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In the present paper, we use the holographic approach to describe the early-time acceleration and the
late-time acceleration eras of our Universe in a unified manner. Such “holographic unification” is found to
have a correspondence with various higher curvature cosmological models with or without matter fields.
The corresponding holographic cutoffs are determined in terms of the particle horizon and its derivatives, or
the future horizon and its derivatives. As a result, the holographic energy density we propose is able to
merge various cosmological epochs of the Universe from a holographic point of view. We find the
holographic correspondence of several F(R) gravity models, including axion-F(R) gravity models, of
several Gauss-Bonnet F(G) models and finally of F(7) models, and in each case we demonstrate that it is
possible to describe in a unified way inflation and late-time acceleration in the context of the same

holographic model.
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I. INTRODUCTION

The holographic principle originates from black hole
thermodynamics and string theory and establishes a con-
nection of the infrared cutoff of a quantum field theory,
which is related to the vacuum energy, with the largest
distance of this theory [1-4]. This consideration has been
applied extensively in cosmological considerations, in
particular, at the late-time era of the Universe, known
currently as holographic dark energy models [5-23] which
are also known to be in good agreement with observations
[24-31]. At this stage we would like to mention that the
most general holographic dark energy is given by the one
with Nojiri-Odintsov cutoff [6] and it is interesting that it
may be applied to covariant theories, too [32]. Apart from
the dark energy model, the holographic energy density is
also found to be useful to realize the early Universe
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evolution like the inflationary evolution [33-38]. The first
study of whether the Higgs inflation respects the holographic
principle (within the effective field theoretical approach) was
done in [33]. As a result it was found that the original model
of Higgs inflation, where the Higgs field couples with the
Ricci scalar, does not respect the holographic bound;
however, a different Higgs inflationary model, where the
coupling of the Higgs field is taken with the Einstein tensor
rather than the Ricci scalar, can change the scenario; in
particular, this new model passes the holographic test [33]. In
the context of inflation, the holographic model has the
advantage that since the largest distance (or the cutoff of the
theory) of the early Universe is small, the holographic energy
density is naturally large to successfully trigger the infla-
tionary era. Moreover the application of the holographic
principle at the early Universe studies, has been extended to
the bouncing scenario by some of our authors in [39] where
it was shown that the holographic energy density violates the
null energy condition (a necessary condition for bounce
[40—44]), which in turn generates the bouncing behavior of
the Universe (see [45,46] for some more articles on holo-
graphic bounce).

© 2020 American Physical Society
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Despite a considerable application of the holographic
principle individually at the early and late time evolution of
the Universe, to date it has not been attempted to provide a
unified description of the inflationary era with the dark
energy epoch. In the present work, we are interested in
providing a unified framework of holographic inflation
with holographic dark energy, providing a unified descrip-
tion of inflation with the late time accelerating Universe in a
holographic context. There is too strong evidence that
eventually modified gravity theories have a prominent role
in describing the early and late-time acceleration eras of our
Universe. Some of the higher curvature models which are
well known to provide such a unified description of early
and late-time acceleration can be found in Refs. [47-65] in
the context of F(R) gravity, [66-78] in the f(R, G) gravity,
etc. Recently, the axion-F(R) gravity model was proposed
in [55,61], where the axion field mimics the dark matter
evolution and hence the model provides a description of
dark matter along with the unification of early and late-time
acceleration eras. Interestingly, in the present work, we
propose several holographic models which, similar to
these aforementioned higher curvature models, are able
to describe the inflationary and the dark energy epoch of the
Universe in an unified manner.

The plan of our paper is as follows: In Sec. II, we briefly
discuss the essential features of the holographic model and
the corresponding holographic cutoff. In the following
sections, we propose various holographic models from a
different perspective, which are able to unify the cosmo-
logical eras of the Universe. Finally the conclusions follow
in the end of the paper.

II. ESSENTIAL FEATURES OF
HOLOGRAPHIC MODEL

According to the holographic principle, the holographic
energy density is proportional to the inverse squared
infrared cutoff Lz, which could be related with the
causality given by the cosmological horizon,

3¢2
272 ¢
K° L

(1)

Phol =

Here x> is the gravitational constant and c¢ is a free

parameter. We now consider the Friedmann-Robertson-
Walker (FRW) metric with the flat spatial part,

ds® = —df* + a*(1) > (dx')?, (2)
i=1,2,3

where a(t) is the scale factor. Then the Friedmann equation
is given by

H? =—p, 3
3P (

~—

where p is the energy density of the generalized fluid
driving the expansion of the Universe. We now assume that
the energy density p is given by py, in (1). Then the
Friedmann equation (3) can be rewritten as follows;

c

H=—.
Lir

(4)
The infrared cutoff Lz is usually assumed to be the
particle horizon L p Or the future event horizon L Iz which
are given as

tdt o dt
L,=a | —, sza/ —. (5)
0 a ’ r a
Inserting these into (4) we obtain
d( c m
——=)=— 6
dt <aH) a (6)
The m =1 case corresponds to the particle horizon and
m = —1 case to the future event horizon. In the second

case, if we choose ¢ = 1, we obtain the solution describing
the de Sitter spacetime,

a = agef’, (7)

with a,, H being two integration constants. Moreover for
c# 1, BEq. (6) (with m = —1) has the solution a(t) =
ao[t(1 = ¢) + byc]7, thus we get the de Sitter solution only
for the case ¢ = 1. However in the following sections,
when we determine the holographic cut-offs in terms of the
particle or the future horizon, we will keep ¢ as a free
parameter.
In [8], a general form of the cutoff was proposed,

Lg=Lg(Ly Ly Ly ...,y Ly,....H,H, R,
R R, ). (8)

The above cutoff could be chosen to be equivalent to a
general covariant gravity model,

S = /d4,/—gF
x (R, R, R*, R,,,,R*7*,(OR,O0-'R, V,RVIR, - ).
©)

We will use the above expressions frequently in the
following sections.

III. HOLOGRAPHIC CORRESPONDENCE OF F(R)
GRAVITY WITHOUT/WITH MATTER FIELDS

In this section we establish the holographic correspon-
dence of F(R) gravity with arbitrary form of F(R). By the
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term “holographic correspondence,” we mean there exists
an equivalent holographic cutoff (L;g) which, along with
the expression H = 1 /L, can reproduce the cosmological
field equations for the corresponding F(R) gravity. We
will show that such correspondence is not just confined
to “vacuum F(R) models” but also holds true even for
nonvacuum F(R) models, i.e., the F(R) gravity along with
matter fields. We start with the action of a general F(R)
gravity [see [47-49] for general reviews on F(R) gravity]
in absence of matter fields,

s= [ x| 50| =5 [ v )
(10)

where F(R) is decomposed as F(R) =R+ f(R) in the second
line and 1/x = Mp with Mp being the four-dimensional
reduced Planck mass. The gravitational field equation for the
above action in the FRW spacetime is given by

R . df'(R
3H? = —]y +3(H*>+ H)f'(R) - 3H%t), (11)
where H = % is the Hubble parameter of the Universe and
f(R) = %. Equation (11) is the temporal component of

Einstein’s field equation; however, the spatial component,
containing H, can be derived from Eq. (11) and thus we
do not quote it here. Moreover, in the case of F(R) gravity,
the off-diagonal component of Einstein’s field equations
are trivial and do not give any new information for the
dynamics of the cosmological equations. Comparing
Egs. (4) and (11), we can argue that the F(R) gravity
has a holographic correspondence where the equivalent
holographic cutoff is given by the following expression:

— I8H(H + 4HH)f"(R), (12)

=Rf"(R) = 6(H + 4HH)f"(R)
(recall R = 12H? + 6H in the FRW spacetime). As men-
tioned earlier, the holographic cutoff Lz, in general, is a
function of the particle horizon (L), the future horizon
(Ly), the scale factor, and their derivatives [see Eq. (8)].
Keeping this in mind, here in the context of F(R) gravity,
we determine the holographic cutoff in two different ways:
(1) Lig in terms of L, and their derivatives, and (2) Ly in
terms of L, and their derivatives. In order to determine the
L in terms of the particle horizon and their derivatives, we
start from the expression L, =a [ % as mentioned in

Eq. (5). Upon differentiating both sides of this expression

one gets the Hubble parameter as H(L, p) =21

which immediately leads to the Ricci scalar

L, L2 3L, 2
=06|—+— — . 13
L L2 L2 "+ L (13)
Plugging the above expressions of the Hubble parameter
and the Ricci scalar into Eq. (12), one obtains the Lg =
Lr(L,.L,. L
relation:

p» higher derivatives of L,,) by the following

3c2 F(RE) (L L, 1
= 3 —”——”+—>f’(R<L"))
(Lir)? 2 L, L2 L}

L, 1\df(R")
—3<L—2—L—>—dt ) (14)

p

Similarly, to determine the holographic cutoff as a function
of the future horizon (Ly) and their derivatives, we use

Lf =da ft a(n)
sion yields the Hubble parameter and consequently the
Ricci scalar as follows:

The derivative on both sides of this expres-

L, 1
/
H(L =4
and
L, L% 3L, 2
RE) =6|-L4 L2y = 16
Lf+L2 L}+L} (16)

respectively. Equations (15) and (16) along with
Eq. (12) immediately lead to Lig = Lr(L/, L £ L > higher
derivatives of L) as

3¢ f(R®)) Ly ,
Lo 2 3<Lf+L2+ )@
Ly df'(R®™1))
-3 (Lf + Lf) e (17)

Having established the holographic correspondence of the
vacuum F(R) model, now we consider the F(R) gravity
model in the presence of matter fields and the action is

_ / de/gy 5 R+ F(R) + Lyl (19

where L., represents the matter field Lagrangian. The
gravitational and the matter field equations for the above
action in FRW spacetime are given by

R . df'(R
3H? = —% +3(H>+ H)f'(R) - 3H% + & Prnats
p.mat + 3H(pmat _'_ pmat) = 0’ (19)

023540-3



NOIJIRI, ODINTSOV, OIKONOMOU, and PAUL

PHYS. REV. D 102, 023540 (2020)

with p.c and p... being the energy density and pressure
of the matter field, respectively. They are defined as
the temporal and spatial component of matter energy-

momentum tensor T, = \/Z__q‘s(;“q‘;‘f‘, respectively. Com-

paring Eqgs. (4) and (19), we can consider a holographic
origin of nonvacuum F(R) models where the equivalent
holographic cutoff is given by the same expression as
shown in Eq. (12). Consequently, the above gravitational
equation turns out to be

3¢?
(Lr)?

Thus Eq. (17) gives the equivalent holographic cutoff for
any arbitrary vacuum/nonvacuum F(R) gravity in terms of
the future horizon and their derivatives, while Eq. (14) does
the same, however, in terms of the particle horizon and their
derivatives. These clearly indicate that F(R) gravity has a
holographic origin which mimics the cosmological field
equations of the corresponding F(R) gravity. In the next
sections, we will determine the holographic cutoffs [by
using Egs. (14) and (17)] for some explicit forms of F(R)
gravity, which are known to give a unified picture of
inflation and late time dark energy epoch.

At this stage it is worth mentioning that unlike in the two
aforementioned approaches (where Lz is determined in
terms of particle horizon or the future horizon), the holo-
graphic cutoffs for various F(R) models are determined in
another way and in particular, these are determined as an
integral, as shown in Refs. [34,35]. With such integral
forms, it is shown that the holographic correspondence for
vacuum and nonvacuum F(R) models exists. In the spirit of
these previous works, here we will present integral forms of
holographic cutoffs for the considered forms of F(R) in the
next sections.

3H? = + szmat' (20)

A. Holographic cutoff for F(R) inflationary models

Before moving to the unified scenario of inflation and
late-time accelerating epochs, we consider the F(R) infla-
tionary models and F(R) dark energy models separately and
will find the corresponding holographic cutoffs. The infla-
tionary F(R) holographic cutoffs are shown in this sub-
section, while the same for dark energy models are treated in
the next subsection. Some of the popular F(R) models
which are known to trigger a viable inflationary era, are
F(R) = R + aR?, F(R) = e’ [i.e., exponential F(R) grav-
ity] etc. Thus these specific forms of F(R) are considered

|

2 2L,L, 2L, L% 2L,

2
— 6q| PP “p _“==p—p
(Lr)* L2 L2 L2 L

here, to determine the holographic cutoffs. Moreover it has
been shown earlier that F(R) models along with the second
rank antisymmetric Kalb-Ramond (KR) fields also give a
viable inflationary era [79,80]. In fact, the cubic curvature
vacuum F(R) gravity, i.e., F(R) = R + SR> model does not
produce a viable inflation; in particular, the theoretical
expectations of spectral index (n,) and tensor to scalar ratio
(r) do not match with the Planck 2018 constraints; however,
in the presence of the Kalb-Ramond field the cubic gravity
model becomes compatible with the Planck constraints (i.e.,
ng = 0.9649 4+ 0.0042 and r < 0.064) [79].

Thus the impact of the KR field on the inflationary
evolution is significant and will be clear from its cosmo-
logical evolution. The demonstration goes as follows: its
equation of state (EoS) parameter is unity, and the con-
servation equation of the KR field is given by pgr +
6Hpxr = 0, solving which one obtains pgr « 1/a°; i.e.,
the energy density of the KR field decreases with faster
rate in comparison to pressureless matter and radiation.
(The negligible footprint of the KR field in the present
Universe can also be described from the higher dimensional
point of view [81] where the KR field is generally
considered to be a bulk field and our four-dimensional
visible Universe is a brane embedded within the higher
dimensional spacetime; further a nondynamical approach is
also presented in [82] to explain the imperceptible signa-
tures of the KR field in our Universe.) Thereby, it clearly
depicts that the present Universe may be free from the
direct signatures of the KR field; however, the KR field has
considerable effects during the early Universe (when the
scale factor is small compared to the present one). These
arguments reveal the importance of the Kalb-Ramond field
in inflationary models and thus, beside the vacuum F(R)
models, here we also determine the holographic cutoffs for
“F(R) + KR” models.

1. Quadratic curvature gravity without/with KR field

Consider the action S =55 [d*x,/=g[R + aR?] (ie.
quadratic gravity without the KR field and « is a parameter
having mass dimension [—2]), for which the Friedmann
equation takes the following form:

H? = 6a[H?> — 2HH — 6HH?]. (21)
The equivalent holographic cutoffs for f(R) = aR? in
terms of L, and their derivatives can be obtained from
Eq. (14) and are given by

s
6L,L, 4L, 3Ly 1203 15L2 6L,

pPop_ P TP — (22)
3 3 7 7 4 2 |-
Ly Ly Ly Ly Ly Ly

Similarly by plugging f(R) = aR? into Eq. (17), we get the holographic cu-off as a function of L ¢ and their derivatives as

follows:
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Therefore, the R? inflationary models which are known to
be in good agreement with observations [83,84], have an
equivalent holographic model, thanks to the holographic
cutoffs obtained in Eqgs. (22) and (23). However, in [34], a
different kind of holographic model has been proposed,
where the infrared cutoff takes the following form:

L 1 .
ﬁz —.72/dta6H,
c 6aH?*a®

with a being the parameter of the model. Plugging this
expression back into the holographic Friedmann equation
H = ;% we obtain the cosmological equations for F (R) =
R + aR? gravity [see Eq. (21)]. Thus, apart from the cutoffs
determined earlier in terms of L, or L, the holographic
energy density with the cutoff given in Eq. (24) is also able
to reproduce the Starobinsky R? inflation.

The cutoffs in Egs. (22) and (23) can provide an
equivalent holographic model even for a nonvacuum
quadratic gravity model where the Friedmann equation

(24)

takes the form 3H? = (LSIL:)Z + K2pma Where p. is the

matter energy density. We consider the Kalb-Ramond field
as matter field (keeping the inflationary viability in mind)
and the action for the “R + aR* + KR” model is

1 1
S = /d“x,/—g L—Kz (R + aR?) —EH,MH’M ,

where H,,, is the field strength tensor of the KR field
defined by H,,, = 0,B,, where B, denotes the second
rank antisymmetric KR field. The above model generates a
viable inflationary scenario as explicitly shown in [79].
However the KR field indeed affects the Starobinsky
inflationary model by the following ways: being the EoS
parameter of the KR field is unity, the acceleration of the
early Universe gets reduced due to the presence of the KR
field in comparison to the case where the KR field is absent;
moreover from the observational side, the KR field is found
to enhance the tensor-to-scalar ratio with respect to the
Starobinsky inflationary model. The integral form of the
generalized infrared cutoff for the “R + aR? + KR model
[35] is obtained as

L 1 / : K*po
e p— ) F/1C) & § () - , 25
c 6aH?ab “ a®H?> (25)

where pj is the energy density of the KR field at the horizon
crossing. Inserting the above expression into H = ¢/Lg
after some simple algebra, we obtain the following differ-
ential equation:

73 T 13 4 4 4
L ¥ L ¥ Lf Lf Lf

ol (23)

2

H? = 6alH? = 2HH — 6HH? + 20 (26)
a

Equation (26) is actually a combination of two separate

equations,

F(R . . ..
% =3(H*>+ H)F'(R) — 18(4H*H + HH)F"(R)
+ K2 pKr> (27)
and
d,
% + 6Hpgr = 0, (28)

respectively with F(R) = R + aR?. It may be observed that
Eq. (28) is the conservation equation for the KR field
having EoS parameter unity. Thereby the cutoff in Eq. (25)
can reproduce the cosmological field equations for the
“Starobinsky + KR” model. It may be mentioned that for
po = 0, the expression in Eq. (25) becomes the same as in
Eq. (24), as expected. Therefore, the key equations which
represent the equivalent holographic energy density for the
R? model without/with the KR field are given by Egs. (22),
(23), (24), and (25), respectively.

2. Cubic curvature gravity without/with KR field
The cubic curvature model without the KR field has the
action § = 55 [ d*x,/=g[R + BR?] (§ is a constant param-
eter with mass dimension [—4]) which, in the Friedmann
spacetime, leads to the following gravitational equation:

H? = 36a[2H® — 6HH H —15H*H* + 4H°

—36H*H — 12H>H]. (29)
Consequently, by plugging the explicit form of f(R) = fR>
into Eqs. (14) and (17), we obtain Lig=Lr(L,.L,.L,,
higherderivativesof L) and Lgx=LR(L f,L 7.L ¢ higher
derivativesof L ;) as follows:

(LC;)2 - 35—; 2-3L,+ L2 +L,L,]
x [2=27L, +59L% —45L3 + 1L — 13L, L,
—L,L3L, +2L2[% +6L2L,
+18L,L,L,—6L:L,L,], (30)
and
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¢ 36a
(Lw)* LS

—L,L3L, +2L3L3 -

2+3L;+ L7+ LyL;|[2+27L; + 59L7 + 45L} + 11L} = 13L L,

6L3L; — 18L;L Ly —6L}L L], (31)

respectively. Moreover, the integral form of the holographic cutoff in the context of a vacuum cubic model is obtained as

Lir

[ dia'3E

c 36[2aH>a'%/? —

We can easily see that by inserting the above expression
into the holographic Friedmann equation, we will finally
yield Eq. (29). Therefore, the holographic cutoffs deter-
mined in Egs. (30), (31), and (32) are equivalent to
F(R) = R + SR® model. Thereby, the cosmology of R®
gravity can be realized from the holographic origin with
the specified infrared cutoffs just mentioned. It is well
known that F(R) = R+ aR® does not give a viable
inflationary era, in particular, the theoretical values of
n, and r do not comply with the observable constraints

4aH [ dta">*HH(H?

—9HH - 3H)]’ (32)

[
from Planck 2018. However, as mentioned earlier, in the
presence of the second rank antisymmetric Kalb-Ramond
field, the cubic gravity model becomes viable in respect
to Planck 2018 constraints. In particular for 0.03 <
K*pov/B < 0.3 (where p, is the energy density of the
KR field at horizon crossing), the spectral index and the
tensor to scalar ratio become simultaneously compatible
with Planck 2018 constraints. In the R + fR® + KR
model, the Friedmann and the KR field equations are
given by

0= —H? +36a2H® — 6HH H —15H*H” + 4H°
dpxr
dt

As demonstrated in Sec. I1I, the holographic cutoffs for R 4+ fR® + KR in terms of L, or L (along with their derivatives)
are the same as those obtained in Eqgs. (30) and (31), respectively. On the other hand, the integral form of the holographic
cutoff in the R + SR + KR model is changed in comparison to Eq. (32) and is determined as

—36H*H — 12H*H] + Kpgg.

0=

+ 6Hpgg. (33)

Ly Jdta"PH(1 - ) 34
¢ 36[2aH*a'/? — 4aH [ dta"*HH(H® — 9HH — 3H)]’

The above expression along with H = ¢/ Lz immediately leads to the cosmological field Eq. (33). Again one may note that
for py = 0, the expression in Eq. (34) is reduced to Eq. (32), as expected. Thus as a whole, the cosmological imprints of the
cubic gravity model without/with the KR field can be reproduced by the holographic models having the cutoffs given in
Egs. (30), (31), (32), and (34), respectively.

3. Exponential F(R) gravity without/with KR field

For exponential F(R) = ae’® (with a and b being constant parameters, both having mass dimension [-2]), the
corresponding holographic cutoff in terms of L, is directly obtained from Eq. (14) as

? 1 L, L 1 -
< = (abehP(Lp L,, L) — 1)< _P+p) +*(P(Lp, pr Lp) - aeh (L. Lp LI’))

(Lir)? L2 L2 L,) 6
L, 1 L, L, L, L, LL, L
+6ab2e”P(LvLﬁLp)<p—>( 4L 4+6L-2~L-3L+ "2”+P>. (35)
» Ly Ly "Ly "L, "Ly, Ly L,

Similarly the cutoff in terms of the future horizon can be determined from Eq. (17) as

1 L, L 1 - i
= (abebQLrLrLy) _ 1) (ﬁ + L—; + L—;) +e (O(Ly, Ly, Ly) — aebQErLsLy))
2

+ 6ab’e bO(LyLsLy) Lf+i
Ly Ly

(Lr)?

WL (L4 L Ly L
L3 ! L3 F ‘nte L) (36)
ST )
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where the functions P and Q are

oo 2 3L, Ly L
prmprb L, L, L%, L,
- 2 3Ly L} L

L L L;)=6|5+—7+—-5+-—"|,
o( = f) {sz+ sz +L§V+Lf

respectively. Apart from these two kinds of holographic
cutoffs, an integral form of L in the context of exponential
F(R) gravity is obtained as follows:

Lg _ [dia*(1-6pH*/H?)

¢ 6pa*H+H [dia(hn— 1)

(37)

The above expressions of Lz along with the holographic
equation H = ¢/L lead to the following differential
equation for H:

H? = 6f[HH + 4H*H] + 61—ﬂ [1—6pH],  (38)

which can be rewritten in the form

@ =3(H? + H)F'(R) — 18(4H*H + HH)F"(R),
with F(R) o e/R. Therefore the holographic equation can
mimic the cosmological equations of exponential F(R)
gravity, thanks to the different kinds of holographic cutoffs
in Egs. (35), (36), and (37).

The generalized holographic cutoffs shown in Egs. (35)
and (36) are also valid for exponential F(R) gravity even
in the presence of the Kalb-Ramond field where the
Friedmann equation takes the following form:

3c2

+ K2 .
(L)? KR

However, in the presence of the KR field, the integral form
of Lig in the context of F(R) = Le"® comes with the
following expression:

3H? =

Ly [ dra*(1 - 6pH*/H> - 50)

a()HZ
¢ 6pa*H + Hfdta“(ﬁﬁ'H2 - %)

(39)

3¢2 1 L, L3 3L, 2\"
7=f0[——{6(—”+—’——”+—>} +3m
(LfR<R>)2 2 L, L2 L} L2

LPLI’ 4

L, 1\/(L, 2L, 3L
B\ -\t T T2
Ll’ LP LP Ll’ Ll’ LP

Equations (35), (36), (37), and (39) represent different types
of holographic cutoffs which, along with H = ¢/ L, realize
the cosmological scenario of the exponential F(R) gravity
without/with the KR field. Regarding the observable viabil-
ity, unlike to vacuum cubic curvature gravity, the vacuum
exponential F(R) model is known to be in good agreement
with Planck constraints. Moreover the exponential F(R)
model in the presence of the KR field also leads to a viable
inflationary scenario, in particular, for the parametric regime
0.005 < x?pyb < 0.1 (where p, is the KR field energy
density at horizon crossing), the inflationary parameters like
the spectral index and tensor-to-scalar ratio are found to
comply with Planck 2018 constraints [35].

B. Holographic cutoff for F(R) dark energy models

As an F(R) dark energy model, we consider,

F(R) = foR™,

with constants f; and m [51]. We consider the exponent m
to be less than unity for which the term fjR™ dominates
over the Einstein-Hilbert and the matter term(s) in the low
curvature regime, as in the case of the late-time Universe.
As a consequence, the Hubble rate H = d/a behaves as

(40)

_ (m=-1)2m~-1)
R (41)
with an effective EoS parameter,
6m> —Tm — 1
(6m m—1) (42)

Vet = T3 - )2m—1)

The above expression indicates that for m < —0.97, the
theoretical expectations of the EoS parameter satisfies
the observations coming from SNIa results (—1.57 <
weip < —0.66). On other hand, for m < —0.47, the EoS
parameter in Eq. (42) satisfies the baryon accoustic
oscillations (BAO) results (—2.19 < wey < —0.42).
Thereby for m < —0.97, the theoretical values of wg is
consistent with both the SNIa and BAO results and thus
we stick with m < —0.97, for which, our consideration that
the term R™ dominates over the Einstein-Hilbert term in the
low curvature regime is also valid. Thus f(R) = foR" with
m < —0.97 can act as a dark energy model in the context of
F(R) gravity. Using Egs. (14) and (17), we determine the
equivalent holographic cutoff for this model as

bl -4
L, L} 12 L, 12 1212

612 4L L L[> 3L 2\ """
v e - )]
L L L, L3 L} L}

p
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1( (L Ly 3L, 2\" Ly Ly 1 Ly L7 3Ly 2\\"™"
= fol—= 3m 6 ==
fo[ 2{ (Lf+L2+L2 +L2 * ijLszLL2 Lf+L2+L§ +L§
L, 2L

L, 1\(L, L/, 2L} 3L, 6L% 4L, Ly L3 3L, 2\
—18m<Lf+L>(L—f+ . ——3+—2f——3f——3f>{6<Lf+ f+—2f+—2)} ] (43)
ro Ly \Ly Ly Ly Ly Ly Ly ;oL Ly L

The first expression in the right-hand side of Eq. (43) represents the Ly in terms of L, and its derivatives while the second
expression gives Lig = Lig(Ly, L s L £, higher derivatives of L ;). Therefore the model (40) can also be reproduced from
the holographic energy density having the Lz determined in Eq. (43). Clearly such holographic energy density is able to
drive the dark energy epoch of our Universe. As a more realistic dark energy F(R) model, we may consider the exponential
F(R) gravity which is known to provide a viable dark energy model as described in [85,86]. In particular, we consider

F/(R) = R—2A(1 - e™) (44)

with f# and A being two model parameters having the mass dimensions [0] and [+2] respectively. Due to the Supernovae la
(Sne-Ta) [87], BAO [88], cosmic microwave background (CMB)‘ [89], and H(z) [90] datasets, the parameters f and A are
well constrained, in particular, the F(R) model (44) is best fitted with Sne-Ia + BAO + H(z) + CMB data for the parametric
regimes given by f =3.98759 and A = 1.2 x 1078 GeV? [85]. The equivalent holographic cutoffs (in terms of the
particle and future horizon) for the above exponential F(R) model is determined as

3¢? 3p > 3L, 2 34 i1
=All - - —p_ 7P 4 = 1= (Z2_ZP 4
(LR { exP[ A <L +L§, 2 +L§>H A <L,, L§,+L§,>

94> (L, 1 'L”p+L',,LP 2L} 3£,J+6L'p2 4L,
A*\L, L,)\L, L2 Ly, Ly L, L
3 (Ly L7 3Ly 2 3B (L Ly 1

=A|l—exp|-=" 1- 2+

{ eXp[ A(Lf+L2+L2+L2 TNV RN
_9L}2<ﬁ+i)<ﬁ+l‘fl‘f %4_3&_&_&)}] (45)

2 2 3 2 3 3 !

N \Ly Lg)\L, L} L} L} L} L}

|
and af to be larger than the scale factor in the Universe
after inflation. We also assume afy > af. Then in the late
Universe, where a > a}), the first term dominates and
behaves as the future horizon,

Because the F(R) gravity model (44) generates the accel-
erating expansion of the late universe, the holographic
model also plays the role of the dark energy.

C. Unification of holographic inflation
with holographic dark energy Lir o dt
—n~a —, (47)
t

In view of the previous sections, we are motivated to c a

construct a model unifying the inflationary era in terms of

the Starobinsky R? inflation (which is known to lead to
inflationary observables in a very good agreement with
observations [91]), with the accelerating expansion of the
late Universe by using the future event horizon L; in (5). An
example is given by

Lg __ da™ /mﬂ
c  (a)"+a" ), a
e\m t .
) / diaH.  (46)
6aH*as((ag)™ + a™)

Here n, m, ah, and ag are positive constants and we choose
al) to be smaller than the scale factor in the present Universe

which along with the holographic Friedmann equation
= ﬁ generates the accelerating expansion of the pre-

sent Universe. On the other hand, in the early Universe,
where a < ag, the second term dominates and behaves as
in (24),

LIR 1 /t .
= ~———— [ dta®H, 48
c 6aH?a® (48)

which generates the Starobinsky inflation. Thereby the
cutoff proposed in Eq. (46) can provide a unified scenario
of inflation and late time acceleration of the Universe from
a holographic point of view.
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1. Minimally coupled axion-F (R) gravity model

A more realistic and a recent model which unifies
various cosmological epochs of the Universe is the
axion-F(R) gravity model described in [61] and first
proposed in [55]. The action of the model is

S—/d“x\/zﬁ

2K2

y [L (R + f(R)) - % G D — V() + L
(49)

where ¢ is the axion scalar field endowed within the
potential V(¢). The axion field acts as a dark matter
component of the Universe, which, during the inflationary
era, was frozen at its primordial vacuum expectation value.
L .. 1s the matter Lagrangian; however, in [61], the authors
assumed the only perfect fluid to be present is the radiation
fluid, which in fact comes as a viable consideration for
the purpose of unification. Here it deserves mentioning
that the model (49) does not describe the interaction
between the ordinary/dark matter and the dark energy.
However, in the next subsection in the model (62), the
axion field i.e., the dark matter component, is considered to
be nonminimally coupled with the curvature. The form of
f(R) of action (49) is taken as

f(R) =—5— VR’ (50)

with § being a positive number in the interval 0 < 6 < 1.

Moreover the parameter M is chosen as M = 1.5 x

1073(£)~! for early-time phenomenological reasons [61]

where N is the e-foldings number. The first Friedmann

equation of the action (49) is

f(R) df'(R)
2 dt

3H? = — +3(H? + H)f'(R) - 3H

(o438 4 V). (51)

with p, being the energy density for the radiation (recall
L. consists only of radiation, as mentioned earlier) and
the scalar field is considered to be spatially homogeneous.

As described in [61], the model (49) successfully unifies
various epochs of our Universe. The demonstration goes as
follows: during the early epoch when the curvature is large,
the term R? dominates over R® as 0 < § < 1. Also in the
early stage of the Universe, the axion field was frozen in its
vacuum expectation value and for my ~ O(107'%) eV, the
axion field only contributes a very small cosmological

constant (compared to the other terms) in the equation
of motion. The axion mass in the present model [i.e.,
~O(107'%) eV] respects the latest Planck data of the
dark matter density given by Q,h> = 0.12 £ 0.001. This
result is in agreement with [92] where it was shown that the
dark matter density (i.e., Q7% = 0.12 £ 0.001) requires
the axion mass range as 107* eV < m,, < 107'% eV. for
10" GeV < ¢; <107 GeV, where ¢; is the vacuum
expectation value obtained by the axion field. Further
the “string anthropic boundary” is where Q,h> = 0.12
leads to my =~ 107" eV for ¢; = 10'® eV [92]. Here we
would like to mention that in the present paper we discuss
the axionlike particles (where the Peccei Quinn symmetry
is not broken during inflation), not the QCD axion in which
case the mass bound of the axion lies within 107> eV <
my < 1072 eV [93]. Thus the mass range relevant for
axion dark matter is wide, as demonstrated in various
earlier literature. For the present higher curvature axion
model, the axion mass comes as m,, ~ O(107'4) eV with
¢: ~ O(10'3) GeV. Coming back to Eq. (51), it is evident
that the Ricci scalar related terms dominate the inflationary
evolution, and specifically the R?, hence the model is
reduced to the R? model, which yields a viable inflationary
phenomenology compatible with the observational data
coming from Planck 2018. With the expansion of the
Universe, the Hubble parameter decreases and when
H < my, the axion starts to oscillate. Assuming a slowly
varying oscillation for the axion, it can be shown that the
axion energy density scales as py ~ a3, thus the axion
mimics the dark matter fluid with an average EoS param-
eter wy ~ 0. At late time of the Universe, the R? term in the
f(R) dominates and controls the dynamics. After demon-
strating the contribution of each term, the full Friedmann
equation is solved numerically for a wide range of redshift
(z), in particular for z = [0, 10]. Following the numerical
solution, various parameters, namely the deceleration para-

meter ¢ = —1 — - the jerk parameter j = £ — 3¢ — 2, the
29y
. 2
parameter s = % and the parameter Om(z) = (liozﬁ

have been estimated. As a result the axion-F(R) gravity
model is found to produce results very similar to the
ACDM model, in some cases almost identical for small
redshifts, and in all cases compatible results with the latest
Planck constraints on the cosmological parameters.

In order to map the axion-F(R) gravity model with the
holographic one, we put the form of f(R) = A’;—z — yR? into
Eq. (14) and upon some simple algebra, we get the
corresponding holographic cutoff in terms of L, and its
derivatives as follows:
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2 1 L\[2 L L2 L3 L, L)L, L
¢ 2:6(———”)[ 5+ (69 )5—2y5(1—5)H -4—L4+64L-2~L-3L4+2 —"]
(LIR) Lp Lp M p L LP Lp Lp Lp
1 L, L,][2 g 2
+ 6Q(L,,) [L_%, - L_% + L_p:| |:M2 (6 (L, )5 75:| - 6Q |:M2 (6 (L, ) 2)/:| s (52)
with Q(Lp) = L% -3 2—” + i—z + 2—” Similarly the cutoff in terms of the L, and its derivatives is obtained from Eq. (17) as
follows: ! v
2 1 L2 L, L} L} L, L, L
< 2:6(————f>{ 5+ (69,7 2y5(1 — 5)“ 47t 6L 2L 3704 f2f+—f}
(L) Ly L) M L L LR L L
1 Ly Lf|[2 2 .
o [+ g ) o= 60007270 - 00 - 000,77, (53

where Q(, ) = &+ 3%—!— i
3 ¥

.
72+ i—: With the cutoffs determined in the above two expressions, the axion-F(R) model (49)
f J

can be equivalently mépped to a holographic model where the Friedmann equation is of the form

3c? 1.
3H? = 2 ~F V() ). 54
(LIR)2+K (pr+2¢ + (¢) ( )
The cutoffs determined in Egs. (52) and (53) can be decomposed as
1 1 1
(L )2: DRI
IR (Lig)"  (Lir)
or the above expression can be rewritten as
Prot = Phol + Phol (55)
where p(i) =3¢ is the holographic energy density with the cutoff LY. Furthermore p(l) and p(z) are given by
hol 2 (L< )) IR hol hol
e
0 1)\2
K2(L§R))
3 (121 L, L'2L3ﬁL'£L'12 1 L, L, 12
=0 —|—=2L)|4FL 46 L -2 L3 L4 PP L Py CQ, 5L+ - 2Q,
KZ{MZ(LP L,,){ p+ L* ot T Tt [T T, Tt
3{12( 1 L'f>[ Ly L} Ly L, L/, Lf] 12 1L Ly L] 12
=9 |-——-— 4—=-65-25+35+—5"+—"|+—5Q,)|7t+5+t+ Qi) (-
M\ Ly Ly Ly Ly L L L L ML M
(56)
and
3¢ 3 1 L L, 2 L[5 L, L, L
= s = {660,001 = 0) (-~ 72) |4 v 67 -2 k- P ]
k*(Liy') K P P LP Ly Ly L; L; p
L, L
(6Q,,))”" 175{ —p+—p} +7(6Q(L,,))6_l}
L2 2L,
3 1 Lf Lf Ly Ly Ly L, L
— ¢ 16(6Q (=6 ———— —-6=5-2—=435+—5+—
K2{ (62,))™ra( )< L Lfﬂ T S S R
1 L, L
(690, 19|+ 74+ 72 600, (57)
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respectively. With such decomposition of L, the holo-
graphic Friedmann Eq. (54) can be rewritten as

1.
2 =R+ o)+ (p 438 V@) (59

Clearly pf‘?] corresponds to the R? term and thus dominates

over the pfi)l and p, term in the early epoch of the Universe.

Moreover, the axion field was frozen during the infla-
tionary era and thereby, we can safely neglect py from
Eq. (58). Hence, in the early Universe when the curvature is
large, Eq. (58) behaves as

3H? = Ppy), (59)

which successfully produces an inflationary scenario. As
the Universe expands, the Hubble parameter decreases and
from H <« my, the axion field starts to oscillate and thus
|

L 1 . .
% — _m/mﬁﬂ [1 —y6° 1 (2H? + H)5‘2{2H2(2 -
K2
2 (p + P(p)} .

Inserting the above expression of the cutoff into H = I
one can reproduce the first Friedmann Eq. (51) for
f(R) = A’fl—zz— yR®. Therefore, the cutoff in Eq. (61) also
provides a corresponding holographic model for the axion-
F(R) action (49).

2. Nonminimally coupled axion-F(R) gravity model

As an extension, we consider a second axion-F(R)
gravity model where the axion scalar field is nonminimally
coupled with the curvature, unlike to the previous model
(49) where the axion is minimally coupled with the gravity.
The action of the second axion-F(R) model is the following
[55]:

S = / d*x\/=g [ﬁ (R+ f(R.¢)) - %8,,¢8”¢ - V(9)|.
(62)

where f(R, ¢) takes the form

R2
F(R.4) =15+ HP)R (63)

where 6 is a dimensionless parameter with values in the
interval 0 < 6 < 1. It is evident that the axion field couples
with the curvature with the coupling function %(¢). In the

contributes its effect to the dynamics, along with the term
p,. Moreover, in the low curvature regime, as in the case of
the present Universe, the energy density p}(]?] dominates
over the other terms of Eq. (58). In view of these arguments,

after the inflationary scenario, Eq. (58) becomes
2 02,2 2 1)
3H® = kpyg + k7| pr + 547 +V(4) ), (60)

where p, and p, denote the radiation and matter dominated

epochs, respectively, while p}(li)l denotes the holographic

dark energy density at late times. Therefore, Eq. (58) is able
to unify various cosmological epochs of our Universe from
a holographic point of view.

Before closing this section, we would like to mention
that apart from the two aforementioned forms of Ly [i.e., in
Egs. (52) and (53)], an integral form of L for the axion-
F(R) model is also calculated and given by

5)+g(1 —5)—%5(1—5)+H(4—75+452)}

(61)

|
spatially flat FRW spacetime, the first Friedmann equation
of the action (62) becomes

_ SR )
3H = -

. Of d (0f
+3(H2+H)8—R—3HE (8_R>
1.
+5 8+ V(). (64)

with the consideration that the axion field is homogeneous
in space. Similar to the previous model, the present model
(62) is also able to unify various cosmological epochs of
our Universe like inflation, dark matter epoch, and dark
energy epoch as described in [55]. During the early epoch,
the axion field in the action (62) was frozen at its vacuum
expectation value (vev) and due to the consideration
V(p) > %h(qﬁ)R‘s, the axion field merely contributes a
cosmological constant (due to the presence of its potential)
to the equation of motion. Again for m, ~ O(107'2) eV,
the cosmological constant coming from the axion vev can
be neglected compared to the R? term which is a naturally
dominant term in the large curvature regime, as in the early
Universe. Moreover due to 0 <38 < 1, the R? term is
subdominant in comparison to the quadratic term and thus
the dynamics of the early Universe is controlled by the R?
term which is known to produce a viable inflationary era
compatible with Planck constraints. As the Universe
expands, the Hubble parameter decreases and from
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H ~mg, the axion begins its dynamical evolution.
Assuming slowly varying oscillating dynamics for the
axion, it can be shown that the energy density of the same
evolves as py ~ a~3. Thus the axion field mimics the
behavior of the dark matter of the Universe. Finally during
the low curvature regime, i.e., in the present Universe, the
term h(¢)R® starts to dominate and provides a dark energy
model. These arguments clearly indicate that the qualitative
nature of the models (49) and (62) are more or less the
same. However it is worth mentioning that the model (62)
predicts the existence of a stiff matter era for the axion field
at a primordial preinflationary era, in which case the energy

|

2 1 L 2
=6 =) |- (69,
(Lr) L, L,)] M

+ 69, [— -2+ Lp} L‘jz + (6Q(L17))5_2h(¢(a))

L2 L2 L

where Q(

density scales as py ~a™®, which is not predicted by the
model (49). Actually the prediction of a stiff matter era
from the model (62) arises due to the reason that the
aforementioned condition V/(¢) > - h(¢)R® should hold
true during or after the inflationary era. Therefore, in the
preinflationary epoch, one could have V(¢) A«K%h(d;)R’s
which in turn makes p, ~ a~® through the conservation
equation of the axion field.

Plugging the form of f(R) = A’fl—zz + h(¢)R? into Eq. (14),
we get the equivalent holographic cutoff in terms of the
particle horizon (L,) and its derivatives as

L, L)L,

LB i
52 1— 4P P _oZP_ 3P _r
a0 ) |~ h 6 8 -2 ph s e b )

p P

3| = 6020, |25+ (6920, )hp(@) | (69

is given after Eq. (52) and ¢ = ¢(a) can be determined from the conservation equation of the axion field. The

holographlc cutoff for the model (62) in terms of the L, and its derivatives is obtained from Eq. (17) as follows:

M

M

1 L, LAT2 2
+ 6Q(Lf) [Lz + Lg + L;:| [ 5+ (6Q(Lf))5_2h(¢(a))5:| — 6Q(Lf) |:— +

for Q(; ), see the expression just after Eq. (53). Clearly the

axion-F(R) model (62) is equivalent to the holographic

model with the cutoffs determined in the above two

expressions. The corresponding holographic Friedmann
3c?

equation takes the form:
+ &2 <l P+ V(¢)> :
(Lwr)? 2

The cutoffs determined in Eqs. (65) and (66) are decom-
posed as

3H? = (67)

R

0 1)\2

Kz(L§R))
3(12/1 L L L L3 L
=S (—-2)|42L+6-L-2"L-3"L4
C\M\L, L, Ly L "L L

3 2
Ly Ly

and

=6 1= ) [ - 000 niotaots o] [-a b -5h -2 4t

e [_4ﬁ_6ﬁ_2ﬁ+3ﬁ+

3 2 2 T
;L Ly Ly Ly

2 <6Q<L,f>>5-2h<¢<a>>] BNCS
1 1 1
(L )2: D) 3T 2)\2°
IR (L) (L)
and the above expression can be rewritten as
Prot = Phot + Phol (68)

where, in the spirit of Eq. (1), pl(]’gl = 2&;(2%2 Furthermore
kbR
pfi))l and pff))l are given by

L,L, L 12 1 L, L 12
)4 )4 )4 )4
L2 +L } +M29<L ) [_LZ 2 +L } __MZQ(LP>}
P P 14
L, L 12 1 L, L 12
Ly f f f
Q ——Q 7,
L)ZC + Lf:| +M2 (L ) |:L2 +L2 + Lf:| M2 (Lf)}
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p(z)_ 3c
YRR
3 5-2 1L L, L?, L; L, L)L, L,
S h( Sl N S Y S N Y G Y i
KZ{ 6(6,) <L L) ot e T e T
1 L, L
+ (692, ) h(g(a >>6L2 e R
3 Ly Ly Ly Ly Ll Ly
_K—z{—3(6§2( )22 h(p(a))s(1 -6 ( ; N 4L3 6L3 2F+3ﬁ+ 2ot
f f f f
1 Ly L
(6000 3|+ 5+ | - ) 690, (70)

I
respectively. With such decomposition of Lig, Eq. (67) can  contribute and also in the present Universe the A (¢)R® term
be rewritten as dominates over the quadratic curvature. As a result, after
inflation, Eq. (71) becomes

1.
3H2 = Kz(p}(“nlo)l +p£\f))]) + KZ <§¢2 + V(¢)> . (71) 3H2 ~ Kzl)l(12>1 + K'2 <1¢2 + V(¢)> (73)
~ o 5 s

G : .
As earlier, py; corresponds to the R* term and due to the  yhere py denotes the matter dominated epoch, while 2

arguments demonstrated just after Eq. (64), the holographic  tands for the holographic dark energy density during late

Eq. (71) behaves during the early Universe as time of the Universe. Therefore, Eq. (71) is able to unify
" various cosmological epochs of our Universe like inflation,
3H? ~ szhol, (72) dark matter, and dark energy epochs respectively, from a

holographic point of view.
which describes an inflationary scenario with good agree- Similar to an earlier case, here we also determine the
ment in terms of the Planck observations. On other hand,  integral form of Lz for the nonminimally coupled axion-

after the inflationary scenario, the axion field starts to  F(R) model, which is
|

Lir 1 / : [ - -2
— =———— [ dta®H|1 + h(¢(a))6*"'(2H* + H)°
B (#(a))6™ (2H* + )
s H? H : , &2
X42H*(2=6) +—5(1=06) ——=6(1 =8) + H(4 =75 +45°) p —— (p, +py) |- (74)
H H H
Inserting the above expression of the cutoif ;r:to H = L_"fs’ / d*x \/—[ R+ f(G) + ‘Cmat:|v (75)
one can reproduce Eq. (64) for f(R,¢) = 15+ h($)R

Therefore, the axion-F(R) model (62) can also be mapped b R 4R R4 R
to a holographic model with the cutoff determined in where G = "+
Eq. (74).

wapR*? s the Gauss-
Bonnet invariant which, in the FRW spacetime, takes the
form as

IV. HOLOGRAPHIC CORRESPONDENCE G =24H?[H? + H). (76)

OF f(G) GRAVITY . . . ) )
With this expression of G, the first Friedmann equation can
We now establish the holographic correspondence and be written as

consequently determine the holographic cutoff for f(G)
gravity whose action is given by [see [47,66] for different

3 .
aspects of f(G) gravity] 0= _sz —f(G)+Gf"(G) = 24Gf" (O H’ + prar-~ (77)
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It is interesting to note that for f(G) = G, Eq. (77) reduces
to the standard Friedmann equation for Einstein gravity.
This is expected because the Gauss-Bonnet term in 3 + 1
dimensional spacetime becomes a topological surface term
and therefore vanishes identically. However the functional
form other than f(G) =G indeed contributes in the
equation of motion as reflected from the above equation.
Comparing Eq. (77) with the holographic Friedmann

equation H? = ﬁ we can immediately conclude that
f(G) gravity (without/with matter fields) has an equivalent
holographic correspondence with the holographic cutoff

given by

3¢?
(Lir)?

and as a consequence, Eq. (77) is rewritten as 3H? =
(L?R)z + k%pma- Thereby, any arbitrary f(G) gravity can be

= K2[~£(9) + Gf'(G) — 24Gf"(G)H?].  (78)

mapped to an equivalent holographic model with the cutoff
given by Eq. (78). In a similar way as in F(R) gravity, here
we also determine Lz in two different ways—namely in
terms of the particle horizon (L) and its derivatives or in
terms of the future horizon (L;) and its derivatives. Recall
that the Hubble parameter in terms of L, or L, can be
H(L,.L,) —L—ﬁ——orH(Lf,Lf) Lf+Lf
respectively. These considerations lead to the Gauss-
Bonnet invariant as

L, 1\°(L, L, 1
J=24(Z2——) (2222 ), (79
R G S

expressed as

c? _ Jo(l —m)

L, 1\*/L, L, 1
GlLy) = 24<f )(f+ f+) (80)
Ly Ly} \Ly

Using the above expressions, the holographic cutoff in
terms of L, and its derivatives can be determined as

3¢? L L) #1(O(L
L) = f(GEr)) = GLD) £1(GE0))
dg<Lp) 11( (L) LP 1 ’
+24—dt (Gt )(L_,,_L_p) . (81)

Similarly, Lig = Lir(Ly, L 7+ L, higher derivatives of L)
takes the following form:

3c2

o)~ F(GED) = G (G Er)
IR
dgL 11 Lf 1 ’
+24—— f"(g\t )(Lf+Lf> . (82)

Equations (81) and (82) are the key equations that will
determine the equivalent holographic cutoff for any arbi-
trary f(G) gravity. As an example, we may consider a
simple model like

f(9) = fod". (83)

where f, and m are dimensionless parameters [78].
Plugging back this explicit form of f(G) into Eq. (81),
we get

(Lw)?* 3(1-L,+L,L,7? Ly

+L3 (14 8m+3mL,L,) + L2((1 = 2m)L3 + mL,)

Moreover Eq. (82) leads to the holographic cutoff for f(G)

[24(1 —L,)*(1-L,+L,L,)"

} [1—4mL} + (2-3m)L,L,

—L,2+4m+2L,L,+mL2L,). (84)

= fpG" in terms of the future horizon as

2 1- 24(1+ L)+ L, + L™ ) .
‘< = foll=m) 2{ U L) e B f)} [1+4mL3 + (2 -3m)L/L;
(Lir) 3(1+Lf+Lfo) L

Clearly the above two holographic cutoffs can mimic the
cosmological field equations and thus we established the
holographic correspondence for the f(G) = f,G™ model.

It may be observed from Eq. (83) that for m > 1/2, the
term f(G) ~ G™ dominates over the Einstein and the matter
term(s) in the large curvature regime, while for m < 1/2,
the Gauss-Bonnet function f(G) becomes the dominating
one in the low curvature regime. Here we consider a case in

|
which the contributions from the Einstein and matter terms
can be neglected compared to f(G) ~ G™. In such situation,
the scale factor evolves as a(t) = ayt" where the exponent
hy is given by hy = 1-4m. Such evolution of the scale
factor immediately leads to the effective EoS parameter as

2 2
A=l (86)

Wett = 3h 3(1 — 4m)
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where in the last line, we used the expression for h,.
Therefore, if m >0, the Universe is accelerating
(Weis < —1/3), and if m > 1/4, the Universe is in a
phantom phase (w.; < —1). Hence, depending on the
parameter m, the model f(G) = f,G" can act as infla-
tionary or as late-time accelerating model. However, this
model does not give a unified scenario of inflation and late
time dark energy epoch of our Universe. Keeping this in
mind, we will consider a different form of f(G), in the next
subsection, that is able to describe inflation and the late-
time acceleration of the Universe in a unified manner.

A. Unification of holographic inflation
with holographic dark energy

In the spirit of the power law model and the above
discussions, we consider the following model [47]:

1(G) = 1" + [2,G”. (87)

where the exponents are assumed to take values in the
intervals,

Thus in the large curvature regime, as in the early Universe,
the first term dominates compared to the second term and
the Einstein term, which in turn leads to the effective EoS

parameter as wgf) =-1+ ﬁ [using Eq. (86)]. Due to
b >1/2,

5
—3 < ng) < -1 (89)

On the other hand, when the curvature is small, as is the
case in the late Universe, the second term in (87) dominates
compared with the first term and the Einstein term and
yields

(1)
weff 3(1 —4ﬁ2) = 3 ( )

Therefore, the theoretical framework (87) produces a model
that describes the unified scenario of inflation and dark
energy epochs of our Universe. By inserting the explicit

B > 1’ l< B < l (88) form of f.(g) :flgﬁl + £,G” into Eq. (81), we get the
2 4 2 holographic cutoff in terms of L, and its derivatives as
|
A f (1 =L,+L,L) X(L, L, L,L,
2__[ 7 ] |:1_ﬂ1 (1 =p) ]
(Lwr)” 3 L (1-L,+L,L,)?
L [24(1 —-L,)*(1-L, +LPE,,)]/’2[ X(L, L, L,L, )}
== 1- 1- 91
+2 o b= Bl =B o
Equation (82) leads to the Lz as a function of the future horizon and its derivatives as
R [ e )
fo [24(1 + L)2(1+ L, + L L) Y(Lyp Ly Ly Ly)
+ ?2 f 71 f f=r 1= —Ba(1 =) f. fr=f - f2 (92)
f (1 + Lf + LPLp)
where the functions X and T are given by
X(L,.L, L, L, =4L,—8L%+4L}~3L,L2L, +I2L,L,+L,(3L,+2L,[3~L,L,),
and
Y(Lp. Ly Ly Lp) =—4L; —8L7 4L} —3L,L3L, + L3L Ly + Le(3L; + 2L ;L3 + LyLy). (93)

respectively. The cutoffs determined in Eq. (91) or Eq. (92) along with the expression H?> =

(L]7)2 can reconstruct the
IR

cosmological field equations and thus provide an equivalent holographic scenario for the considered f(G) model (87). The
cutoffs determined in Eqgs. (91) and (92) can be decomposed as

1

1

(Lr)?

+

- 2 27
(LR (LR
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or the above expression can be rewritten as

Phol = Phot + Pis (94)
where /’}(121 = ﬁf))z Furthermore 91(13 and p]g are given by
fi 240 =LA —L,+L,L, )" X(L, L, L, L,
P}(,L)lz—; - Iz i s 1—ﬂ1—ﬂ1(1—ﬁ1) - pz
K b (1-L,+L,L,)
24(1 4+ Ly)2(1+ L, + LL,)5 Y(L, L, LsL
:f_;[ (I +Ly) (L4 r Ly f)] [1_ﬂ1_ﬂ1(1_ﬁ1) (Ly. Ly Ly fl] (95)
K 7 (1+Lp+LgLy)
and
£y [24(1—=L)*(1 =L, +L,L )" X(L, L, L, L,
Phat =3 P L=y = o1 = o) P
K b (1-L,+L,L,)
2 [24(0+ L)’ (1+ Ly + LyLy) )P . . (L, Ly, Ly, Ly) o6
_F L4 _ﬂ2_ﬂ2( _ﬂ2> (1+L +L L )2 s ( )
/ f ptp
respectively. With such decomposition, the holographic ds? = —df? +a2(t)[dx2 + dy? +d22], (98)

Friedmann equation turns out to be

1 2
3H? = k(i) + pha))- (97)

Clearly pfi))l corresponds to f;G# and thus dominates over

»01(1?1 in the large curvature regime, while in the low

curvature regime p}(f))] is the dominant compared to the

other one. Therefore, during the early Universe when the

curvature is large, Eq. (97) can be approximated as 3H? ~

szfi))l which produces an inflationary scenario. On other

hand due to low curvature in the present Universe, Eq. (97)
goes as 3H? ~ sz}(l?l which provides a holographic dark
energy model during late time. Thereby the holographic

Friedmann Eq. (97) [see Egs. (95) and (96) for the

expressions of pﬁgl] is able to describe inflation and dark
energy epochs of the Universe in a unified way.

V. HOLOGRAPHIC CORRESPONDENCE
OF F(T) GRAVITY

We extend our discussion of holographic correspondence
to the generalized teleparallel cosmology, i.e., F(T) cos-
mology [94,95]. The teleparallel gravity (TEGR) is
described by the Weitzenbock connection which is deter-
mined by two dynamical variables, namely the tetrads and
the spin connection. Moreover unlike the connection in
Einstein’s general relativity, the Weitzenbock connection
comes as a curvature-free quantity. Recall, in the current
work, we consider the spatially flat FRW metric, i.e.,

with a(r) being the scale factor of the Universe. Generally
the tetrad for this metric is considered as

e = diag(1,a(t),a(t), a(1)). (99)

This form of the FRW metric is very advantageous because
its spin connection vanishes [95], and so no extra con-
tribution is needed in the F(T) field equations. For the
aforementioned tetrad in Eq. (99), the torsion scalar turns
out to be T = —6H?, with H being the Hubble parameter.

Following the same reasoning as F(R) gravity, the action
of TEGR can be generalized to F(T) gravity, in particular

1
S —2/d4x|e|F(T), (100)
2K

where e = dete; (we use e = detej in italics and e for
Napier’s constant e = 2.718281828---) and F(T) is an
analytic function of 7. Variation of the action with respect
to the tetrad in the FRW spacetime yields the following
equation:

-T) dF
~7 - 2H’—. 101

6 dTr (101)
The above differential equation can be mapped to the
holographic Friedmann equation H = ﬁ, with the holo-

graphic cutoff being
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& (F(T)-T) dF
L~ 6 Mar

(102)

As similar to earlier gravity theories, here we also deter-
mine the cutoff in terms of the particle horizon and the
future horizon. For this purpose, what we need is the
following expression:
; 2 ; 2
TL)) = —6 [ﬁ - i] . TL) = _6 [L_f + _] .
L, L, '

The above expressions along with Eq. (102) immediately
leadtothe Lig = Lig(L,, Lp, E,,, higher derivatives of L)
and Ly = Lig(Ly, Ly, Ly, higher derivativesof L;)  as
follows:

¢ _ () -1h) 2(& _ L) ‘dF
(Lr)? 6 L, L,/ dT T=1tt)
(103)
and
S S MY (TR
(Lig)? 6 Ly Lg) dT|;_qup’
(104)

respectively. The holographic cutoffs determined in
Egs. (103) and (104) constitute the cosmological field
equations and thus can provide an equivalent holographic
model for any arbitrary F(7) gravity model. As an
example, we may consider [94]

F(T)=T-a(-T)", (105)
with a being a model parameter having mass dimension
[2—2p] and p is a dimensionless quantity. Earlier it was
shown that the F(T) model in Eq. (105) (along with
suitable initial conditions) allow the Universe to evolve
from an initial phase of radiation domination to a cosmic
acceleration at late times for p # 1 [94]. With the help of
Egs. (103) and (104), we determine two different forms of
holographic cutoff for the model (105) as

2 L, 1\% L, 1\
o =erla(l+2p)(2-—) —2(Z2-—
(L) L, L L, L

P )4 P
L, 1\% L, 1)\
:6”_10((1+2p)<—f—|——> —2<—f+—> .
Ly Ly Ly Ly
(106)

The first line in the above equation gives the cutoff in terms
of the particle horizon and its derivatives, while the second
line gives the same however in terms of L, and its
derivatives. Clearly the holographic energy density with

the Lz of Eq. (106) reproduces the cosmological field
equations for the model (105) and hence drives the late-
time accelerating epoch of our Universe.

VI. CONCLUSION

In this paper, we applied the holographic principle to
describe the early and late-time acceleration epochs of
our Universe in a unified manner. Although holographic
energy density has been well studied at late times and
recently it has also been applied in inflation studies, giving
rise to holographic dark energy and inflationary realization
respectively; however, to date it has not been incorporated
to unify various cosmological epochs of the Universe. Such
“holographic unification” is demonstrated in the present
paper, in the context of F(R) and f(G) gravity theory
without/with matter fields, where the corresponding holo-
graphic cutoffs (L) are determined in terms of the particle
horizon and its derivatives or the future horizon and its
derivatives. For this purpose, we first prove the holographic
correspondence for general F(R) or f(G) theory and then
consider several specific forms of F(R) or f(G) (which are
known to be viable models as per the unification of
inflation where the dark energy epoch is concerned) to
show the “holographic unification” explicitly. One of the
models considered here is the axion-F(R) gravity in the
presence of radiation fluid, where the corresponding holo-
graphic energy density that we propose is found to unify
inflation with the radiation, dark matter, and dark energy
epochs of the Universe in a holographic context.

Moreover in the context of F(R) gravity, apart from the
two aforementioned ways (where L is determined in
terms of particle horizon or the future horizon), we also
establish the holographic cutoff in a different way, in
particular, by an integral form which along with H =
1/Lx mimics the cosmological dynamics of the corre-
sponding model. The integral form of Lz has been
discussed in earlier literature; however, these studies were
focused on inflationary models. Here we extended the
determination of the integral form of Lz to the unified
description of our Universe.

In summary, the holographic principle (where the cutoffs
are in terms of the particle horizon, or in terms of the future
horizon or in an integral form) proves to be very useful to
unify the cosmological eras of the Universe. However, our
understanding for the choice of fundamental viable cutoff
still remains to be lacking. The comparison of such cutoffs
for realistic description of the universe evolution in a
unified manner may help in better understanding the
holographic principle.
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