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We point out that the standard formulation of the cosmological constant problem itself is problematic since
it is trying to apply the very large scale homogeneous cosmological model to very small (Planck) scale
phenomenon. At small scales, both the spacetime and the vacuum stress energy are highly inhomogeneous
and wildly fluctuating. This is a version of Wheeler’s “spacetime foam.”We show that this “foamy” structure
would produce a large positive contribution to the average macroscopic spatial curvature of the Universe. In
order to cancel this contribution to match the observation, the usually defined effective cosmological constant
λeff ¼ λB þ 8πGhρi has to take a large negative value. The spacetime dynamics sourced by this large negative
λeff would be similar to the cyclic model of the universe in the sense that at small scales every point in space is
a “microcyclic universe” which is following an eternal series of oscillations between expansions and
contractions. Moreover, if the bare cosmological constant λB is dominant, the size of each “microuniverse”
would increase a tiny bit at a slowly accelerating rate during each microcycle of the oscillation due to theweak
parametric resonance effect produced by the fluctuations of the quantum vacuum stress energy tensor. In this
way, the large cosmological constant generated at small scales is hidden at observable scale and no fine-tuning
of λB to the accuracy of 10−122 is needed. This at least resolves the old cosmological constant problem and
suggests that it is the quantum vacuum fluctuations serve as the dark energy which is accelerating the
expansion of our Universe.
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I. INTRODUCTION

The cosmological constant problem is widely regarded
as one of the major obstacles to further progress in
fundamental physics (e.g., see [1–5]). This problem arises
at the intersection between quantum mechanics and general
relativity. Basically, the uncertainty principle of quantum
mechanics predicts that the quantum fields vacuum pos-
sesses a huge amount of energy. Then the equivalence
principle of general relativity requires that this huge energy
must gravitate to produce a large gravitational effect.
However, this supposed large gravitational effect is not
observed. The discrepancy between theory and experi-
ment is as high as 122 orders of magnitude depending on
the high energy cutoff and other factors. This is
undoubtedly the largest discrepancy in all of science and
is thus called the “worst theoretical prediction in the history
of physics.”
Most proposed solutions to the cosmological constant

problem are either trying to modify quantum mechanics in
some way to make the vacuum energy small, trying to
modify general relativity in some way to make the huge
energy not gravitate or even pleading the anthropic
principle. Unlike these proposals in literature, in [6,7]
we made a proposal for addressing this problem without
modifying either quantum mechanics or general relativity.

In our proposal, the vacuum energy is still large as
predicted by quantum mechanics and this huge energy does
gravitate according to general relativity. However, the
density of energy in the quantum vacuum is not a constant
as usually assumed but is constantly fluctuating with its
magnitude of fluctuation as big as its expectation value. As
a result, the gravitational effect of the quantum vacuum
would be different from what people previously thought.
The resulting spacetime sourced by quantum vacuum
would also be fluctuating and becomes highly inhomo-
geneous. Thus the gravitational effect produced by the huge
vacuum stress energy is still huge, but is confined to small
scales where each spatial point oscillates between expan-
sion and contraction with different phase from neighboring
spatial points. The expansion and the contraction almost
cancel in this effect except the expansion wins out a little bit
due to the weak parametric resonance effect produced by
the vacuum fluctuations. This tiny net expansion accumu-
lates on cosmological scale, gives the observed slowly
accelerating expansion of the Universe.
In [6,7] the calculations are performed for a highly

simplified metric:

ds2 ¼ −dt2 þ a2ðt;xÞðdx2 þ dy2 þ dz2Þ: ð1Þ
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However, quantum fluctuations posses rich structures. One
does not expect the spacetime to take the above simple
form. In this paper, we start our calculations from the most
general metric

ds2 ¼ −N2dt2 þ habðdxa þ NadtÞðdxb þ NbdtÞ; ð2Þ

where the spatial metric hab depends on both time and
space. This metric defines a 3þ 1 decomposition of the
spacetime with spatial slices ft ¼ Constantsg. The lapse
function N and the shift vector Na are not dynamical
quantities. Starting from an initial slice Σ0 defined by t ¼ 0,
different choices of N and Na give different spatial slices
but they describe the physically equivalent spacetime. We
are going to adopt the most convenient choice N ¼ 1,
Na ¼ 0, i.e., the Gaussian normal coordinates (62) to study
the dynamical evolution of the spacetime.
It turns out that this is not a straightforward generali-

zation of our old papers [6,7]. A new scenario which is
different in some crucial ways is necessary.
In the old scenario presented in [6,7], the bare cosmo-

logical constant λB in the Einstein field equations is set to
zero for the highly simplified metric (1). However, in the
new scenario we are going to present in this paper, λB can
not be set to zero for the general metric (2). The metric (2)
allows more freedoms for the spacetime fluctuations and
we find that these fluctuations would give a large positive
contribution to the average macroscopic spatial curvature of
the Universe. In order to match the observed small spatial
curvature, one has to take λB to large negative values to
cancel it. It will turn out that λB does not need to be
carefully chosen (not fine-tuned).
Therefore, we are going to keep the bare cosmological

constant λB from the beginning and take it to have large
negative values. Unlike the old scenario where we take the
high energy cutoff Λ to large positive values to obtain the
alternatively expanding and contracting spacetime at small
scales, we can obtain the similar picture for a fixed Λ if its
value is small compared to

ffiffiffiffiffiffiffiffijλBj
p

. There is also the weak
parametric resonance effect produced by the vacuum stress
energy tensor fluctuations which may drive the accelerating
expansion of the Universe. The new scenario also avoids
some of the shortcomings of the old one. This will be
explained in Sec. VIII D.
This paper is organized as follows: in Sec. II we review

the standard formulation of the cosmological constant
problem and point out where is wrong with this formu-
lation; in Sec. III we explain the approach we are going to
use in this paper; in Sec. IV we study the effect of small
scale spacetime fluctuation on the averaged spatial curva-
ture; in Sec. V we derive the key evolution equation of this
paper; in Sec. VI we study the effect of small scale
spacetime fluctuation; in Sec. VII we study the effect of
vacuum stress energy tensor fluctuation; in Sec. VIII we
discuss the issue of the definition of vacuum state in our

wildly fluctuating spacetime, the validity of our classical
treatment of the spacetime evolution, the issue of the
singularities appeared in this scenario, explain how the
new scenario avoids a couple of shortcomings of the old
one and list some open questions arose from our model; in
Sec. IX we summarize the approach and the result of this
paper and make the conclusions.

II. PROBLEMS OF THE COSMOLOGICAL
CONSTANT PROBLEM

The cosmological constant problem arises when one tries
to put quantum mechanics and general relativity together to
study the gravitational property of quantum vacuum. Since
we do not have a satisfactory quantum theory of gravity yet,
the usual assumption is the semiclassical Einstein equations

Gab þ λBgab ¼ 8πGhTabi; ð3Þ

where λB is the bare cosmological constant and the source
of gravity is the expectation value of the quantum vacuum
stress energy tensor. Vacuum is assumed to be Lorentz
invariant and thus the expectation value hTabi is supposed
to satisfy the vacuum equation of state

hTabi ¼ −hρigab; ð4Þ
where the expectation value of the vacuum energy density
hρi has to be a constant due to the conservation of the stress
energy tensor ∇aTab ¼ 0.
Then the gravitational effect of the vacuum would be

equivalent to a cosmological constant that the Einstein
equations (3) can be written as

Gab þ λeffgab ¼ 0; ð5Þ
where the effective cosmological constant λeff is defined by

λeff ¼ λB þ 8πGhρi: ð6Þ
In principle, all known and unknown fundamental matter

fields would contribute to hρi. The dominant contribution
to hρi comes from the quantum zero-point energies of these
fundamental fields. Without the knowledge of all funda-
mental fields, it is impossible to determine the exact value
of hρi. However, the standard effective field theory argu-
ments predict that, in general, hρi takes the form

hρi ∼ Λ4; ð7Þ

if we trust our theory up to a certain high energy cutoff Λ.
This result could have been guessed by dimensional
analysis and the numerical constants which have been
neglected will depend on the precise knowledge of the
fundamental fields under consideration [8]. The exact value
of the cutoff Λ is also not known. If it is taken to be the
Planck energy, i.e., Λ ¼ 1, we would have
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hρi ∼ 1; ð8Þ

where Planck units has been used for convenience.
One crucial assumption in the formulation of the

cosmological constant problem is that the spacetime is
homogeneous and isotropic, i.e., one assumes the standard
Friedmann-Lemaître-Robertson-Walker (FLRW) metric of
cosmology:

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð9Þ
The solution to the Einstein equation (5) under this metric is

aðtÞ ¼ að0ÞeHt; ð10Þ
where

H ¼ _a
a
¼ �

ffiffiffiffiffiffiffi
λeff
3

r
: ð11Þ

Depending on the initial conditions, the Hubble rate H can
be either positive or negative. The “þ” sign represents an
accelerated expanding universe while the “−” sign repre-
sents an accelerated contracting universe. The value of the
effective cosmological constant λeff can be determined by
the observed rate of the accelerating expansion of the
Universe H from the relation (11) that

λeff ¼ 3H2 ¼ 5.6 × 10−122; ð12Þ
where Planck units has been used for convenience.
Therefore, the observed value of the effective cosmo-

logical constant λeff given by (12) is different from the
theoretical value of the vacuum energy density hρi given by
(8) by 122 orders of magnitude. Thus, according to (6), one
has to fine-tune λB to a precision of 122 decimal places to
cancel hρi to match the observations. This problem of
extreme fine-tuning is the so called cosmological constant
problem [2].
Such a large discrepancy between theory and observa-

tion implies that there must be something wrong in the
above standard formulation of the cosmological constant
problem.
We have proposed that what is wrong is the neglect of the

quantum vacuum and the spacetime fluctuations in our
previous paper [6]. In the following we give a more
comprehensive argument about this point.
The problem of the standard formulation comes from

trying to apply the very large scale cosmological model to
very small (Planck) scale phenomenon. Since the large
contribution to the cosmological constant from the vacuum
is generated by very small (Planck) scale quantum fluctua-
tions, one should also look for answers directly at that scale
[9]. There is no reason to expect the cosmological FLRW
metric (9) is still applicable at such small scales. In fact, the
FLRW metric assumes homogeneous matter distribution
and spacetime, but at small scales both the matter field

vacuum and the spacetime are highly inhomogeneous and
wildly fluctuating.
First, the vacuum energy density ρ is not a constant

because thevacuum is not an eigenstate of the energy density
operator T00, although it is an eigenstate of the Hamiltonian
H ¼ R

dx3T00, which is an integral of T00 over the whole
space, i.e., T00 does not commute with H. So the average
energy density over a relatively large length scale (≫1=Λ) is
nearly constant, but, at small length scales (∼1=Λ), ρ cannot
be a constant, it is always fluctuating. In fact, the magnitude
of the fluctuation is as large as its expectation value [6]

Δρ ∼ hρi: ð13Þ

More detailed analysis shows that these fluctuations are
highly inhomogeneous at small scales [6]. In general, since
the vacuum state is not an eigenstate of the stress energy
tensor operator, the whole stress energy tensor would be
violently fluctuating and highly inhomogeneous.
Then the resulting spacetime sourced by such wildly

fluctuating and highly inhomogeneous vacuum energy is
not homogeneous. Moreover, besides these “passive”
fluctuations driven by the fluctuations of the matter field
vacuum stress energy tensor, the spacetime also experi-
ences “active” fluctuations due to the quantum nature of
gravity itself. This was already anticipated by JohnWheeler
[10–12] in 1955 that over sufficiently small distances and
sufficiently small brief intervals of time, the “very geometry
of spacetime fluctuates.” The spacetime would have a
foamy, jittery nature and would consist of many small,
ever-changing, regions. This picture of highly inhomo-
geneous fluctuating spacetime is called “spacetime foam.”
Therefore, we should not trust the standard formulation

of the cosmological constant problem which is based on the
homogeneous FLRW metric.

III. OUR APPROACH

One of the most important features of a quantum system
is the quantum fluctuation due to the uncertainty principle.
We have argued that the standard formulation of the
cosmological constant problem missed the important fluc-
tuations in the spacetime metric and in the matter fields
vacuum stress energy tensor. In principle, one should use a
quantum theory of gravity to study the effects of these
fluctuations. But unfortunately, no satisfactory quantum
theory of gravity exists yet.
For this reason, we are not trying to quantize gravity in

this paper. Instead, we are still using the classical Einstein
field equations

Gμν þ λBgμν ¼ 8πGTμν; ð14Þ
where both the spacetime metric gμν and the matter fields
stress energy tensor Tμν are classical. In order to capture the
essential feature of quantum fluctuations, both gμν and Tμν

are modeled as classical fluctuating fields. This treatment
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should at least reveal some quantum fluctuation feature of
the future satisfactory quantum theory of gravity. This
approximation is known as stochastic gravity [13].
Technically, we will employ the initial value formulation

of general relativity (see, e.g., [14,15]) where the spacetime
is decomposed as 3-dimensional spacelike hypersurfaces
plus 1-dimensional time to study the effects of the
fluctuations in the spacetime metric and in the matter
fields vacuum stress energy tensor.
Let Σt, parametrized by a time function t, be spacelike

Cauchy surfaces and na be the unit normal vector field to
Σt. The spacetime metric gab, induces a spatial metric hab
on each Σt by

hab ¼ gab þ nanb: ð15Þ
Let ta be a vector field satisfying ta∇at ¼ 1 which

representing the “flow of time” throughout the spacetime.
The lapse function N and the shift vector Na, with respect
to ta are defined by

N ¼ −tana; ð16Þ
Na ¼ habtb: ð17Þ

Then the four-dimensional metric gab can be written as

ds2 ¼ −N2dt2 þ habðdxa þ NadtÞðdxb þ NbdtÞ: ð18Þ
The extrinsic curvature Kab of the hypersurface Σt is

related to the time derivative _hab of the spatial metric by

Kab ¼
1

2
N−1ð _hab −DaNb −DbNaÞ; ð19Þ

where Da is the derivative operator on Σt associated
with hab.
In the initial value formulation, the Einstein field

equations are equivalent to six equations for the time
evolution of the extrinsic curvature

_Kab ¼−N
�
−λBhabþRð3Þ

ab þKKab−2KacKc
b

−4πGρhab−8πG

�
Tab−

1

2
habtrT

��

þDaDbNþNcDcKabþKacDbNcþKcbDaNc;

ð20Þ
plus the Hamiltonian and momentum constraint equations

Rð3Þ − KabKab þ K2 ¼ 16πGρþ 2λB; ð21Þ

DaKab −DbK ¼ −8πGJb; ð22Þ

where Rð3Þ
ab is the 3-dimensional Ricci tensor of Σ, Rð3Þ ¼

habRð3Þ
ab is the 3-dimensional Ricci scalar of Σ, K ¼ habKab

is the mean curvature of Σ, ρ ¼ Tabnanb, Jb ¼ −hcbTcana

and trT ¼ habTab are the energy density, the energy flux
and the spatial trace of the matter fields, respectively.

IV. THE SPATIAL CURVATURE FLUCTUATION

One immediate consequence of the spacetime foam
picture is that the spatial curvature Rð3Þ of the Cauchy
surface Σt at each point would be large and fluctuating.
However, the observed average spatial curvature of the
Universe is very small (flat with only a 0.4 percent margin
of error). So one natural question is can the large curvature
at small scales averages to small value macroscopically?
For a given spacetime, there are infinite ways to perform

the 3þ 1 decomposition. Different splitting leads to differ-
ent spatial curvature Rð3Þ of Σt, i.e., this question highly
depends on how we choose the spatial slice Σt. For
example, even for the flat Minkowski spacetime, there
are infinite ways to choose Σt such that Rð3Þ is not zero.
Therefore, a more precise description about this question is
for our fluctuating spacetime, can we find a 3þ 1 decom-
position such that for each Σt, the average spatial curvature
hRð3Þi approaches zero?
To answer this question, let us start from an arbitrary

Cauchy surface Σ̃. Taking the spatial average of (21) over Σ̃
we get the average spatial curvature

hRð3ÞiΣ̃ ¼ 2λeff þ hKabKab − K2iΣ̃; ð23Þ
where λeff ¼ λB þ 8πGhρi is the effective cosmological
constant in the standard formulation of the cosmological
constant problem defined by (6).
The term KabKab − K2 can be expanded as

KabKab − K2

¼ ðhachbd − habhcdÞKabKcd

¼
X
i≠j≠k

MkK2
ij þ

X
fi;jg≠fk;lg

ðhikhjl − hijhklÞKijKkl; ð24Þ

where

Mk ¼ hiihjj − ðhijÞ2; k ≠ i ≠ j; ð25Þ
is the determinant of the submatrix formed by deleting the
kth row and kth column of the 3 × 3 symmetric matrix hab,
i.e., it is the kth principal minor of hab. Since by definition
the metric matrix hab is positive definite, we have Mk > 0.
Since general relativity is time reversal invariant that for

every expanding solution there is a corresponding con-
tracting solution, i.e., if ðhab; KabÞ is allowed initial data on
Σ̃, so is ðhab;−KabÞ [9]. Thus, for fi; jg ≠ fk; lg, the
following four pairs of components

ðKij; KklÞ; ðKij;−KklÞ; ð−Kij; KklÞ; ð−Kij;−KklÞ
are equally likely to happen for a large collection of
possible choices of Σ̃. Then because in general, there is
no particular relationship between the components of the
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extrinsic curvature, we have, for the second term in (24),
the above four cases would statistically cancel each other
that the macroscopic spatial average over Σ̃:

hðhikhjl − hijhklÞKijKkliΣ̃ ¼ 0; fi; jg ≠ fk; lg: ð26Þ

Then taking the macroscopic spatial average on both sides
of (24) we obtain

hKabKab − K2iΣ̃ ¼
X
i≠j≠k

hMkK2
iji > 0 ð27Þ

for a large collection of possible choices of Σ̃. Note that the
macroscopic average does not require a very large volume:
a cubic centimeter contains some 10100 Planck-size regions.
The term hMkK2

iji in (27) is very large in the wildly
fluctuating spacetime. It gives a large positive contribution
to the average spatial curvature hRð3ÞiΣ̃ through (23). This
implies that, for a large collection of possible choices of Σ̃,
λeff has to take large negative values to make hRð3ÞiΣ̃ small
to match the observation1:

λeff ≈ −
1

2
hKabKab − K2iΣ̃ < 0: ð34Þ

It seems that this leads to another fine-tuning problem:
for the given Cauchy surface Σ̃, one has to fine-tune λB to
cancel the large term 8πGhρi þ 1

2
hKabKab − K2iΣ̃ to obtain

a small hRð3ÞiΣ̃. However, remember that our task is not to
pick an arbitrary hypersurface and tune λB to make its
average spatial curvature small. Our task is to find a
hypersurface whose average spatial curvature is small for
a given λB. This can be done by the following procedure.
We construct a family of hypersurfaces Σ̃s by continu-

ously deforming the 3-dimensional hypersurface Σ̃ in the
given fluctuating 4-dimensional spacetime. The spatial
averages hKabKab − K2iΣ̃s

would then change continu-
ously from hKabKab − K2iΣ̃ that it would lie in a range

hKabKab − K2iΣ̃s
∈ ½ã; b̃�; ã; b̃ > 0: ð35Þ

We set λB to be in the range:

λB ∈
�
−
b̃
2
− 8πGhρi;− ã

2
− 8πGhρi

�
: ð36Þ

Then there exists a hypersurface Σ0 in the family of
hypersurfaces Σ̃s such that

hKabKab − K2iΣ0
¼ −2λeff : ð37Þ

In this way, we find an initial hypersurface Σ0 for which the
average spatial curvature

hRð3ÞiΣ0
¼ 0: ð38Þ

Note that there is no need to fine-tune λB to make the
average spatial curvature of Σ0 to be zero since λB can take
any values in the range given by (36).
So far we have found an initial Cauchy surface Σ0 whose

average spatial curvature is small. Next question is whether
this feature is preserved dynamically. The evolution equa-

tion for hRð3Þ
ab i is (see, e.g., [15])

_hRð3Þ
ab i¼−hDcDcðNKabÞi− hDaDbðNKÞi

þhDcDaðNKcbÞiþhDcDbðNKcaÞi
þhNcDcR

ð3Þ
ab iþhRð3Þ

ac DbNciþhRð3Þ
cb DaNci ð39Þ

Although the spacetime is fluctuating, it should have the
same property everywhere. So that there is not a special
spatial direction we should have the spatial averages

hDaKi ¼ 0; ð40Þ

hDaKbci ¼ 0; ð41Þ

1It is interesting to apply the same argument to the old highly
simplified metric (1) we used in [6]. In this case, the only nonzero
components of the extrinsic curvature are K11 ¼ K22 ¼ K33 ¼
a _a so that we have

KabKab − K2 ¼ −6
�
_a
a

�
2

: ð28Þ

Then the spatial curvature

Rð3Þ ¼ 2

�
λB þ 8πGρ − 3

�
_a
a

�
2
�

ð29Þ

¼ −
2

a2

�
∇
�∇a

a

�
þ ∇2a

a

�
; ð30Þ

where we have used the 00 component of the Einstein equation
G00 ¼ 0 when deriving (30) from (29). For a large collection of
initial data on the hypersurface t ¼ 0, since there is not a special
spatial direction, the average of the gradient terms of a in (30) over
the hypersurface t ¼ 0 should approaches zero. Sowewould have

hRð3Þi ¼ 2

�
λeff − 3

��
_a
a

�
2
��

≈ 0; ð31Þ

and thus

λeff ≈ 3

��
_a
a

��
2

> 0: ð32Þ

In [6], λB is set to zero, so that the above condition requires a
positive vacuum energy density

8πGhρi ≈ 3

��
_a
a

��
2

> 0 ð33Þ

to make sure hRð3Þi ≈ 0.
So in this case we get opposite result for the sign of λeff . In
addition, hρi can be any sign in this paper since we can always
adjust λB to make hRð3Þi ≈ 0.
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hDaRð3Þi ¼ 0; ð42Þ

hDcR
ð3Þ
ab i ¼ 0: ð43Þ

We can also choose N, Na such that the spatial averages

hNi ¼ 1; ð44Þ

hNai ¼ 0; ð45Þ

hDaNi ¼ 0; ð46Þ

hDaNbi ¼ 0: ð47Þ

Then since there is no particular relationships between N

and K (or Kab), Na and Rð3Þ
ab , all the terms on the right-hand

side of (39) should be zero that we obtain

_hRð3Þ
ab i ¼ 0: ð48Þ

Therefore, if hRð3Þ
ab i ¼ 0 at the initial hypersurface Σ0, it

should still be zero afterwards.
The evolution equation for hRð3Þi can be obtained from

(39) that

_hRð3Þi ¼ −2hNKabRð3Þ
ab i − 2hDaDaðNKÞi

þ 2hDaDbðNKabÞi þ hNaDaRð3Þi: ð49Þ

Following similar arguments we have the last three terms
on the right side of (49) are zero. As for the first term, since

we have hRð3Þ
ab i ¼ 0 and there is no particular relationship

between the extrinsic curvature Kab, which is given by the

time derivative of hab, and the Ricci curvature Rð3Þ
ab , which

is given by the spatial derivatives of hab, we would also

have hNKabRð3Þ
ab i ¼ 0. Thus we reach the result

_hRð3Þi ¼ 0; ð50Þ

i.e., the small averaged macroscopic spatial curvature
hRð3Þi is preserved with time.
Therefore, we have found a spacetime foliation fΣtg

that, the average spatial curvature hRð3ÞiΣt
approaches zero

for each Σt.

V. THE EVOLUTION EQUATION

In the last section we have shown that the randomly
fluctuating foamy structure of the spacetime would give a
large positive contribution to the averaged spatial curvature.
In order to obtain the observed small spatial curvature of
the Universe, λeff has to take large negative values to cancel

this contribution. Next we study the dynamics of the
spacetime when λeff takes the required negative value.
To start, we set λeff to satisfy (34) for the given initial

hypersurface Σ0 and a set of randomly chosen initial data
ðhab; KabÞ on it.
Taking the trace of (20) we can obtain the evolution

equation for the mean curvature K:

_K ¼ −Nð−3λB þ Rð3Þ þ K2 − 12πGρþ 4πGtrTÞ
þDaDaN þ NaDaK: ð51Þ

Combining the above equation (51) with the Hamiltonian
constraint (21) gives

_K ¼ −N½−λB þ KabKab þ 4πGðρþ trTÞ�
þDaDaN þ NaDaK: ð52Þ

It is useful to split the extrinsic curvature Kab into the
trace free part σab and the trace part K:

Kab ¼ σab þ
1

3
Khab: ð53Þ

The tracefree part σab is called the shear tensor, its time
evolution can be obtained by combining (20) and (51):

_σab ¼ −N
�
1

3
Kσab − 2σacσ

c
b þ Rð3Þ

ab −
1

3
Rð3Þhab

− 8πG

�
Tab −

1

3
habtrT

��
þDaDbN −

1

3
habDcDcN

þ NcDcσab þ σacDbNc þ σcbDaNc: ð54Þ

Plugging (53) into (52) gives

_K ¼ −N
�
−λB þ 1

3
K2 þ 2σ2 þ 4πGðρþ trTÞ

�

þDaDaN þ NaDaK; ð55Þ

where σ2 ¼ 1
2
σabσ

ab. From (19) we have that the mean
extrinsic curvature

K ¼ 1

N

�
_h
2h

−DaNa

�
; ð56Þ

where h ¼ detðhabÞ is the determinant of the spatial metric.
The lapse function N and the shift vector Na are not

dynamical quantities, solutions with different choices of N
and Na are physically equivalent so that N and Na can be
freely chosen. We first choose the shift vector Na ¼ 0.
Then the metric (18) becomes

ds2 ¼ −N2dt2 þ habdxadxb: ð57Þ
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In this metric, (56) becomes

K ¼ 1ffiffiffi
h

p d
dτ

ffiffiffi
h

p
; ð58Þ

where dτ ¼ Ndt is the proper time of the Eulerian observer
defined by x ¼ Constant. Note that τ is different for
different Eulerian observers. Since

ffiffiffi
h

p
dx1 ∧ dx2 ∧ dx3

is the spatial volume element, (58) means that K is the
local volume expansion rate of the 3-dimensional hyper-
surface Σt observed by the Eulerian observer.
We can define a new quantity—the local scale factor

aðt;xÞ by

h ¼ a6: ð59Þ

It locally describes the relative “size” of space measured by
the Eulerian observer at each point, which is a generali-
zation of the scale factor aðtÞ in the usual homogeneous
FLRW metric (9). The difference is that now a is also
spatial dependent to be able to describe the fluctuating
spacetime. Then we would have K ¼ 3

a
da
dτ and from (55) we

obtain the evolution equation for a observed by the
Eulerian observer:

d2a
dτ2

þ1

3

�
2σ2−λBþ4πGðρþ trTÞ−DaDaN

N

�
a¼0: ð60Þ

The term DaDaN=N in (60) comes from the lapse
function N. It represents the effect of external force acting
on the Eulerian observer. In fact, the Eulerian observer has
acceleration ai ¼ DiN=N (see Eq. (3.17) in [16]) which is
tangent to the spatial slices Σt. There are external forces
acting on the Eulerian observers to maintain their constant
spatial positions. We should exclude the effect of these
external forces on the evolution of a so that a purely
describes the gravitational effect produced by the terms σ2,
λB and ρþ trT. To do this, we need to choose N to be
spatially independent to exclude the effect of the external
forces or at least to choose N in such a way that the average

�
DaDaN

N

�
¼ 0 ð61Þ

to make sure the average effect of these external forces
zero.
The simplest choice is N ¼ 1, then the coordinate (57)

reduces to the Gaussian normal coordinate

ds2 ¼ −dt2 þ habdxadxb: ð62Þ

Then the evolution equation (60) becomes

äþ Ω2a ¼ 0; ð63Þ

where

Ω2 ¼ 1

3
ð2σ2 − λB þ 4πGðρþ trTÞÞ: ð64Þ

For simplicity, we are going to use the coordinate (62) in
the following sections. Other choices of N describe
physically equivalent spacetime. In addition, our analysis
using the coordinate(62) will also apply to the coordinate
(57) since the only difference comes from the term
DaDaN=N whose average effect is zero.
For convenience, we rewrite Ω2 as

Ω2 ¼ 1

3
ð2σ2 − λ0effÞ þ F; ð65Þ

where λ0eff and F are defined by

λ0eff ¼ λB − 4πGhρþ trTi ð66Þ

and

F ¼ 4πG
3

ðρþ trT − hρþ trTiÞ: ð67Þ

Note that by definition we have the expectation value

hFi ¼ 0: ð68Þ

λ0eff is related to λeff by

λ0eff ¼ λeff − 4πGh3ρþ trTi ð69Þ

If the usual vacuum equation of state (4) is assumed,
we have

λ0eff ¼ λeff : ð70Þ

Whether the vacuum equation of state (4) is still valid at
very small (Planck) scales is controversial. The standard
formulation of the cosmological constant problem assumes
that it is valid. Later it will be clear this is not important,
whether (4) is valid or not does not affect our conclusion.
Note that the evolution equation (63) does not contain

spatial derivatives of the metric. Thus it is an ordinary
differential equation whose solution at each spatial point x
depends only on the initial values að0;xÞ, _að0;xÞ and the
time evolution of Ω2ðt;xÞ at x. The solution to aðt;xÞ at
different spatial points explicitly decouple with each other,
although implicitly they are not independent since there are
correlations between Ω2ðt;xÞ at different spatial points.

VI. THE EFFECT OF SPACETIME FLUCTUATION

In order to understand the physical mechanism better,
especially the role played by the spacetime fluctuation, we
first exclude the term F in the evolution equation (63)
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which represents the vacuum stress energy tensor fluc-
tuation, i.e., use the expectation value of the vacuum stress
energy tensor in the Einstein equation.
Note that excluding vacuum stress energy fluctuation

does not exclude spacetime fluctuation. As explained at the
end of Sec. II that the vacuum stress energy tensor
fluctuation drives the “passive” fluctuation of the space-
time. However, The spacetime still “actively” fluctuates at
small scales due to the quantum nature of gravity itself.
When excluding F, the evolution equation (63) becomes

äþ 1

3
ð2σ2 − λ0effÞa ¼ 0: ð71Þ

The evolution equation for the shear σ2 in the above
equation (71) can be obtained by taking time derivative
of σ2 and using (54):

ðσ2Þ· ¼ −2Kσ2 − Rð3Þ
ab σ

ab; ð72Þ

where the fluctuation of the vacuum stress energy tensor
has also been excluded in the calculation.
If the vacuum equation of state (4) is assumed, we would

have λ0eff ¼ λeff ¼ λB þ 8πGhρi < 0. In the following, we
are going to study the spacetime dynamics given by the
above coupled equations (71) and (72) when λ0eff < 0.2

Since σ2 > 0 and−λ0eff > 0 thatΩ2 ¼ 1
3
ð2σ2 − λeffÞmust

be positive, (71) describes an oscillator with varying
frequency. Thus the solution for a must be oscillating
around 0. Correspondingly, the local volume expansion rate
K ¼ 3 _a

a would also oscillate. It ranges from −∞ to þ∞.
K > 0 represents expansion while K < 0 represents con-
traction. It jumps discontinuously from −∞ to þ∞ each
time when a goes across 0. In this process, the determinant
h ¼ a6 ≥ 0 decreases continuously to 0 and then bounces
back to positive values as a crosses 0 (see Fig. 1).
Physically, this means, on average, the space locally
collapses to zero size and then immediately bounces back.
It will then collapse and expand again and again, i.e.,
locally, the space is alternatively switching between expan-
sion and contraction.
The oscillation behavior of K would also lead to

the oscillation of the shear σ2. The average value of the

second term Rð3Þ
ab σ

ab in (54) is zero. So if we neglect this
term, we would obtain that the average evolution of σ2

roughly goes as

σ̄2ðt;xÞ ∼ σ2ð0;xÞe−2
R

t

0
Kðt0;xÞdt0 : ð73Þ

As K > 0, i.e., as a is moving away from its equilibrium
point a ¼ 0, σ̄2 is decreasing to a minimum until jaj
reaches maximum. AsK < 0, i.e., as a is moving toward its
equilibrium point a ¼ 0, σ̄2 is increasing to a maximum
until jaj reaches 0. In fact, since K ¼ 3 _a

a ¼ �∞ at a ¼ 0,
we have σ2 ¼ þ∞ at a ¼ 0.
The divergences of K, σ2 signal that the turning points

a ¼ 0 at which the space switches from contractions to

0 t

a

0 t

h

0

3H

t

K

FIG. 1. Schematic plots of the oscillations of the local scale
factor a, the local determinant h ¼ a6 and the local average
expansion rate K ¼ 3 _a

a. As a goes across 0, h decreases
continuously to 0 and then increases back to positive values,
K jumps discontinuously from −∞ to þ∞. The amplitude of a

grows exponentially with a tiny exponent H ¼ αΛe−β
ffiffiffiffiffi
−λB

p
Λ

[Eq. (94)] which gives the slowly accelerating expansion of h
and small average value 3H of K.

2If (4) is not valid at small scales, λ0eff may not be negative.
However, the most interesting case we are going to study in the
next section VII is when λB is dominant over the matter fields
vacuum stress energy fluctuation. In this case, λ0eff has to be
negative no matter (4) is valid or not.
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expansions are actually spacetime singularities. These
singularities are very similar to the big bang singularity.
The alternatively expanding and contracting picture is
similar to the cyclic model (or oscillating model) of the
universe in the sense that every point in space is a
“microcyclic universe” which is following an eternal series
of oscillations. Each “microuniverse” begins with a “big
bang” and ends with a “big crunch” and then a “big
bounce” happens which bounces the “crunch” back to a
new “bang” that the cycle starts over again (see Fig. 2). We
are going to discuss the singularities in more detail later in
Sec. VIII C.
The shear σ2ðt;xÞ measures the local anisotropy of the

spacetime. In fact, the dynamics given by the local scale
factor aðt;xÞ is only a description after averaging over
different directions. Statistically, the most commonly hap-
pening picture in the wildly fluctuating spacetime is that the
space is locally expanding in some directions and con-
tracting in others, with the directions of expansion and
contraction constantly changing. An initial sphere in this
fluctuating spacetime will quickly distort toward an ellip-
soid with principle axes given by the eigenvectors of σab,
with rate given by the eigenvalues of σab [14].
So far, we have analyzed the local dynamics of the scale

factor a and the shear σ2 at a fixed spatial point x. At each
such point x, the space is alternatively oscillating between
expansion and contraction in every direction and the phases
of the oscillations in different directions are commonly
different. The global structure of the spacetime would be
these small local structures “glued” together.
Since on the initial Cauchy surface Σ0, K > 0 and K < 0

are equally possible initial data, we have that in general the
initial conditions að0;xÞ and _að0;xÞ for the oscillator
equation (71) would take different values at different spatial
points. So the phases of these oscillations of aðt;xÞ at
different spatial points would be different. In other words,
at any instant of time t, the space would be expanding at
one point and contracting at neighboring points and vice
versa. These phase differences result in a large cancellation
between the local expansions and contractions when
performing the macroscopic average over the hypersurfaces
Σt. The macroscopic average does not require a very large
volume: a cubic centimeter contains some 10100 Planck-
size regions. Therefore, we have the average hKi over Σt
approaches 0 for any sensible macroscopic average pro-
cedure. The observed macroscopic volume of the space
would then approach a constant:

V ¼
Z

d3x
ffiffiffi
h

p
¼

Z
d3xjaj3 ¼ Constant: ð74Þ

Thus in this spacetime the large cosmological constant λeff
has huge effect at small scale but becomes hidden mac-
roscopically. This resolves the “old” cosmological constant

problem of explaining why the large vacuum energy does
not have large observable gravitational effect.

VII. THE EFFECT OF VACUUM STRESS ENERGY
TENSOR FLUCTUATION

In the last section the vacuum stress energy tensor
fluctuation term F is excluded. We have shown that the

FIG. 2. Top: “microcyclic universes” shown in a synchronous
reference frame. The curves a ¼ 0 are singularities where micro
“big bounces” happen. The world lines of particles at rest relative
to the reference system are vertical lines x ¼ Constants. They are
incomplete geodesics which end at the singularities. Along each
segment of the geodesics between the singularities is a “micro-
universe” which starts with a “microbig-bang” and ends with a
“microbig-crunch”. Bottom: homogeneous cyclic universes
shown in a synchronous reference frame (FLRW). The horizontal
lines a ¼ 0 are singularities where the “big bounces” happen. The
world lines of particles at rest relative to the reference system are
vertical lines x ¼ Constants. They are incomplete geodesics
which end at the singularities. The whole space simultaneously
starts with a big bang and ends with a big crunch.
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huge gravitational effect of the expectation value of the
large vacuum energy can be hidden by small (Planck) scale
spacetime fluctuations when λ0eff takes large negative
values. It addresses the old cosmological constant problem
but does not explain the observed accelerating expansion of
the Universe.
In this section we study the effect of the fluctuation term

F on the spacetime dynamics and show that it can serve as
the “dark energy” to accelerate the expansion of the
Universe.
F is a linear combination of the components of the

vacuum stress energy tensor. It receives contributions from
all known and unknown fundamental fields. We are going
to use a free massive scalar field ϕ as an example to
illustrate the key fluctuation properties of F relevant to the
dynamics of the system.
In principle, ϕ should be treated as a quantum

operator ϕ̂. However, as explained in Sec. III that we do
not have a satisfactory quantum theory of gravity yet. For
this reason, we are still using the classical Einstein
equation (14) in which both the metric and the matter
fields are classical to study how matter fields vacuum
fluctuations affect the spacetime dynamics. In order to do
this, we are going to model the quantum field ϕ̂ as a
classical fluctuating field ϕ to simulate the quantum
fluctuations of F.
At each spatial point x, quantum fields can be viewed as

an infinite collection of harmonic oscillators. In particular,
ϕ̂ can be expressed as

ϕ̂ðt;xÞ¼
Z

d3k

ð2πÞ3=2
1ffiffiffiffiffiffi
2ω

p ðâke−iðωt−k·xÞþ â†ke
þiðωt−k·xÞÞ

¼
Z

d3k

ð2πÞ3=2
�
x̂kcosðωt−k ·xÞþp̂k

ω
sinðωt−k ·xÞ

�
;

ð75Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and we have used the relations

âk ¼
ffiffiffiffi
ω

2

r �
x̂k þ i

p̂k

ω

�
; â†k ¼

ffiffiffiffi
ω

2

r �
x̂k − i

p̂k

ω

�
ð76Þ

to obtain the last line of (75). The vacuum state
defined by

âkj0i ¼ 0; for any k; ð77Þ

is not an eigenstate of the operator coefficients x̂k
and p̂k. The probability densities for x̂k and p̂k to take
values xk and pk are given by the square of their wave
functions

hxkj0i ¼
�
ω

π

�1
4

e−
ωx2

k
2 ; ð78Þ

hpkj0i ¼
1

ðπωÞ14 e
−
p2
k

2ω : ð79Þ

Note that the vacuum state defined by (77) is still
Minkowski vacuum, this will be justified in Sec. VIII A.
A natural way to simulate the quantum fluctuations of ϕ̂

is letting the operator coefficients x̂k and p̂k become
stochastic constants xk and pk:

ϕðt;xÞ ¼
Z

d3k

ð2πÞ3=2
�
xk cosðωt − k · xÞ

þ pk

ω
sinðωt − k · xÞ

�
; ð80Þ

where the probability density distributions of xk and pk are
given by the square of the wave functions (78) and (79).
This treatment is similar to the Wigner-Weyl description of
quantum mechanics we used in [6].
The stress energy tensor Tab is a functional of ϕ and∇aϕ

defined by

Tab ¼ ∇aϕ∇bϕ −
1

2
gabð∇cϕ∇cϕþm2ϕ2Þ: ð81Þ

Direct calculation shows that ρþ trT ¼ 2 _ϕ2 −m2ϕ2 and
thus from (67) we obtain that the contribution to F
from ϕ is

F ¼ 4πG
3

ð2 _ϕ2 −m2ϕ2 − CÞ; ð82Þ

where C ¼ h2 _ϕ2 −m2ϕ2i is a constant to make sure
hFi ¼ 0. Note that the expression (82) for F does not
explicitly depend the metric gab.
At each spatial point x, F can be regarded as a time

dependent function FxðtÞ given by (82) and (80). For
convenience, we rewrite the key dynamical equation (63)
here as

äþ
�
1

3
ð2σ2 − λ0effÞ þ FxðtÞ

�
a ¼ 0: ð83Þ

The evolution equation for σ2 now becomes

ðσ2Þ· ¼ −2Kσ2 − Rð3Þ
ab σ

ab þ 8πGTabσ
ab: ð84Þ

It turns out that the case when F is relatively small
compared to −λ0eff is most interesting. In this case, the
vacuum stress energy tensor fluctuation serves as a small
perturbation of the picture of the microcyclic “universes”
we obtained in the last Sec. VI.
The standard formulation of the cosmological constant

problem assumes the effective field theory which is valid
only up to some certain high energy cutoff Λ. We adopt the
same assumption in this paper and impose the cutoff Λ to
the quantum field expansion (75). Then the magnitude of
the fluctuation of F goes as ∼GΛ4 and F is relatively small
means
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−λ0eff ∼ −λB ≫ Λ2 ≥ GΛ4; assuming Λ ≤ EP; ð85Þ

where EP is the Planck energy.
Plugging (80) into (82) one can obtain a complicated

expression for FxðtÞ which can be written as the following
form:

FxðtÞ ¼
Z

2Λ

0

dγðfxðγÞ cosðγtÞ þ gxðγÞ sinðγtÞÞ; ð86Þ

where fx and gx are some integrals of xk and pk over k.
FxðtÞ fluctuates around zero. This fluctuation serves as

an external force which changes the parameter Ω2 of the
oscillation system. A dynamical system with time-varying
parameters is likely to exhibit parametric resonance phe-
nomenon. A simplest example of parametric resonance is
the following harmonic oscillator with periodically per-
turbed frequency:

ẍþ ðω2
0 þ ϵ cosðγtÞÞx ¼ 0: ð87Þ

If ϵ ¼ 0, the unperturbed solution to (87) is simply

xðtÞ ¼ A cosðω0tþ θÞ; ð88Þ
where A, θ are integration constants which are determined
by the initial values xð0Þ, _xð0Þ. When ϵ ≪ ω2

0 is small but
nonzero, the parametric resonance would happen if the
perturbation frequency γ closes to 2ω0=n, where n is a
positive integer, and the solution perturbed from (88)
becomes unstable. In this case, the amplitude of the
oscillation grows exponentially that the perturbed unstable
solution is asymptotic to

xðtÞ ∼ estA cos ðω0tþ θÞ; s > 1: ð89Þ
The strength of the parametric resonance characterized by
the exponent s decreases as n increases, i.e., as the
perturbation frequency γ becomes small compared to the
oscillator x’s natural frequency ω0. This is easy to under-
stand since as n → ∞, γ → 0 so that (87) reduces to an
ordinary harmonic oscillator with constant frequency
which has no parametric resonance behavior.
Compared to (87), (83) is more complicated in two

aspects: (i) the external perturbation term ϵ cosðγtÞ in (87)
is periodic which contains only one frequency γ while the
corresponding term FxðtÞ in (83) is not strictly periodic
which contains a continuous spectrum of frequencies
between 0 to 2Λ; (ii) the natural frequency term ω2

0 in
(87) is constant while the corresponding term 1

3
ð2σ2 − λ0effÞ

in (83) is not constant due to the varying shear σ2 whose
evolution follows (84).
Although there are the above two differences, we argue

that the dynamical evolution of (83) would exhibit similar
parametric resonance phenomenon.
For simplicity, we first ignore the second difference by

studying the following simpler equation in which the shear
term σ2 in (83) has been dropped:

äþ
�
−
λ0eff
3

þ FxðtÞ
�

a ¼ 0: ð90Þ

Similar to (87) that if we set FxðtÞ ¼ 0 in (90), the
solution is

aðt;xÞ ¼ Ax cos

� ffiffiffiffiffiffiffiffiffiffiffi
−
λ0eff
3

r
tþ θx

�
; ð91Þ

where Ax, θx are integration constants which are deter-
mined by the initial values að0;xÞ, _að0;xÞ.
The occurrence of the parametric resonance does not

require a strictly periodic perturbation on the parameter Ω2.
The natural frequency of (90) is Ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ0eff=3

p
. There

always exists an integer n0 such that for any n ≥ n0, FxðtÞ
contains the frequencies 2Ω0=n ∈ ð0; 2ΛÞ which may
excite resonances. So the parametric resonance should
always happen and the perturbed solution to (90) is
asymptotic to

aðt;xÞ ∼ eHtAx cos

� ffiffiffiffiffiffiffiffiffiffiffi
−
λ0eff
3

r
tþ θx

�
; ð92Þ

where H > 0 characterize the strength of the
parametric resonance. The straight lines with positive
slope in Fig. 3 of the numerical simulation of (90) show
that the parametric resonance does happen. The expo-
nent H → 0 as −λB → þ∞ since the relative magnitude
of the perturbation term FxðtÞ to −λ0eff=3 decreases to
zero. This property is also shown in Fig. 3 by the
decreases of the slopes of the straight lines as the value
of −λB increases.
We can use the same method we used in [6] to estimate

more accurately how H depends on λB and Λ. Notice that
the small perturbation FxðtÞ is also adiabatic since the time
scale of variations of FxðtÞ is t ∼ 1=Λ, which is much
smaller than a’s oscillation period T ∼ 1=

ffiffiffiffiffiffiffiffi
−λB

p
. During

each period of oscillation of a, the frequency Ω2 ¼ − λ0eff
3
þ

FxðtÞ almost does not change so that this is an adiabatic
process.3 Then follow the same steps of Sec. V C of [6]

3The timescale of variations of FxðtÞ can be obtained from the
time-energy uncertainty relation

ΔEΔt ∼ 1: ð93Þ
The energy scale of the quantum matter fields is just the cutoff
scale Λ. As the change in energy is significant, i.e., ΔE ∼ Λ, we
have Δt ∼ 1=Λ. This means FxðtÞ would become appreciably
different after a time interval of the order 1=Λ. This is easy to
understand since the dominant contribution to the stress-energy
tensor comes from field modes of high frequencies close to Λ.
This result can also be obtained by calculating the correlation
functions of the stress energy tensor (see [6] for a direct
calculation).
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with Ω ∼
ffiffiffiffi
G

p
Λ2 replaced by Ω ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−λB=3

p
, we

obtain that

H ¼ αΛe−β
ffiffiffiffiffi
−λB

p
Λ ; ð94Þ

where α, β > 0 are two dimensionless constants whose
values depend on the detailed fluctuation property of FxðtÞ.
The result (94) is easy to understand. Larger

ffiffiffiffiffiffi
−λB

p
Λ means

smaller and slower fluctuations of the perturbation FxðtÞ
compared to the oscillations of the system and thus a
smaller rate of change H. The extra factor Λ in front of

e−β
ffiffiffiffiffi
−λB

p
Λ is because faster fluctuations gives stronger para-

metric resonance. The fitting result Fig. 4 gives an
estimation that α ∼ e18, β ∼ 14 if the matter fields are
one Boson field and one Fermion field.
Now we put the shear term σ2 back to the evolution

equation (83). The dynamics of (83) is way more compli-
cated than (90). However, the parametric resonance should
still occur. The root cause of the parametric resonance is
that, for certain frequencies of the external perturbations on

the parameter Ω2, the restoring force does more positive
work as the oscillator moves toward the equilibrium point
than negative work as the oscillator moves away from the
equilibrium point. During each cycle of the oscillation,
the energy transferred to the system is proportional to the
oscillation amplitude. This leads to the exponential growth
of the amplitude. After putting the σ2 term back, the
oscillation of a is no longer sinusoidal and the frequency
of the oscillation becomes larger. The exact frequencies
which may excite the resonances are no longer the same as
(90). But since FxðtÞ contains a continuous spectrum of
frequencies between 0 to 2Λ, there should always exist new
resonance frequencies lie between 0 to 2Λ. For this reason,
we argue that the parametric resonance still always occur
and the perturbed solution to (83) is asymptotic to

aðt;xÞ ∼ eHta0ðt;xÞ; H > 0; ð95Þ

where a0ðt;xÞ is the solution to (71) where the vacuum
stress energy tensor fluctuation is excluded. Then the
observed macroscopic volume of the space would be

VðtÞ ¼
Z

d3jaj3 ¼ e3HtVð0Þ: ð96Þ

SoH represents the Hubble expansion rate produced by the
vacuum stress energy tensor fluctuations. This produces an
accelerated expanding universe. Moreover, we would have

H → 0; as −λB → þ∞; ð97Þ

since the relative magnitude of the perturbation term FxðtÞ
to the term 1

3
ð2σ2 − λ0effÞ decreases as λB increases.

Therefore, for any cutoff value of Λ, there is always some
value for λB to match the observed small H. This suggests
that the vacuum stress energy tensor fluctuation serves as
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FIG. 3. Numerical simulation for the dependence of log jaj on
the bare cosmological constant λB. We take the cutoff Λ ¼ 1. 400
samples are averaged for each line. Planck units are used for
convenience. The matter fields are one boson field and one
fermion field. The magnitude of hρþ trTi for both fields are set
equal but with opposite sign. It shows that the Hubble expansion
rate decreases as −λB increases. We use the same numerical
method described in [6]. (This numerical simulation actually
comes from Chapter 10.3 of the thesis [17]. The original idea of
taking the bare cosmological constant to large negative values
actually started in [17]. We abandoned the idea there because the
problem of large spatial curvature explained in Chapter 10.5 of
[17]. Fortunately, we found later that this is not a problem in the
general approach we used in this paper. It was a problem in [17]
because we pre-assumed that the metric took the form of
Eq. (10.33), which is not true for the general fluctuating
spacetime metric (18) we are studying in this paper. In fact,
we have shown in Sec. IV of this paper that in our fluctuating
spacetime the bare cosmological constant has to take large
negative values to make the observed macroscopic spatial
curvature small.)
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FIG. 4. Plot of logH over
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p
when the matter fields are one

Boson field and one Fermion field. The fitting result shows that
α ∼ e18, β ∼ 14. Planck units are used for convenience. The cutoff
Λ ¼ 1.
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the “dark energy” which is accelerating the expansion of
our Universe.
Since the basic underlying physical mechanism of the

parametric resonance is the same, the dependence of H on
λB and Λ should also take the form of (94), but with
different values of α and β. Then instead of the usual
relation (6) between the effective cosmological constant λeff
and the bare cosmological constant λB, (94) gives a new
relation:

λðnewÞeff ¼ 3H2 ¼ 3α2Λ2e−2β
ffiffiffiffiffi
−λB

p
Λ : ð98Þ

This relation can be rewritten as

−
Λ
2β

logðλðnewÞeff Þ ¼
ffiffiffiffiffiffiffiffi
−λB

p
−

Λ
2β

logð3α2Λ2Þ: ð99Þ

The numerical simulation shown in Fig. 3 and Fig. 4
gives an estimation that α is somewhere between e10 to e20,
β is somewhere between 10 to 20. Then if we take Λ ¼ 1
(for convenience, we use Planck units here), we have

−
Λ
2β

logðλðnewÞeff Þ ∼ 10;
Λ
2β

logð3α2Λ2Þ ∼ 1: ð100Þ

In this case, since the above two terms are only different by
1 order of magnitude, the term

ffiffiffiffiffiffiffiffi
−λB

p
only needs to be

tuned to an accuracy of 10−1 or λB only needs to be tuned to
an accuracy of 10−2 to satisfy (99).
In general, the difference in the order of magnitude

between the two terms − Λ
2β logðλðnewÞeff Þ and Λ

2β logðα2Λ2Þ in
(99) is determined by the value of Λ, α and β. Λ can take
any reasonable value smaller than 1. The values of α and β
are determined by the detailed properties of quantum
vacuum fluctuations. Basically, for fixed Λ, the difference
becomes smaller if α decreases and β increases. Because of
the exponential suppression, the extreme fine-tuning of the
bare cosmological constant λB to match the observation is
not needed.

VIII. DISCUSSIONS

A. The issue of the definition of vacuum state

Defining the vacuum is actually not trivial in curved
spacetime. In Minkowski spacetime, the vacuum state is
uniquely defined as the state with lowest possible energy.
However, there is no well defined vacuum state in a general
curved spacetime. This is already an issue in the standard
formulation of the cosmological constant problem,
although it is rarely mentioned in the literature.4 The
spacetime we are dealing with in this paper is sourced
by the bare cosmological constant λB and the matter fields
vacuum stress-energy tensor. This spacetime is wildly

fluctuating like Wheeler’s spacetime foam that no vacuum
state definition in the usual sense is possible.
However, we can still define a state which is “effec-

tively” a Minkowski vacuum state below the high energy
cutoff Λ. The spacetime we are interested in is dominated
by the bare cosmological constant λB. Its fluctuation
happens at the length scale 1=

ffiffiffiffiffiffiffiffi
−λB

p
, which is much smaller

than the length scale 1=Λ of the field modes. Then the
similar argument we made in [6] also applies here that the
corrections to the field modes with frequencies below Λ
would be small. In other words, the spacetime should still
looks like Minkowski for low frequency field modes. Long
wavelength fields ride over the Wheeler’s foam seeing only
their average properties. This is similar to the behavior of
very long wavelength water waves which do not notice the
rapidly fluctuating atomic soup over which they ride. In this
paper we adopt the effective field theory philosophy that
the field theory for matter is valid up to the cutoff Λ. The
long wavelength modes average out the wild fluctuations
on the scale of 1=

ffiffiffiffiffiffiffiffi
−λB

p
, making them behave like modes in

flat spacetime. Therefore, below Λ, we can approximately
define the vacuum state as the lowest energy state as usually
done in the ordinary quantum field theory in Minkowski
spacetime. In other words, below the cutoff Λ, the vacuum
state we are using in this paper is approximately the usual
vacuum state defined in Minkowski spacetime. This jus-
tifies the use of the Minkowski vacuum defined by (77).

B. The validity of the classical treatment of the
spacetime evolution

It is usually believed that the Planck length is the scale at
which quantum gravitational effects is strong. Thus the
classical description of spacetime is supposed to become
invalid when one goes to higher than Planck energy scale.
The reader may have the concern that this would invalidate
our classical treatment of the spacetime evolution which is
based on the unquantized Einstein equations (14).
However, the energy scale in our model does not

necessarily reach Planck scale. In fact, it is more likely
that the energy scale is below Planck.
Note that there are two parameters, the matter fields

cutoff Λ and the bare cosmological constant λB in our new
relation (98). Depends on the value of the two dimension-
less constants α and β, the gravity oscillation scale

ffiffiffiffiffiffiffiffi
−λB

p
might need to be larger than Λ for one or two orders of
magnitude. The value of the energy scale Λ up to which the
effective field theory is valid is not known. The particle
physics experiments so far have only tested the field theory
up to Tev scale. Provided the huge gap between the energy
scale of the standard model of particle physics (103 GeV)
and the Planck scale (1019 GeV), there is actually large
chances for Λ to take values far below the Planck energy.
For example, it is estimated in [19] that an upper limit on

the domain of validity of the quantum field theory
description of nature is around 100 TeV ð10−14EPÞ. If so,4It is mentioned, for example, in the review article [18].
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the oscillation scale of the gravity field
ffiffiffiffiffiffiffiffi
−λB

p
could be

around 10−13EP or 10−12EP, far below the Planck energy
and classical general relativity is expected to be a valid
description of gravity.
As far as we know, the energy scale of most field theories

beyond the standard model is below Planck energy scale.
Probably the one most close to the Planck energy is the
grand unified theory. If Λ is taken to be on the GUT scale
which is around 10−3EP, then

ffiffiffiffiffiffiffiffi
−λB

p
could be around

10−1EP or 10−2EP. In this case, our classical treatment of
gravity should still be valid.
Even if the quantum field theory description of matters is

indeed valid until the Planck scale, i.e., if we let Λ ¼ EP,
then the gravity oscillation scale

ffiffiffiffiffiffiffiffi
−λB

p
might need to be

10EP or 100EP (If we use the values of α and β given by the
numerical simulation shown in Fig. 3 and Fig. 4,

ffiffiffiffiffiffiffiffi
−λB

p
would be around 10EP.). In this case, our classical treat-
ment may not be a precise description of the spacetime
evolution. However, since this is not too far above the
Planck energy, and, since one of the most important
features of a quantum system is the quantum fluctuation
arose from the uncertainty principle, our classically fluc-
tuating spacetime should, at least to a certain extent, reveal
some quantum fluctuation feature of the future satisfactory
quantum theory of gravity.
In fact, this is one of the key points of this paper—the

quantum gravity fluctuations at small (Planck) scale are
important, it causes a highly inhomogeneous spacetime
which can hide the large gravitational effect of quantum
vacuum at that scale. Although we do not have a quantum
theory of gravity to precisely describe it, we may use
classically fluctuating spacetime to approximate it. Note
that the standard formulation of the cosmological constant
problem also treats the spacetime as classical. It missed the
important spacetime fluctuations. In this paper we follow
the same classical treatment but include the effect of these
fluctuations. The result shows that we may not need to wait
until a completely satisfactory theory of quantum gravity to
solve the cosmological constant problem and the solution
presented in this paper could provide a hint about what
the final quantum gravity theory looks like. Our result
suggests that such a theory may exhibit a similar micro-
cyclic “universes” picture.
Our classical treatment of the spacetime evolution might

also become invalid at the singularities a ¼ 0. The exist-
ence of the singularity is a common issue of classical
general relativity, not a particular issue of our model. We
are going to discuss this issue in the next subsection.

C. The issue of the singularities

Probably the biggest concern about this proposal for
addressing the cosmological constant problem is the
appearance of the singularities at a ¼ 0.
The existence of singularities is a generic feature of the

solution of Einstein field equations under rather general

energy conditions (e.g., strong, weak, dominant etc.),
which is guaranteed by Penrose-Hawking singularity the-
orems [20–25]. Our negative cosmological constant domi-
nated spacetime satisfies the strong energy condition and
thus the occurrence of the singularities is inevitable. In fact,
it has been shown in [26] that all timelike geodesics in a
globally hyperbolic spacetime dominated by a negative
cosmological constant are future and past incomplete,5 and
no timelike curve has a proper time length greater than
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−3=λB

p
(see Fig. 2). One can also show that they are

curvature singularities since the Kretschmann invariant
RabcdRabcd is divergent.
At the singularities a ¼ 0 the frequency Ω2 ¼ þ∞ since

the shear scalar σ2 diverges there. This leads to the
divergence of the “velocity” _a and the “acceleration” ä
at a ¼ 0. Physically, this implies that the oscillator a would
go across its equilibrium point infinitely fast so that a
singular bounce happens within infinitely short of time.
The singularities form and then disappear immediately.
However, mathematically, there is ambiguity to continue
the solution across the singularities. Due to the divergences
of _a at a ¼ 0, one cannot tell how the solution for a before
the crossing over 0 connected to the solution after the
crossing. One basic question raised by this issue is whether
the bounces are “elastic”, i.e., whether the magnitude of _a
“right before” and “right after” the crossing of a ¼ 0 equal?
This ambiguity represents the break down of the classical

description of gravitation at the singularities and general
relativity “partially” loses its predictability there. We use
the wording “partially” because the classical Einstein
equation does not completely lose its predictability at
a ¼ 0, at least follow the classical evolution equation (63)
one can obtain that amust pass 0 without stopping so that a
bounce must happen, although one can not determine
unambiguously whether the bounce is “elastic” or not.
In principle, quantum effect of gravity itself would play a
dominant role near the singularities so that one need to use
quantum gravity to predict what is really going on when a
approaches the singularities. Unfortunately, there is no
satisfactory quantum theory of gravity yet. However, a
natural guess from the “energy conservation” consideration
is that the bounces should be “elastic,” although in general
there is no well-defined energy for gravitational field in
general relativity.
In the following we argue that a natural classical

prescription to extend the Einstein field equations beyond
the singularities do predict the “elastic” bounces.
One essential feature of the singularities happened in our

picture is that the determinant g ¼ −a6 of the metric
becomes 0 when a ¼ 0, i.e., the metric becomes degener-
ate. The standard formulation of general relativity does not

5The anti-de Sitter space is geodesically complete, but it is not
globally hyperbolic. All physically realistic spacetimes should be
globally hyperbolic.

QINGDI WANG and WILLIAM G. UNRUH PHYS. REV. D 102, 023537 (2020)

023537-14



allow the metric to be degenerate because the inverse metric
gab would become singular and the quantities involved in
Einstein equations like Ra

bcd, Rab, R would take on the form
0=0. A natural way of resolving this kind of singularities
characterized by the vanishing of g is by multiplying both
sides of the Einstein equations by some power of g:

ð−gÞpGμν þ ð−gÞpλBgμν ¼ ð−gÞp8πGTμν: ð101Þ

For suitable values of p, there is no longer any denominator
in the above Eq. (101). This equation is equivalent to the
original Einstein equation at points away from the singu-
larities and still valid at the singularities if the metric
components gμν are smooth (or at least their first two
derivatives exist) at a ¼ 0. Then there is no problem for gμν
to unambiguously (uniquely) evolve across the singularities
according to the extended Eq. (101).
This idea of resolving a singularity by mulptiplying

Einstein equations with some power of the determinant of
the metric is not new. Einstein himself had proposed this
idea with his collaborator Rosen in 1935 (for which they
credited this idea to Mayer) [27] in the study of spacetime
metric which is called the Einstein-Rosen bridge later.
Ashtekar used a similar trick in his method of “new
variables” to develop an equivalent Hamiltonian formu-
lation of general relativity [28]. Stoica followed this idea
and formulated the “singular general relativity” [29] which
allows the metric to become degenerate. In this formu-
lation, he argues that not tensor but tensor densities are the
physical quantities and the densitized Einstein equa-
tions (101) are actually more fundamental than the usual
Einstein equations [29–37].
Unfortunately, gμν is not smooth at the singularities in

our spacetime since gμν itself and its first two derivatives
may be divergent at a ¼ 0. Because of this, even the
extended Eq. (101) is not valid at the singularities.
However, this issue may be fixed by operating on the
metric density ð−gÞpgμν (of suitable weight −2p) instead of
metric gμν in (101). The metric density ð−gÞpgμν and its first
two derivatives can always be made finite for suitable
values of p due to the vanishing of g at the singularities.
Then if we replace the argument gμν by ð−gÞpgμν in (101),
i.e., if we express Gμν in terms of ð−gÞpgμν instead of gμν,
(101) would be valid at the singularities. Then with the
requirement that ð−gÞpgμν are smooth (or at least their first
two derivatives exist) at the singularities a ¼ 0 for all
suitable values of p, the new variables ð−gÞpgμν can
unambiguously (uniquely) evolve across the singularities
according to the extended equation (101). We can then
obtain the solution for the metric gμν from ð−gÞpgμν. In this
sense, one can still predict how gμν evolves beyond the
singularities according to the extended Einstein equa-
tions (101), although gμν may still be divergent at the
singularities. The divergence of gμν might not as bad as

usually thought since practically one can not measure
physical quantities at a point. Any measurement has to
be made in a finite region of spacetime and thus there is
always an integral

R
d4x

ffiffiffiffiffiffi−gp
which may cancel (or at least

weaken) the divergence at the singularity because of the
vanishing of g there.
For example, we can apply the above prescription of

singularity resolution to the simple Kasner metric

ds2¼−dt2þ t2p1dx2þ t2p2dy2þ t2p3dz2; t > 0; ð102Þ

with

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1: ð103Þ

The Kasner metric for t < 0 takes the same form

ds2¼−dt2þðt2Þp0
1dx2þðt2Þp0

2dy2þðt2Þp0
3dz2; t<0;

ð104Þ

with

p0
1 þ p0

2 þ p0
3 ¼ p02

1 þ p02
2 þ p02

3 ¼ 1: ð105Þ

If we arrange p1, p2, p3 in the order p1 < p2 < p3, their
values will lie in the intervals

−
1

3
≤ p1 ≤ 0; 0 ≤ p2 ≤

2

3
;

2

3
≤ p3 ≤ 1: ð106Þ

The metric component t2p1 is divergent at t ¼ 0 and all
the first and second derivatives ðt2piÞ·, ðt2piÞ··, i ¼ 1, 2, 3
are also divergent at t ¼ 0. So the original Einstein
equations are invalid at t ¼ 0 and thus cannot predict
how the metric (102) for t > 0 evolve across t ¼ 0 to
negative values of t. In other words, one cannot tell how the
Kasner index p1, p2, p3 for t > 0 relate to the Kasner index
p0
1, p

0
2, p

0
3 for t < 0 from the original Einstein equations.

However, since the determinant −g ¼ t2, then the metric
density ð−gÞpt2pi ¼ t2ðpþpiÞ and their first and second
derivatives are all finite at t ¼ 0 if p ≥ −p1 þ 1 and thus
the extended Einstein equations (101) for the new variables
ð−gÞpgμν are valid there.
In particular, for p ¼ −p1 þ 1, the three components of

ð−gÞpt2pi for t > 0 are

t2; t2ðp2−p1þ1Þ; t2ðp3−p1þ1Þ; ð107Þ

and the three components of ð−gÞpt2p0
i for t < 0 are

t2ðp0
1
−p1þ1Þ; t2ðp0

2
−p1þ1Þ; t2ðp0

3
−p1þ1Þ: ð108Þ

At t ¼ 0, the three components of (107) and their first
derivatives are all equal to zero, which is the same as the
values of the three components of (108) and their first
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derivatives. However, the second derivative of the first
component t2 in (107) at t ¼ 0 is equal to 2, while the
second derivative of the first component t2ðp0

1
−p1þ1Þ in (108)

is 2ðp0
1 − p1 þ 1Þð2ðp0

1 − p1Þ þ 1Þt2ðp0
1
−p1Þ, which is either

0 or ∞ if p0
1 ≠ p1. In order to match them, one must have

p0
1 ¼ p1; p0

2 ¼ p2; p0
3 ¼ p3: ð109Þ

Therefore, we have obtained that the metric density
t2ðpþpiÞ, which is valid for all values of t, is a unique
solution to the extended Einstein equations (101) under the
requirement that the new variables ð−gÞpgμν are smooth (or
at least first two derivatives match) at the singularities for
all suitable values of p. Then the Kasner metric (102) can
be extended to negative values of t:

ds2 ¼ −dt2 þ ðt2Þp1dx2 þ ðt2Þp2dy2 þ ðt2Þp3dz2;

−∞ < t < þ∞: ð110Þ

This metric describes an “elastic” singular bounce at t ¼ 0.
The function ðt2Þpi is defined as function composition
t ↦ t2 ↦ ðt2Þpi , where the exponentiation to the real
power pi of the non-negative base t2 ≥ 0 is defined by
extending the usual rational powers to reals by continuity.
In this definition, one always has ðt2Þpi ≥ 0.
The spacetime evolution in this paper can also be

continued across the singularities a ¼ 0 by applying this
prescription. It is natural that the bounces given by this
prescription is elastic since the smoothness requirement (or
at least the first two derivatives continuous) of the new
variables ð−gÞpgμν at the singularities a ¼ 0.
There are some similarities in the singularity structure

between our fluctuating spacetime dominated by the
negative bare cosmological constant and the Kasner metric
(110). In fact, an exact solution of the Einstein equations for
a Bianchi-I universe (homogeneous but anisotropic uni-
verse with flat spatial curvature) in the presence of a
negative cosmological constant has been shown to be
Kasner type [38].
The exact dynamics of the metric near the singularities in

our wildly fluctuating spacetime is of course much more
complicated than the simple Kasner metric (110).
According to Wheeler’s insight that “matter doesn’t matter”
near a singularity, we have, for most type of matter
including the negative cosmological constant, the effect
of the matter fields on the dynamics of the geometry
becomes negligible near the singularity. And also according
to the Belinskii-Khalatnikov-Lifshitz (BKL) conjecture
[39], near the singularity the evolution of the geometry
at different spatial points decouples, we have the dynamics
of our spacetime near the singularities should be similar to
the BKL singularity, which is a model of the dynamic
evolution of the Universe near the initial singularity,
described by an anisotropic, chaotic solutions of the

Einstein field equations of gravitation. The difference
between the usually studied homogeneous BKL model
and our fluctuating spacetime is that in our model the
spacetime is inhomogeneous that the singularities happen
at different times. Also, unlike the usual study that the
singularity is supposed to be an end of BKL dynamics, in
our spacetime the singularity is not an end but a bounce.
So far, we have argued that the classical spacetime

evolution in this paper can continue beyond the singular-
ities if we operate on the metric density ð−gÞpgμν (of
suitable weight −2p) instead of on the metric gμν in the
extended Einstein equations (101). The price is that we
accept the divergence of gμν at the singularities. This
prescription naturally predicts classical elastic bounces at
the singularities.
We emphasize here that this way of singularity resolution

is just a prescription for trying to keep a classical description
of spacetime near the singularities. In principle, quantum
effects of gravity itself would play a dominant role near the
singularities which would invalidate the classical description
of spacetime. We need a quantum theory of gravity to predict
what is really going on near the singularities.
Although there is still no satisfactory quantum theory of

gravity yet, it is interesting to notice that some existing
quantum gravity theory also predicts the similar bounces
predicted by the classical evolution equation (63). In fact,
loop quantum gravity has obtained similar bounce pictures in
FLRW, Bianchi, and Gowdy models [40,41]. The difference
is that in loop qunatum gravity the singularity is avoided
since the bounce happens before the singularity forms. That
is because in the framework of loop quantum gravity the
quantum geometry creates a new repulsive force which is
totally negligible at low spacetime curvature but rises very
rapidly in the Planck regime which bounces the contraction
back to expansion. Unlike in our “classical” model, the
structures in loop quantum cosmology before and after the
quantum bounce can change in general. For example,
quantum gravitational effects can cause Kasner transitions
in Bianchi spacetimes [42,43]. However, these differences in
the details of the bouncing dynamics should not alter our
main result as long as the (average) bounces are elastic.
One might also feel strange that the local scale factor a

can be negative, which contradicts our impression of
positive a in standard cosmological models. However, this
is not a problem since the physical quantities are always the
non-negative determinant h ¼ a6 ≥ 0 and the positive-
(semi)definite spatial metric hab. Gielen and Turok
described a similar picture which they called “perfect
quantum cosmological bounce” in the usual homogeneous
FLRW universe [44,45]. They also showed that it is natural
to extend the scale factor a to negative values, allowing a
large, collapsing universe to evolve across a quantum
bounce to an expanding universe. They circumvented the
big bang singularity by analytically extending a to the
entire complex plane that the universe evolves from large
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negative a to large positive a along a contour which
avoids a ¼ 0.
Another issue caused by the singularities is how they

affect the propagation of quantum fields riding on the
spacetime. It has been argued in Sec. VII and Sec. IX B of
[6] by direct calculations for a special toy metric that the
singularities do not affect the propagation of low frequency
field modes. In that toy model, the singularities do not
cause problems at the observable low energy regime. This
result should be still valid in our general fluctuating
spacetime with the singularities—after all, the singularities
only appear (and immediately disappear) at energy scales
of

ffiffiffiffiffiffiffiffi
−λB

p
, which should not affect the low energy physics

whose energy scale is far below
ffiffiffiffiffiffiffiffi
−λB

p
.

D. Advantages of the new scenario

The old scenario presented in [46] has a couple of
shortcomings:

(i) In the old scenario, the high energy cutoff Λ violates
the usual Lorentz invariance requirement of the
quantum vacuum [46], which leads to the violation
of the usually assumed vacuum equation of state (4)
(i.e., hPi ¼ −hρi).

(ii) In the old scenario, we required that the square
of the time dependent frequency Ω2 ¼ 4πGðρþP

3
i¼1 PiÞ=3 > 0 (Eq. (42) in [6]). It would be a

disaster to this scenario if there is any significant
chance that ρþP

3
i¼1 Pi becomes negative [46,47].

However, in principle, ρþP
3
i¼1 Pi receives con-

tribution from all fundamental fields. Naive calcu-
lations show that Boson fields have positive energy
density while Fermion fields have negative energy
density [48]. Since we do not have the knowledge of
all fundamental fields, the sign of ρþP

3
i¼1 Pi can

not be determined.
(iii) In the old scenario, we required taking Λ to super-

Planck scale and the oscillation scale of gravity field
would be on super-super-Planck scale. However,
general relativity is generally expected to break
down at or above Planck scale and QFT may break
down even earlier.

The new scenario does not have the above listed
shortcomings:

(i) The high energy cutoff Λ just labels the energy scale
which measures the magnitude of the quantum
fluctuations. Since the bare cosmological constant
λB is dominant, whether or not the usually assumed
vacuum equation of state (4) is violated at small
(Planck) scale does not matter. The different regu-
larization methods for calculating the expectation
value of the vacuum energy density do not alter the
general scenario, although it may alter the details
that the numerical values of the constants α, β in (94)
may change.

(ii) For our new model to work, we only need to adjust
−λB ≫ Λ2 ≥ GΛ4 (assuming Λ ≤ EP) to make sure
the expectation value hΩ2i ≫ Λ2 that even a small
probability for Ω2 < 0 does not matter.

(iii) For our new result (98), Λ can take any possible
value below the Planck energy and the oscillation
scale of the gravity field, which is given by

ffiffiffiffiffiffiffiffi
−λB

p
,

would not be far above the Planck energy scale.
More detailed discussion has been presented in
Sec. VIII B.

E. Open questions

Here we list some open questions raised by this new
scenario which deserve further studies in the future.

(i) We model both the metric and the matter fields as
classical fluctuating fields. What if we treat both of
them as quantum operators? Can we get the same
result? In other words, what about quantum gravity?
As explained in Sec. VIII B, if the cutoff Λ is far
below Planck energy, the classical treatment should
be a good approximation. If Λ closes to Planck
energy, quantum gravity effect might be important.
We have argued that one of the most important
features of a quantum system is the quantum fluc-
tuation due to the uncertainty principle. When Λ
closes to Planck energy, this classical treatment
should at least reveal some quantum fluctuation
picture of the future satisfactory quantum theory of
gravity. So can this guide us to the right way to
quantize gravity?

(ii) What about low energy Einstein equations? Do they
decouple from these high energy equations? If not,
are there problems with gravity waves from Ligo, or
with planetary motion?

(iii) Can this scenario be extended to inflation? Is
inflation extra low energy equations, or is inflation
also by the similar mechanism? For example, can the
phase transitions in the early universe effectively
shift the negative bare cosmological constant λB to
values comparable to the zero point fluctuations
that the parametric resonance becomes strong and
thus be able to produce the inflation? If so, the
advantage of this model is that the inflation can be
driven by the fluctuations of quantum vacuum of
known physical field, without the need to introduce
a hypothetical inflaton field with an artificial slow
roll potential.

(iv) The singularities are probably the most crucial open
question, while we have argued that we can push
through them by the prescription described in
Sec. VIII C which is still in the classical gravity
framework, they remain problematic without a satis-
factory quantum theory of gravity since in principle
quantum gravitational effect should dominant near
the singularities. Loop quantum gravity has obtained
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similar bounce pictures for simpler models, what if
also apply it to this model? Will we still get elastic
bounces so that our final result still hold?

(v) Our picture requires a large negative bare cosmo-
logical constant. Interestingly, this is also found in
the asymptotic safety program of quantum gravity
when studying the RG flow of gravity coupled to
the matter fields of the standard model (see, e.g.,
[49–51]). The relation between these results de-
serve further investigations. They might be help-
ful to answer some of the above open questions.

(vi) Both our model and the anti–de Sitter space has a
negative cosmological constant. If ignore the rela-
tively small perturbation produced by vacuum stress
energy tensor, this spacetime is called an Einstein
manifold with a negative cosmological constant. The
difference is that anti-de Sitter space is homo-
geneous while our model is highly inhomogeneous.
Is there any relation between our model and the
ADS/CFT correspondence?

IX. SUMMARY AND CONCLUSION

The cosmological constant problem arises from the
following two basic principles of quantum mechanics
and general relativity:

Principle 1: the uncertainty principle which requires that
quantum fields vacuum has a large energy den-
sity hρi ∼ Λ4;

Principle 2: the equivalence principle which predicts that
the large energy of quantum vacuum must gravitate to
produce large gravitational effect.

It is well known that classical general relativity and
quantum mechanics is incompatible with each other and
there is not a satisfactory quantum theory of gravity yet to
combine them together. So in order to study the large
gravitational effect produced by the large quantum vacuum
energy, the quantum vacuum is usually modeled as some
classical source of gravity so that one can still apply the
classical general relativity.
The standard formulation of the cosmological constant

problem models the quantum vacuum as a perfect classical
fluid. It assumes the following properties of the classical
fluid and the spacetime it rests on:

Assumption 1: the energy density of the fluid is constant;
Assumption 2: the spacetime are homogeneous and
isotropic so that one can use the FLRW metric (9).

Then based on the above two assumptions, the standard
formulation obtains that the observed effective cosmologi-
cal constant λeff ¼ 3H2 ∼ λB þGΛ4. In order to cancel the
large gravitational effect characterized by the termGΛ4, the
bare cosmological constant λB has to be fine-tuned to
extreme accuracy to obtain a small λeff .
“Conventional” approaches to tackle this problem are

either trying to modify quantum mechanics in some way to

make vacuum energy density small or trying to modify
general relativity in some way to make vacuum energy not
gravitate. Some approaches are even pleading to the
anthropic arguments.
In this paper, we notice that the Assumptions 1 and 2 are

not true at small scales. The large vacuum energy density is
produced by small scale quantum fluctuations, there is no
reason to apply the cosmological scale FLRW metric to the
small scale phenomenon. In our “unconventional”
approach, we model the quantum vacuum as a classical
fluctuating field and uses the general metric (2) to describe
the fluctuations. We assumes the following properties of the
classical field and the spacetime fluctuations:

Assumption 10: the classical fluctuating field is modeled
by (80);

Assumption 20: the initial data Kij > 0 and Kij < 0 on
the hypersurface Σ0 are equally possible.

Then from the Assumption 20 we obtain that the
fluctuations of the spacetime would produce a large
positive contribution to the averaged macroscopic spatial
curvature of the Universe. In order to cancel this contri-
bution to match the observation, the usually defined
effective cosmological constant λeff by (6) has to take a
large negative value. The spacetime dynamics sourced by
this large negative λeff would be similar to the cyclic model
of the universe in the sense that at small scales every point
in space is a “microcyclic universe” which is following an
eternal series of oscillations between expansions and
contractions. The turning points a ¼ 0 at which the space
switch from contraction to expansion are curvature singu-
larities, we assumed a prescription in Sec. VIII C to
continue the space time evolution beyond the singularities
by a natural extension of the Einstein equations at the
singularities. Because the phases of the oscillations of the
microcyclic universes at different spatial points are differ-
ent, the effect of these oscillations cancel and the large
cosmological constant λeff is screened. These phase
differences are primarily produced by the “active” fluctua-
tions of gravity itself.
When the “passive” fluctuations of the spacetime induced

by the quantum vacuum stress tensor fluctuation are con-
sidered and if the bare cosmological constant λB is dominant
over the vacuum stress tensor fluctuation, the size of each
“microuniverse” would increase a tiny bit at a slowly
accelerating rate during each microcycle of the oscillation
due to the weak parametric resonance effect produced by the
fluctuations of the quantum vacuum stress energy tensor. We

obtain a new relation λneweff ¼ 3H2 ∼ Λ2e−2β
ffiffiffiffiffiffi
−λB

p
=Λ which

shows that the contribution from the vacuum energy density
to the accelerating expansion of the Universe is exponen-
tially suppressed. In this way, the large cosmological
constant generated at small scales is hidden at observable
scale and no fine-tuning of λB to the accuracy of 10−122 is
needed. This at least resolves the old cosmological constant
problem and suggests that it is the quantum vacuum
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fluctuations serve as the dark energy which is accelerating
the expansion of our Universe. This mechanism shows that
the physics happens at the smallest (Planck) scale may have
effects on the largest (cosmological) scale.
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