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In this study, we consider three dark energy models in which Λ is not constant, but has a dynamic nature

that depends on the Hubble parameter H and/or its time derivative _H. We analyze the generalized running

vacuum model, for which ΛðHÞ ¼ Aþ BH2 þ C _H, along with the two models obtained by setting B or C
equal to zero. A null value for C yields the classical running vacuum model (RVM), while B ¼ 0

corresponds to what we term the generalized running vacuum subcase, or GRVS. Our main aim is to
investigate whether these models can accommodate nonzero spatial curvature. To this end, we carry out a
Markov chain Monte Carlo analysis using data for the observables associated with type-Ia supernovae,
cosmic chronometers, the cosmic microwave background, and baryon acoustic oscillations, as well as two
values for the Hubble constant. Then we include data relating to the growth of large-scale structure (LSS)
and repeat the procedure. Our results indicate that taking LSS observations into account helps to tighten
constraints and determine a definite sign for the model parameters. In the case of the RVM and GRVS, the
addition of growth data result in dynamical vacuum energy being preferred to a cosmological constant at a
little over 1σ. This happens in both the flat and nonflat scenarios—there are only a few exceptions—but
comes at the cost of an extra parameter, which can degrade the performance of the models (as assessed by
model selection criteria). Of special relevance is the fact that the inclusion of LSS data appear to increase
compatibility with a flat geometry. It also brings the constraints on the Hubble constant closer to the range
of values established by Planck.
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I. INTRODUCTION

Twenty years after the scientific community collectively
acknowledged the existence of dark energy, its nature is still
as elusive as ever. This despite the plethora of models that
have been put forward [1,2] in an attempt to explain why
the Universe seems to be expanding at an accelerated rate
[3–5], the phenomenon that first brought dark energy—
whose negative pressure is supposed to be responsible for
the said acceleration—to the forefront of cosmological
research.
The initial tentative explanation of dark energy took the

form of a cosmological constant Λ included in the field
equations that underlie general relativity. This is not to say
that the concept of a cosmological constant emerged two
decades ago. Indeed, Λ had been introduced into general
relativity by Einstein himself to ensure a quasistatic

distribution of matter [6]. Once the Universe was discov-
ered to be expanding at an increasing rate, however, Λ
seemed to provide the means by which cosmic acceleration
could be accounted for [3,7]. The resulting cosmology is
known as ΛCDM (Λþ cold dark matter). In it, the role of
dark energy is played by the energy of the vacuum, whose
density is hypothesized to remain constant as the Universe
expands. Consequently, it begins to dominate the energy
budget of the cosmos when the densities of matter and
radiation have been sufficiently diluted.
ΛCDM is arguably still the most popular among the

many dark energy models that have been proposed. Most of
these can be classified as either modified matter or modified
gravity models [2]; the former explains the accelerated
expansion of the Universe by introducing a new matter
component with negative pressure, such as a scalar field.
On the other hand, modified gravity models are based on
the view that dark energy is a relic of the inaccuracies in the
ΛCDM description of the space-time geometry. As yet,
however, the available evidence is not sufficient for ΛCDM
to be discarded in favor of one of the alternatives [8,9]. And
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for good reason: theoretically, its framework is appealingly
simple, and when it comes to observations, ΛCDM has not
only turned out to be compatible with local gravity
constraints [10,11], but it also successfully predicted the
baryon acoustic oscillations (BAOs) imprint on galaxy
clustering [12] and the existence of gravitational waves
[13]. Additionally, it can properly describe the cosmology
at the redshifts probed by cosmic microwave background
(CMB) data [14–16]. This list is by no means complete, but
it serves to illustrate why ΛCDM is considered the standard
model of cosmology. On the other hand, it has a number of
shortcomings that cannot be overlooked, prominent among
which are the cosmic coincidence and smallness problems
[17]. Another case in point is the tension between the local
value of the Hubble constant [18] and the result obtained by
the Planck Collaboration [14] in the context of a ΛCDM
cosmology. There is also the challenge posed by the “small-
scale crisis” (see Ref. [19] and works cited therein), which
refers to the discrepancies between sub-galactic-scale
observations and the predictions resulting from N-body
simulations of structure formation in the standard model.
A sound alternative model of dark energy, therefore, is

expected to emulate the successes ofΛCDMwhile bridging
the existing gaps between theory and observation (or some
of them, at least). Consequently, such models should mimic
ΛCDM at the high redshifts, where it is well-tested by
CMB data, and give a comparable expansion history at low
redshifts, albeit without invoking a true cosmological
constant [20]. Furthermore, on solar system scales, their
behavior must be in accordance with experimentally
supported general relativistic predictions [21]. One way
of achieving this is by means of screening mechanisms,
which depend on the density contrast between the local
environment and the cosmic fluid to suppress small-scale
deviations from the standard model (see, for instance,
Ref. [22] and works cited therein).
In view of all this, and keeping in mind that the successes

ofΛCDMhave not been eclipsed, the simplest—and perhaps
most natural—extension of the standard model is a scenario
characterized by a mildly evolving cosmological “constant.”
We therefore consider three dynamical-Λ models: the run-
ning vacuum model (RVM), in which Λ varies with the
Hubble parameter H according to the relation ΛðHÞ ¼ Aþ
BH2 (A andB being constants), a generalization of the RVM
(GRVM) with ΛðHÞ ¼ Aþ BH2 þ CðdH=dtÞ, where t is
cosmic time andC another constant, and a second subcase of
the GRVM: ΛðHÞ ¼ Aþ CðdH=dtÞ. We shall refer to the
last as the “generalized running vacuum subcase” or GRVS.
The GRVM and RVM were introduced in Refs. [23,24],
respectively, and have been analyzed in works such as
Refs. [23,25–28] and [29], while the GRVSwas investigated
in Ref. [30] as a model with a variable dark energy equation-
of-state parameter.
These models are especially appealing due to the fact

that they are motivated by quantum field theory (QFT)

considerations [31–35]. Additionally, the RVM can prop-
erly account for cosmic dynamics at both the linear
perturbation and background levels [29]—and in certain
cases has been shown to outperform ΛCDM [26,36–38].
Likewise, the GRVM is compatible with observations
[23,25,30], and it, too, has been reported to receive greater
support from cosmological data than ΛCDM [38]. There is
also the fact that both the RVM and GRVM appear to
provide a better fit to structure formation data [26,36,38].
To our knowledge, however, the GRVM, RVM, and

GRVS [with ΛðHÞ taking the exact forms specified above]
have not been analyzed in the context of a spatially curved
space-time—although extended versions have, as discussed
in Sec. II A. Indeed, a great number of works in the
literature are based on the premise of spatial flatness. We
find this practice rather concerning, because although it is
true that observational data appears to favor a flat geometry,
the evidence comes mainly from studies which assume a
flat ΛCDM cosmology [14,16,39,40]. Our primary aim,
therefore, will be to investigate whether the GRVM, RVM,
and GRVS can accommodate spatial curvature while
remaining compatible with the data available. To this
end, we will briefly introduce dynamical-Λ models in
Sec. II, with special emphasis on the ones we shall be
considering. The relevant likelihoods and statistics are
reviewed in Sec. III, while results are presented and
discussed in Sec. IV and the study is concluded in
Sec. V. We use units in which c ¼ 8πG=3 ¼ 1.

II. DYNAMICAL-Λ MODELS

The literature contains many examples of models in
which dynamical dark energy takes the form of a varyingΛ.
In most cases, Λ is allowed to have a large value at early
times, and this then decays to the much smaller one
observed at present. Therefore, such models go some
way in addressing the smallness problem [41–43], which
refers to the fact that in ΛCDM, the observed value of ρΛ
(where ρΛ is the vacuum energy density) happens to be
around a factor of 10120 smaller than the theoretical
estimate [17].
Endowing Λ with a dynamic nature may be achieved in

two ways. One can either modelΛ as an explicit function of
time, or else take an implicit approach and express it in
terms of appropriate cosmic parameters. In the former case,
the most popular choice is undoubtedly the inverse power
relation given by1 ΛðtÞ ∝ t−n. The inverse power-law
model features in works such as Refs. [44–48]—the list
is by no means exhaustive—and has additionally been
investigated in differing scenarios, including a Bianchi
type-I cosmology with variable gravitational coupling [49]
and the Brans-Dicke (BD) theory [50,51]. Albeit less
popular, exponential decay has also been proposed [42,52].

1The parameters n, m, A and B shall henceforth represent
constants.
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In the category of implicit time dependence, one finds
studies in which Λ is a function of the scale factor a, with
expressions such as ΛðaÞ ¼ Aan þ Bam [53–56] and
ΛðaÞ¼AþBa−n, A ≠ 0 [57]. Models having ΛðaÞ∝a−n
are very popular—the reader is referred to Refs. [58–62]
—and under certain conditions may be seen as equivalent to
standard cosmologywith matter, radiation, and an additional
component: an exotic fluid characterized by an equation of
state parameter w ¼ n=3 − 1 [63]. The case n ¼ 2 is of
particular interest. It may not only have its foundations in
quantum cosmology [64], but has also been shown—in
the framework of a closed geometry—to result from the
assumption that the matter/radiation density of the Universe
is equal to the critical density at all times, not just at present
[65]. This assumption would ensure that the current epoch is
not special in any way.
Another notable study is Ref. [66]. Here, the authors

present a model in which the vacuum couples with
radiation (during the radiation-dominated epoch) and has
an associated energy density that scales as a−4ð1−xÞ, where x
depends on the balance between the energy densities of
radiation and dark energy. Meanwhile, the innovative
approach detailed in Ref. [67] is based on the ansatz that
the energy density of cold dark matter (CDM) varies as
a−3þy, rather than the customary a−3. The small positive
constant y results from the interaction with dark energy and
quantifies the decrease in the rate at which CDM gets
diluted. It is interesting to note that provided2Ω0

m ≥ 0.2 and
n ≥ 1.6, spatially flat cosmologies having ΛðaÞ ∝ a−n

show consistency with lensing data [63].
A third popular class of expressions for Λ is based on the

Hubble parameter H and functions thereof. Prominent
among these is again the power law: ΛðHÞ ∝ Hn

[56,58,68–71]. Other interesting possibilities include com-
binations of H or Hn with either am [55,59] or dH=dt, or
even the total energy density [72]. A case in point is the
entropic acceleration model [73]. This model is charac-
terized by an entropic force, which acts at the apparent
horizon of the Universe3 and which behaves essentially like
a dark energy component whose density varies as
AðdH=dtÞ þ BH2 (B ≠ 0) in flat space. According to the
authors of Ref. [74], however, the entropic model is
problematic in that the sign of its deceleration parameter
never changes. Additionally, the possibility that it describes
the late-time behavior of a more complete model is
ruled out by its failure to reconcile recent cosmic growth
data with an accelerated expansion [74]. An alternative
entropic model in which ΛðHÞ ¼ AH þ BH2 also has this

shortcoming, while putting ΛðHÞ ∝ H results in a scenario
that is disqualified by CMB data [74]. It has in fact been
proposed that when ΛðHÞ is a simple function of terms
from the set fH; dH=dt; H2g, the addition of a constant to
the said function is crucial to get a valid model [74].

A. The generalized running vacuum model

The inspiration for the GRVM comes from the inter-
pretation of Λ as a running parameter in the curved space-
time version of QFT. The associated energy density, ρΛ, is
thus expected to evolve according to a renormalization
group equation of the form [75],

dρΛ
d ln β

¼ 1

ð4πÞ2
X∞
n¼1

Snβ2n; ð1Þ

where the dynamical variable β represents some character-
istic infrared-cutoff scale. In a cosmological context, the
role of β may be played by the Hubble parameter H, since
the latter is of the order of the energy scale associated with
the Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mology [25]. We furthermore note that the coefficients Sn
result from loop contributions of fields having different
masses and spins [75]. Meanwhile, the absence of odd
powers of β reflects the general covariance of the effective
action [25,76].
Given that β ∼H, the small present-day value of H

ð∼10−27m−1Þ implies that terms in Eq. (1) with n ≥ 2would
be suppressed in the current epoch. An expression for ρΛ
½henceforth ρΛðHÞ�may hence be obtained by integrating the
remaining term on the right-hand side. One gets the relation
ð4πÞ2ρΛðHÞ¼S0þS1β2=2, with S0 denoting the constant of
integration. Consequently, if β2 is identified with a linear
combination of4 H2 and dH=dt, the expression for ρΛðHÞ
becomes ð4πÞ2ρΛðHÞ¼S0þS̃2H2þS̃3ðdH=dtÞ, where S̃2
and S̃3 are constants [25].
In conclusion, we shall be investigating a model in which

the cosmological constant is replaced with

ΛðHÞ ¼ Aþ BH2 þ C _H: ð2Þ

The leading constant and the coefficients ofH2 and _H have
been written as A, B, and C for the sake of simplicity, B and
C being dimensionless, and A having units of length−2. An
overdot denotes differentiation with respect to cosmic time
t. The model specified by Eq. (2) is none other than the
GRVM, introduced in Sec. I—the RVM and GRVS follow
as special cases by setting C ¼ 0 and B ¼ 0, respectively.
One notes that ΛðHÞ is not an explicit function of time (the

2Ω0
m denotes the current value of the matter density parameter.

3The apparent horizon is determined by the quantity
ðH2 þ k=a2Þ−1=2, where k is the spatial curvature parameter
and a the scale factor, both in normalized form [73]. In the
absence of spatial curvature, the apparent and Hubble horizons
are equivalent.

4These two quantities represent independent degrees of free-
dom [23].
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dependence on t is established implicitly, viaH), and it is in
fact this property that the name “running vacuum model” is
meant to reflect [25].
The dynamic nature of ΛðHÞ means that the Bianchi

identity may be satisfied in one of two ways [38,77,78]. Let
us see how such a possibility comes about. If we restore the
constant 8πG=3 and do not incorporate ΛðHÞ into the
energy-momentum tensor Tμν, Einstein’s field equations
read

Gμν ¼ 8πGTμν − ΛðHÞgμν; ð3Þ

so that the twice-contracted Bianchi identity, ∇μGμν ¼ 0

[79] (Gμν being the Einstein tensor), implies that

∇μð8πGTμνÞ ¼ gμν∇μΛðHÞ; ð4Þ

where we have made use of the fact that ∇μ is constructed
from a metric-compatible connection (i.e., ∇ρgμν ¼ 0 at all
points) [79]. In the presence of a time varyingG, Tμν may be
conserved separately, in which case the above equation
becomes 8πTμν∇μGðtÞ ¼ gμν∇μΛðHÞ. If G is constant,
however, the Bianchi identity requires that 8πG∇μTμν ¼
gμν∇μΛðHÞ. In other words, we have the choice of either a
“running” gravitational coupling GðtÞ or of energy transfer
between the vacuum and any other component/s of the
cosmic fluid (combinations of the two options are also
possible).We shall take the constant-G approach. Assuming
that the densities of baryonic matter and radiation evolve as
in the standard model, it may be deduced that dark energy
interacts with cold dark matter (whose energy density is
denoted by ρcdm) according to the equation,

_ρcdm þ 3Hρcdm ¼ −_ρΛðHÞ: ð5Þ

In the system of units with c ¼ 8πG=3 ¼ 1, ρΛðHÞ ¼
ΛðHÞ=3, and hence, Eq. (2) translates into

ρΛðHÞ ¼
1

3
ðAþ BH2 þ C _HÞ; ð6Þ

which, when inserted into Eq. (5), yields the relation,

_ρcdm ¼ −
1

3
½Hð9ρcdm þ 2B _HÞ þ CḦ�: ð7Þ

To obtain an expression for _H, we use Eq. (2) with the
second Friedmann equation. The latter reads as follows:

_H þH2 ¼ −
1

2
ðρþ 3pÞ þ ΛðHÞ

3
: ð8Þ

Here, ρ denotes the sum of the energy densities of cold dark
matter (ρcdm), baryons (ρb), and radiation (ρr), while p
represents the total of the corresponding pressures. Dark
energy is modeled with an equation of state parameter
wΛðHÞ fixed at −1, as in ΛCDM. If wΛðHÞ is instead allowed
to vary, it would be possible for dark energy to be
conserved independently of the other cosmic components.
Such a scenario has been investigated in Ref. [30].
As stated previously, it is assumed that neither radiation

(i.e., photons and massless neutrinos) nor baryons interact
with dark energy. Consequently, cosmic expansion dilutes
the respective energy densities in accordance with the
familiar ΛCDM relations,

ρb ¼ ρ0ba
−3; ρr ¼ ρ0r a−4; ð9Þ

a being the normalized scale factor. A 0 superscript
indicates present-day quantities.
Let us now return to Eq. (8). It provides us with an

expression for _H, and we proceed by differentiating it with
respect to t to find Ḧ. Then we substitute for the first and
second time derivatives of H in Eq. (7), getting that

�
3

2
ðC − 2ÞðC − 3Þρ0cdmðaÞaþ 3½9 − Bþ CðC − 5Þ�ρcdm −

3

2
½2Bþ ðC − 5ÞC�ρ0ba−3 − 2½3Bþ Cð2C − 9Þ�ρ0r a−4

þ 2ðB − CÞ½Aþ ðB − 3ÞH2�
�

1

ðC − 3Þ2 ¼ 0; ð10Þ

where a prime denotes differentiation with respect to the
argument, and we have replaced d=dt with aHðd=daÞ. The
next step is to solve the differential equation (10), but
before attempting to do so, the Hubble parameter must be
expressed in terms of a. To this end, we make use of the
Friedmann equation,

H2 ¼ ρcdm þ ρb þ ρr þ ρΛðHÞ − κa−2: ð11Þ

Here, κ represents the curvature of the spatial hypersurfaces
in an FLRW Universe. It is a scaled version of the
normalized curvature parameter k and is defined as the
ratio of k to R2

0, R0 being the value that the (non-
normalized) scale factor R takes at present.
The energy densities in Eq. (11) may be replaced with

the corresponding relations given by Eqs. (6) and (9). This
allows us to determine H as a function of a,
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H ¼ ½3ðC − 2Þρcdma4 þ 3ðC − 2Þρ0baþ 2ð2C − 3Þρ0r − 2ðC − 3Þκa2 − 2Aa4�1=2
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðB − 3Þp : ð12Þ

Inserting the above into Eq. (10) yields the final version of Eq. (5),

3ðC − 2Þρ0cdmðaÞaþ 6ðB − 3Þρcdm þ 3ð2B − 3CÞρ0ba−3 þ 8ðB − 2CÞρ0r a−4 − 4ðB − CÞκa−2 ¼ 0; ð13Þ
which can readily be solved for ρcdm. We find that

ρcdm ¼H2
0

�
aqΩ0

cdm − ða−3 − aqÞΩ0
b −

4ðB− 2CÞ
3ðB− 2Cþ 1Þ ða

−4 − aqÞΩ0
r −

2ðB−CÞ
3ðB−C− 1Þ ða

−2 − aqÞΩ0
k

�
: ð14Þ

In the above equation, q ¼ 2ð3 − BÞ=ðC − 2Þ, H0 is the Hubble constant, and we have utilized the fact that each energy
density ρi has an associated density parameter Ωi, defined as the ratio of ρi to

5 the critical energy density ρc. In the unit
system, we have adopted, ρc ¼ H2, and hence, Ωi ¼ ρi=H2.
Now we require an expression for ρΛðHÞ. Equipped with Eq. (14), we first eliminate ρcdm from Eq. (12). Next, Eq. (14) is

used in conjunction with Eq. (9), the updated version of Eq. (12), and Eq. (2); they are inserted into Eq. (8) to find an
expression for _H. In all cases, we write the energy densities in terms of the current values of the density parameters. Finally,
we substitute for H [Eq. (12)] and _H in Eq. (6), which consequently takes the form,

ρΛðHÞ ¼
�ð2B − 3CÞ

2ðB − 3Þ ð1 − aqÞðΩ0
cdm þΩ0

bÞ þ
B − 2C

3ðB − 3ÞðB − 2Cþ 1Þ ½ðB − 3Þa−4 þ 2ð3C − 2BÞaq

þ3ðB − 2Cþ 1Þ�Ω0
r −

ðB − CÞ
3ðB − 3ÞðB − C − 1Þ ½ðB − 3Þa−2 þ ð2B − 3CÞaq − 3ðB − C − 1Þ�Ω0

k þ Ω0
ΛðHÞ

�
H2

0:

ð15Þ

The requirement that ρΛðHÞ is currently equal to H2
0Ω0

ΛðHÞ has been used to fix the value of A at H2
0ð3Ω0

ΛðHÞ − BÞ.

A few comments about the role of spatial curvature are in
order before we proceed. In Ref. [43], the RVM is
represented as the late-time limit of a model that can
describe the complete cosmic history. Its generalized
version takes spatial curvature into account [80] and is
based on the following expression for Λ:

ΛðH; aÞ

¼ Λ∞ þ 3ν

�
H2 −H2

F þ
κ

a2

�
þ 3τ

�
H
HI

�
n
�
H2 þ κ

a2

�
;

ð16Þ

where the integer n satisfies n ≥ 1 [43] and Λ∞ is the limit
of ΛðH; aÞ as a → ∞. HI and HF stand for the Hubble
parameter in two different epochs. The former characterizes
inflation, while the latter denotes the “final” value of H (or
the limit ofH as a → ∞) [80]. Lastly, ν and τ correspond to

dimensionless constants [80]. The quantity 3ν is the
counterpart of the model parameter B we have introduced
in Eq. (2).
The reason why we limit ourselves to the RVM, instead

of analyzing the extended version just described, is two-
fold. Firstly, H is expected to be already much smaller than
HI at the start of the adiabatic radiation phase [80]. Since
we are not concerned with inflation, but rather with the late-
time behavior of dark energy models, the term in ðH=HIÞn
may therefore be dropped. Secondly, the explicit inclusion
of κ in Eq. (16) is motivated by phenomenological con-
siderations [80]. In light of this, we think it would be
interesting to study how the RVM—in its original simple
form—behaves if Ω0

k is allowed to vary.

III. OBSERVATIONAL DATA AND
CORRESPONDING LIKELIHOODS

If a model is to be considered a candidate in the dark
energy contest, one must first of all determine whether it is
compatible with observational data. To this end, we employ
Bayesian statistics and perform a Markov chain
Monte Carlo (MCMC) analysis using the cosmic linear
anisotropy solving system (CLASS) v.2.6.3 [81] in con-
junction with MONTE PYTHON v.2.2.2 [82]. The plots

5The subscript i represents a generic component and is
replaced by “cdm” for cold dark matter, “b” for baryons, “r’”for
radiation, “ΛðHÞ” for dark energy, and “k” for spatial curvature.
Ωk is equivalent to −κ=ðHaÞ2. Present-day quantities are denoted
by a 0-sub/superscript.
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presented in this work have been constructed using the
MCMC analysis package GETDIST v.0.2.8 [83].
In this section, we briefly introduce the likelihoods with

which we constrain model parameters.

A. The JLA likelihood for SNeIa

Type-Ia supernovae (SNeIa) make it possible to probe
the expansion history of the Universe by looking at how the
luminosity distance to an object varies with redshift z.
Whenever this relation departs from a pure Hubble law [5],
the difference (to lowest order in z) depends on just the
deceleration parameter and can thus yield important infor-
mation about the rate of cosmic expansion. SNeIa are ideal
in this regard because they act as standard candles—in the
sense that their homogeneity as a group means their
intrinsic luminosity (or absolute magnitude) can be cali-
brated [84], and hence, astronomers may readily find how
distant they are by measuring their observed luminosity
(called the apparent magnitude) [85].
The joint light-curve analysis (JLA) data set is based on a

sample of 740 SNeIa [86]. The observable relevant to us is
the distance modulus μobs, whose theoretical counterpart is
given by,

μth ¼ 5 log10

�
dL
Mpc

�
þ 25; ð17Þ

where the luminosity distance dL should be quoted in Mpc
and is in turn determined from the equation,6

dL ¼ 1þ z

H0

ffiffiffiffiffiffiffiffiffi
jΩ0

kj
q F

� ffiffiffiffiffiffiffiffiffi
jΩ0

kj
q Z

z

0

H0dz̄
Hðz̄Þ

�
: ð18Þ

The form of the function F ðxÞ depends on the spatial
geometry,

F ðxÞ ¼
8<
:

x if κ ¼ 0;

sinðxÞ if κ > 0;

sinhðxÞ if κ < 0:

ð19Þ

We are now in a position to construct the associated χ2. This
may be expressed as

χ2JLA ¼ ΔμTC−1
JLAΔμ; ð20Þ

where Δμ is a vector whose ith entry is the difference
between the observed and theoretical distance moduli
ðμiobs − μithÞ of the ith supernova [87]. ΔμT represents its
transpose.

The inverted covariance matrix for the observational
values of μ is denoted in Eq. (20) by C−1

JLA. Details about its
construction are provided in Ref. [86].

B. The cosmic chronometer (clocks) likelihood

The Hubble parameter is defined in terms of the scale
factor as the ratio _a=a, and the relation a ¼ 1=ð1þ zÞ
allows us to express it as a function of the redshift z,

HðzÞ ¼ −
1

1þ z
dz
dt

: ð21Þ

The differential age (or cosmic chronometer/clocks)
method entails measuring dz=dt to directly arrive at
HðzÞ. This approach, first put forward in Ref. [88],
effectively involves determining the age difference between
two cosmic “chronometers” [88] located in a given redshift
interval. The best chronometers are massive early-type
galaxies, which acquired more than 90% of their stellar
mass very rapidly at high redshifts, and have been evolving
passively since then, without major episodes of star
formation [89] that would otherwise dominate the emission
spectrum [88]. The age of such a galaxy can consequently
be inferred from the differential dating of its stellar
population [89].
Table I lists the cosmic chronometer data employed in

this work.7 Where possible, we chose results that were
obtained using the Bruzual and Charlot 2003 (BC03) stellar
population synthesis (SPS) model [91]. It should be pointed
out, however, that the values of HðzÞ are expected to be
largely unaffected by the choice of SPS [89,92].
The χ2 for the cosmic chronometer likelihood reads

χ2HðzÞ ¼
X
i

�
Hobs

i −HthðziÞ
σHðzÞ;i

�
2

: ð22Þ

Here, each Hobs
i is the observed value from Table I

corresponding to z ¼ zi, σi represents the associated error,
and HthðziÞ stands for the theoretical prediction at the same
redshift.

C. The CMB likelihood

Anisotropies present in the temperature and polarization
power spectra of the CMB can yield a wealth of informa-
tion when used as cosmological probes. We shall work with
two main distance priors: the shift parameter R and the
acoustic scale lA. These are related to the amplitude and
distribution of the temperature anisotropy peaks. The shift
parameterR characterizes the temperature power spectrum
in the line-of-sight direction and is defined as follows [97]:

6In a flat universe, dL ¼ H−1
0 ð1þ zÞF ðR z

0 H0Hðz̄Þ−1dz̄Þ.

7In the case of the Ratsimbazafy et al. data point [90], σ was
calculated by summing the systematic and statistical errors in
quadrature.
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Rðz�Þ ¼
ffiffiffiffiffiffiffi
Ω0

m

q
H0ð1þ z�ÞdAðz�Þ; ð23Þ

where z� denotes the redshift of the photon decoupling
epoch. The angular diameter distance dA may be expressed
via the distance-duality relation as dL=ð1þ zÞ2, dL being
the luminosity distance from Eq. (18).
The acoustic scale lA, on the other hand, relates to

attributes of the CMB temperature power spectrum in the
transverse direction [98]. It, too, depends on dA [97],

lAðz�Þ ¼ ð1þ z�Þ
πdAðz�Þ
rsðz�Þ

: ð24Þ

Here, rsðz�Þ is the comoving sound horizon evaluated at z�.
In our case, it shall be determined numerically by CLASS,
although it is worth noting that in general, the function
rsðzÞ takes the form,

rsðzÞ ¼
Z

∞

z

csðz̄Þ
Hðz̄Þ dz̄; ð25Þ

where csðzÞ is the sound speed in the photon-baryon fluid
and equates to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½1þ ηðzÞ�p

. The function ηðzÞ is given
by 0.75ρb=ργ in the standard scenario [97–99] (ργ stands
for the energy density of photons) but should be modified
when considering cosmological models in which ρb and ργ
scale differently with z. More details may be found
in Ref. [25].
It is interesting to note thatwhile differences inR affect the

amplitude of the acoustic peaks, changes in lA are instead
reflected in the distribution of peaks and troughs [98].
The data we use to constrain our model parameters are

taken from Ref. [98] and shown in Table II. It was obtained
in the context of a flat ΛCDM cosmology with AL as a free
parameter (AL being the amplitude of the lensing power
spectrum). The fact that a particular cosmological model
had to be assumed is, however, only a minor disadvantage,
since Rðz�Þ and lAðz�Þ are effective observables, while the
quantities Ω0

bh
2 and ns—which serve as a third and fourth

distance prior8—do not appear to be affected significantly
by the choice of cosmology [98,100].
The χ2 associated with this likelihood reads

χ2CMB ¼ ΔxTC−1
CMBΔx: ð26Þ

In the above, Δx is the vector fRobsðz�Þ−Rthðz�Þ;
lobsA ðz�Þ− lthAðz�Þ;ðΩ0

bh
2Þobs− ðΩ0

bh
2Þth;nobss −nths g. We use

the notation “obs” to indicate the observed values listed in
Table II, while “th” denotes theoretical quantities. The
covariance matrix CCMB may be obtained in normalized
form from Ref. [98]. We reproduce it below for ease of
reference,

R

lA
Ω0

bh
2

ns

R lA Ω0
bh

2 ns2
6664

1.00 0.53 −0.73 −0.80
0.53 1.00 −0.42 −0.43
−0.73 −0.42 1.00 0.59

−0.80 −0.43 0.59 1.00

3
7775
: ð27Þ

TABLE II. Mean values and corresponding errors for the CMB
distance priors [98].

R 1.7448� 0.0054
lA 301.460� 0.094
Ω0

bh
2 0.02240� 0.00017

ns 0.9680� 0.0051

TABLE I. Cosmic chronometer data. Each value of HðzÞ in the
third column is measured at an effective redshift z given in the
second column and has a corresponding error σ (fourth column).

HðzÞ σ

References z ðkm s−1 Mpc−1Þ
[93] 0.0700 69.0 19.6
[93] 0.1200 68.6 26.2
[94] 0.1700 83.0 8.0
[89] 0.1791 75.0 4.0
[89] 0.1993 75.0 5.0
[93] 0.2000 72.9 29.6
[94] 0.2700 77.0 14.0
[93] 0.2800 88.8 36.6
[89] 0.3519 83.0 14.0
[95] 0.3802 83.0 13.6
[94] 0.4000 95.0 17.0
[95] 0.4004 77.0 10.2
[95] 0.4247 87.1 11.2
[95] 0.4497 92.8 12.9
[90] 0.4700 89.0 49.6
[95] 0.4783 80.9 9.0
[92] 0.4800 97.0 62.0
[89] 0.5929 104.0 13.0
[89] 0.6797 92.0 8.0
[89] 0.7812 105.0 12.0
[89] 0.8754 125.0 17.0
[92] 0.8800 90.0 40.0
[94] 0.9000 117.0 23.0
[89] 1.0370 154.0 20.0
[94] 1.3000 168.0 17.0
[96] 1.3630 160.0 33.6
[94] 1.4300 177.0 18.0
[94] 1.5300 140.0 14.0
[94] 1.7500 202.0 40.0
[96] 1.9650 186.5 50.4

8The dimensionless constant h is equivalent to H0=
ð100 km s−1 Mpc−1Þ, and ns represents the index of the primor-
dial scalar power spectrum.
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It should be noted that ns is only included as a distance
prior [in Table II and Eq. (27)] when measurements related
to the growth of large-scale structure are added to the
data set.

D. The BAO likelihood

The physics of BAOs is centered around the imprint left
by prerecombination acoustic waves on clusters of matter
[101]. Simply put, galaxies clustered with a preferred
separation equal to rsðzdÞ, the sound horizon at the drag
epoch [rsðzÞ is given by Eq. (25), and zd denotes the
redshift of the drag epoch]. A prominent signature of BAOs
is the presence of a localized peak in the galaxy correlation
function. Another characteristic feature takes the form of a
damped series of oscillations in the CMB power spectrum
(see Ref. [101] and works cited therein), and so rsðzdÞ may
first be inferred from CMB data, then combined with
measurements of angular and redshift separations between
clusters. As a result, it becomes possible to calculate the
Hubble parameter at the redshift of the said clusters and the
angular diameter distance to them [102]. It is common
practice, however, to use a distance measure that depends
on both H and dA—and this is where the volume distance
(or dilation scale) dv comes in. It is defined as follows [12]:

dv ¼
�
D2

A
z
H

�
1=3

: ð28Þ

In the above, DA stands for the comoving angular diameter
distance and is equivalent to ð1þ zÞdA.
The data used in our analysis are summarized in

Tables III and IV. We introduce rs;fidðzdÞ to represent the
sound horizon as evaluated at the drag epoch in the fiducial
cosmology (quantities pertaining to this cosmology shall
henceforth be indicated by a sub/superscript “fid”). As for
the dimensionless parameters α⊥ and αk, these describe
how the BAO peak is displaced with respect to its position
in the fiducial model and correspond to shifts perpendicular
and parallel to the line of sight, respectively [101],

α⊥ ¼ DArs;fidðzdÞ
Dfid

A rsðzdÞ
; αk ¼

Hfidrs;fidðzdÞ
HrsðzdÞ

: ð29Þ

The choice of a fiducial cosmology is necessary to convert
redshifts into comoving distances. The problem is that this
may inadvertently distort the data. In Ref. [101], therefore,
constraints on distances are scaled by the ratio
rs;fidðzdÞ=rsðzdÞ, the aim being to make a conversion of
length scales and thus, erase any bias potentially resulting
from the fiducial model [101]. We have used the same
fiducial value of rsðzdÞ to scale any data points obtained
from other studies. Accordingly, the values listed under
“quantity” in Table III and in the last two rows of Table IV
are scaled versions of the original.

The χ2 for the BAO likelihood may be expressed in the
usual way,

χ2BAO ¼ ΔxTC−1
BAOΔx: ð30Þ

Here, the vector Δx gives the difference between the
observed quantities from Tables III and IV (in that order)
and their theoretical counterparts, while C−1

BAO is the inverse
covariance matrix and takes the form indicated below,

C−1
BAO ¼

0
BBBBBBBBB@

σ−21 0 0 0 0 0

0 σ−22 0 0 0 0

0 0 σ−23 0 0 0

0 0 0 σ−24 0 0

0 0 0 0 C−1
A 0

0 0 0 0 0 C−1
B

1
CCCCCCCCCA
; ð31Þ

σ1 to σ4 being the standard deviations listed in column 4 of
Table III. As for the submatrices, C−1

A is the inverse
covariance matrix for the Alam et al. observations (the

TABLE III. Uncorrelated BAO data measured at different
effective redshifts, zeff . Column 4 gives the error in each quantity.

References zeff Quantity σ Type

[103] 0.106 0.323 0.014 1
[104] 0.150 4.490 0.170 2
[105] 1.520 26.005 0.995 2
[106] 2.330 1.031 0.026 3

1: rsðzdÞ=dv; 2: dv=rsðzdÞ;
3: α0.7k α0.3⊥ ;

rs;fidðzdÞ ¼ 147.78 Mpc [101].

TABLE IV. BAO data. In the case of the first six data points, the
associated errors—displayed in column 4—were derived from
the corresponding covariance matrix. The value of σ for the last
two entries was estimated by constructing the covariance matrix
for the quantities numbered 4 and 5.

References zeff Quantity σ Type

[101] 0.380 1512.390 24.994 4
[101] 0.380 81.209 2.368 5
[101] 0.510 1975.220 30.096 4
[101] 0.510 90.903 2.329 5
[101] 0.610 2306.680 37.083 4
[101] 0.610 98.965 2.502 5
[107] 2.400 5277.480 246.091 4
[107] 2.400 225.067 8.750 5

4: DA × rs;fidðzdÞ=rsðzdÞ ðMpcÞ;
5: H × rsðzdÞ=rs;fidðzdÞ ðkm s−1 Mpc−1Þ;

rs;fidðzdÞ ¼ 147.78 Mpc [101].

FARRUGIA, SULTANA, and MIFSUD PHYS. REV. D 102, 024013 (2020)

024013-8



first six data points in Table IV), andC−1
B corresponds to the

quantities reported by des Bourboux et al. (the last two
entries in Table IV). These matrices may be constructed
from data available in Refs. [101,107], respectively.

E. The LSS likelihood

The redshift of a galaxy depends on its velocity relative
to us and is hence affected by any peculiar velocity the
galaxy might have. If only the Hubble recession is taken
into account when converting redshifts into distances,
therefore, the recovered overdensity field is characterized
by redshift space distortions (RSDs) [108] along the line of
sight. The anisotropies that RSDs introduce into the galaxy
power spectrum encode information about the growth of
large-scale structure (LSS) [109].
In this work, we shall be using LSS data in the form of

fσ8 measurements. The growth rate f and the quantity σ8
are defined as follows [110]:

f ¼ dðln δmÞ
d ln a

; σ8 ¼ σ8;0
δmðaÞ
δmð1Þ

; ð32Þ

where δm denotes the matter density contrast function,
δmð1Þ ¼ δmða ¼ 1Þ and σ28;0 is the variance of the density
field in spheres of radius R8 ¼ 8h−1 Mpc. It is important to
note that σ8;0 is calculated by linearly evolving the initial
power spectrum to the present time, so the square of its
value is not necessarily equal to the variance of the current
distribution [111].
Let us consider δm and σ8 one by one. In both cases, our

derivations are closely based on the work presented in
Refs. [26,112].

1. The matter density contrast function (δm)

The matter density contrast function, δm, is the ratio of
the perturbation density to its background analogue [112],

δm ¼ δρm
ρm

¼ δρcdm þ δρb
ρcdm þ ρb

¼ ρcdmδcdm þ ρbδb
ρcdm þ ρb

; ð33Þ

and evolves according to the equation,9

δ00mðaÞ þ
F1ðaÞ
a

δ0mðaÞ þ
F2ðaÞ
a2

δmðaÞ ¼ 0: ð34Þ

We use δρcdm and δρb to represent perturbations in the cold
dark matter and baryon components, respectively. The
functions F1 and F2 are given by

F1ðaÞ ¼ 2þ aH0ðaÞ þ ψ

H
;

F2ðaÞ ¼
aψ 0ðaÞ þ ψ

H
−
3ρm
2H2

a2; ð35Þ

where a prime again denotes differentiation with respect to
the argument, H stands for10 a0ðτÞ=a and ψ equates to
−ρ0ΛðHÞðτÞ=ρm. Equations (34) and (35) are derived in

Ref. [26] and works cited therein. Their relatively simple
form is due to the use of the subhorizon and quasistatic
approximations [115], as well as the fact that dark energy
perturbations—which reflect the dynamic nature ofΛ in the
models being studied—are negligible in comparison to δρm
on subhorizon scales [112]. We have found that changes to
Eq. (34) resulting from the presence of curvature are
inconsequential. The reason is as follows. The dependence
on κ is introduced via the time-time component of the
perturbed Einstein equation,11

ðk2† − 3κÞΦ ¼ −
3

2
a2ρmδm; ð36Þ

but for values of the comoving wave number k† in the
relevant range—that is, the range that most contributes to
the integral in Eq. (46) [112]—κ must necessarily be much
smaller than k2†. The above equation may therefore be
simplified to k2†Φ ¼ −3a2ρmδm=2.
We are now in a position to derive initial conditions for

δm and δ0mðaÞ. Let us start by finding the approximate form
that ρcdm and ρΛðHÞ take deep in the matter-dominated
epoch. We return to Eqs. (14) and (15) and look for the
dominant terms by taking a number of factors into account,
such as the order of magnitude of the ratios Ω0

m=Ω0
r and

Ω0
m=Ω0

k, the value of a at which the initial conditions will be
applied (a ¼ 0.01), and the fact that B and C are expected
to be much less than unity—which makes it possible to
expand algebraic functions of B and/or C by using the
binomial theorem. To first order in B and C, the final
expressions read

9The δm we use here is actually the coefficient of a generic
mode in momentum space. More specifically, the perturbation in
physical space ½δmðτ; x⃗Þ� may be expressed as an integral over
momentum modes, every one of which has a characteristic
comoving wave vector k⃗†: δmðτ; x⃗Þ ¼

R
δ
k†
m ðτÞQðk⃗†; x⃗Þd3k†

[113]. Here, x⃗ is the three vector ðx; y; zÞ, k† ¼ jk⃗†j and
Qðk⃗†; x⃗Þ takes the form eik⃗† ·x⃗ if Ω0

k ¼ 0 (the generalization to
the nonflat case may be found in Ref. [114]). The linearity of our
perturbation equations implies that the individual modes decou-
ple and are each a solution to the said equations. We may thus
write δm in terms of a generic mode: δmðτ; x⃗Þ ¼ δ

k†
m ðτÞQðk⃗†; x⃗Þ.

However, Qðk⃗†; x⃗Þ factors out of the equations, and we are left
with the coefficient, δk†m ðτÞ, which we subsequently rename δm.

10The conformal time τ is related to the cosmic time t via the
scale factor: dτ ¼ dt=a.

11The perturbed metric reads [116,117] ds2 ¼
a2½−ð1þ 2ΦÞdτ2 þ γijð1 − 2ΦÞdxidxj�, Φ being the metric per-
turbation, and γij the spatial part of the unperturbed metric:
γij ¼ δij½1þ κðx2 þ y2 þ z2Þ=4�−2. δij denotes the Kronecker
delta, and x, y, and z are quasi-Cartesian coordinates.
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ρm ≈H2
0Ω0

maB−3−3C=2; Ω0
m ¼ Ω0

b þ Ω0
cdm; ð37Þ

ρΛðHÞ ≈H2
0

�
Ω0

ΛðHÞ þ
1

6
ð2B − 3CÞΩ0

maB−3−3C=2
�
: ð38Þ

These are used in conjunction with Eq. (12) to obtain an
approximation for Hð¼ aHÞ,

H ≈H0

ffiffiffiffiffiffiffi
Ω0

m

q �
1þ 1

12
ð2B − 3CÞ

�
að2B−3C−2Þ=4; ð39Þ

while combining Eqs. (37)–(39) allows us to write ψ as

ψ ¼ −
ρ0ΛðHÞðτÞ

ρm
¼ −

ρ0ΛðHÞðaÞHa

ρm
;

≈
1

2
ð2B − 3CÞH0

ffiffiffiffiffiffiffi
Ω0

m

q
að2B−3C−2Þ=4: ð40Þ

Next, we insert the above results into Eq. (35) to estimate
F1 and F2 and find that

F1 ≈
1

4
ð6þ 6B− 9CÞ; F2 ≈

1

2
ð−3þ 2B− 3CÞ: ð41Þ

Equation (34) may finally be solved analytically. The
expression we obtain for the density contrast function is
a sum of two modes,

δm ¼ A1a1−Bþ3C=2 þ A2að−6−2Bþ3CÞ=4; ð42Þ

a growing mode and a decaying one. The latter is expected
to be subdominant at the redshifts of interest (z≲ 100), and
so we only retain the former,

δm ¼ A1a1−Bþ3C=2: ð43Þ

This is the “initial” condition that we assign to δm at
a ¼ 0.01. Taking its derivative with respect to a yields the
corresponding initial value for δ0mðaÞ. We shall deal with the
constant of integration (A1) below.

2. The standard deviation of density perturbations (σ8)

The variance of the perturbation density field in spheres
of radius R8 ¼ 8h−1 Mpc may be calculated as follows
[110,118]:

σ28;0 ¼
1

2π2

Z
∞

0

Pðk†ÞW2ðk†Þk2†dk†: ð44Þ

Here, Pðk†Þ is the present-day power spectrum, and the
function Wðk†Þ represents the Fourier transform of a
spherical top-hat window function having radius R8,

Wðk†Þ ¼
3

k2†R
2
8

�
sin ðk†R8Þ

k†R8

− cos ðk†R8Þ
�
: ð45Þ

We construct an expression for Pðk†Þ as outlined in
Refs. [26,112] and insert the result into Eq. (44), getting
that

σ28ðaÞ ¼ δ2mðaÞ
Z

∞

0

k2þns
†

�
4Ask

1−ns�
25H4

0ðΩ0
mÞ2

�
T2ðk†ÞW2ðk†Þdk†;

ð46Þ

where use has been made of Eq. (32). The absence of the
normalizing factor ½δmð1Þ� is due to the fact that we account
for it indirectly by putting the integration constant of
Eq. (43) equal to unity.
The quantities ns and As that appear in Eq. (46) are the

index and amplitude of the primordial scalar power spectrum,
respectively, defined at a pivot scale k� of 0.05 Mpc−1 [119].
As is either fixed by setting ln ð1010AsÞ equal to 3.062 [15] or
treated as a free parameter. In the latter case, we construct a
likelihood for As by assuming that it is sampled from a
Gaussian distributionwhosemean and standard deviation are
given by ð2.139� 0.063Þ × 10−9 [15]. As for the primordial
spectral index ns, this is allowed to vary subject to the CMB
constraint of Ref. [98] (ns ¼ 0.9680� 0.0051). Finally, the
transfer function Tðk†Þ—which describes how perturbations
evolve as they cross the horizon and as matter begins to
dominate [120]—is modeled as specified in the work of
Eisenstein and Hu [121]. This requires that we estimate the
wave number ðkeq† Þ of the mode that crosses the horizon at
matter-radiation equality.
Our approximation for keq† is arrived at by following the

method of Ref. [112]. We discard terms whose order in B
and C is higher than linear, and additionally, use the fact
that the scale factor at equality satisfies a ∼Oð−3Þ to
remove subdominant terms. The resulting expression reads

keq† ≈
ffiffiffi
2

p
H0

Ω0
mffiffiffiffiffiffi
Ω0

r

p
�
1 −

7B
6

þ 19C
8

þ 2Ω0
k

3Ω0
m
ðC − BÞ

þ
�
B −

3C
2

�
ln

�
Ω0

r

Ω0
m

��
: ð47Þ

3. Constructing χ 2

Thedataweuse (TableV) are a subset of theupdatedGold-
2017 compilation ofNesseris et al. [110,122]. Apart from the
fσ8 values from Ref. [123]—which are correlated with each
other—all data points are independent. Moreover, measure-
ments derived from the same survey data as any of the
observables associated with previous likelihoods (especially
the BAO likelihood) are excluded. This is done to avoid
potential correlations.
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At a given redshift zi, the theoretical prediction fσth8 is
computed by combining σ8ðziÞ with the growth rate fðziÞ
returned by CLASS. The quantity σ8ðziÞ itself is obtained
from Eq. (46).
The χ2 to be minimised is constructed as follows [131]:

χ2 ¼ ViC−1
ij V

j: ð48Þ

In the above, C is the covariance matrix, assembled as
described in Refs. [110,122], and the vector V contains
elements of the form12 [131],

Vi ¼ fσobs8 ðziÞ −
fσth8 ðziÞ
riAP

; ð49Þ

fσobs8 ðziÞ being the ith data point from Table V. The factor
1=riAP is designed to correct for the Alcock-Paczynski (AP)
effect. As was also the case with BAO data, each of the
studies from which the values in Table V are quoted makes
use of a different fiducial cosmology to convert redshifts to
distances. If the fiducial cosmology is not the same as the
true one, the data incorporate an additional anisotropy that
is degenerate with RSDs [131]. This is the above-men-
tioned AP effect [132]. One way of correcting for it
involves multiplying the observational value of fσ8ðziÞ
and its associated error by the ratio [133],

riAP ¼
HðziÞdAðziÞ

HfidðziÞdfidA ðziÞ
: ð50Þ

A superscript “fid” indicates quantities calculated in the
framework of the respective fiducial cosmologies
(flat ΛCDM).

Alternatively, one may simply rescale fσth8 ðziÞ by 1=riAP
[131], as we have done in Eq. (49).

IV. RESULTS

A. Preliminaries

The joint likelihood on which our analysis is based is
specified by the function,

Ltotal ∝ exp

�
−
1

2
ðχ2JLA þ χ2HðzÞ þ χ2CMB þ χ2BAO þ χ2LSSÞ

�
;

ð51Þ

where we have used the relation Li ∝ exp ð−χ2i =2Þ for each
likelihood considered in Sec. III. The full data set—
consisting of the JLAþHðzÞ þ CMBþ BAOþ LSS
measurements—shall be referred to as ALLALLþ LSS,
and as the ALL data set when LSS observations are
excluded.
In order to investigate how our results are affected by the

value of the Hubble constant, we constrain the parameters
of each model 6 times, first using the ALL data set, then
extending this to JLAþHðzÞ þ CMBþ BAOþHR

0

ðALLþHR
0 Þ and to JLAþHðzÞ þ CMBþ BAOþHE

0

ðALLþHE
0 Þ, and finally, repeating the whole procedure

with the ALLþLSS data set replacing ALL. HR
0 is the value

of H0 reported by Riess et al. [18] and equates to
73.48� 1.66 km s−1Mpc−1. As for HE

0 , this stands for
the Hubble constant as inferred by Efstathiou [134] and
amounts to 70.6� 3.3 km s−1 Mpc−1. We do not include
the Planck result [14], opting instead for values of H0

which were derived independently of any cosmologi-
cal model.
One of the topics currently at the forefront of cosmological

research is the growing discrepancy between—on the one
hand—the value of H0 determined locally from Cepheid
parallax measurements [18], and on the other, that obtained
in a ΛCDM framework using measurements of CMB
observables. It turns out that HR

0 is in a 3.5σ tension with
the Planck 2018 value ðH0 ¼ 67.27� 0.60 km s−1 Mpc−1Þ
[14]. One reason for the said tension could be the presence of
systematic errors in the data used by either group. However,
despite the investigative studies carried out, no obvious
problem has been identified so far (refer to [14] and works
cited therein). The other possibility is that this discrepancy
provides compelling evidence for new physics [135–137].
Interestingly, a BD-like form of RVM [138]—in which the
dynamical nature of dark energy arises from the properties of
the BD field—has the potential of alleviating the tension
[139,140].
In conclusion, the lack of consensus about the value of

the Hubble constant makes it imperative to consider
different options for H0. This is especially true since, as
we later find out from the posterior probability plots, there

TABLE V. LSS data from the compilation presented in
Ref. [110]. Each fσ8 measurement is listed together with the
corresponding redshift z and error σ. Column 5 shows the values
of Ω0

m for the respective fiducial cosmologies.

References z fσ8ðzÞ σ Ωfid
m;0

[124,125] 0.02 0.3140 0.0480 0.266
[126] 0.17 0.5100 0.0600 0.300
[127] 0.18 0.3600 0.0900 0.270
[127] 0.38 0.4400 0.0600 0.270
[128] 0.25 0.3512 0.0583 0.250
[128] 0.37 0.4602 0.0378 0.250
[123] 0.44 0.4130 0.0800 0.270
[123] 0.60 0.3900 0.0630 0.270
[123] 0.73 0.4370 0.0720 0.270
[129] 0.60 0.5500 0.1200 0.300
[129] 0.86 0.4000 0.1100 0.300
[130] 1.40 0.4820 0.1160 0.270

12There is no summation over i in Eq. (49); zi is simply the
redshift of the ith data point from Table V.
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is significant correlation between H0 and the model
parameters B and C.
We use the likelihood combinations just described and

run MCMC chains to place constraints on the parameters of
the GRVM, RVM, and GRVS. The general baseline setΘ is
given by13 fH0;Ω0

bh
2;Ω0

cdmh
2;Ω0

k; B; C; nsg, although Ω0
k

is set to zero when we assume a flat space-time, and so is C
(B) when we study the RVM (GRVS). Furthermore, the
primordial spectral index is only considered a free param-
eter if LSS observations are included in the data sets. The
reason is that ns features explicitly in the LSS likelihood
but is of minimal importance otherwise. We also differ-
entiate between two scenarios in relation to the amplitude
of the primordial power spectrum: the case with a fixed
value of As, and that in which As is incorporated into Θ and
allowed to vary freely. However, the two approaches yield
very similar results, and consequently, we shall not dis-
tinguish between them when discussing the effects of
introducing growth data.
The flat priors for the main baseline parameters are listed

in Table VI. We additionally note that the reionization
redshift zreio is set to 8.8 [15], while all other parameters
take the CLASS default values.14 In particular, this implies
that the effective number of relativistic neutrino species
(Neff ) is fixed at 3.046 [141] and the current CMB
temperature (TCMB) at 2.7255 K [142].

B. The GRVM

The GRVM is characterized by two highly correlated
parameters, B and C. The constraints we get in the flat case
are nonetheless tight enough to be informative (Fig. 1), but
when Ω0

k is allowed to vary, the data we use prove
insufficient to break the degeneracy between B and C or
between Ω0

k and the model parameters (Fig. 2).
The challenges posed by the fact that B is correlated with

C are also highlighted in Ref. [25]. In this work, the authors
find a way around the problem by defining a particular
combination of νð¼ B=3Þ and αð¼ C=2Þ as another

effective parameter—labeled νeff—that is then constrained
instead of the original two. They do this by making the
approximation,

ξ ¼ 1 − ν

1 − α
∼ 1 − ðν − αÞ≡ 1 − νeff ; ð52Þ

which is justified on the basis that jνj and jαj must both be
much smaller than unity if the deviation fromΛCDM is to be
mild. The parameter ξ controls the way the matter energy
density (ρm) scaleswitha, and for the purposes of data fitting,
the authors assume that ρr evolves as in the standard model.
There are several reasons, however, why the approach

outlined in Ref. [25] cannot be taken here. To begin with,
the authors determine ρm and ρr in terms of a by consid-
ering the cosmic fluid to have only two components at any
given time—dynamical dark energy and either matter or
radiation, depending on which of the two dominates. The
expressions thus obtained are then used to formulate ρΛðHÞ
as a function of ρm and ρr. The fact that we do not simplify
our analysis likewise introduces more terms into the
relevant equations, as does our decision to treat Ω0

k as a
free parameter for part of the study. In conclusion, the
relations we get for ρcdm and ρΛðHÞ—Eqs. (14) and (15),
respectively—include several different combinations of B
and C, so that it is not possible to reduce the number of
degrees of freedom as detailed in Ref. [25].

FIG. 1. (top panel) Marginalized posterior probability distri-
butions for the GRVM parameter B vs (left) H0, (right) Ω0

m. The
bottom panel shows analogous plots for the second GRVM
parameter, C. Darker (lighter) shades denote 1σ (2σ) confidence
regions (the first two data sets listed in the legend produce
contours that overlap almost exactly). We assume a spatially flat
space-time.

TABLE VI. The flat priors for the baseline parameters.

Parameter Min Max

H0 ðkm s−1 Mpc−1Þ 50 95
Ω0

bh
2 0.005 0.100

Ω0
cdmh

2 0.01 0.99
Ω0

k −0.3 0.3
B −1.0 1.0
C −1.0 1.0
ns 0.75 1.25

13The four nuisance parameters associated with the JLA
likelihood (α, β, M, and ΔM) also form part of Θ.

14The exception is As, and only when LSS data are included in
the analysis. More details are provided in Sec. III E 2.
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The constraints we obtain in the context of a flat
geometry are nonetheless instructive. The most prominent
feature of Fig. 1 is the shift in the marginalized 2D
posteriors that is brought about by the addition of LSS
data. Table VIII shows that (in the absence of the HR

0

likelihood) this shift results in negative mean values for B
and C—rather than the positive ones we get otherwise
(Table VII). A second characteristic which emerges in
Fig. 1 is the correlation between B (or C) and H0. In the
case of B, this behavior is in stark contrast with the negative
correlation observed in the RVM scenario (Figs. 3 and 4).

The fact that a larger value of H0 favors a larger B explains
why, in the top panel of Fig. 1, the contours obtained with
the ALLþHR

0 and ALLþ LSSþHR
0 data sets have a

marked shift in the direction of increasing B relative to their
HE

0 counterparts. The same holds true for C (Fig. 1, bottom
panel). Consequently, in the context of a flat geometry, the
ALLþHR

0 mean values of B and C are inconsistent with
zero within a 1σ confidence interval. However, Fig. 1
plainly demonstrates that the introduction of growth data
causes the contours to close around the ΛCDM limit.
Additionally, the 2D posteriors for B (or C) vs H0 make it
clear that LSS data lend support to the Hubble constant as
established by Planck ðH0 ¼ 67.27� 0.60 km s−1 Mpc−1Þ
[14], rather than to HR

0 . This may be observed in both the
flat and nonflat cases (results for the latter are shown in
Tables IX and X). We find that even the ALLþHR

0 mean
values for H0 become more compatible with the Planck
constraints when we add the LSS likelihood. Moreover, the
Hubble constant from Planck is endorsed irrespectively of
whether As is allowed to vary, which makes it less likely
that this is an indirect consequence of using the ΛCDM
value for As. Before the possibility can be ruled out,
however, one would need to repeat the procedure with a
wider Gaussian likelihood for As.

15

FIG. 2. (top panel) Marginalized posterior probability distributions for the GRVM parameter B vs (left) H0, (center) Ω0
m, (right) Ω0

k.
The bottom panel shows analogous plots for the second GRVM parameter, C.

TABLE VII. Mean values and 1σ confidence limits obtained
with each data set combination in the context of a flat GRVM
scenario. LSS observations were excluded from the analysis. In
the top block, we present results for the baseline parameters for
the baseline parameters, whereas in the last row we report
constraints on the derived parameter Ω0

ΛðHÞ. H0 is quoted in

units of km s−1 Mpc−1.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 68.8330þ1.6845
−1.6725 71.1120þ1.2073

−1.1912 69.1850þ1.4937
−1.4954

103Ω0
bh

2 22.4090þ0.1755
−0.1744 22.4190þ0.1747

−0.1726 22.4110þ0.1735
−0.1732

Ω0
cdmh

2 0.1217þ0.0070
−0.0073 0.1305þ0.0056

−0.0059 0.1230þ0.0064
−0.0066

B 0.0555þ0.1660
−0.1430 0.2341þ0.1186

−0.1069 0.0845þ0.1491
−0.1306

C 0.0365þ0.1096
−0.0940 0.1553þ0.0776

−0.0701 0.0558þ0.0980
−0.0858

Ω0
ΛðHÞ 0.6958þ0.0070

−0.0067 0.6976þ0.0069
−0.0065 0.6961þ0.0069

−0.0066

15If we opt for a flat prior instead, the LSS likelihood attempts
to make model predictions compatible with data by “picking”
values of As well outside the established range.
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C. The RVM

The results for the RVM are summarized in Tables XI–
XIV. As can be deduced from Figs. 3 and 4 (left panel), there
is significant negative correlation between the model param-
eter B and the Hubble constantH0, although in the flat case,
the use of LSS data make this much less pronounced. The
said correlation explains why including HR

0 with the obser-
vational data—rather than the lower value ofHE

0—shifts the
corresponding contours in all the plots of Figs. 3 and 4
downwards, in the direction of decreasing B.
The introduction of LSS data is a game changer. In the

flat scenario, it reduces or even neutralizes the positive/
negative correlation between B and the parametersH0, Ω0

m,
and Ω0

ΛðHÞ (Fig. 3). This makes the constraints on B less

compatible with the ΛCDM limit, and indeed, the new 1D
posteriors for B exclude a null value at a little over 1σ.
Similar behavior is noted whenΩ0

k is allowed to vary. A few

TABLE VIII. Mean values and 1σ confidence limits obtained with each data set combination in the context of a flat GRVM scenario.
In the top block, we present constraints on the baseline parameters, whereas the last row features the derived parameter Ω0

ΛðHÞ. H0 is

quoted in units of km s−1 Mpc−1, and dots indicate cases in which lnð1010AsÞ was fixed at 3.062 [15].

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.5240þ0.8710
−0.8880 68.8020þ0.7935

−0.8142 67.7140þ0.8367
−0.8635 67.5440þ0.8705

−0.8936 68.8580þ0.8092
−0.8326 67.7460þ0.8515

−0.8706

103Ω0
bh

2 22.4140þ0.1750
−0.1732 22.4470þ0.1729

−0.1742 22.4210þ0.1737
−0.1743 22.4160þ0.1732

−0.1734 22.4460þ0.1754
−0.1740 22.4200þ0.1728

−0.1724

Ω0
cdmh

2 0.1151þ0.0024
−0.0025 0.1170þ0.0024

−0.0024 0.1154þ0.0024
−0.0025 0.1152þ0.0025

−0.0026 0.1173þ0.0025
−0.0026 0.1155þ0.0025

−0.0026

B −0.0491þ0.1118
−0.1014 0.0571þ0.1022

−0.0933 −0.0338þ0.1088
−0.0996 −0.0483þ0.1114

−0.1027 0.0619þ0.1026
−0.0937 −0.0301þ0.1093

−0.1000

C −0.0340þ0.0719
−0.0655 0.0353þ0.0657

−0.0602 −0.0240þ0.0700
−0.0644 −0.0334þ0.0718

−0.0662 0.0385þ0.0661
−0.0604 −0.0215þ0.0704

−0.0644

ns 0.9683þ0.0052
−0.0052 0.9688þ0.0053

−0.0052 0.9684þ0.0053
−0.0052 0.9683þ0.0052

−0.0052 0.9688þ0.0052
−0.0052 0.9683þ0.0052

−0.0052

ln ð1010AsÞ � � � � � � � � � 3.0580þ0.0310
−0.0294 3.0503þ0.0314

−0.0298 3.0571þ0.0309
−0.0296

Ω0
ΛðHÞ 0.6983þ0.0067

−0.0065 0.7052þ0.0062
−0.0059 0.6993þ0.0066

−0.0064 0.6982þ0.0068
−0.0064 0.7051þ0.0062

−0.0060 0.6993þ0.0066
−0.0063

TABLE IX. Mean values and 1σ confidence limits obtained in
the context of a GRVM scenario. LSS data were excluded from
the analysis, and the condition of spatial flatness was not
imposed. More details may be found in the caption of Table VII.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 68.8780þ1.6279
−1.6844 71.0800þ1.1760

−1.1827 69.2380þ1.4922
−1.5051

103Ω0
bh

2 22.4050þ0.1754
−0.1715 22.4180þ0.1698

−0.1739 22.4060þ0.1719
−0.1725

Ω0
cdmh

2 0.1219þ0.0069
−0.0072 0.1303þ0.0055

−0.0058 0.1232þ0.0063
−0.0067

Ω0
k −0.0019þ0.0121

−0.0110 −0.0020þ0.0067
−0.0150 −0.0023þ0.0109

−0.0124

B 0.1068þ0.7911
−0.3660 0.2685þ0.7313

−0.1610 0.1587þ0.8389
−0.2599

C 0.0688þ0.5045
−0.2378 0.1765þ0.4745

−0.1036 0.1027þ0.5202
−0.1861

Ω0
ΛðHÞ 0.6978þ0.0143

−0.0144 0.6998þ0.0173
−0.0110 0.6986þ0.0145

−0.0140

TABLE X. Mean values and 1σ confidence limits obtained in the context of a GRVM scenario. Ω0
k was treated as a free parameter.

More details may be found in the caption of Table VIII.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.7460þ0.8958
−0.9245 69.0740þ0.7971

−0.8411 67.8870þ0.8656
−0.8824 67.7420þ0.9102

−0.9459 69.1410þ0.8361
−0.8330 67.9370þ0.8750

−0.8964

103Ω0
bh

2 22.4070þ0.1716
−0.1729 22.4430þ0.1723

−0.1756 22.4140þ0.1743
−0.1733 22.4090þ0.1716

−0.1730 22.4400þ0.1664
−0.1741 22.4180þ0.1739

−0.1709

Ω0
cdmh

2 0.1157þ0.0026
−0.0028 0.1180þ0.0026

−0.0027 0.1160þ0.0026
−0.0028 0.1159þ0.0027

−0.0028 0.1183þ0.0027
−0.0026 0.1162þ0.0027

−0.0028

Ω0
k −0.0050þ0.0106

−0.0141 −0.0073þ0.0064
−0.0155 −0.0029þ0.0105

−0.0124 −0.0035þ0.0111
−0.0129 −0.0062þ0.0071

−0.0160 −0.0040þ0.0108
−0.0149

B 0.1637þ0.8362
−0.2790 0.3591þ0.6489

−0.2050 0.0834þ0.6882
−0.4039 0.0979þ0.7169

−0.4212 0.3148þ0.6953
−0.3449 0.1248þ0.8194

−0.3556

C 0.1019þ0.5339
−0.1816 0.2282þ0.4148

−0.1312 0.0508þ0.4411
−0.2577 0.0599þ0.4592

−0.2687 0.2000þ0.4444
−0.2230 0.0773þ0.5241

−0.2270

ns 0.9680þ0.0052
−0.0051 0.9687þ0.0050

−0.0052 0.9682þ0.0053
−0.0052 0.9681þ0.0051

−0.0052 0.9686þ0.0051
−0.0052 0.9682þ0.0049

−0.0053

ln ð1010AsÞ � � � � � � � � � 3.0584þ0.0311
−0.0293 3.0514þ0.0309

−0.0275 3.0578þ0.0302
−0.0293

Ω0
ΛðHÞ 0.7038þ0.0170

−0.0132 0.7128þ0.0193
−0.0091 0.7024þ0.0154

−0.0130 0.7021þ0.0152
−0.0144 0.7116þ0.0198

−0.0102 0.7034þ0.0176
−0.0141
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differences are worth mentioning, however: in the presence
of spatial curvature, the effect of the LSS likelihood on the
negative correlation between B and H0 is less significant
(Fig. 4). Furthermore, comparison of the average values of
B in Tables XIII and XIV reveals that the addition of
growth data changes their sign from negative to positive
(which results from the tightening of contours around
positive values of B; see Fig. 4). Another point of interest
is the fact that while the ALLþHR

0 posteriors favor an
open universe at more than 2σ, the inclusion of LSS data
causes them to close up around Ωk ¼ 0. Moreover, we note
that the tendency of the LSS likelihood to select smaller
values for the Hubble constant emerges again in the nonflat
case. It may easily be deduced that the resulting mean
values ofH0 resonate with the Planck constraint rather than
with HR

0 .
Let us now take a look at the literature and see how our

findings for the flat scenario fare in comparison (the studies
we consider are based on the assumption of spatial flat-
ness). The authors of Ref. [36] report that the RVM appears
to be more consistent with observations than ΛCDM and
furthermore, remark that the inclusion of an LSS likelihood
tips the balance in favor of the Planck value for H0. Our
results paint a somewhat different picture. We find no
statistically significant evidence that the RVM is preferred
over ΛCDM (more details are provided in Sec. IV E).
Secondly, the addition of LSS data increases the mean
values ofH0 slightly whenΩ0

k ¼ 0, although we cannot say
that it spoils the consistency with the Planck constraints.
We nonetheless note that once the conversion from ν to
Bð¼ 3νÞ is made, the mean values of B and the corre-
sponding uncertainties (Tables XI and XII) are found to be
of the same order of magnitude16 as those obtained in
Ref. [36] with the full data set.

The tendency of the RVM to lend support to the Planck
bounds for H0 is also pointed out in Ref. [37]. The authors
find that ν ¼ 0 is excluded at more than 3σ when they
include LSS data, and although our results do not cor-
roborate this conclusion, the mean and uncertainty for ν
again translate into values for B that match ours in order of
magnitude. The same can be said of the constraints placed
on ν in Ref. [38] by means of a fit to SNeIa+BAO+HðzÞ
+LSS+BBN+CMB data. This despite the fact that the study
in question considers radiation to interact with dark energy,
which is not the case here. We note that our mean values for
B (excluding the ones obtained with the ALLþHR

0 and
ALLþ LSSþHR

0 data sets) have ν equivalents that lie
within 1σ of the value found in Ref. [38] using the full
data set.
On the contrary, our results are in some tension with that

of Ref. [29] ½ν ¼ B=3 ¼ ð1.37þ0.72
−0.95Þ × 10−4�. The authors

attribute their strong constraints on ν to the effectiveness of
CMB temperature fluctuations as cosmological probes
[29]. One should keep in mind, however, that the approach
taken in Ref. [29] differs from ours in a number of ways, the
most prominent being the assumption that dark energy
decays into both radiation and matter, and the incorporation
of massive neutrinos into the model.
We turn our attention to the study presented in Ref. [26]

next. Here, the joint analysis is based on measurements of
observables associated with SNeIa, BAOs, cosmic chro-
nometers, LSS, and the CMB, and again it transpires that
the mean value of ν and associated standard deviation have
the same order of magnitude as the ones we get (for B=3).
The authors also investigate the impact of the individual
likelihoods on the results and observe that using both LSS
and CMB data tightens constraints on ν, consequently,
endowing it with a definite sign. They go on to show that
the absence of either makes ν compatible with the ΛCDM
limit (ν ¼ 0). The authors conclude that the BAOþ LSSþ
CMB combination excludes the standard model at more
than 3σ.
Although some of the above studies allow radiation to

couple with vacuum energy, we decide not to do likewise.
There is an important reason for this: namely, any inter-
action between radiation and dark energy would cause the
CMB temperature ðTCMBÞ to scale differently with redshift
than it does in ΛCDM. Additionally, any net changes in
photon number would alter the relation between the angular
diameter and luminosity distances [143]. The literature
contains many examples of studies that have constrained
departures from the standard-model prediction for TCMB
½TCMB ∝ ð1þ zÞ� [143–146] or placed bounds on viola-
tions of the distance-duality relation [147–150]. As yet,
however, no compelling evidence of deviations from
ΛCDM has been found. In other words, there is currently
little observational justification for energy exchange
between radiation and the vacuum to be incorporated into
a cosmological model.

TABLE XI. Mean values and 1σ confidence limits obtained in
the context of a flat RVM scenario. LSS data were excluded from
the analysis. More details may be found in the caption of
Table VII.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 67.4240þ0.4759
−0.4944 67.8950þ0.4785

−0.4939 67.4900þ0.4723
−0.4939

103Ω0
bh

2 22.3030þ0.1380
−0.1387 22.3830þ0.1378

−0.1373 22.3140þ0.1393
−0.1383

Ω0
cdmh

2 0.1175þ0.0032
−0.0035 0.1190þ0.0033

−0.0036 0.1177þ0.0032
−0.0035

103B 3.0279þ3.1358
−3.1698 1.0225þ3.1603

−3.1745 2.7498þ3.1121
−3.1691

Ω0
ΛðHÞ 0.6925þ0.0066

−0.0064 0.6932þ0.0067
−0.0064 0.6926þ0.0066

−0.0064

16Two values (a × 10p and b × 10p, where 1 ≤ a; b < 10 and
p is an integer) shall be deemed to have the same magnitude if
ja − bj < 5. Given the quantity Mþn

−l, we shall refer to nþ l as
the uncertainty in M.
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In the same vein, since Ω0
b is subject to very tight

constraints, we refrain from coupling the baryon compo-
nent with dark energy, as this would alter the way in which
ρb scales with redshift. The reader is referred to
Refs. [151,152] (and the works cited therein) for a review
of the said constraints.

D. The GRVS

Results are presented in Tables XV–XVIII. The inclu-
sion of LSS data again proves to be important. In the flat
case, it tightens constraints on C and endows it with a
definite (negative) sign, while also reducing (or even
neutralizing) the correlation between C and the parameters
H0, Ω0

m, and Ω0
ΛðHÞ (Fig. 5). As a result, the 1D posteriors

for C exclude the ΛCDM limit at a little over 1σ. The
situation is in many ways analogous to the RVM scenario.
When the assumption of spatial flatness is relaxed, we
again find that LSS data show mild preference for a closed
(rather than open) geometry and tend to decrease the mean
values ofH0 (Fig. 6). Contrary to what was observed for the
RVM, the latter effect is also noted in the flat case.
The correlation between C and H0 explains why the HR

0

likelihood shifts the contours in Figs. 5 and 6 in the
direction of increasing C. The introduction of growth data
makes this displacement much less pronounced.
Before we move on, let us consider how well the GRVM,

RVM, and GRVS account for RSD measurements. The
values of fσ8ðzÞ inferred from CMB data (for a ΛCDM
cosmology) seem to be in excess of what observations
related to structure growth suggest. This is a result of the

TABLE XII. Mean values and 1σ confidence limits obtained in the context of a flat RVM scenario. More details may be found in the
caption of Table VIII.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.8130þ0.6130
−0.6275 68.4770þ0.5816

−0.5896 67.9030þ0.6059
−0.6135 67.8270þ0.6179

−0.6319 68.5050þ0.5812
−0.6036 67.9160þ0.6059

−0.6155

103Ω0
bh

2 22.3780þ0.1568
−0.1561 22.4970þ0.1517

−0.1497 22.3940þ0.1551
−0.1551 22.3800þ0.1550

−0.1560 22.4990þ0.1512
−0.1509 22.3960þ0.1548

−0.1547

Ω0
cdmh

2 0.1158þ0.0019
−0.0019 0.1161þ0.0019

−0.0019 0.1159þ0.0019
−0.0019 0.1159þ0.0019

−0.0020 0.1163þ0.0019
−0.0020 0.1160þ0.0019

−0.0020

103B 3.6665þ1.9661
−2.0391 2.3309þ1.8986

−1.9689 3.4801þ1.9351
−2.0277 3.5647þ2.0408

−2.1165 2.1456þ1.9740
−2.0357 3.3725þ2.0146

−2.0964

ns 0.9670þ0.0045
−0.0046 0.9705þ0.0044

−0.0044 0.9675þ0.0045
−0.0045 0.9671þ0.0046

−0.0045 0.9706þ0.0044
−0.0044 0.9675þ0.0045

−0.0045

ln ð1010AsÞ � � � � � � � � � 3.0564þ0.0307
−0.0294 3.0525þ0.0311

−0.0294 3.0559þ0.0308
−0.0293

Ω0
ΛðHÞ 0.6994þ0.0063

−0.0061 0.7043þ0.0060
−0.0058 0.7000þ0.0062

−0.0060 0.6993þ0.0063
−0.0060 0.7042þ0.0060

−0.0058 0.6999þ0.0062
−0.0060

TABLE XIII. Mean values and 1σ confidence limits obtained in
the context of an RVM scenario. LSS data were excluded from
the analysis, and spatial flatness was not imposed. More details
may be found in the caption of Table VII.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 68.5350þ1.5435
−1.5236 70.7750þ1.1456

−1.1488 68.8920þ1.4166
−1.3974

103Ω0
bh

2 22.2870þ0.1420
−0.1399 22.2940þ0.1409

−0.1396 22.2870þ0.1394
−0.1404

Ω0
cdmh

2 0.1220þ0.0066
−0.0069 0.1309þ0.0055

−0.0057 0.1234þ0.0062
−0.0065

103Ω0
k 2.1474þ2.9676

−2.6744 5.9320þ2.1120
−2.0502 2.7793þ2.6796

−2.5027

103B −0.3265þ4.9193
−5.8219 −7.1221þ3.6466

−4.1096 −1.5054þ4.6128
−5.2781

Ω0
ΛðHÞ 0.6908þ0.0069

−0.0068 0.6883þ0.0067
−0.0065 0.6903þ0.0068

−0.0067

TABLE XIV. Mean values and 1σ confidence limits obtained in the context of an RVM scenario. Ω0
k was treated as a free parameter.

More details may be found in the caption of Table VIII.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.5010þ0.8679
−0.8693 68.7760þ0.7858

−0.7956 67.7000þ0.8428
−0.8546 67.5280þ0.8876

−0.8918 68.8250þ0.8011
−0.8075 67.7310þ0.8496

−0.8716

103Ω0
bh

2 22.4130þ0.1730
−0.1696 22.4500þ0.1730

−0.1714 22.4180þ0.1728
−0.1723 22.4120þ0.1723

−0.1725 22.4490þ0.1724
−0.1725 22.4190þ0.1717

−0.1733

Ω0
cdmh

2 0.1150þ0.0026
−0.0026 0.1170þ0.0025

−0.0025 0.1153þ0.0025
−0.0026 0.1151þ0.0026

−0.0027 0.1173þ0.0026
−0.0027 0.1154þ0.0026

−0.0027

103Ω0
k −1.0358þ2.1119

−2.0708 1.0969þ1.9576
−1.9154 −0.6868þ2.0555

−2.0362 −0.9842þ2.1179
−2.0898 1.1876þ1.9680

−1.9402 −0.6480þ2.0761
−2.0397

103B 4.0567þ2.1064
−2.2043 2.0203þ1.9293

−2.0197 3.7450þ2.0332
−2.1945 3.9637þ2.1855

−2.3301 1.7766þ2.0335
−2.1403 3.6112þ2.1647

−2.2666

ns 0.9682þ0.0052
−0.0051 0.9689þ0.0051

−0.0051 0.9683þ0.0052
−0.0052 0.9682þ0.0051

−0.0052 0.9689þ0.0052
−0.0052 0.9683þ0.0052

−0.0052

ln ð1010AsÞ � � � � � � � � � 3.0581þ0.0311
−0.0292 3.0504þ0.0315

−0.0302 3.0572þ0.0312
−0.0294

Ω0
ΛðHÞ 0.6994þ0.0063

−0.0059 0.7039þ0.0060
−0.0057 0.7001þ0.0062

−0.0060 0.6993þ0.0063
−0.0061 0.7036þ0.0060

−0.0058 0.7000þ0.0063
−0.0060
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fact that the constraints on Ω0
m and σ8;0 obtained from weak

lensing, Sunyaev-Zel’dovich cluster counts, and RSDs
appear to be in some tension with the Planck analysis of
primary fluctuations [131]. However, the cause of the
discrepancy is as yet a subject of debate. According
to a recent study, the lower value for the reionization
optical depth reported in more recent Planck papers has
partially solved the problem [153]. Whether or not any
tension is detected also depends on the choice of data set.

In particular, RSD measurements published in the last few
years tend to probe higher redshifts, at which degeneracies
can set in between different models. Such measurements
are therefore more likely to be consistent with the ΛCDM
values for fσ8 [131].
Figures 7 and 8 show the variation of fσ8 with z for the

dynamical-Λ models and ΛCDM. Most of the data points
are located below the ΛCDM curve, so the fact that the
GRVM, RVM, and GRVS yield smaller values for fσ8ðzÞ
augurs well, and indeed one notes that—in the majority of
cases—the dynamical-Λ curves are closer to the mean
values of the observations. By comparing the results for
σ8;0 (provided in the captions of Figs. 7 and 8 ) with the
Planck value of ∼0.8 [14], we may additionally deduce that
the lower fσ8 curves are mainly a consequence of a smaller
σ8;0. Finally, it appears that the addition of HR

0 to the data
set yields a slightly higher value of fσ8 at a given z. This
observation is perfectly in accord with our conclusion that
LSS data lend support to the Planck constraints on H0.

E. Comparison with ΛCDM
In this subsection, we consider the cosmological param-

eter constraints obtained by using the ALLþ LSS,

(H)

FIG. 3. Marginalized posterior probability distributions for the RVM parameter B vs (left)H0, (center)Ω0
m, (right)Ω0

ΛðHÞ. We assume a
spatially flat space-time.

FIG. 4. Marginalized posterior probability distributions for the RVM parameter B vs (left) H0, (center) Ω0
m, (right) Ω0

k.

TABLE XV. Mean values and 1σ confidence limits obtained in
the context of a flat GRVS scenario. LSS data were excluded from
the analysis. More details may be found in the caption of
Table VII.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 68.2640þ0.7812
−0.8232 69.2520þ0.7381

−0.7772 68.3850þ0.7663
−0.8033

103Ω0
bh

2 22.4300þ0.1647
−0.1640 22.5740þ0.1559

−0.1563 22.4490þ0.1627
−0.1617

Ω0
cdmh

2 0.1193þ0.0036
−0.0040 0.1222þ0.0037

−0.0041 0.1197þ0.0036
−0.0040

103C −0.1050þ2.4635
−2.4237 2.2458þ2.3401

−2.2670 0.1792þ2.4189
−2.3773

Ω0
ΛðHÞ 0.6957þ0.0069

−0.0066 0.6980þ0.0069
−0.0066 0.6960þ0.0069

−0.0066
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ALLþ LSSþHR
0 , and ALLþ LSSþHE

0 data sets in the
framework of a ΛCDM cosmology with freely varying Ω0

k.
The mean values and 1σ confidence limits are presented in
Table XIX.
How may we compare the results obtained for ΛCDM

with those for the GRVM, RVM, and GRVS? The number

of baseline parameters differs from model to model (11 for
the GRVM, 10 for the RVM, and GRVS, and 9 in the case
of ΛCDM), so one cannot simply assess performance by
looking at the minimum χ2. Instead, we employ the Akaike
information criterion (AIC) [154]. This takes into account
both the number of free parameters (p) and the value of the
maximum likelihood (Lmax),

AIC ¼ 2p − 2 lnðLmaxÞ: ð53Þ

Additionally, since the theoretical quantities associated
with each likelihood are treated as samples from a
multivariate Gaussian distribution, the AIC may equiva-
lently be expressed in terms of the minimum χ2,

AIC ¼ 2pþ χ2min: ð54Þ

Another tool for model selection is the Bayesian informa-
tion criterion (BIC) [155],

BIC ¼ p lnN − 2 lnðLmaxÞ: ð55Þ

TABLE XVII. Mean values and 1σ confidence limits obtained
in the context of a GRVS scenario. LSS data were excluded from
the analysis, and the condition of spatial flatness was not
imposed. More details may be found in the caption of Table VII.

Parameter ALL ALLþHR
0 ALLþHE

0

H0 68.7530þ1.5454
−1.5507 70.9130þ1.1628

−1.1578 69.0730þ1.4051
−1.4109

103Ω0
bh

2 22.4090þ0.1726
−0.1718 22.4320þ0.1720

−0.1700 22.4120þ0.1716
−0.1715

Ω0
cdmh

2 0.1214þ0.0066
−0.0070 0.1298þ0.0056

−0.0058 0.1227þ0.0062
−0.0064

103Ω0
k 1.0452þ2.9292

−2.7865 4.3585þ2.3047
−2.2526 1.5638þ2.7015

−2.6167

103C 0.7443þ3.7198
−3.2210 4.9508þ2.6763

−2.3946 1.4163þ3.3940
−2.9272

Ω0
ΛðHÞ 0.6946þ0.0074

−0.0073 0.6928þ0.0074
−0.0072 0.6943þ0.0074

−0.0072

TABLE XVI. Mean values and 1σ confidence limits obtained in the context of a flat GRVS scenario. More details may be found in the
caption of Table VIII.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.7840þ0.6186
−0.6298 68.4770þ0.5943

−0.5972 67.8800þ0.6095
−0.6200 67.8000þ0.6284

−0.6370 68.4960þ0.5958
−0.5968 67.8990þ0.6132

−0.6292

103Ω0
bh

2 22.3790þ0.1543
−0.1565 22.5010þ0.1519

−0.1500 22.3960þ0.1540
−0.1539 22.3820þ0.1549

−0.1567 22.5020þ0.1501
−0.1493 22.3980þ0.1547

−0.1540

Ω0
cdmh

2 0.1157þ0.0019
−0.0019 0.1161þ0.0019

−0.0019 0.1158þ0.0019
−0.0019 0.1158þ0.0019

−0.0020 0.1163þ0.0019
−0.0020 0.1159þ0.0020

−0.0020

103C −2.3810þ1.3190
−1.2607 −1.4761þ1.2662

−1.2102 −2.2558þ1.2957
−1.2541 −2.3120þ1.3602

−1.3179 −1.3684þ1.3103
−1.2737 −2.1795þ1.3530

−1.3042

ns 0.9671þ0.0045
−0.0045 0.9706þ0.0044

−0.0044 0.9675þ0.0044
−0.0044 0.9671þ0.0045

−0.0045 0.9707þ0.0044
−0.0044 0.9676þ0.0045

−0.0045

ln ð1010AsÞ � � � � � � � � � 3.0565þ0.0309
−0.0295 3.0522þ0.0309

−0.0294 3.0560þ0.0310
−0.0292

Ω0
ΛðHÞ 0.6993þ0.0063

−0.0061 0.7043þ0.0060
−0.0057 0.7000þ0.0062

−0.0060 0.6992þ0.0063
−0.0061 0.7041þ0.0060

−0.0057 0.6999þ0.0062
−0.0060

TABLE XVIII. Mean values and 1σ confidence limits obtained with each data set combination in the context of a GRVS scenario. Ω0
k

was treated as a free parameter. More details may be found in the caption of Table VIII.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 67.5080þ0.8646
−0.8940 68.7710þ0.7891

−0.7891 67.7040þ0.8326
−0.8632 67.5270þ0.8799

−0.9011 68.8250þ0.7975
−0.8066 67.7270þ0.8537

−0.8650

103Ω0
bh

2 22.4130þ0.1718
−0.1742 22.4490þ0.1719

−0.1728 22.4190þ0.1739
−0.1709 22.4140þ0.1734

−0.1718 22.4500þ0.1720
−0.1716 22.4170þ0.1707

−0.1723

Ω0
cdmh

2 0.1150þ0.0025
−0.0026 0.1170þ0.0025

−0.0025 0.1153þ0.0025
−0.0026 0.1151þ0.0026

−0.0027 0.1173þ0.0026
−0.0026 0.1154þ0.0026

−0.0027

103Ω0
k −0.9464þ2.0824

−2.0889 1.1408þ1.9543
−1.9133 −0.6118þ2.0552

−2.0364 −0.9229þ2.1097
−2.0864 1.2022þ1.9458

−1.9261 −0.5637þ2.0727
−2.0289

103C −2.5839þ1.4209
−1.3420 −1.2927þ1.2993

−1.2392 −2.3797þ1.3910
−1.3091 −2.5323þ1.4719

−1.4069 −1.1341þ1.3627
−1.2930 −2.3232þ1.4490

−1.3732

ns 0.9682þ0.0052
−0.0052 0.9689þ0.0051

−0.0052 0.9683þ0.0052
−0.0051 0.9682þ0.0051

−0.0052 0.9690þ0.0051
−0.0052 0.9683þ0.0052

−0.0052

ln ð1010AsÞ � � � � � � � � � 3.0584þ0.0309
−0.0297 3.0504þ0.0313

−0.0299 3.0571þ0.0312
−0.0296

Ω0
ΛðHÞ 0.6993þ0.0063

−0.0061 0.7038þ0.0060
−0.0059 0.7000þ0.0062

−0.0060 0.6993þ0.0063
−0.0061 0.7036þ0.0061

−0.0058 0.6999þ0.0062
−0.0061
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(H)

FIG. 5. Marginalized posterior probability distributions for the GRVS parameter C vs (left)H0, (center)Ω0
m, (right)Ω0

ΛðHÞ. We assume
a spatially flat space-time.

FIG. 6. Marginalized posterior probability distributions for the GRVS parameter C vs (left) H0, (center) Ω0
m, (right) Ω0

k.

FIG. 7. The variation of fσ8 with z in a flat scenario. The data
points of Table V are shown as black circles with 1σ error bars,
and it can be seen that they mainly probe redshifts less than unity,
at which different models are less likely to be degenerate [131].
The dynamical-Λ curves are based on the ALLþLSS (þfixed As)
mean values and have σ8;0 equal to 0.7748 (RVM), 0.7660
(GRVM), and 0.7736 (GRVS). The ΛCDM curve was obtained
using the TT+lowP+lensing results from Ref. [15].

FIG. 8. The variation of fσ8 with z. The dynamical-Λ curves
are based on the mean values obtained using the ALL+LSS data
set (or, where indicated in the legend, ALLþLSSþHR

0 =þHE
0 )

with ln ð1010AsÞ fixed at 3.062; σ8;0 equates to 0.7748 (RVM),
0.7909 (RVM þHR

0 ), 0.7773 (RVMþHE
0 ), and 0.7676 (RVM-

nonflat). We assume a flat geometry in all cases but one. The sole
exception is labeled accordingly.
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Here, N is the number of observations, which in this work
amounts to 798 or 799,17 depending on whether HR

0 or HE
0

are included. Provided the assumption of sampling from a
multivariate Gaussian distribution holds, Eq. (55) may
alternatively take the form,

BIC ¼ p lnN þ χ2min: ð56Þ

The AIC and BIC for the RVM and GRVS can be found in
Tables XX and XXI. We do not include the GRVM, since
some of its parameters are not well-constrained in the
nonflat case.
Tables XX and XXI demonstrate that the minimum χ2

for the RVM and GRVS is smaller than its ΛCDM
counterpart. What is more, this holds for all three data
set combinations. One must however determine whether the
difference in χ2min is enough to justify the extra free

parameter of the RVM and GRVS. The reason is that
although the addition of parameters introduces more
degrees of freedom—and hence, allows the model to better
approximate the data—it does not necessarily yield a model
of greater merit, because when the information supplied by
the data has to be “shared” among more parameters, the
resulting estimates tend to be less precise [156]. In such
cases, information criteria like the AIC and BIC become
indispensable to find a trade-off.18 As can be deduced from
Eqs. (53) and (55), the AIC and BIC statistics do not only
penalize for a smaller value of Lmax, but also for a larger
number of free parameters. In general, a smaller AIC/BIC
indicates better performance.
Let us consider this in more detail. We start by noting

thatΔAIC indicates the level of support the data provide for
the model with the smaller AIC. An absolute value between
0 and 2 is usually not deemed enough to draw conclusions.

TABLE XIX. Mean values and 1σ confidence limits for the baseline cosmological parameters (top block) and the derived quantity Ω0
Λ

(last row) in the context of a ΛCDM cosmology. The condition Ω0
k ¼ 0 was not imposed.

Parameter ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0 ALLþLSS ALLþLSSþHR
0 ALLþLSSþHE

0

H0 68.6250þ0.6557
−0.6720 69.2690þ0.6243

−0.6256 68.7000þ0.6456
−0.6569 68.6080þ0.6579

−0.6631 69.2560þ0.6229
−0.6348 68.6790þ0.6499

−0.6644

103Ω0
bh

2 22.4650þ0.1700
−0.1697 22.4740þ0.1697

−0.1707 22.4640þ0.1711
−0.1705 22.4570þ0.1707

−0.1696 22.4680þ0.1706
−0.1694 22.4600þ0.1703

−0.1711

Ω0
cdmh

2 0.1190þ0.0015
−0.0015 0.1191þ0.0015

−0.0015 0.1190þ0.0015
−0.0015 0.1191þ0.0015

−0.0015 0.1191þ0.0015
−0.0015 0.1191þ0.0015

−0.0015

103Ω0
k 0.3456þ1.9551

−1.9447 1.6406þ1.8794
−1.8476 0.5135þ1.9412

−1.9091 0.4033þ1.9647
−1.9491 1.6730þ1.8754

−1.8582 0.5333þ1.9657
−1.9232

ns 0.9698þ0.0051
−0.0051 0.9697þ0.0051

−0.0051 0.9698þ0.0051
−0.0051 0.9696þ0.0051

−0.0051 0.9696þ0.0051
−0.0051 0.9696þ0.0051

−0.0051

ln ð1010AsÞ � � � � � � � � � 3.0417þ0.0300
−0.0287 3.0425þ0.0300

−0.0286 3.0418þ0.0303
−0.0282

Ω0
Λ 0.6991þ0.0063

−0.0060 0.7032þ0.0060
−0.0057 0.6995þ0.0063

−0.0060 0.6987þ0.0063
−0.0060 0.7029þ0.0060

−0.0058 0.6992þ0.0062
−0.0060

TABLE XX. The AIC and BIC statistics for the RVM, GRVS,
and ΛCDM. The values in the top, middle, and bottom sections
were obtained using the ALLþ LSS, ALLþ LSSþHR

0 , and
ALLþ LSSþHE

0 data sets, respectively.Ω0
k was treated as a free

parameter in all cases, while As was set to a fixed value.

Model χ2min : AIC ΔAIC BIC ΔBIC

RVM 722.9 742.9 −1.8 789.7 2.9
GRVS 722.9 742.9 −1.8 789.7 2.9
ΛCDM 726.7 744.7 00.0 786.8 00.0

RVM (þHR
0 ) 733.2 753.2 1.1 800.0 5.8

GRVS (þHR
0 ) 733.1 753.1 1.0 799.9 5.7

ΛCDM (þHR
0 ) 734.1 752.1 0.0 794.3 0.0

RVM (þHE
0 ) 723.7 743.7 −1.4 790.5 3.3

GRVS (þHE
0 ) 723.7 743.7 −1.4 790.5 3.3

ΛCDM (þHE
0 ) 727.1 745.1 0.0 787.3 0.0

TABLE XXI. The AIC and BIC statistics for the RVM, GRVS,
and ΛCDM. Ω0

k and As were treated as free parameters in all
cases.

Model χ2min : AIC ΔAIC BIC ΔBIC

RVM 723.1 745.1 −1.2 796.6 3.5
GRVS 722.7 744.7 −1.6 796.2 3.1
ΛCDM 726.3 746.3 00.0 793.1 00.0

RVM (þHR
0 ) 733.2 755.2 1.5 806.7 6.2

GRVS (þHR
0 ) 733.1 755.1 1.4 806.6 6.1

ΛCDM (þHR
0 ) 733.7 753.7 0.0 800.5 0.0

RVM (þHE
0 ) 724.0 746.0 −0.6 797.5 4.1

GRVS (þHE
0 ) 723.7 745.7 −0.9 797.2 3.8

ΛCDM (þHE
0 ) 726.6 746.6 0.0 793.4 0.0

17JLA: 740, HðzÞ: 30, CMB: 4, BAO: 12, LSS: 12.

18There is nonetheless a caveat: the AIC and BIC should,
strictly speaking, only be applied if certain conditions are
satisfied [157,158]. For instance, they are both meant to be used
with independent observations [159,160].
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If jΔAICj lies in the range from 2 to 4, the model with the
larger AIC is considerably disfavored, while a value of
jΔAICj > 10 renders it practically irrelevant. In the same
vein, a difference of magnitude 2 in the BIC is considered
as evidence against the model with the larger BIC, while a
difference of magnitude 6 or more constitutes strong
evidence [161]. We may thus conclude that the models
perform similarly when assessed by the AIC. However, the
BIC penalizes for extra parameters more harshly than the
AIC [162] and consequently, provides a considerable level
of support for ΛCDM.

V. CONCLUSION

Many of the studies that investigate the nature of dark
energy are based on the premise of a spatially flat universe.
However, it has been shown that if the true geometry is not
exactly flat, this practice could critically distort the con-
clusions reached about the dynamics of dark energy
[163,164]. It is therefore important to ask what implications
a nonzero Ω0

k would have for dark energy scenarios. To this
end, we consider three models from the literature that
feature a dynamical Λ: the GRVM, whose characteristic
ΛðHÞ takes the form Aþ BH2 þ C _H [23], and two
subcases: the RVM, obtained by setting C to zero [24],
and the model we call the GRVS, which has a null value for
B instead [30]. We assume that the vacuum only exchanges
energy with cold dark matter as it decays. The parameters B
and/or C are constrained by means of an MCMC analysis,
initially using data for the observables associated with
SNeIa, cosmic chronometers, the CMB, and BAOs. Each
model is first investigated in the context of a flat space-
time. Then we allow Ω0

k to vary and look for any
differences. We also analyze the effects of introducing a
measurement of the Hubble constant as a fifth likelihood,
and consider two different values for H0: the one reported
by Riess et al. ðHR

0 ¼ 73.48� 1.66 km s−1Mpc−1Þ [18]
and that obtained by Efstathiou ðHE

0 Þ [134], equal to
70.6� 3.3 km s−1 Mpc−1. Finally, we include LSS obser-
vations in the collection of data sets and repeat the whole
procedure. The amplitude of the primordial scalar power
spectrum, As, is either assigned a fixed value or treated as a
freely varying parameter.
In the case of the GRVM, the data we use are insufficient

to break parameter degeneracies when the assumption of
flatness is relaxed. The constraints we get in the flat
scenario are, however, informative: we find that the
addition of the LSS likelihood makes the posterior dis-
tributions for B and C close around the ΛCDM limit. It also
changes the mean values of B and C from positive to
negative—although only if HR

0 is absent from the combi-
nation of data sets, because the correlation between B
(or C) and the Hubble constant causes the HR

0 likelihood to
shift the posteriors in the direction of increasing B (or C).
We furthermore note that the inclusion of growth data

lowers the averages for H0, enhancing compatibility with
the range of values established by Planck [14].
Next, we turn our attention to the RVM. This time, the

use of LSS data excludes the ΛCDM limit at a little over 1σ
(in both the flat and nonflat cases, with one exception in the
latter), while also serving to tighten the 2D posteriors in
Fig. 4. When Ω0

k ≠ 0, we note a change in the sign of the
mean values of B from negative to positive and again find
that growth data lend support to values of H0, which
resonate with the Planck result. Of particular relevance is
the fact that all the constraints on Ω0

k become consistent
with a flat geometry (within a 1σ confidence interval) once
LSS observations are taken into account.
The GRVS parallels the RVM in many ways. Here, too,

growth data are responsible for a dynamical Λ being
preferred to a cosmological constant at a little over 1σ,
and once more, this turns out to hold (for the most part)
whether or not we assume that the Universe is spatially flat.
The LSS likelihood establishes a definite (negative) sign for
C and increases compatibility between the average values of
H0 and thePlanck constraints. Its effect on the 1D posteriors
forΩ0

k is similar towhat was noted for the RVM. In all cases,
the addition of LSS observations putsΩ0

k ¼ 0 at less than 1σ
from the resultingmean, but in its absence, both theRVMand
GRVS show some preference for an open universe, and
indeed, the level of support provided by the RVM for a
positive Ω0

k is over 2σ when HR
0 is included with the data.

In conclusion, our study indicates that a mildly evolving
Λ (modeled as in the RVM or GRVS) is only marginally
favored over the cosmological constant. Moreover, this
comes at the cost of an extra parameter which—while not
given much weight by the AIC—has a negative impact on
the BIC score. Another point of interest is the fact that
merging the RVM and GRVS expressions for Λ into a two-
parameter combination (the GRVM) appears to weaken the
support for dynamical vacuum energy. We also investigate
what happens when the assumption of spatial flatness is
relaxed and find that the addition of LSS data reduces the
ability of the models to accommodate a nonzero Ω0

k.
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[75] J. Solà, J. Phys. Conf. Ser. 283, 012033 (2011).
[76] I. L. Shapiro, Classical Quantum Gravity 25, 103001

(2008).
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