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Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain

(Received 23 April 2020; accepted 17 June 2020; published 1 July 2020)

We investigate the properties of the event horizon in the merger between a large black hole and a smaller
neutron star. We find that, if the star is compact enough, then, in its rest frame a horizon begins to grow
inside the star before it merges with the black hole, in a manner analogous to the growth of the event
horizon in stellar collapse. We may say that, ahead of its fall into the larger black hole, the neutron star
begins to become a black hole itself. We discuss how the phenomenon, even if not directly observable, can
be invariantly characterized. We demonstrate it quantitatively by explicitly constructing the merger event
horizon in the extreme-mass-ratio limit. We show that the effect is present for realistic neutron star models
and admissible values of the compactness.
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I. INTRODUCTION AND SUMMARY

By now, gravitational wave observatories have detected
a variety of mergers between the most compact objects in
nature—black holes and neutron stars—in highly dynami-
cal events where the geometry of spacetime is pushed
to its limits [1]. In theoretical studies, these are simulated
by evolving the Einstein equations, possibly with a
suitable matter model for the star, with a focus on
extracting waveform templates for the radiation that is
emitted. Even though this attention on the signal that is
directly measurable in the detectors is understandable,
there are other less well-studied aspects of these mergers
that can teach us about spacetime distortion under extreme
conditions.
In this article we explore the evolving features of the

event horizon when a large black hole and a smaller neutron
star (or, for that matter, a very compact material object)
collide and merge. We identify a phenomenon that we refer
to as “precursory collapse”: inside a sufficiently compact
star, a horizon begins to grow before it merges with the
black hole in the star’s rest frame. We may say that the
neutron star, in anticipation of being engulfed by a large
black hole, starts becoming a black hole itself. Put differ-
ently, the star merges with the black hole from the inside
out.
We hasten to emphasize that this horizon growth in the star

is not the result of matter being increasingly compressed—
indeed, in its rest frame the star is very approximately static.
Instead, wewill see that it is a consequence of a peculiarity of
the event horizon when the infalling star is compact enough.
Interestingly, the compactness required is within currently
acceptable bounds for physical neutron stars.

Recall that the event horizon of a black hole makes
precise the idea of a region from which nothing can ever
escape outside. It is identified as the boundary of what can
be seen when looking back in time from an asymptotic
region (Iþ) at arbitrarily late times. Sometimes this
retrospective finality is regarded as unphysical, but this
is not the case. The event horizon is an invariant construct,
and once a system has reached a state that is close enough
to stationarity, over a region that can be approximated as
asymptotically flat, then it makes perfect physical sense to
reconstruct the event horizon in the spacetime up to that
moment. It is true, though, that its features may be
counterintuitive, appearing to move in anticipation to the
future infall of objects. The effect that we describe may
be placed in this class, but it is more striking and suggestive
than previously known instances.
An important consideration for making sense of the

appearance of the horizon within the star is the choice of
an appropriate reference frame. We will describe the
phenomenon in the star’s rest frame, which, as we will
see, is well defined when the star is much smaller than the
black hole. In this reliance on a particular class of
time slicings, the precursory collapse of the star is
akin to the observation in [2,3] of transient toroidal
sections of the event horizon in the collapse to a Kerr
black hole and in rotating black hole mergers [4–6]. As in
that case, the slice dependence can be interpreted as saying
that the phenomenon happens faster than the speed of
light: the torus hole closes up superluminally fast, and
here also the horizon within the star approaches and
merges with the larger black hole horizon along a space-
like trajectory. Obviously, this makes the effect directly
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FIG. 1. Sequence of constant time slices of the event horizon of NS-BH merger with star compactness β ¼ 0.25. Frames are centered
on the neutron star (orange disk) of radius R ¼ 4, in units whereM ¼ 1. The large black hole lies at the bottom. The event horizon is the
black line, and the gray-shaded regions are its interior. t is the (Killing) proper time of the star. The precursory collapse, in which the
horizon grows inside the star, begins at t ¼ −1.06905. The two horizons fuse (e) at t ¼ 0. The complete constant time slices are obtained
by rotating around the axis x ¼ 0.
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unobservable.1 What we find significant is that it is present
when there exists a well-defined preferred time direction,
namely the star’s proper time—so the effect can be invar-
iantly defined—and moreover it happens for physically
acceptable compactness. This qualifies it as a neat new
property of the event horizon in highly dynamical situations.
The essence of the phenomenon can be easily described in

general pictorial terms, and so we will begin in the next
section with a qualitative explanation of it. Afterward, in
Sec. III, we demonstrate the effectwith explicit computations
of the event horizon in the merger between a large black hole
and a much smaller neutron star. For the latter, we study the
spherically symmetric Tolman VII solution (T-VII) [7] and
the Schwarzschild interior solution [8]. T-VII is especially
relevant since it is a reasonably realistic model [9–11] that is
also explicit enough for detailed calculations. We will study
the fusion in the extreme-mass-ratio (EMR) limit where the
ratio of neutron star (NS) mass to black hole (BH) mass is
vanishingly small. As shown in [12], in this case the event
horizon of the merger can be constructed very accurately and
very simply, and thenotion of the star’s rest frame is exact and
invariant. Moreover, the EMR can be a good approximation
to some detections by LIGO-Virgo—currently, several
marginal candidate events for NS-BH mergers in runs
O1–O32 have mass ratios ≲1=10—and also by upcoming
observatories. Many Laser Interferometer Space Antenna
events are indeed expected to fall in this category [16].
Our results are easily summarized. The compactness of a

neutron star of mass M and radius R is usually charac-
terized with the dimensionless ratio

β ¼ GM
c2R

: ð1:1Þ

An absolute upper limit is set by the Schwarzschild black
hole, βSchw ¼ 1=2, and realistic values for neutron stars lie
in the range β ≈ 0.18–0.25. For a T-VII star we find that
the precursory collapse in the star’s rest frame happens
whenever

β > βT-VII ≡ 0.22: ð1:2Þ
We shall also argue that it occurs in a model-independent
manner when

β > 0.2840: ð1:3Þ
Even though this may be too large for neutron stars,
it applies to exotic compact objects that comfortably
comply with the Buchdahl bound (for perfect-fluid stars
with radially nonincreasing density and isotropic, positive
pressure that is finite at the center [17])

β < βB ≡ 4

9
¼ 0.44: ð1:4Þ

The precursory collapse of the star is most clearly
illustrated in a sequence of constant time slices of the
event horizon. Figure 1 shows it for the EMR merger of
a T-VII star with β ¼ 0.25.

II. QUALITATIVE PICTURE

Let us begin by recalling the main features of the event
horizon of a binary black hole merger, which generically
takes the form of the “pants” diagram in Fig. 2(a). The
surface is generated by null rays and is smooth except at the
places where new null generators enter toward the future to
form part of the horizon. This is the “crease set,” which is a
spacelike point set in an otherwise null surface where null
rays focus (caustic points) or cross each other (crossover
points) as they enter the future horizon [18–22]. In a
merger, the crease lies at the crotch of the pants. In
axisymmetric collisions it is a line of caustics along the
collision axis; this case has been thoroughly characterized
in [6,12,23,24].
The event horizon is a 3-surface, but we are interested in

following the evolution of the merger along sequences of
two-dimensional spacelike sections. In binary black hole
mergers, these sequences show two horizon components
approaching and fusing into a single one.
Replace now the smaller black hole in the binary with a

neutron star. The thinner leg of the pants disappears, but
there remains a portion of the crease where new null rays
are added to the horizon as the star approaches the black
hole. When taking spacelike sections, in general there is no
preferred temporal slicing, but when the star is much
smaller than the black hole the tidal effects on it are very
small and it retains its shape throughout the merger. The
equivalence principle tells us that, in its free fall into its
gargantuan companion, the star is essentially unaffected.
Therefore in this limit we can very approximately define the
rest frame of the star and choose its proper time t as our
time coordinate.
If the star is not very compact, with β quite smaller than

that of the black hole, the region amputated from the pants
of Fig. 2(a) is quite larger than the thin leg. This results in a
diagram like Fig. 2(b). The sections of the event horizon
have a single horizon component. However, if the star is
more compact, less is amputated from the horizon around
the thinner leg, and the cap of the crease, with a ∩ shape (in
axisymmetric collisions it is actually a saddle), can remain;
see Fig. 2(c). Taking slices at constant t, during some time
the horizon has two components, one of them inside the
star, which grows from zero size in a manner analogous to
the horizon inside a collapsing star, until it merges with the
larger black hole horizon.

1Like, in fact, the event horizon is itself, notwithstanding the
existence of the so-called Event Horizon Telescope.

2For instance, event 151019 in O1 [13] and possibly
S190814bv and others in O3 [14,15].
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It should be clear that, since the crease set is spacelike,
one may always choose slices where the horizon sections
have a single component as in Fig. 2(b). Conversely, an
event horizon like the one in Fig. 2(b) can always be sliced
in such a way that two (or more) horizon components
appear in certain sections. We can resolve the ambiguity
when a preferred frame choice is available, as is the case in
extreme-mass-ratio mergers.
Finally, note that the horizon within the star can be

made to appear arbitrarily early by considering a star of
compactness sufficiently close to the black hole limit
β ¼ 1=2. We will find that this can actually happen in the
interior of stars that are less compact than a black hole.
However, we expect that for physically reasonable inte-
riors the duration of the phenomenon is much more

limited, on the order of a few times M. We will return
to this point later.

III. NS-BH MERGERS IN THE
EXTREME-MASS-RATIO LIMIT

One might think that the event horizon in a highly
dynamical merger can only be obtained with the aid of
supercomputer simulations. However, as explained in [12],
in the EMR limit the task becomes enormously simpler.
This limit is often taken as one where the size of the large
black hole is fixed, while the small object (star or black
hole) is regarded as pointlike. However, in order to resolve
the features of the event horizon in the fusion, we will keep
the small object size finite while the large one grows
infinitely large in comparison.

FIG. 2. Event horizon in binary black hole and neutron star–black hole mergers. Spatial sections of the horizon are gray shaded. In
(a) we draw some light rays that generate the horizon; red rays enter the horizon at the spacelike caustic (thick red line). In (b) and (c) the
orange world tube is the neutron star, for low and high compactness β ¼ M=R. When the star is compact enough (c), the spatial cross
sections (in the rest frame of the star or close to it) develop a component of the horizon inside the star—the “precursory collapse”—
which then merges with the black hole.
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The equivalence principle asserts that we can always
place ourselves in the free-fall frame of the small object
where it is at rest. Since the curvature created by the large
black hole is inversely proportional to its size, in the EMR
limit this curvature can be neglected in the region around
the small object. But the horizon of the large black hole is
still present: in this limit it becomes an infinite, Rindler-
type, acceleration horizon that extends to infinity as a
planar null surface. Therefore, the event horizon of the
merger can be found by tracing in the geometry of the small
object a family of null geodesics that, far from the object,
approach a planar horizon.
This idea was used in [12] to study the merger

event horizon when the small object is a nonrotating,
Schwarzschild black hole and in [6] when it is a Kerr black
hole. The generalization to other objects is straightforward.
Let us consider a spherically symmetric star, with a generic
geometry of the type

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3:1Þ

In the exterior of a star of radius R, Birkhoff’s theorem
dictates that the geometry must be Schwarzschild’s; hence,

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

; r ≥ R: ð3:2Þ

Naturally, R > 2M. The interior geometry depends on the
matter model, which we will specify later.
In these coordinates the star is at rest, and t, which is a

Killing coordinate, measures proper time for the star.3 In
this spacetime, we have to find a null geodesic congruence
that approaches a null plane at future infinity. This will be
the horizon of the large black hole, which, from the
viewpoint of the infalling star, is coming toward it and
will eventually move through it, leaving the star inside the
large black hole. Notice the crucial role that the equivalence
principle plays in this, making the phenomenon describable
in the free-fall frame of the star while the curvature of the
large black hole becomes negligible.
Observe that in this construction [with (3.1) describing a

static star and not a black hole], the geometry does not have
any compact trapped surfaces nor any apparent horizons.4 It
is not unusual to find that a compact section of the event
horizon exists temporarily within the star without any
apparent horizon inside it; in fact, this is common in the
collapse of a star to form a black hole, as is easily illustrated
with a Vaidya collapsing shell model: although the shell
interior is flat space, the event horizon begins to grow there

in anticipation of the collapse.5 What makes our example
perhaps more surprising is that there is no real collapse
since all the star matter is static in its rest frame.

A. Equations

We can now proceed to the construction of the event
horizon. As in [6], we work with the Hamiltonian form of
the geodesic equations, which uses the coordinates xμ and
canonical conjugate momenta pμ. After accounting for the
isometries of the collision, the nontrivial equations are

dt
dλ

¼ fðrÞ−1; ð3:3aÞ

dr
dλ

¼ gðrÞpr; ð3:3bÞ

dθ
dλ

¼ q
r2
; ð3:3cÞ

dpr

dλ
¼ −

f0ðrÞ
2fðrÞ2 −

g0ðrÞ
2

p2
r þ

q2

r3
: ð3:3dÞ

Here λ is an affine parameter. The geodesics lie on planes of
constant angle ϕ. The integration constant for the energy of
the geodesic is normalized to one, and the constant angular
momentum q labels the geodesics by their impact param-
eter at infinity.
Since we know the exterior geometry (3.2), we can

expand the equations at large distance r ≫ M and large
values of λ and integrate them analytically order by order.
We then fix the integration constants so that the solution
asymptotes to the null plane we seek. For the first orders
this yields6

tðλÞ ¼ λþ 2M log λ −
4M2

λ
þMðq2 − 8M2Þ

2λ2
þOð1=λ3Þ;

ð3:4aÞ

rðλÞ ¼ λþ q2

2λ
−
Mq2

2λ2
þOð1=λ3Þ; ð3:4bÞ

θðλÞ ¼ −
q
λ
þOð1=λ3Þ; ð3:4cÞ

prðλÞ ¼ 1þ 2M
λ

−
q2 − 8M2

2λ2
þOð1=λ3Þ: ð3:4dÞ

These provide the asymptotic conditions at large λ for the
numerical integration of the geodesic equations in the entire
spacetime. Then, by varying q ∈ ½0;∞Þ we obtain a one-
parameter family of geodesics, which, when rotated along

3Viewing this as the first step in a matched asymptotic
expansion, (3.1) corresponds to the near-zone geometry and t
is the near-zone proper time, measured at large r.

4In the EMR limit as we take it, the apparent horizon of the
large black hole becomes noncompact. For the EMR binary black
hole merger this has been studied recently in [25].

5See [26,27] for reviews.
6We may always add a constant to t, e.g., to have the pinch at

t ¼ 0, as in Fig. 1.
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the symmetry axes θ ¼ 0; π, rule a null 3-surface in the
spacetime. Points on this surface can be labeled by ðλ; q;ϕÞ.
In order to visualize the results, we employ Cartesian-

like coordinates

x ¼ r sin θ; z ¼ r cos θ ð3:5Þ

and draw the event horizon as a two-dimensional surface in
the space ðt; x; zÞ. Although x and z do not have separate
invariant meaning,7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

¼ r does as the area radius.
The full surface is obtained by rotating in ϕ around the axis
x ¼ 0. At large λ, the geodesic congruence approaches the
null plane x ¼ q, z ¼ λ, as desired.

B. Star models

For the interior geometry we have chosen the T-VII
model found by Tolman in [7] and the Schwarzschild
interior solution [8].
T-VII is an analytic solution to the Einstein equations

for a perfect-fluid star where the mass density varies
quadratically:

ρ ¼ ρ0

�

1 −
r2

R2

�

: ð3:6Þ

The solution for r ≤ R is

fðrÞ ¼
�

1 −
5β

3

�

cos2
 

C −
1

2
ln

 

r2

R2
−
5

6
þ

ffiffiffiffiffiffiffiffiffi

gðrÞ
3β

s

!!

;

ð3:7Þ

gðrÞ ¼ 1 − β
r2

R2

�

5 −
3r2

R2

�

: ð3:8Þ

The constant

C ¼ 1

2
ln

 

1

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2β

3β

s

!

þ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β

3ð1 − 2βÞ

s

ð3:9Þ

is chosen to ensure the continuity with the metric functions
(3.2) at r ¼ R. The solution is scale-free, with only one
essential dimensionless parameter, namely the compactness

β ¼ M
R

ð3:10Þ

[we are setting G ¼ c ¼ 1 in (1.1)], and where the radius
appears in the metric only through r=R. In terms of these
parameters, the central density is ρ0 ¼ 15

8π
β
R2.

The central pressure remains finite as long as [10]

β ≲ 0.3862; ð3:11Þ

and the sound speed is subluminal when

β ≲ 0.2698: ð3:12Þ

In the latter range, according to [10] this model provides a
good approximation to a wide variety of matter equations of
state without exhibiting unphysical behavior.
The Schwarzschild interior solution [8] describes a star

made of incompressible fluid. It is also a scale-free
solution, with

fðrÞ ¼ 1

4

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2β
r2

R2

r

− 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2β
p

!

2

; ð3:13Þ

gðrÞ ¼ 1 − 2β
r2

R2
: ð3:14Þ

Its form is simpler than T-VII, but its uniform density is not
realistic, in particular because it makes the speed of sound
everywhere infinite. Nevertheless, the pressure at the center
remains finite whenever the Buchdahl bound (1.4) is
satisfied.
Henceforth we fix the mass to

M ¼ 1 ð3:15Þ

and then let β ¼ 1=R be the only parameter characterizing
the star.

C. Results

We can now plug the interior and exterior metric
functions fðrÞ and gðrÞ in the geodesic equations (3.3)
and numerically integrate them back from large values of λ
with initial values given by (3.4). We have done this for
stars with a range of values of β ¼ R−1 < 1=2. In both star
models our results agree with the general picture presented
in Sec. II: for low β, the caustic line along the axis increases
monotonically in the proper time of the star, but for large
enough β, it reaches a maximum at a certain instant, then
decreases until it reaches a minimum, to continue up again
for a while until it stops. In Figs. 3 and 4 we show
representative instances of the event horizon in each case
for T-VII stars.
The most important parameter to characterize the event

horizon is the value of the radius r� of the saddle point at
which the caustic reaches a maximum in t. If this saddle
exists, then there are two horizon components in constant t
slices prior to the merger. The two horizons fuse along the
collision axis at the radius r�, in a manner that is captured
by a universal, exact local model described in [6].

7This embedding of the event horizon in three-dimensional
space is not isometric, but it is simple, intuitive, and illustrative
enough for our purposes.

ROBERTO EMPARAN and DANIEL MARÍN PHYS. REV. D 102, 024009 (2020)

024009-6



When the small object is a Schwarzschild black hole,
Ref. [12] found the saddle at8

r� ¼ r�s ≡ 3.5206: ð3:16Þ

By Birkhoff’s theorem, if the radius of the star is
R < r�s, then this saddle point also exists outside the star.
In this case precursory collapse occurs, subject only to the

approximation of spherical symmetry, independently of the
interior geometry. This translates into a model-independent
bound on the compactness for precursory collapse in EMR
mergers, namely,

β > βs ¼
1

r�s
¼ 0.2840; ð3:17Þ

which yields (1.3).
This is a sufficient but not necessary condition for

precursory collapse. We have found that for stars with
radii R > r�s a saddle can appear at a radius in the interval
r�s < r� < R. For the T-VII stars, we find that this occurs
whenever the compactness is larger than

FIG. 3. Event horizon for the NS-BH merger of a T-VII star with β ¼ 0.2 (R ¼ 5). The line of caustics is marked in red.

FIG. 4. Event horizon for the NS-BH merger of a T-VII star with β ¼ 0.25 (R ¼ 4). The line of caustics is marked in red. This star is
compact enough to start its collapse before the merger.

8In [12] this was obtained by as the numerical root of an exact
transcendental equation. The values for T-VII and Schwarzschild
stars that we refer to below have been obtained from the
numerically constructed event horizons.

PRECURSORY COLLAPSE IN NEUTRON STAR-BLACK HOLE … PHYS. REV. D 102, 024009 (2020)

024009-7



βT-VII ¼ 0.22: ð3:18Þ

For the most compact but still nonpathological T-VII star
with β ¼ 0.2698, the duration of the precursory collapse
from the moment when the horizon first appears within the
star, until the fusion with the large black hole, is

tcoll ¼ 2.05038: ð3:19Þ
Above this compactness, causality is violated in the T-VII
star since the speed of sound exceeds the speed of light.
Nevertheless, if we push to higher β, the duration of the
collapse increases, until we reach β ¼ 0.3682. At this point
the central pressure becomes infinite, and the duration of
the collapse diverges as the minimum of the caustic drops
to t → −∞.
For the Schwarzschild interior solution (3.13) and (3.14),

we find that the precursory collapse occurs for stars more
compact than

βSchInt ¼ 0.28: ð3:20Þ
This is a little lower than the model-independent value
(3.17) but rather more stringent than βT-VII. However, the
result is less significant since the model is less realistic.
When the upper limit β ¼ 4=9 on these solutions is
approached, the duration of the collapse diverges, again

due to the infinite pressure at the center of the star. It is
natural to conjecture that this is a general result: for stars
that satisfy the assumptions of Buchdahl’s theorem, as
β → βB the precursory collapse in the EMR limit begins at
t → −∞. We expect that for finite mass ratios this time will
also be finite.
An even simpler model of a “star,” even much less

realistic but for which the event horizon can be obtained
exactly, is a thin shell model with an empty, flat Minkowski
interior. In this case, the precursory collapse is only present
for (3.17).
We have not explored more models, but the fact that

T-VII, which stands out among the most physical analytic
solutions [9–11], allows precursory collapse without need-
ing to force the parameters leads us to expect that the
phenomenon will also be present in other realistic
situations.
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