
the coefficient σ in Eq. (6.1) does not contribute in the
conservation law. As can be seen using Eq. (6.7), σ
essentially multiplies the Hamiltonian, which is identically
zero for Lagrangians which are homogeneous functions of
degree 1 in the velocities. The coefficient σ plays a role
instead in Noether’s second theorem and an identity among
the Euler-Lagrange equations of motion [52]. As a result,
we may restrict ourselves to consider pure spacetime
transformations generated by vectors Y ¼ YαðxÞ∂α. Then
the first prolongation becomes

prð1ÞY ¼ Y þ dYα

dλ
∂
∂ _xα ¼ YαðxÞ ∂

∂xα þ
∂Yα

∂xβ _xβ
∂
∂ _xα ; ð6:8Þ

and Eqs. (6.6) and (6.7) reduce to

prð1ÞYðLÞ ¼ dΣ
dλ

; I ¼ Yμ ∂L
∂ _xμ − Σ: ð6:9Þ

If for a given spacetime vector Y, the relation
prð1ÞYðLÞ ¼ 0 is satisfied (as for isometries of the geodesic
system), then Σ is just a constant and can be omitted, thus
having Ĩ ¼ I þ Σ ¼ Yμ ∂L

∂ _xμ ¼ const.
To illustrate the prolongation technique, we note that

for a system in the background gμν [Eq. (4.5)] whose
Lagrangian is L, the first prolongation of the isometries in
Eq. (5.2),

Y iso ¼ ðSijβj þ γiÞ∂i þ ð−βixi þ φÞ∂v;

is

prð1ÞY isoðLÞ ¼
�
Yα
iso∂α þ

∂Yα
iso

∂xβ _xβ
∂
∂ _xα

�
ðLÞ: ð6:10Þ

If the rhs is a total derivative, then we have a symmetry for
the system.
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Applying Eq. (6.10) first to the pp-wave Lagrangian

Lpp ¼ _u _vþ 1

2
aij _xi _xj ð6:11Þ

confirms that Y iso is a symmetry for the pp-wave.
Next, for the Bogoslovsky-Finsler-F Lagrangian Lb in

Eq. (4.6), we find that the rhs of Eq. (6.10) vanishes:

prð1ÞY isoðLbÞ
¼ ðmð1 − bÞð−aij _xi _xj − 2_u _vÞ−1þb

2 _ubÞprð1ÞY isoðLppÞ
¼ 0; ð6:12Þ

proving that the Carroll group (with broken rotations)
generates symmetries also for the Bogoslovsky-Finsler
metric. The conserved quantities listed in Sec. V are
recovered using Eq. (6.9).
Turning now to U − V boosts, we check first that for the

flat Minkowski metric, the prolongation of the deformed
boost Nb in Eq. (5.8) vanishes:

prð1ÞNbðL0Þ ¼ 0; ð6:13Þ

and thus generates the constant of the motion N b
in Eq. (5.12).
However, the same calculation carried out in the curved

background gμν [Eq. (4.5)] yields instead

prð1ÞNðLbÞ

¼mu _ubðb−1Þ2
�
daij
du

_xi _xj
�
ð−aij _xi _xj−2_u _vÞ−1−b2 : ð6:14Þ

Consistently with what we said before, this vanishes for the
flat metric ημν. However, it is manifestly not a total
derivative in general whenever a ¼ ðaijÞ is not a constant
matrix.

VII. AN EINSTEIN-MAXWELL EXAMPLE

In this section, we treat the motion in the Bogoslovsky-
Finsler deformation of a pp-wave which is not Ricci
flat. It is

ds2 ¼ ðdX1Þ2 þ ðdX2Þ2 þ 2dUdV

−
ω2

4
ððX1Þ2 þ ðX2Þ2ÞdU2: ð7:1Þ

From Eq. (24.5) on p. 385 of Ref. [32], one learns that it
belongs to a class first considered by Baldwin and Jeffery
[53]. It is conformally flat and is an Einstein-Maxwell
solution with a covariantly constant null Maxwell field.
From the Bargmann point of view, this metric describes an
isotropic harmonic oscillator in the plane with frequency ω
[30]. The kinematic group arising from the null reduction is

the Newton-Hooke group [54]. Because the metric (7.1) is
of the form of Eq. (3.4) with

−2H ¼ KijXiXj; ð7:2Þ

where Kij is nondegenerate and independent of U, it is also
a Cahen-Wallach symmetric space [55–58]. Following the
procedure outlined in Sec. IV, the metric (7.1) can pre-
sented in the BJR form. We set a ¼ PtP, where

P¼
"
ð1− sinðωuÞÞ1=2 cosϕ −ð1þ sinðωuÞÞ1=2 sinϕ
ð1− sinðωuÞÞ1=2 sinϕ ð1þ sinðωuÞÞ1=2 cosϕ

#

ð7:3Þ

is a solution of the Sturm-Liouville equation (4.4) with
diagonal profile K ¼ − ω2

4
Id. Then, using Eq. (4.3), we end

up with

ds2 ¼ ð1 − sinðωuÞÞdx2 þ ð1þ sinðωuÞÞdy2 þ 2dudv;

ð7:4Þ

which has a ¼ PTP ¼ diagð1 − sinðωuÞ; 1þ sinðωuÞÞ. On
p. 386 of Ref. [32], this result is ascribed to Brdička [59].
Equation (7.4) shows that the U − V boost symmetry is
manifestly broken.
The Souriau matrix is found by integrating the inverse of

ðaijÞ, cf. Eq. (4.14),

SðuÞ ¼ 1

ω

"
tan ðωu

2
þ π

4
Þ þC1 0

0 tan ðωu
2
− π

4
Þ þC2

#
; ð7:5Þ

where C1;2 are integration constants. Choosing u0 ¼ 0

yields C1¼−1 and C2 ¼ 1. The trajectories (4.13)–(4.22)
for different values of b are depicted in Fig. 1.
We mention that the profile of the metric (7.1) is

U-independent, and therefore U-translation, U → U þ ϵ,
is an additional isometry. This carries over trivially to its
Finslerized line element [Eq. (3.6)], since both the pp-
wave metric and the “Bogoslovsky-Finsler-F factor” are
invariant.

VIII. BOGOSLOVSKY-FINSLER-FRIEDMANN-
LEMAÎTRE MODEL

In this section, we shall describe a simple extension of
Bogoslovsky’s theory to take into account the expansion of
the Universe. For some previous work, see Refs. [60–63].
In contrast to our work, these authors consider only Finsler
metrics which share the isotropy and spatial homogeneity
of Friedmann-Lemaître models. This necessarily excludes
the use of a null vector field.
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A. The ΛCDM model

The simplest standard model consistent with current
observational data is the spatially flat Friedmann-Lemaître
model with metric

gμνdxμdxν ¼ −dt2 þ a2dx2; ð8:1Þ

where a ¼ aðtÞ and x ¼ ðx; y; zÞ. The “scale factor” aðtÞ is
determined by the Einstein equations once the matter
content has been specified. The favored ΛCDM model has

aðtÞ ¼ sinh
2
3

� ffiffiffiffiffiffi
3Λ

p

4
t

�
; ð8:2Þ

which enjoys the remarkable property that the jerk equals 1:

j ¼ a2
�
da
dt

�
−3 d3a

dt3
¼ 1: ð8:3Þ

See Ref. [64] for details and original references.
Here we shall leave the precise form of aðtÞ unspecified.

The coordinate t is called cosmic time. The spatial
coordinate x is usually said to be comoving, since the
world lines of the cosmic fluid have constant x. Two events
simultaneous with respect to constant time—i.e., with xμ1 ¼
ð0;x1Þ and xμ2 ¼ ð0;x2Þ—have a time-dependent proper
separation aðtÞðx1 − x2Þ.

B. The choice of null vector field

The vector field

lμ
∂
∂xμ ¼ gðtÞ 1ffiffiffi

2
p

�
a
∂
∂t −

∂
∂z

�
; ð8:4Þ

where gðtÞ is a nonvanishing arbitrary function is past
directed and null but is neither covariantly constant nor
Killing, as it can be checked by a tedious calculation. The
associated one-form is

lμdxμ ¼ −a2g
1ffiffiffi
2

p
�
1

a
dtþ dz

�
: ð8:5Þ

If _xμ ¼ dxμ
dλ , then

L¼−mða2gÞb
�

1ffiffiffi
2

p ðaðtÞ−1_tþ _zÞ
�

b
ð_t2−a2 _x2Þ12ð1−bÞ ð8:6Þ

is a possible Bogoslovsky-Finsler-type Lagrangian
for a particle of mass m. It admits three commuting
symmetries generated by ∂

∂x, and hence three conserved
momenta p ¼ ∂L

∂ _x.
If b ¼ 0, then Eq. (8.6) is the standard action for a freely

moving particle in a flat isotropic Friedmann-Lemaître
universe.

C. Hubble friction

A notable feature of the free motion of a massive
particle moving in a Friedmann-Lemaître universe is
Hubble friction. The conserved momenta are

p ¼ ma2
dx
dτ

; where dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a
dx
dt

�
2

s
dt: ð8:7Þ

Here dτ is the increment of proper time along the world line
of a particle. The four-velocity of the particle with respect
to the local inertial reference frame ∂

∂t,
∂

aðtÞ∂x is

u ¼ aðtÞ dx
dτ

; whence u ¼ p
maðtÞ : ð8:8Þ

One may also define a velocity v measured in units of
cosmic time t, v ¼ aðtÞ dxdt , so that

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
dt; u ¼ vffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; and

v ¼ p
m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

m2

q : ð8:9Þ

Hence,

dx
dt

¼ p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ p2

p : ð8:10Þ

Thus, in an expanding phase in which aðtÞ increases with
time, both v and u decrease with time. However, as a
consequence of isotropy, their directions remain constant.
The fact that we have three conserved momenta and the
constraint

�
dt
dτ

�
2

¼ 1þ a2
�
dx
dτ

�
2

ð8:11Þ

implies that the system of geodesics is completely inte-
grable. In fact,

dx¼ p
ma2

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð p

maÞ2
q and dτ¼ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð p
amÞ2

q : ð8:12Þ

D. Conformal flatness

Before proceeding further, we recall that the Friedmann-
Lemaître metric (8.1) is conformally flat, as becomes clear
if we define conformal time η by

ηðtÞ ¼
Z

t dt̃
aðt̃Þ ; ð8:13Þ
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where the lower limit is left unspecified for the time being.
In terms of cosmic time, the Friedmann-Lemaître metric
(8.1) becomes

gμνdxμdxν ¼ a2f−dη2 þ dzþ dxidxig
¼ a2f2dudvþ dxidxig; ð8:14Þ

where a2 is regarded as a function of conformal time η, and
we introduce the light-cone coordinates

u ¼ zþ ηffiffiffi
2

p ; v ¼ z − ηffiffiffi
2

p : ð8:15Þ

From Eq. (8.5), we learn that lμdxμ ¼ −a2gdu, whence our
Bogoslovsky-Finsler-F-ized line element is

ds ¼ a1þbgbð−2dudv − dxidxiÞ12ð1−bÞðduÞb: ð8:16Þ

This Lagrangian would yield Bogoslovsky’s original flat
spacetime model, provided we choose gðtÞ such that

f ¼ a1þbgb ¼ 1: ð8:17Þ

The only freedom with this model would be to introduce an
arbitrary factor

Lf ¼ fðηÞð−2_u _v−_xi _xiÞ12ð1−bÞð _uÞb; ð8:18Þ

which amounts to saying that the mass depends upon
cosmic time.
This situation is the same as in the ordinary spatially flat

Friedmann-Lemaître cosmology for which b ¼ 0. We can
either say the Universe is expanding, but our rulers are
constructed from massive particles, all of whose masses are
constant in cosmic time t, or that the Universe is time
independent, but the rulers all change with the same time
dependence. In that case, the phenomenon of Hubble
friction would be ascribed not to the expansion of the
Universe but to masses getting heavier.

E. Redshifting

If we adopt Eq. (8.18) then light rays move along straight
lines in ðη;xÞ coordinates. Emitters and observers (e.g.,
galaxies and astronomers) are usually held to be at rest in
these coordinates.
Suppose the observer is at the origin at ðη0; 0; 0; 0Þ and

receives light rays from a galaxy at ðηe; xe; ye; zeÞ so that
the duration of emission in conformal time is dηe, and the
duration of the corresponding observation is dηe; then

dηe ¼ dη0: ð8:19Þ

Then the emitted and observed proper times are dτe¼
fðηeÞdηe, dτ0 ¼ fðη0Þdη0, and so the redshift is

1þ z ¼ dτ0=dτe ¼ fðη0Þ=fðηeÞ: ð8:20Þ

Thus, if the Universe is expanding—that is, if f0 > 0—then
the signal received is redshifted, and contrariwise if the
Universe is contracting—that is, if f0 < 0.
Note that under these assumptions, the emitted light from

all galaxies at the same conformal time will be redshifted in
the same way. That is, the redshift should be isotropic.

F. A possible choice for f ðηÞ
As mentioned earlier, our observed Universe is well

described by a scale factor aðtÞ given by Eq. (8.2).
Applying the Einstein equations to the Friedmann-
Lemaître metric [Eq. (8.1)], one finds that it is supported
by a pressure-free fluid (some of it visible and some of it
not—so-called dark matter) and a positive cosmological
constant term Λ often called dark energy. Near the big
bang—i.e., for small t—aðtÞ ∝ t2=3, because the Λ term is
negligible. This is the Einsten–de Sittermodel. At late times,
aðtÞ ∝ exp

ffiffiffiffiffiffiffiffiffi
Λ=3

p
t, which exhibits cosmic acceleration.

This is de Sitter spacetime.
From Eq. (8.13), choosing Eq. (8.2) and setting ag ¼ 1

in Eq. (8.16), we have

ηðtÞ ¼
Z

t

0

sinh−
2
3

� ffiffiffiffiffiffi
3Λ

p

4
t̃

�
dt̃; ð8:21aÞ

fðηÞ ¼ aðtÞ ¼ sinh
2
3

� ffiffiffiffiffiffi
3Λ

p

4
t

�
: ð8:21bÞ

This step depends only on the scale factor a in Eq. (8.1)
and does not involve the deformation parameter b. See
Fig. 2. It is worth noting that conformal time as a function
of cosmic time is bounded from above—as happens for de
Sitter space, to which our spacetime tends when t → ∞.

FIG. 2. The conformal factor [Eq. (8.21b)] of the Friedmann-
Lemaître model [Eq. (8.1)], expressed as a function of the
conformal time η, obtained by numerical integration of
Eq. (8.21).
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IX. BOGOSLOVSKY-FINSLER-FRIEDMANN-
LEMAÎTRE GEODESICS

Written in coordinates ðη; x; y; zÞ, the Lagrangian
(8.18) is

Lf ¼ −mfðηÞ
�
_ηþ _zffiffiffi

2
p

�
b
ð_η2 − _x2 − _y2 − _z2Þ12ð1−bÞ; ð9:1Þ

providing us with the momenta

px ¼ mð1 − bÞfðηÞ_x
�
_ηþ _zffiffiffi

2
p

�
b
ð_η2 − _x2 − _y2 − _z2Þ−1

2
ð1þbÞ;

ð9:2aÞ

py ¼ mð1 − bÞfðηÞ_y
�
_ηþ _zffiffiffi

2
p

�
b
ð_η2 − _x2 − _y2 − _z2Þ−1

2
ð1þbÞ;

ð9:2bÞ

pz ¼ mð1 − bÞfðηÞ_z
�
_ηþ _zffiffiffi

2
p

�
b
ð_η2 − _x2 − _y2 − _z2Þ−1

2
ð1þbÞ

−
bffiffiffi
2

p mfðηÞ
�
_ηþ _zffiffiffi

2
p

�
−1þb

ð_η2 − _x2 − _y2 − _z2Þ12ð1−bÞ;

ð9:2cÞ

pη ¼ −mfðηÞ
�
_ηþ _zffiffiffi

2
p

�
b−1

ð_η2 − _x2 − _y2 − _z2Þ−1
2
ð1þbÞ

×

�
ð1− bÞ_η

�
_ηþ _zffiffiffi

2
p

�
þ bffiffiffi

2
p ð_η2 − _x2 þ _y2 − _z2Þ

�
:

ð9:2dÞ
Evidently, the three momenta px, py, pz are conserved.

Moreover, since

py

px
¼ dy

dx
; ð9:3Þ

the projections of the geodesics onto the transverse x-y
plane are straight lines. Choosing the proper time as a
parameter, λ ¼ τ, one has the constraint

fðηÞ
�
_ηþ _zffiffiffi

2
p

�
b
ð_η2 − _x2 − _y2 − _z2Þ12ð1−bÞ ¼ 1; ð9:4Þ

which we may rewrite in terms of conformal time, η, as an
equation for τ as

τ0 ¼ fðηÞ
�
1þ z0ffiffiffi

2
p

�
b
ð1 − ðx0Þ2 − ðy0Þ2 − ðz0Þ2Þ12ð1−bÞ; ð9:5Þ

where ðx0; y0; z0Þ ¼ ðdxdη ; dydη ; dzdηÞ.
If f0 ¼ 0, then pμ=fðηÞ is independent of η, leaving us

with the same straight-line motion at constant velocity as
for the flat Bogoslovsky spacetime.

As we have seen above, even if f0 ≠ 0, the projections
of the motion on the x − y plane are straight lines, although
not with constant speed with respect to the conformal
time η. The speeds of the projections onto the x-z and y-z
planes are also not at constant η speed, but they are not
straight lines either. Over conformal η times that are short
compared with f

f0, they are approximately straight lines with
slopes given by px

mfðηÞ but over longer time periods, the

speeds and directions change, reflecting precisely the
effects of Hubble friction.
The geodesics are conveniently studied by switching to

conformal time, η. Introducing

_u ¼ _ηþ _zffiffiffi
2

p and _w ¼ _η2 − _x2 − _y2 − _z2 ð9:6Þ

in place of _η and _z, Eqs. (9.2a), (9.2b), and (9.2c) become

mðb − 1ÞfðηÞ_x _ub þ px _w
bþ1
2 ¼ 0; ð9:7aÞ

mðb − 1ÞfðηÞ_y _ub þ py _w
bþ1
2 ¼ 0; ð9:7bÞ

mfðηÞ
2

ffiffiffi
2

p _ub−1 _w
1
2
ð−b−1Þð2ðb − 1Þ _u2 þ ðbþ 1Þ _w

− ðb − 1Þð_x2 þ _y2ÞÞ þ pz ¼ 0: ð9:7cÞ

The first two equations imply identical evolution:

_x ¼ _u−b _w
bþ1
2

mð1 − bÞfðηÞpx; _y ¼ _u−b _w
bþ1
2

mð1 − bÞfðηÞpy; ð9:8Þ

which confirms once again that the transverse projection is
a straight line, owing to _x=_y ¼ px=py ¼ const. With their
help, Eq. (9.7c) becomes

−
ffiffiffi
2

p
ðb − 1Þm2fðηÞ2 _u2bð2ðb − 1Þ _u2 þ ðbþ 1Þ _wÞ

− 4ðb − 1ÞmpzfðηÞ _ubþ1 _w
bþ1
2 þ

ffiffiffi
2

p
ðp2

x þ p2
yÞ _wbþ1 ¼ 0:

ð9:9Þ
By reparametrizing wðλÞ as

wðλÞ ¼
Z

σðλÞ2 _uðλÞ2dλ; ð9:10Þ

where σðλÞ is a new function that we introduce, Eq. (9.9)
reduces from a differential one to an algebraic

−
ffiffiffi
2

p
ðb−1Þm2fðηÞ2ððbþ1ÞσðλÞ2þ2ðb−1ÞÞ

−4ðb−1ÞmfðηÞpzσðλÞbþ1þ
ffiffiffi
2

p
ðp2

xþp2
yÞσðλÞ2ðbþ1Þ ¼ 0:

ð9:11Þ

For b ¼ 0, this is simply quadratic in σðλÞ, but for b ≠ 0, it
is not trivial to solve it for σ, cf. Fig. 3(a). However, as it is
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quadratic in fðηÞ, the inverse problem [which amounts to
choosing σðλÞ to find the corresponding fðλÞ] still works.
The functions σðηÞ and wðηÞ are plotted in Fig. 3. Using
Eqs. (9.6), (9.10), and (9.8) we get

_η ¼ _u

2
ffiffiffi
2

p
�
2þ σ2 þ ðp2

x þ p2
yÞσ2ðbþ1Þ

ðb − 1Þ2m2fðηÞ2
�
; ð9:12aÞ

_x ¼ _u
σbþ1

ð1 − bÞmfðηÞpx; ð9:12bÞ

_y ¼ _u
σbþ1

ð1 − bÞmfðηÞpy; ð9:12cÞ

_z ¼ _u

2
ffiffiffi
2

p
�
2 − σ2 −

ðp2
x þ p2

yÞσ2ðbþ1Þ

ðb − 1Þ2m2fðηÞ2
�
; ð9:12dÞ

together with the algebraic constraint between σðλÞ and
fðηðλÞÞ in Eq. (9.11).
The joint system can be shown to satisfy the Euler-

Lagrange equations.
The uðλÞ that remains unspecified in Eq. (9.12) and

disappears from Eq. (9.11) serves as a gauge parameter [by
seeing the ratios of derivatives that are being formed in
Eq. (9.12)], for which we can simply set uðλÞ ¼ λ. So, in
this time-gauge, ηðλÞ þ zðλÞ ¼ ffiffiffi

2
p

λ, which is compatible
with Eqs. (9.12a) and (9.12d), as seen above. We thus have,
in the “conformal time gauge,”

dx
dη

¼ 2
ffiffiffi
2

p ð1 − bÞmσbþ1fðηÞ
ð1 − bÞ2m2ðσ2 þ 2ÞfðηÞ2 þ ðp2

x þ p2
yÞσ2ðbþ1Þ px;

ð9:13aÞ
dy
dη

¼ 2
ffiffiffi
2

p ð1 − bÞmσbþ1fðηÞ
ð1 − bÞ2m2ðσ2 þ 2ÞfðηÞ2 þ ðp2

x þ p2
yÞσ2ðbþ1Þ py;

ð9:13bÞ

dz
dη

¼
2 − σ2 − ðp2

xþp2
yÞσ2ðbþ1Þ

ð1−bÞ2m2fðηÞ2

2þ σ2 þ ðp2
xþp2

yÞσ2ðbþ1Þ

ð1−bÞ2m2fðηÞ2
: ð9:13cÞ

A. The Friedmann-Lemaître case b= 0

If b ¼ 0, the algebraic relation (9.11) is quadratic and
can be solved for σ:

σðηÞ ¼ �
ffiffiffi
2

p
mfðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2fðηÞ2 þ p2
p

� pz

; ð9:14Þ

as shown by the blue line in Fig. 3(a) for the upper sign.6 In
terms of conformal time η,

(a) (b)

FIG. 3. (a) σðηÞ and (b) wðηÞ in Eq. (9.10) plotted for blue b ¼ 0 and for red b ¼ 0.5.

FIG. 4. For blue b ¼ 0, all trajectories follow straight lines and
have identical evolution. For red b ¼ 0.5, zðηÞ becomes different
from the transverse trajectories [xðηÞ, yðηÞ] consistently with
Eq. (9.13), as shown in Fig. 5.

6Choosing the lower sign would amount to an overall sign
change when that of pz is also reversed.
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dx
dη

¼ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2fðηÞ2 þ p2

p ; ð9:15Þ

to be compared with Eq. (8.10). The consistency with the
equations in Sec. VIII C follows from

dτ ¼ mf2dηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2f2 þ p2

p ; dx ¼ dηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2f2 þ p2

p p

⇒
dx
dτ

¼ 1

mf2
p: ð9:16Þ

We could not obtain analytical expressions; however,
using the numerically calculated values of fðηÞ (see Fig. 2)
allows us to plot xðηÞ by solving Eq. (9.15), as shown
in Fig. 4.7

The b ¼ 0 case nicely illustrates Hubble Friction: all
trajectories slow down and ultimately come to rest. For
b ≠ 0 it seems that this happens only for the transverse
motion but not for the motion in the z-direction, see Fig. 6.
The slowing down in the transverse case is plausible from
Eqs. (9.12b) and (9.12c).

X. CONCLUSION

In this paper, motivated by work by Bogoslovsky
[3–5,7], and by that of Tavakol and Van den Bergh, and
Roxburgh [9,11,12], and by Cohen and Glashow [1], and
more recently by others [14–21], we have studied the free
motion of a massive particle moving in a one-parameter
family of Finslerian deformations of a plane gravitational
wave. By free motion, we mean that it extremizes the
proper time along its timelike world line. Finslerian proper
time is measured by replacing the usual square-root
integrand

(a) (b)

FIG. 5. For red b > 0, the motion in the x-z plane is not more along a straight line (as it is for blue b ¼ 0). The Hubble friction slows
down the z motion for blue b ¼ 0, but not when red b > 0.

FIG. 6. For the Friedmann-Lemaître model for blue b ¼ 0, the
3D trajectory is a straight line. For the Bogoslovsky-Finsler-F
modification for red b ¼ 0.5, however, while the projection to the
x − y plane is still along a straight line, the z component becomes
curved, consistently with Fig. 5.

7The two signs in Eq. (9.14) can be compensated by p → −p,
implying an overall sign change. In what follows, the upper sign
will be chosen.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dλ
dxν

dλ

r
with

�
−gμνlμ

dxν

dλ

�
b
�
−gμν

dxμ

dλ
dxν

dλ

�1
2
ð1−bÞ

;

where lμ is a null vector field and b is a dimensionless
constant.
In earlier work, we have shown that because of the five-

dimensional isometry group of plane gravitational waves,
the motion of the usual timelike geodesics is completely
integrable.
In the present paper, we have shown that the five-

dimensional partially broken Carroll symmetry group
G5 remains a symmetry of our Finslerian line element,
provided we choose the null vector field lμ to be the
covariantly constant null vector of the underlying gravita-
tional wave. As a consequence, we find that that not only
is the free motion completely integrable, but it differs
only in that the “vertical” coordinate v involves in turn
a b-dependent term, which is linear in the retarded time
coordinate u. The motion in the transverse directions is
unchanged. The situation is analogous to what happens for
massive vs massless geodesics in a pp-wave [41].
The symmetry of the Bogoslovsky-Finsler-F model is in

fact that of the very special relativity (VSR) type; in the
Minkowski case it is the eight-parameter DISIMbð2Þ
[7,39,43]. The clue is to deform a U − V boost N0 to
Nb as in Eq. (5.8). The trick works for certain nontrivial
profiles, as for the U−2 discussed at the end of Sec. V.
We have also examined the free motion of a Finslerian

deformation of a homogeneous pp-wave, which is an
Einstein-Maxwell solution. The resulting spacetime is a

Cahen-Wallach symmetric space [55] and arises in a wide
variety of physical applications, and whose null reduction
in the fashion of Eisenhart and Duval et al. [30] is a simple
harmonic oscillator with a Newton-Hooke-type symmetry.
Here again, the free motion is qualitatively independent of
the deformation parameter b.
We have also studied a simple anisotropic cosmological

model based on that of Friedmann and Lemaître with
vanishing spatial curvature. Because the latter is confor-
mally flat, the motion of massive particles is equivalent to
motion in flat Bogoslovsky spacetime, except that all
masses become time dependent with identical time
dependence.
Although our present Universe shows little sign of

anisotropy of the sort that arises in Bogoslovsky-Finsler
metrics, that may not have been true earlier in the history of
the Universe, since the absence of anisotropy now is
usually ascribed to a rapid phase of inflation during which
the scale factor of the Universe increased by a factor of
perhaps 60 e-folds. It is of interest, therefore, to study
geodesics in Bogoslovsky-Finsler deformations of
Friedmann-Lemaître metrics.
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