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The method of minimal geometric deformation (MGD) is used to derive static, strongly gravitating,
spherically symmetric, compact stellar distributions that are solutions of the Yang-Mills-Einstein-Dirac
coupled field equations on fluid membranes with finite tension. Their solutions characterize MGD Yang-
Mills-Dirac stars, whose mass has order of the Chandrasekhar mass, once the range of both the fermionic
self-interaction and the Yang-Mills coupling constants is suitably chosen. Physical features of MGDYang-
Mills-Dirac stars are then discussed and their Arnowitt-Deser-Misner masses are derived, as a function of
the fermion coupling constant, the finite brane tension, and the Yang-Mills running parameter.
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I. INTRODUCTION

The minimal geometricci deformation (MGD) and the
MGD-decoupling methods consist of successful proce-
dures that can engender analytical solutions of the
brane Einstein’s effective field equations in AdS=CFT
and its membrane paradigm [1–5]. Our Universe, the
codimension-1 brane with intrinsic tension, is embedded
in a bulk [6,7]. MGD procedures can be implemented
when one deforms already known solutions in general
relativity (GR). Standard gravity in GR consists of the
rigid brane, with infinite tension, limit. The brane tension
is interpreted as the finite vacuum energy. Since recent
phenomenological data imply a finite brane tension (σ)
with the most precise observational bound σ ⪆ 2.81 ×
10−6 GeV4 [8], the MGD method represents a realistic
procedure to derive and analyze compact stellar distribu-
tions, complying with current cosmological observations.
The finite brane tension drives the ways to deform the
Schwarzschild solution of the Einstein field equations
[9–13]. The cosmic microwave background (CMB) aniso-
tropic aspects, showed by WMAP, forced the fluid brane
tension to satisfy the Eötvös law, asserting that the surface
tension of a membrane is proportional to its temperature
[14–16]. Regarding models describing cosmic inflation,
the tension of the brane must have fluctuated, as the
temperature of the Universe decreased down to the current
value ∼2.7 K [16].

MGD provides analytical solutions of strongly gravitat-
ing, compact star distributions and black holes as well
[2,4,5,17,18]. MGD is ruled by a running parameter,
proportional to the inverse of the brane tension, with recent
observational/experimental constraints [8,19,20]. MGD
and its extensions have been employed to study the
configurational stability of stellar distributions [8,20],
whose observational signature in LIGO and eLISA was
proposed in Refs. [21,22]. Einstein-Klein-Gordon configu-
rations, using MGD gravitational decoupling, were studied
in Ref. [23]. MGD analogs in the laboratory were proposed
[24] and the Gregory-Laflamme instability phenomenon
was shown to be precluded in MGD black strings with
critical masses [25]. The MGD procedure and the MGD
gravitational decoupling method have also been investi-
gated and used in Refs. [26–37], encompassing the analysis
and scrutiny of anisotropic configurations [38–50].
Higher derivative terms in the gravitational decoupling
were studied in Refs. [51,52]. In addition, the (2þ 1)-
dimensional version of MGD gravitational decoupling,
with several applications, was discussed in Refs. [53–56].
Still, new nuances of the MGD in AdS=CFT have been
paved by the study of the holographic entanglement entropy
of MGD solutions [57].
In this work, MGD Yang-Mills-Dirac stellar configura-

tions will be derived as solutions of a Yang-Mills-Einstein-
Dirac coupled system of field equations on a fluid brane
with finite tension. We will analyze the finite brane tension
influence on the compact stellar configurations. Without
taking into account Yang-Mills fields, solutions of the
Einstein-Dirac coupled system consist of Dirac stellar
distributions, driven by nonlinear spinor fields [58,59].
Afterward, Maxwell, Yang-Mills, and even Proca fields
were coupled to the Einstein-Dirac coupled system, always
in the GR, σ → ∞ limit [60–62]. MGD Dirac stars were
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proposed and studied in Ref. [63], with astonishing phy-
sical consequences that arise from the brane tension finite
value. The Einstein-Dirac coupled system of field equations
have static and analytical solutions [64,65]. Self-gravitating
systems of spin-1=2 fermionic fields were also studied in
Refs. [66,67]. The main aim of this work is to study MGD
compact stellar configurations as solutions of the effective
Yang-Mills-Einstein-Dirac coupled system of field equa-
tions on a fluid brane with finite tension.
Among the possible Yang-Mills fields that can be

employed, we will approach SU(2) monopolelike fields.
In fact, Refs. [60–62,68] already studied static, spherically
symmetric configurations arising from Yang-Mills equa-
tions, however, only in the GR limit of an infinitely rigid
brane, with σ → ∞. Hence, it is natural to question, in a
realistic model that complies with recent observational
data, how the finite tension of the brane can drive new
MGD solutions of the Yang-Mills-Einstein-Dirac system.
These solutions will be shown to form compact MGD
Yang-Mills-Dirac stellar configurations whose physical
properties will be scrutinized. Besides the MGD procedure,
a MGD-decoupling-like technique will also be utilized to
construct a more reliable stress-energy brane tensor,
induced by nonlinear spinor fields. For fermion masses
that are orders of magnitude smaller than the Planck mass,
the MGD-decoupled solutions will be shown to character-
ize MGDYang-Mills-Dirac stars, with mass of the order of
the Chandrasekhar mass. Self-interacting spinor fields will
then be employed to investigate the Yang-Mills-Dirac stars’
main physical features, whose Arnowitt-Deser-Misner
(ADM) mass is a function of the fermion self-interaction
and Yang-Mills coupling constants.
This paper is organized as follows: Sec. II is dedicated to

reviewing the MGD derivation as a complete method to
deform the Schwarzschild solution and to describe realistic
stellar distributions on finite tension branes. In Sec. III, the
MGD Yang-Mills-Einstein-Dirac coupled system of field
equations on fluid branes with finite tension is numerically
solved, analyzed, and discussed. MGD Yang-Mills-Dirac
stellar configurations, whose mass has order of the
Chandrasekhar mass, are studied and discussed. The
fermionic self-interaction and Yang-Mills coupling con-
stants ranges are physically bounded. Section IV is devoted
to conclusions and important perspectives.

II. THE MGD AND MGD-DECOUPLING
PROTOCOLS

The MGD procedure, founded by Ovalle, is constructed
to derive high energy scale corrections to GR [2,5,12]. Fluid
branes have a variable tension that emulates cosmological
evolution [14,16]. The extended MGD derived the most
rigorous brane tension bound, σ ⪆ 2.81 × 10−6 GeV4 [8].
Since the codimension-1 brane is embedded in the bulk,

the extrinsic curvature, defined as the Lie derivative of the
metric tensor, plays a prominent role in deriving equations

of motion. As the bulk Riemann tensor can be written in
terms of the brane Riemann tensor via the Gauss-Codazzi
equation, the effective Einstein equations on the brane read

Gμν ¼ Λbgμν þTμν; ð1Þ

where 8πG ¼ 1 is adopted, with G being Newton’s con-
stant on the brane, Gμν represents the Einstein’s tensor, and
Λb denotes the brane cosmological running parameter. One
can cleave the stress-energy tensor in Eq. (1) into [69]

Tαβ ¼ Tαβ þ Eαβ þ σ−1Sαβ þ Lαβ þ Pαβ: ð2Þ

The first term, Tαβ, is the stress-energy tensor that repre-
sents brane matter and energy, eventually including dark
matter and dark energy, whereas the electric part of the bulk
Weyl tensor is denoted by Eαβ. The tensor Eαβ is nonlocal
and depends on σ−1, vanishing in the general-relativistic
limit. Splitting Eαβ into traceless transverse (E⊺

αβ) and
longitudinal (EL

αβ) components, Shiromizu et al. [69]
showed that EL

αβ contains solely brane matter terms.
Therefore, the resulting equations of motion are closed
when E⊺

αβ ¼ 0 since this term contains Kaluza-Klein bulk
gravitons, whose backreaction and interaction with brane
matter influence the equations of motion. The Sαβ is a
tensor that consists of quadratic terms involving the stress-
energy tensor arising from the extrinsic curvature terms in
the projected Einstein tensor. It encodes local corrections
and is given by [69,70]

Sαβ ¼
T
3
Tαβ − TαμTμ

β þ
gαβ
6

½3TμρTμρ − T2�; ð3Þ

where T ¼ Tα
α denotes the trace of Tαβ. Its intensity is

smaller than Eαβ [71]. In addition, Lαβ encodes the
geometry of how the brane bends into the bulk, whereas
Pαβ comprises stringy bosonic and fermionic fields in the
bulk [16,71].
Hence, the effective Einstein field equations (1) encode

corrections, due mainly to the bulk Weyl fluid [69]. The
Weyl fluid flow can be put through the bulk Weyl tensor
projected onto the brane,

Eαβ ¼ −
6

σ

�
U
�
uαuβ þ

1

3
hαβ

�
þQðαuβÞ þPαβ

�
; ð4Þ

where hαβ denotes the projector operator that is orthogonal
to the Weyl fluid flow velocity uα. In addition,

U ¼ −
1

6
σEαβuαuβ ð5Þ

is the effective energy density, sometimes playing the role
of dark radiation [17], whereas
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Pαβ ¼ −
1

6
σ

�
hμðαh

ρ
βÞ −

1

3
hμρhαβ

�
Eμρ ð6Þ

is the nonlocal anisotropic stress tensor. The effective
nonlocal energy flux,

Qα ¼ −
1

6
σhμρEραuμ; ð7Þ

has the bulk free gravitational field as the source.
Compact stars are solutions of the system of equa-

tions (1), with metric

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2dϑ2 þ r2 sin2 ϑdφ2: ð8Þ

One can usually write

AðrÞ ¼ eνðrÞ; BðrÞ ¼ eχðrÞ ð9Þ
as more concise notation for what follows. This spherically
symmetric setup allows Eqs. (6) and (7) to be expressed,
respectively, as Pαβ ¼ Pðuαuβ þ hαβ=3Þ and Qα ¼ 0,
whereP ¼ Pα

α. Correspondingly, the stress-energy tensor
that represents brane matter and energy can be chosen as
the one of a perfect fluid, Tαβ ¼ ðρþ pÞuαuβ − pgαβ, with

uα ¼ δα0=
ffiffiffiffi
A

p
, whereas gαβ denotes the metric components.

The MGD and MGD-decoupling methods, together with
their generalizations, can produce analytical solutions of
system (1) and (2) [1,2,4,5], including the inner solutions
concerning star distributions of radius R, given by

R ¼
R∞
0 dr r3ϱðrÞR∞
0 dr r2ϱðrÞ ; ð10Þ

where ϱðrÞ represents the density of the star distribution
[2]. In what follows in this section, both procedures will be
discussed.

A. MGD procedure

The effective Einstein equations on the brane (1) are
equivalently written as

eχ ¼ 1 −
8πG
c4r

Z
r

0

r2
�
ϱþ 1

σ

�
ϱ2

2
þ 3Uc8

32π2G2

��
dr; ð11Þ

Pc4

8πGσ
¼ 1

6
ðG1

1 −G2
2Þ; ð12Þ

3Uc8

32π2G2
¼ −3

�
ϱ2

2
þ ϱp

�
þ c4σ
8πG

ð2G2
2 þG1

1Þ − 3pσ;

ð13Þ

p0 ¼ −
ν0

2
ðϱþ pÞ; ð14Þ

where

G1
1 ¼ −

1

r2
þ e−χ

�
1

r2
þ ν0

r

�
; ð15Þ

G2
2 ¼ 1

4
e−χ

�
2ν00 þ ν02 − χ0ν0 þ 2ðν0 − χ0Þ

r

�
ð16Þ

for f0 ¼ df=dr. GR is recovered when σ−1 → 0 and with
Eq. (14).
Anisotropy immediately follows when one takes

Eqs. (11)–(13) and writes the effective density (ϱ
∘
), the

radial pressure (p
∘
r), and the tangential pressure (p

∘
t),

respectively, as [5]

ϱ
∘ ¼ ϱþ 1

σ

�
ϱ2

2
þ 3Uc4

32π2G2

�
; ð17Þ

p
∘
r ¼ pþ 1

σ

�
ϱ2

2
þ ϱpþ Uc4

32π2G2

�
þ Pc4

16π2G2σ
; ð18Þ

p
∘
t ¼ pþ 1

σ

�
ϱ2

2
þ ϱpþ Uc4

32π2G2

�
−

Pc4

32π2G2σ
: ð19Þ

Anisotropy on the stellar configuration, caused by the bulk
Weyl fluid, then reads

Δ ¼ p
∘
r − p

∘
t ¼

3Pc4

32π2G2σ
: ð20Þ

Equation (17) asserts that the MGD effective stellar
density is given by the sum of the stellar density and a dark
radiation term involving U, as given in Eq. (5), mediated
by the brane electric part of the Weyl tensor. The stellar
configuration central density is therefore changed by the

term 1
σ ðϱ

2

2
þ 3Uc4

32π2G2Þ. This occurs by bulk effects and also by
the brane tension finiteness σ ⪆ 2.81 × 10−6 GeV4 [8].
Equations (11)–(14) consist of a coupled system of field

ordinary differential equations (ODEs) on the brane. With
the system, braneworld varieties of GR solutions can be
constructed using MGD. In fact, bulk gravity yields a
minimal geometric deformation1 κðrÞ in the radial metric
component, given by [9]

e−χðrÞ ¼ μðrÞ þ κðrÞ; ð21Þ

where

1It is minimal, as every other source inducing the geometric
deformation has been removed, aside from those yielded by
density and pressure in stellar configurations.
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μðrÞ ¼
�
1 − 1

G2r

R
r
0 r

2ϱðrÞdr; r ≤ R;

1 − 2GM0

c2r ; r > R:
ð22Þ

Alternatively, both ranges in Eq. (22) can be encoded as

μðrÞ ¼ 1 −
2GmðrÞ
c2r

; ð23Þ

which contains the mass function mðrÞ.
When one takes the apparently straightforward way to

derive a solution to the coupled system (11)–(14), sub-
stituting Eq. (13) into the original form of Eq. (11), which is
the field equation

8πG
c4

�
ϱþ 1

σ

�
ϱ2

2
þ 3U
32π2G2

��
¼ 1

r2
− e−χ

�
1

r2
−
χ0

r

�
;

ð24Þ

yields an ODE to the geometric function e−χ given by

e−χ
�
2r2ν00ðrÞ þ r2ν02ðrÞ þ 4rν0ðrÞ þ 4

r2ν0ðrÞ þ 4r
− χ0

�

¼ 4

rðν0rþ 4Þ −
8πG
c4

ðϱ − 3p − ϱ
σ ðϱþ 3pÞÞ

ðν0=2þ 2=rÞ : ð25Þ

The formal solution of Eq. (25) reads

e−χ ¼ e−I
�Z

r

0

eI

ν0
2
þ 2

r

�
2

r2
−
8πG
c4

×

�
ϱ − 3p −

ϱ

σ
ðϱþ 3pÞ

��
drþ β

�
; ð26Þ

where β is a parameter that depends on the brane tension
and

I ¼
Z

r

0

2r2ν00ðrÞ þ r2ν02ðrÞ þ 4rν0ðrÞ þ 4

r2ν0ðrÞ þ 4r
dr: ð27Þ

Therefore, when a solution fp; ϱ; νg to Eq. (14) is found,
one can derive χ, P, and U using Eqs. (26), (12), and (13),
respectively.
Matching Eq. (26), Ovalle [3] then showed that the MGD

function in Eq. (21) is given by

κðrÞ ¼ e−I
�
β þ

Z
r

0

2reI

rν0 þ 4

�
Lþ 1

G2σ
ðϱ2 þ 3pϱÞ

��
dr:

ð28Þ

The function LðrÞ ¼ LðpðrÞ; ϱðrÞ; νðrÞÞ, given by

Lðp; ϱ; νÞ ¼
�
μ0
�
ν0

2
þ 1

r

�
þ μ

�
ν00 þ ν02

2
þ 2ν0

r
þ 1

r2

�
−

1

r2

�

−
24πG
c4

p; ð29Þ

also encodes the brane anisotropy, induced by gravity in the
bulk on the set pðrÞ, ϱðrÞ, and νðrÞ. For interior solutions,
the condition βðσÞ ¼ 0 must be imposed to avoid singular
solutions at the center r ¼ 0 of the stellar configuration.
However, in the region r > R where there is a Weyl fluid
surrounding the stellar distribution, the function βðσÞ is not
zero, in general.
As the finite brane tension has the strictest bound

σ ⪆ 2.81 × 10−6 GeV4 [8], the scalar field β ¼ βðσÞ will
be shown to depend on the inverse of σ, in full com-
pliance with phenomenological data. Hence, the general-
relativistic limit yields limσ→∞ βðσÞ ¼ 0 for outer, r > R
solutions. The geometric deformation κðrÞ in the vacuum
(p ¼ 0 ¼ ϱ), denoted by h�ðrÞ in what follows, is minimal,
reading [2,4]

h�ðrÞ ¼ βðσÞe−I: ð30Þ

The radial metric component in Eq. (21) then becomes

1

BðrÞ ¼ eχðrÞ ¼ 1 −
2M0

r
þ βðσÞe−I: ð31Þ

Matching conditions among the surface of the stellar
configuration, r ¼ R, its interior, r < R, and its exterior,
r > R, drives the final metric solutions for each of these
regions. Taking into account Eqs. (22) and (23), with
r < R, the inner MGD metric reads [72]

ds2 ¼ −eν−ðrÞdt2 þ 1

1 − 2Gm
∘ ðrÞ

c2r

dr2 þ r2ðdϑ2 þ sin2ϑdφ2Þ;

ð32Þ

where the interior mass function reads

m
∘ ðrÞ ¼ mðrÞ − r

2
κ�ðrÞ; ð33Þ

withmðrÞ given by the standard GR formulas (22) and (23)
and κ� corresponding to the MGD in Eq. (28), with L ¼ 0.
The inner metric (32) must be then matched with an outer
geometry, with pþ ¼ ϱþ ¼ 0.
Junction conditions match the inner MGD metric (32)

to the outer solution. The Weyl fluid that circumscribe the
brane can be represented by the outer pressure and the bulk
Weyl scalar, respectively, given by the condensed forms

PþðrÞ ¼ −
ð1 − 4GM

3c2rÞβðσÞ
9G2σr3ð1 − 3GM

2c2rÞ2
; ð34Þ
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UþðrÞ ¼ MβðσÞ
12Gc2σr4ð1 − 3GM

2c2rÞ2
: ð35Þ

In this case, pðrÞ ¼ 0 ¼ ϱðrÞ for r > R, and the outer
solution metric reads [4,72]

ds2¼−eνþðrÞdt2þ dr2

1− 2GMðσÞ
c2r þh�ðrÞ

þr2ðdϑ2þsin2ϑdφ2Þ:

ð36Þ

Matching conditions at the stellar surface r ¼ R yield [4]

ν−ðRÞ ¼ νþðRÞ ¼ log

�
1 −

2GM
c2R

�
; ð37Þ

2G
R

ðM −M0Þ ¼ h�ðRÞ − κ�ðRÞ: ð38Þ

It is worth emphasizing that in Eq. (38) the effective mass is
given by M ¼ M0 þOðσ−1Þ, where terms of order Oðσ−2Þ
on are dismissed due to the phenomenological lower bound
for the brane tension σ ≊ 2.81 × 10−6GeV4 [8]. The Weyl
fluid implies the matching condition [10]

σpðRÞ þ
�
ϱ2ðRÞ
2

þ ϱðRÞpðRÞ þ 2G4ðU−ðRÞ −UþðRÞÞ
�

þ 4G4ðP−ðRÞ −PþðRÞÞ ¼ 0; ð39Þ
where κðRÞ� ¼ limr→R� κðrÞ.
The Schwarzschild-like solution, eνSchðrÞ ¼ e−χSchðrÞ ¼

1 − 2GM
c2r can then be substituted into Eq. (30), implying that

h�ðrÞ ¼ −
2ð1 − 2GM

c2r Þ
rðr − 3GM

2c2 Þ
βðσÞ: ð40Þ

The function βðσÞ can thus be read off from Eq. (39), also
equivalently expressed as [4]

R2pðRÞ þG2κ�ðRÞðRν0ðRÞ þ 1Þ ¼ −h�ðRÞ: ð41Þ

The outer deformation h�ðrÞ, at r ¼ R, has a negative
value. Hence, the MGD horizon, rMGD ¼ 2GM=c2,
remains closer to the star center if compared to the
Schwarzschild one, rSch ¼ 2GM0=c2, since M ¼ MðσÞ ¼
M0 þOðσ−1Þ [4,17].
Equations (40) and (41) imply that [4]

βðσÞ ¼ c2R − 3GM
2

c2R − 2GM
½ðR2ν0ðRÞ þ RÞGκ�ðRÞ þ R3pðRÞ�:

ð42Þ

The function βðσÞ can be derived when one remembers that

[2] κ�ðrÞ ¼ 4dιðrÞ
49σπ y, where y is a numerical value [4],

a ¼
ffiffiffiffi
57

p
−7

2R2 , and ι−1ðrÞ ¼ ð1þ ar2Þ3ð1þ 3ar2Þ for ν0ðrÞ ¼
8ar

1þar2. The form of κðRÞ yields [2,4]

βðσÞ ¼ y
σR

�
c2R − 3GM0

2

c2R − 2GM0

�
≡ a0

σ
: ð43Þ

The MGD exterior metric can then be written as [2,4]

AðrÞ ¼ eνSchðrÞ ¼ 1 −
2GM
c2r

; ð44aÞ

BðrÞ ¼
�
1 −

2GM
c2r

��
l

r − 3GM
2c2

þ 1

�
; ð44bÞ

where

l ¼ a0
σ

R − 3GM
2c2

R − 2GM
c2

: ð45Þ

In the general-relativistic limit σ → ∞, the Schwarzschild
metric is recovered from the MGD metric. Casadio et al.
[19] derived, employing classical tests of GR, the lower
bound j a0σ j ⪅ 2.89 × 10−11. Therefore, when one reinstates
it in Eq. (29) implies that

jlj≲ 6.26 × 10−4 m; ð46Þ

for solar size stellar configurations. Varying the mass in
Eq. (29) also modifies the star surface radius R, and hence
the functions in Eq. (42), accordingly. In fact, Cavalcanti
et al. [73] applied the MGD procedure to gravitational
lensing effects, where the Sagittarius A� black hole, with
mass M ¼ ð4.31� 0.38Þ × 106 M⊙, was considered. The
observational value of l ¼ 0.0637 m was then obtained
in Ref. [73].

B. MGD-decoupling method

The gravitational decoupling method asserts that
Einstein’s field equations read [1]

Rμν −
1

2
Rgμν ¼

8πG
c4

Tdecoupling
μν ; ð47Þ

where

Tdecoupling
μν ¼ Tperfect fluid

μν þ Tsources
μν : ð48Þ

The stress-energy tensor is given by

Tperfect fluid
μν ¼ ðρþ pÞuμuν − pgμν: ð49Þ

One can consider any contribution from anisotropic gravi-
tational sources θμν, modified by a parameter ζ, that drives
the intensity of this source as
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Tsources
μν ¼ ζθμν: ð50Þ

The ζ parameter is, in general, inversely proportional to the
brane tension σ in such a way that the GR limit σ → ∞
yields ζ → 0 [1]. Hence, Eq. (48) yields

Tdecoupling
μν ¼ ðρþ pÞuμuν − pgμν þ ζθμν: ð51Þ

Besides, the conservation law

∇νTdecoupling
μν ¼ 0 ð52Þ

follows from the Bianchi identity.
As an alternative method, the MGD decoupling is

regarded here by taking into account not necessarily the
same metric (8) and (9) but instead, in general, another one,

ds2 ¼ −eνðrÞdt2 þ e−χðrÞdr2 þ r2dϑ2 þ r2 sin2 ϑdφ2; ð53Þ

satisfying the coupled system of Einstein’s field equations,

8πG
c4

ðρþ ζθ0
0Þ ¼ 1

r2
− e−χ

�
1

r2
−
χ0

r

�
; ð54Þ

8πG
c4

ðζθ11 − pÞ ¼ 1

r2
− e−χ

�
1

r2
−
ν0

r

�
; ð55Þ

8πG
c4

ðζθ22 − pÞ ¼ −
e−χ

4

�
2ν00 þ ν02 − χ0ν0 þ 2

ν0 − χ0

r

�
:

ð56Þ
Equation (52) then reads

p0 þ ν0

2
ðρþ pÞ − ζðθ11Þ0 þ

ν0ζ
2

ðθ00 þ θ1
1Þ

þ 2ζ

r
ðθ22 − θ1

1Þ ¼ 0: ð57Þ

Also, the effective density and the effective isotropic and
tangential pressures are given, respectively, by

ρradialeffective ¼ ρþ ζθ0
0; ð58Þ

pr ¼ p − ζθ1
1; ð59Þ

pt ¼ p − ζθ2
2: ð60Þ

Anisotropy induced by the θμν source can be defined as

Δ ¼ pt − pr ¼ ζðθ22 − θ1
1Þ; ð61Þ

emulating that in Eq. (20), here for the MGD-decoupling
method. Ovalle [1] showed that the standard MGD can be
derived as a particular case of the MGD decoupling, which
will be illustrated in this subsection.

To solve the coupled system (54)–(60), the MGD
procedure plays a prominent role in the decoupling
procedure [1]. For it, a perfect fluid, with energy density
ρ and pressure p, is the starting point, together with the
metric

ds2 ¼ −eηðrÞdt2 þ eϵðrÞdr2 þ r2ðdϑ2 þ sin2 ϑdφ2Þ; ð62Þ

where the radial metric coefficient takes the form

e−ϵðrÞ ¼ 1 −
2mðrÞ

r
; ð63Þ

One can implement the MGD mappings between Eqs. (53)
and (62),

η ↦ ν ¼ ηþ ζg; ð64Þ

ϵ ↦ χ ¼ ϵ − logðζκÞ: ð65Þ

The g and κ scalar fields encode anisotropic effects. The
standard MGD procedure can be recovered when one
identifies g ¼ 0 and κ ↦ κ�, where κ� is the MGD function
in Eq. (28), with L ¼ 0, in Sec. II A. Therefore, the time
metric component remains the same, whereas the θμν
source deforms the radial metric component driven by
Eq. (65). When one substitutes the deformed metric into
Eqs. (54)–(56), the resulting coupled system of ODEs for
ζ ¼ 0 reads

8πG
c4

ρ ¼ 1

r2
− e−ϵ

�
1

r2
þ ϵ0

r

�
; ð66Þ

8πG
c4

p ¼ −
1

r2
þ e−ϵ

�
1

r2
þ ν0

r

�
; ð67Þ

8πG
c4

p ¼ e−ϵ

4

�
2ν00 þ ν02 þ 2ν0

r

�
þ ϵ0

4
e−ϵ

�
ν0 þ 2

r

�
: ð68Þ

The conservation equation takes the form of Eq. (14), and
the part of the coupled system of ODEs that involves θμν is
given by

8πG
c4

θ0
0 ¼ −

κ�0

r
−
κ�

r2
; ð69Þ

8πG
c4

θ1
1 ¼ −κ�

�
ν0

r
þ 1

r2

�
; ð70Þ

32πG
c4

θ2
2 ¼ −κ�

�
2ν00 þ ν02 þ 2ν0

r

�
− κ�0

�
ν0 þ 2

r

�
: ð71Þ
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On the other hand, the conservation equation for θμν reads

ðθ11Þ0 −
ν0

2
ðθ00 − θ1

1Þ þ 2

r
ðθ11 − θ2

2Þ ¼ 0: ð72Þ

III. MGD YANG-MILLS-DIRAC STELLAR
CONFIGURATIONS: RESULTS, ANALYSIS,

AND DISCUSSION

Compact distributions can be described by MGD.
Considering a background fermionic field ψ of mass m,
MGD stellar configurations can be derived as solutions of
Yang-Mills-Einstein-Dirac coupled system field equations.
One can take the spin-1=2 fermionic field minimally
coupled to gravity (Einstein-Hilbert) and to the SU(2)
Yang-Mills fields. The action for this system reads [60]

Stot ¼ SEH þ Sψ þ SYM; ð73Þ

where

SEH ¼ −
c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð74Þ

Sψ ¼
Z

d4xLψ ¼
Z

d4x

�
iℏ
2
ðψ̄γμDμψ − ψ̄D⃖μγ

μψÞ

−mψ̄ψ þ λ

2!
ðψ̄ψÞ2

�
; ð75Þ

and Dμψ ¼ ð∂μ þ 1
8
ωab

μ½γa; γb� − ig
2
Aa
μσ

aÞψ , where ωabμ

denotes the spin connection. The set fγμg is constituted
by gamma matrices, satisfying fγμ; γνg ¼ 2gμνI, and ψ̄ ¼
ψ†γ0 is the spinor conjugate. Dirac matrices in curved
spaces, γa ¼ eaμγμ, are computed when one employs tetrads
eaμ. The term i g

2
Aa
μσ

aψ describes the coupling between the
spin-1=2 fermionic field and the Yang-Mills field, where g
is the SU(2) coupling constant and σa denotes the set of
Pauli matrices. In addition (a, b, c ¼ 1, 2, 3),

SYM ¼
Z

d4xLYM ¼ −
Z

d4x
1

4
Fc
μνFcμν; ð76Þ

where Fc
μν ¼ ∂ ½μAc

ν� þ gϵcabA
a
μAb

ν is the Yang-Mills tensor

field strength and Aa
μ represents the Yang-Mills gauge

potential.
With the action (73) and the MGD, one derives the MGD

Yang-Mills-Einstein-Dirac system of equations of motion,
with MGD decoupling

Gμν − Λbgμν − ð1þ ζÞT μν ¼ Tμν; ð77aÞ

½iℏγμDμ −mcI þ λðI − ψ̄ψÞ�ψ ¼ 0; ð77bÞ

ψ̄ ½iℏD⃖μγ
μ þmcI þ λðI − ψ̄ψÞ� ¼ 0; ð77cÞ

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FaμνÞþgϵabcAb

νFcμν¼gℏc
2

ψ̄γμσaψ ; ð77dÞ

where ζðσÞ ≃ σ−1 governs the MGD decoupling. The spin-
1=2 fermionic stress-energy tensor is given by

T μν ¼ iℏgντψ̄ðγðμDτÞ þ D⃖ðμγτÞÞψ − 2δμνλðψ̄ψÞ2
− 4Fa

μτFaτ
ν þ δμνFa

αβF
aαβ: ð78Þ

In addition, owing to the tiny phenomenological bound for
the term l in Eq. (29) [19] that compounds the MGDmetric
component (44b), the off-diagonal components of Eq. (78)
are equal to zero.
The Yang-Mills field has the usual form, emulating a

non-Abelian monopole,

Ac
i ¼

1 − fðrÞ
g

0
BB@

0 sinφ sinð2ϑÞ
2

cosφ

0 − cosφ sinð2ϑÞ
2

sinφ

0 0 −sin2ϑ

1
CCA; ð79Þ

with its temporal component being equal to zero.
The following two spinor Ansätze,

ψ1ðr; tÞ ¼ 2 exp

�
−i

Et
ℏ

�0BBB@
0

α1ðrÞ
iα2ðrÞ sin ϑe−iφ
−iα2ðrÞ cos ϑ

1
CCCA; ð80aÞ

ψ2ðr; tÞ ¼ −2 exp
�
−i

Et
ℏ

�0BBB@
α1ðrÞ
0

iα2ðrÞ cosϑ
iα2ðrÞ sinϑeiφ

1
CCCA; ð80bÞ

where α1; α2∶½0;∞Þ → R, were proposed to study coupled
systems [58,59].
Substituting Eqs. (80a) and (80b) into the MGD Yang-

Mills-Einstein-Dirac system of equations of motion (77a)–
(77d), the coupled system of ODEs is obtained in terms of
the MGD metric (8). For the analysis that follows, one
denotes the dimensionless radius, x ¼ mr

ℏ and ξ ¼ πm
ℏcg2M2

p

[and by “ð·Þ0” the derivative with respect to x], with Mp ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p ≊ 1.2209 × 1022 MeV=c2 ¼ 2.176 × 10−8 kg
being the Planck mass, and the following rescaled quan-
tities [59,60]:

E ↦ Ẽ ¼ E
mc2

; g ↦ g̃ ¼ g
ffiffiffiffiffiffi
ℏc

p
; ð81aÞ

M ↦ M̃ ¼ mM
M2

p
; λ ↦ λ̃ ¼ λm2c

4g̃2ℏ3
; ð81bÞ

α1;2 ↦ α̃1;2 ¼ 2

�
mc
ℏ

�3
2

g̃α1;2: ð81cÞ
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Hence, the MGD Yang-Mills-Einstein-Dirac coupled system of ODEs reads, with respect to the metric (8),

α̃02ðxÞ þ
�

A0ðxÞ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp þ 1

x

�
α̃2ðxÞ þ

fðxÞα̃2ðxÞ
x

ffiffiffiffiffiffiffiffiffiffi
BðxÞp þ

�
1ffiffiffiffiffiffiffiffiffiffi
AðxÞp þ 8λ

α̃22ðxÞ − α̃21ðxÞffiffiffiffiffiffiffiffiffiffi
BðxÞp −

Ẽffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp �

α̃1ðxÞ ¼ 0; ð82aÞ

α̃01ðxÞ þ
�

A0ðxÞ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp þ 1

x

�
α̃1ðxÞ −

fðxÞα̃1ðxÞ
x

ffiffiffiffiffiffiffiffiffiffi
BðxÞp þ

�
1ffiffiffiffiffiffiffiffiffiffi
AðxÞp þ 8λ̃

α̃22ðxÞ − α̃21ðxÞffiffiffiffiffiffiffiffiffiffi
BðxÞp þ Ẽffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðxÞBðxÞp �
α̃2ðxÞ ¼ 0; ð82bÞ

2̃ξx2
�ðf2ðxÞ − 1Þ2

x4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp

f02ðxÞ
x2

þ 4Ẽð1þ ζÞffiffiffiffiffiffiffiffiffiffi
BðxÞp ðα̃21ðxÞ þ α̃22ðxÞÞ þ 16λðα̃22ðxÞ − α̃21ðxÞÞ2

�
¼ M0ðxÞ; ð82cÞ

8ξxffiffiffiffiffiffiffiffiffiffi
BðxÞp �

Ẽð1þ ζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp ðα̃21ðxÞ þ α̃22ðxÞÞ þ α̃1ðxÞα̃02ðxÞ − α̃2ðxÞα̃01ðxÞ þ

ffiffiffiffiffiffiffiffiffiffi
BðxÞp

f02ðxÞ
x2

�
¼ 0; ð82dÞ

f00ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞ

p
þ A0ðxÞ þ fðxÞ

x2
ð1 − f2ðxÞÞ − 2xα̃1ðxÞα̃2ðxÞ ¼ 0: ð82eÞ

As Planckian compact stellar distributions are not studied
in this work, the fermion mass is considered to be
negligible when compared to the Chandrasekhar mass
M3

pm−2. The SU(2) Yang-Mills running constant g is
usually inversely proportional to the energy scale of the
system. Since the energy scale of compact stellar distri-
butions that interest us has the coupling constant g of the
order of unity, λ̃ must also be of this order [60].
The MGD of the Schwarzschild metric (8) having

temporal and radial coefficients (44a) and (44b) separately
satisfies the effective Einstein field equations on the brane
(77a) with MGD decoupling. Now we must verify whether
the MGD metric and the Ansätze (80a) and (80b), together
with the Yang-Mills field (79), satisfy the whole Yang-
Mills-Einstein-Dirac coupled system (82a)–(82e). For the
system, there will be constraints in the form of the spinor
field coefficients α1ðrÞ and α2ðrÞ in Eqs. (80a) and (80b).
Integrating the system (82a)–(82e) numerically, one can
use boundary conditions with respect to the center of
compact distribution [60]:

α̃1ðxÞ ≊ α1c þ
1

2!
α1x2; α̃2ðxÞ ≊ α̃2x; ð83Þ

M̃ðxÞ ≈ 1

3!
M̃3x3; fðxÞ ≊ 1þ 1

2!
f2x2: ð84Þ

The parameter α1c indicates limx→0 α1ðxÞ. The coefficients
α1, α2, and M3 in Eqs. (83) and (84) are obtained by
the solution and integration of the system (82a)–(82e),
whereas f2, Ẽ, and α1c are completely arbitrary para-
meters, but, of course, the values of physical interest
must generate regular compact solutions in the asymptoti-
cally flat limits limx→∞ AðxÞ ¼ 1 ¼ limx→∞ BðxÞ and

limx→∞ fðxÞ ¼ �1 [60]. The ADM mass of the stellar
configuration corresponds to M∞ ¼ limx→∞ M̃ ¼ mM

M2
p
.

Dzhunushaliev and Folomeev [59,61] showed that one
can derive stellar configurations with Chandrasekhar mass
order for λ̃ < 0 such that jλ̃j ≫ ξ. It also happens for the
MGD Yang-Mills-Dirac stars, where one can take λ̃ ≈ 1
and small values of ξ. Otherwise, choosing ξ ≈ 1 implies
Planckian stars. Typical masses ∼M2

p=m and radii ∼m−1

are regarded for the stellar configurations studied here.
For fermion mass m ≈ 1 GeV corresponding to nucleons,
the MGD Yang-Mills-Dirac star mass equals ∼1010Kg,
which is much smaller than the Chandrasekhar mass
∼M3

p=m2 ≫ M⊙, where M⊙ ¼ 1.989 × 1030Kg denotes
the solar mass. On the other hand, for m ≈ 10−10 eV, the
MGD Yang-Mills-Dirac star mass equals ≈M⊙ and its
radius ≈ 10 km, which is feasible for eventual gravitational
wave observations.
After numerical integration, the MGD Yang-Mills-Dirac

compact stellar configuration ADM mass parameter,
M̃∞ ¼ mM

M2
p
, as a function of the central value α1c, has the

profile illustrated in Fig. 1 for the MGD-decoupling
parameter ζ ¼ 0.1. Two different values of the Yang-
Mills coupling constant are considered, as well as two
different values of the finite brane tension. In fact, as the
most precise current bound on the variable brane tension
is σ ⪆ 2.81 × 106 MeV4 [8], Fig. 1 takes this lower brane
tension limit and the distinct case σ ∼ 1012 MeV4 to study
the physical differences among these cases. It is worth
emphasizing that the general-relativistic limit corresponds
to a rigid brane, making σ → ∞ and ζ → 0.
In Fig. 1, each plot has a peak in the MGD Yang-

Mills-Dirac stellar mass at some value of central value
α1c of the spinor field component. For the brane tension
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σ ∼ 1012 MeV4 and ξ ¼ 0.03, the maximal mass equals
2.32M̃∞ at α̃1c ¼ 0.318, whereas for ξ ¼ 0.1 the maximal
mass is equal to 1.50M̃∞ for α̃1c ¼ 0.279. On the other
hand, for the most strict bound σ ≈ 2.81 × 106 MeV4,
when ξ ¼ 0.03 the maximal mass equals 2.22M̃∞ at
α̃1c ¼ 0.332, whereas for ξ ¼ 0.1 the maximal mass is
1.40M̃∞, for α̃1c ¼ 0.270. One realizes that the bigger the
brane tension is, the bigger the maximal mass at smaller
values of α̃1c. MGD Dirac stars were studied in a similar
context, where a maximal mass was identified to a
transition point, splitting stable and unstable MGD Dirac
compact stellar configurations [63].
Figure 1 was motivated by the sign of the binding energy,

which is defined as the difference between the energy of nf
free particles and the total energy of the system. The
number nf corresponds to a Noether charge, computed
when the four-current density jρ ¼ ffiffiffiffiffiffi−gp

ψ̄γρψ is taken into

account as nf ¼
R
R3 j0d3x [60], where j0 ¼ r2 sinϑ ðψ†ψÞffiffiffi

A
p .

In dimensionless variables,

nf ¼ 8ξM2
p

m2

Z
∞

0

α̃21ðxÞ þ α̃22ðxÞffiffiffiffiffiffiffiffiffiffi
AðxÞp x2dx: ð85Þ

As in the temporal component (44a) of the MGD metric,
the denominator equals the Schwarzschild one, and the
particle number in Eq. (85) is the same as in the
Schwarzschild metric. As accomplished in Ref. [60], stellar
distributions having negative binding energy are unstable.
Hence, the plots in Fig. 1 have a range of variables α1c
compatible with positive values of the binding energy. The
higher the value of ξ is, the narrower the range of the
variable α1c.
Figure 1 also illustrates how the maximal MGD Yang-

Mills-Dirac stellar mass increases as a function of the
central value α1c of the spinor component α1. For

decrements of ξ, the maxima of the total ADM mass
Mmax increase. It is worth emphasizing that Fig. 1 shows
the dependence of Mmax on ξ for small values of ξ:

Mmax ≈
0.403ð1þ ζÞffiffiffi

ξ
p M2

p

m
: ð86Þ

Outer solutions for the Yang-Mills field f with respect to
the dimensionless radius x of the stellar distributions are
shown in Fig. 2. Two values, ξ ¼ 0.03 and ξ ¼ 0.1, are
employed in the analysis for α1c ¼ 0.15 and λ̃ ¼ −1. The
brane tension value σ ∼ 1012 MeV4 is adopted, and ζ ¼ 0.1
governs the MGD decoupling. Figure 2 illustrates the fine
dependence of the Yang-Mills field f on the ξ parameter.
The spinor field components α1ðxÞ and α2ðxÞ as a

function of dimensionless radius x are illustrated in
Figs. 3 and 4, respectively, for the MGD-decoupling
parameters ζ ¼ 0.01 and ζ ¼ 0.1 and two different values
ξ ¼ 0.03 and ξ ¼ 0.1, with the central value of the spinor
field α1 component, α1c ¼ 0.15, adopted for λ̃ ¼ −1.
Again, the brane tension value σ ∼ 1012 MeV4 is chosen.
The SU(2) Yang-Mills field does not induce significant
modifications on the stellar configurations concerning its
coupling to the fermionic fields. Therefore, qualitatively the
spinor field profiles in Figs. 3 and 4 do not significantly
change when compared to the MGD Dirac stellar distri-
butions in Ref. [63] and their GR limit [59].
The ξ ≪ 1 regime can be further studied. For these

values, there is a relation between the spinor field compo-
nents, asserting that α̃2 ≪ α̃1, as seen in Figs. 3 and 4.
Hence, Eq. (82a) yields in this regime

α̃1⋆ ¼ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
1 −

Ẽffiffiffiffi
B

p
�s
; ð87Þ

FIG. 1. ADM mass of MGD Yang-Mills-Dirac stars as a
function of the central value of the spinor field α1 component
α1c for two values ξ ¼ 0.03 and ξ ¼ 0.1, and λ̃ ¼ −1. Two values
of the brane tension σ ≈ 2.8 × 106 MeV4 and σ ∼ 1012 MeV4 are
analyzed for the MGD-decoupling parameter value ζ ¼ 0.1.

FIG. 2. Linear-log plot of the Yang-Mills field fðxÞ as a
function of dimensionless stellar radius x for ξ ¼ 0.03 and
ξ ¼ 0.1, with the central value of the spinor field α1 component,
α1c ¼ 0.15, adopted for λ̃ ¼ −1. The brane tension σ ∼
1012 MeV4 is taken, and ζ ¼ 0.1 rules the MGD decoupling.
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where α̃1⋆ ¼
ffiffiffiffiffi
jλ̃j

q
α̃1 [61]. Substituting Eq. (87) into

Eqs. (82c) and (82d), the notation x⋆ ¼
ffiffiffiffi
ξ
jλ̃j

q
x and M̃⋆ ¼ffiffiffiffi

ξ
jλ̃j

q
M̃ yields

dM̃⋆
dx⋆

¼ 8x2⋆
�
Ẽð1þ ζÞffiffiffiffi

A
p − 4α̃21⋆

�
α̃21⋆; ð88Þ

Since Eq. (88) lacks the explicit appearance of the
parameter ξ, one can employ Eq. (88) to determine the

ADM (rescaled) mass M̃⋆∞ ¼ limx→∞M⋆ ¼
ffiffiffiffi
ξ
jλ̃j

q
M⋆m
M2

p
with

respect to Ẽ. Figure 5 represents the numerical solutions for
three different values of the brane tension. For each value of
the brane tension, the maximal mass of the MGD Yang-
Mills-Dirac stellar configuration is given by

Mmax⋆ ≈ 0.403ð1þ ζÞ
ffiffiffiffiffi
jλ̃j
ξ

s
M2

p

m
: ð89Þ

It is worth emphasizing that when λ̃ ¼ −1, Eq. (86) is
immediately recovered. In addition, our results lead to the
ones in the general-relativistic limit in Ref. [60].
The brane tension values σ ∼ 1012 MeV4 (black line

in Fig. 5) is nearer the general-relativistic limit, whereas
σ ≊ 2.81 × 106 MeV4 represents the phenomenological
current bound [8], which is more realistic for astro-
physical applications. When σ ∼ 1012 MeV4, the maximal
mass reads Mmax⋆∞ ¼ 0.436 at logðẼÞ ¼ 0.56; for σ ∼
109 MeV4, one has Mmax⋆∞ ¼ 0.419 at logðẼÞ ¼ 0.54, and
when σ ≊ 2.81 × 106 MeV4, the maximal mass is given by
Mmax⋆∞ ¼ 0.402 at logðẼÞ ¼ 0.59. The bigger the brane
tension is, the bigger the peak corresponding to the stellar
maximal mass.
As accomplished with the ADMmass of the MGDYang-

Mills-Dirac stellar configurations, their effective radius can
be also studied. For it, the same analog approach will be
employed here as that for the GR limit in Refs. [60,74],
defining the effective radius of MGD Yang-Mills-Dirac
stellar configurations as

R ¼ 1

nf

Z
R3

rj0r2 sinϑdrdΩ ¼ ℏ
nfmc

Z
∞

0

α̃21 þ α̃22ffiffiffiffi
A

p x3dx:

ð90Þ

It depends on the parameter ξ in the regime ξ ≪ 1 as

Rmax⋆ ≈ 1.078ð1þ ζÞ
ffiffiffiffiffi
jλ̃j
ξ

s
ℏ
mc

: ð91Þ

FIG. 3. Spinor field components α1ðxÞ and α2ðxÞ as a function
of dimensionless radius x for ξ ¼ 0.03 and ξ ¼ 0.1, with the
central value α1c ¼ 0.15 adopted for λ̃ ¼ −1. The brane tension
σ ∼ 1012 MeV4 is taken and ζ ¼ 0.01 rules the MGD decoupling.

FIG. 4. Spinor field components α1ðxÞ and α2ðxÞ as a function
of dimensionless radius x for ξ ¼ 0.03 and ξ ¼ 0.1, where α1c ¼
0.15 is adopted for λ̃ ¼ −1. The brane tension σ ∼ 1012 MeV4 is
taken, and ζ ¼ 0.1 rules the MGD decoupling.

FIG. 5. Dimensionless total ADM mass M⋆∞ of MGD Yang-
Mills-Dirac stellar configurations as a function of the energy of
the stationary part of the spinor fields Ẽ. Brane tension values
σ ∼ 1012 MeV4 (black line), σ ∼ 109 MeV4 (gray line), and σ ∼
106 MeV4 (light gray line) are taken, and ζ ¼ 0.1 rules the MGD
decoupling.
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This result leads to the ones in the general-relativistic limit
in Ref. [60].

IV. CONCLUSIONS AND PROSPECTS

MGD Yang-Mills-Dirac stellar configurations, con-
sisting of nonlinear spinor fields minimally coupled to
gravity in an SU(2) Yang-Mills background on a fluid
brane with finite tension were studied and discussed. Two
feasible fermionic fields Ansätze were employed as com-
patible spinor solutions to the MGD metric. These spinor
fields, which compose the MGD Yang-Mills-Dirac stars,
have components plotted in Figs. 3 and 4, respectively, for
the MGD-decoupling parameter ζ ¼ 0.01 and ζ ¼ 0.1 and
two different values ξ ¼ 0.03 and ξ ¼ 0.1 for a specific
value of the central value α1c ¼ 0.15. The spinor self-
interaction parameter λ̃ ¼ −1 was adopted throughout the
analysis. In fact, for these values and small values of ξ,
stellar configurations with mass of the order of the
Chandrasekhar mass can be derived, also avoiding
Planckian compact MGDYang-Mills-Dirac stellar configu-
rations. The SU(2) Yang-Mills field was shown not to have
a significant influence on the stellar configurations, mainly
regarding the coupling to the fermionic fields. However,
Fig. 2 reveals a fine dependence of the Yang-Mills field f
on the ξ parameter. Hence, the spinor field profiles in
Figs. 3 and 4 do not significantly change when compared to
the MGD Dirac stellar distributions in Ref. [63] or the GR
limit in Ref. [60]. In addition, Fig. 5 showed the total ADM
mass of MGD Yang-Mills-Dirac stellar configurations as a
function of the energy of the stationary part of the spinor
fields. The lower the brane tension is, the lower the peak
corresponding to the MGD Yang-Mills-Dirac stellar maxi-
mal mass.
The MGD Yang-Mills-Dirac stars are qualitatively sim-

ilar to their general-relativistic limit counterparts. In fact,
the MGD parameter l in Eq. (29) attains small values [19].
However, even small, it does affect the solutions found by
solving the system (82a)–(82e). The MGD-decoupling
parameter ζ ∼ σ−1 also affects, for instance, the results in
Eqs. (77a), (82c), (82d), (86), and (88), making the
maximal mass and the maximal radius, respectively, in
Eqs. (89) and (91) vary according to the most strict bound
for the brane tension σ ⪆ 2.81 × 106 MeV4 [8]. In the
general-relativistic limit, when σ → ∞, and consequently
ζ → 0, the GR results in Ref. [60] are recovered.
Although relatively similar, from the qualitative point of

view, to some results in the GR limit of Ref. [60], the MGD
Yang-Mills-Dirac stars’ stellar configurations studied here

bring a more realistic model, making them more feasible
and the eventual gravitational wave observations in LIGO
and eLISA more reliable. Indeed, the MGD Yang-Mills-
Dirac stars’ stellar configurations take into account a finite
brane tension whose current values comply with the CMB
anisotropy and also with well established cosmological
models. For example, the same procedure implemented in
the MGD context in Refs. [21,22], which predicts the
highest frequencies of gravitational wave (GW) radiation
emitted by MGD star mergers and their GW windows to be
experimentally detectable in LIGO and eLISA, can be
studied for MGDYang-Mills-Dirac stars. A very important
result is the numerical solution in Fig. 5 for three different
values of brane tension. The maximal masses of the MGD
Yang-Mills-Dirac stellar configurations, as a function of the
energy, are smaller for smaller values of the brane tension.
In fact, for any finite value of the brane tension, the MGD
Yang-Mills-Dirac stellar configuration maximal mass is
smaller than the GR limit studied in Ref. [60]. This
difference can be observationally explored in current
experiments on GWs determining specific physical signa-
tures of MGD Yang-Mills-Dirac stars.
Beyond the scope of this work, as a relevant perspective,

one can add mass to the Yang-Mills gauge potential to
generate MGD Proca stars. Their GR limit were studied in
Refs. [60,75] with a static, regular, asymptotically flat
metric [76]. Current proposals assert that a massive spin-1
gauge field can constitute dark matter. Hence, MGD Proca
stars can play an important role in modeling realistic stellar
configurations that are in full compliance with current
cosmological models. Although the MGD Yang-Mills-
Dirac stellar configurations have been scrutinized here
from a first quantized setup, second quantized quantum
effects are also worthy of investigation. Spin-1=2 fermions
were used in this work, but higher spin fermions may be
also useful to couple to Yang-Mills field and gravity. In
addition to the spin-3=2 Rarita-Schwinger field that was
proposed in Ref. [62], other fermionic fields, including
flagpole, mass dimension 1 spinor fields [77], might serve
as a useful Ansätze alternative to the ones in Eqs. (80a)
and (80b).
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