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The dressed-metric approach is shown to violate general covariance by demonstrating that it cannot have
an off-shell completion in which the correct infinitesimal relations of space-time hypersurface deformations
are realized. The main underlying reason—a separation of background degrees of freedom and modes of
inhomogeneity that is incompatible with covariance—is shared with other approaches such as hybrid loop
quantum cosmology.

DOI: 10.1103/PhysRevD.102.023532

I. INTRODUCTION

The dressed-metric approach [1] is an attempt to extend
modified Friedmann equations of loop quantum cosmology
to perturbative inhomogeneity in order to describe structure
formation. If any such proposal is to be consistent, it must
respect general covariance in some form to guarantee that
the equations are meaningful: If general covariance is
violated, the theory is either plagued by spurious, unphys-
ical degrees of freedom if one decides to impose a restricted
number of covariance transformations (or none at all); or it
is overconstrained if broken covariance transformations
are imposed, which then identify physical solutions that are
supposed to be distinct. A noncovariant modification of a
covariant theory has either too many or too few propagating
degrees of freedom, depending on how it is applied.
Since loop quantum cosmology [2] modifies the back-

ground dynamics of a homogeneous Universe, perturbative
inhomogeneity is not guaranteed to obey covariance con-
ditions. However, the dressed-metric approach assumes that
classical observables and Hamiltonians can be used for
inhomogeneity without modifications even while the back-
ground dynamics is modified such that it may allow a
bounce, a crucial ingredient in some of the developed
scenarios. In this paper, we provide the first analysis of
covariance in the dressed-metric approach, pointing out
several previously overlooked subtleties and ultimately
reaching the conclusion that covariance is violated.
Several details of the technical implementation of the

dressed-metric approach obscure the issue of covariance,
which is perhaps the reason why this important issue has not
been addressed yet. The approach postulates separate
quantizations for an isotropic background space-time and
inhomogeneous perturbations on it, even though the degrees
of freedom of both ingredients are interrelated in any
covariant setting that obtains background and perturbations
from an expansion of a covariant theory. For instance, the

limited covariance transformations that remain in a spatially
homogeneous reduction of a covariant theory do not restrict
the possible dynamics, which can be modified at will.
Homogeneous background dynamics that can be obtained
from some higher-curvature action, by contrast, is not
arbitrary but subject to conditions that implicitly ensure
its descendance from a covariant theory of this type. Once a
covariant theory has been restricted to homogeneity, how-
ever, the dynamics can be modified consistently in the
homogeneous setting, without any restrictions that would
result from covariance or integrability conditions in an
inhomogeneous theory. By separating the degrees of free-
dom into background and perturbations before implement-
ing quantummodifications, and then leaving the perturbative
degrees of freedom unmodified, the dressed-metric approach
construes a setting in which the usual covariance conditions
are relaxed. This observation does not directly imply that
the approach violates covariance, but it shows that any
analysis of covariance in this approach is subtle and must be
performed in detail.
While covariance itself has not yet been analyzed in the

dressed-metric approach, some transformations related to
this condition have been discussed in the seminal papers.
However, these transformations, like the implementation
of degrees of freedom, act separately on background and
perturbations and do not respect the interrelated nature of
these degrees of freedom with respect to covariance. In
particular, the dressed-metric approach replaces linear
perturbations of metric and extrinsic curvature, or of other
fields used in canonical gravity, with Bardeen potentials
or curvature perturbations [3,4]. Since these variables are
invariant with respect to small inhomogeneous coordinate
transformations, they respect some partial form of covari-
ance. The homogeneous background dynamics, mean-
while, is made invariant with respect to homogeneous
time reparametrizations by using the method of depara-
metrization [5,6], formulating homogeneous evolution not
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with respect to a time coordinate but rather with respect to
one of the dynamical fields of the theory, given by a free
massless scalar. The resulting framework is formally
consistent because no time coordinate is used explicitly,
and spatial coordinates can be adapted to the homogeneous
background. In this sense, the dressed-metric approach
constructs a consistent quantum-field theory on a modified
homogeneous space-time, but it does not show that fields
and background can be part of a common covariant theory.
Therefore, it is not clear whether it can rightfully be
considered a description of cosmological evolution in
quantum gravity, or of quantum space-time.
The treatment of transformations in the dressed-metric

approach suffers from several old and new problems:
(1) While deparametrization eliminates the appearance

of coordinate time, as applied in Ref. [1], it selects a
specific reference scalar field as internal time (which
has to be free and massless in order to play the role
of a global measure of time). In models in which
more than one choice of global internal time are
available, quantum corrections in general imply
inequivalent observables depending on which inter-
nal time is used [7–10]. Even if one does not refer to
coordinate time, therefore, time reparametrization
invariance is not guaranteed after quantization. This
problem, which is being investigated with several
methods—see for instance Refs. [7,8,11–17]—is not
specific to the dressed-metric approach and will
therefore be disregarded here.

(2) Bardeen potentials, in spite of one of their common
names, are not gauge invariant [18,19]. They are
invariant with respect to small inhomogeneous coor-
dinate transformations in a perturbative setting, but
they are no longer invariant if one or both of the two
implied conditions, smallness and inhomogeneity, is
violated. Curvature perturbations, which are available
in the presence of a scalar matter field, are invariant,
provided only that coordinate transformations are
small and not necessarily inhomogeneous, but even
this condition is not met by all transformations
relevant for perturbative cosmology: While a first-
order description of inhomogeneity need not consider
higher than first-order transformations, it should
include large homogeneous coordinate changes such
as a transformation from proper time to conformal
time. In the dressed-metric approach, homogeneous
coordinate transformations are implemented by de-
parametrization for the background, separately from
the inhomogeneous sector even though they act
nontrivially on Bardeen potentials and curvature
perturbations when they are large.

(3) A detailed analysis of space-time transformation in a
four-dimensional or a canonical setting, presented in
the next section, shows that background transforma-
tions and those acting on perturbations do not form a

direct but rather a semidirect product. This important
algebraic structure is violated by the separation of
background and perturbation degrees of freedom
imposed by the dressed-metric approach, which
would be compatible only with a direct product.
As a consequence, by its very construction the
dressed-metric approach is unable to provide the
correct off-shell structure required for a covariant
theory of background and perturbations.

II. SPACE-TIME STRUCTURE

The perturbative form of covariance is somewhat differ-
ent depending on whether one uses a formulation of tensor
fields in four dimensions or a canonical description.
However, both viewpoints lead to the same conclusion:
that background and perturbative transformations form a
semidirect product.

A. Four-dimensional formulation

Background coordinate transformations affect only time
t and are generated by vector fields of the form fðtÞ∂=∂t
with an arbitrary function fðtÞ. Perturbative coordinate
changes are generated by vector fields ξα∂=∂xα with four
components ξα which are small in the sense that any
products of multiple ξα’s or of ξα with perturbative fields
are ignored. Bardeen potentials and curvature perturbations
are constructed by ensuring the ξα independence of suitable
combinations of metric components, but they do not
consider fðtÞ (unless this function is small and may be
considered a contribution to ξ0).

1. Bardeen potentials and curvature perturbations

Specifically, we may transform metric components by
inserting small coordinate changes xα ↦ xα þ ξα into the
line element

ds2 ¼ a2
�
−ð1þ 2ϕÞdη2 þ 2∂iBdηdxi

þ
�
ð1 − 2ψÞδij þ 2

�
∂i∂j −

1

3
δijΔ

�
E

�
dxidxj

�

ð1Þ

for linear scalar perturbations on a flat isotropic back-
ground, here using conformal time η and including
only scalar modes. We distinguish between time
transformations, η ↦ ηþ ξ0, and scalar spatial transfor-
mations, xi ↦ xi þ ∂iξ with a scalar function ξ. In the
first case, we denote a derivative with respect to η by
a prime:

dη2 ↦ dη2 þ 2ξ00dη2 þ 2∂iξ
0dηdxi ð2Þ
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to first order in ξ0, while aðηÞ2 ↦ aðηÞ2ð1þ 2a0ξ0=aÞ.
Rearranging the resulting line element to bring it back to
the old form [Eq. (1)] but with adjusted scalar perturba-
tions, we obtain the transformations

ϕ ↦ ϕþ ξ00 þ a0

a
ξ0;

ψ ↦ ψ −
a0

a
ξ0;

B ↦ B − ξ0; ð3Þ

E ↦ E: ð4Þ

Notice that the transformation of B follows only if ∂iξ
0 ≠ 0

in Eq. (2) because the line element depends on ∂iB but not
directly on B. Therefore, for spatially constant ξ0, or a small
background transformation, there is no need for B to
change, in contrast to Eq. (3). In fact, the transformation
of B is undetermined in this case, because B ↦ B − αξ0

would be consistent for any real α. This ambiguity is not
relevant in the line element, which only depends on ∂iB,
but it implies an ambiguity in the Bardeen potentials, which
depend directly on B and not just its spatial derivatives.
Thus, we obtain a distinction between background and
perturbation transformations even if both are small.
For small spatial transformations, we insert

δijdxidxj ↦ δijdxidxj þ 2∂iξ
0dηdxi þ 2∂i∂jξdxidxj ð5Þ

into the line element and read off

ϕ ↦ ϕ; ψ ↦ ψ ; B ↦ Bþ ξ0; E ↦ Eþ ξ: ð6Þ

Therefore, ϕ, ψ , and B − E0 are invariant with respect to
spatial transformations. (Again, the transformation of B
would be undetermined if ∂iξ ¼ 0, but for spatial trans-
formations we need ∂iξ ≠ 0 in order to have a nontrivial
ξi ¼ ∂iξ ≠ 0.) Since B − E0 changes to B − E0 − ξ0 by a
time transformation, the combinations

Φ ≔ ϕþ a0

a
ðB − E0Þ þ ðB − E0Þ0;

Ψ ≔ ψ −
a0

a
ðB − E0Þ ð7Þ

are invariant, provided ξ0 is not spatially constant.
If there is a matter scalar field, φ ¼ φ̄þ δφ, its pertur-

bation transforms by δφ ↦ δφþ φ̄0ξ0. Therefore, one
can obtain ξ0-independent combinations, the curvature
perturbations

R1 ¼ ψ þ a0

aφ̄0 δφ;

R2 ¼ ϕ−
1

2

�
a
a0

�0
ψ −

1

φ̄0

�
a0

a
−
φ̄00

φ̄0

�
δφþ 1

2

a
a0
ψ 0 −

1

2φ̄0 δφ
0;

ð8Þ

without using B. These perturbations, unlike Bardeen
potentials, are invariant also with respect to spatially
constant ξ0, but not with respect to large background
transformations.
Formulating the dressed-metric approach using curva-

ture perturbations instead of Bardeen potentials implies
that we do not have to distinguish between small back-
ground transformations and perturbative transformations.
However, there remain nontrivial large background trans-
formations, hence the additional step of deparametrization
in the approach. Large background transformations change
curvature perturbations merely by reparametrizations, such
as replacing a0=ðaφ̄0Þ with _a= _̄φ when transforming from
conformal time to proper time. Formally, the approach
therefore does take into account all relevant transforma-
tions. However, the way it does so violates the required off-
shell structure of background and perturbative transforma-
tions. In algebraic terminology, the fact that background
transformations do act on curvature perturbations means
that the symmetries underlying background and perturba-
tion transformations form a semidirect product, but not a
direct product.

2. Algebraic structure

Background and perturbative transformations are not
independent but are algebraically related. The commutator
of two such transformations or of their generating vector
fields, given by

�
fðtÞ ∂∂t ; ξ

α ∂
∂xα

�
¼ f_ξα

∂
∂xα − _fξ0

∂
∂t ; ð9Þ

is a perturbative transformation. Using pairs

ðf; ξαÞ ∈ Vbackground ⊕ Vpert ¼ V ð10Þ

of background and perturbation vector fields, arranged by
perturbative order to make the algebraic structure more
clear, the combination of both types of transformations is
therefore a semidirect product:

½ðf1; ξα1Þ; ðf2; ξα2Þ� ¼ ðf1 _f2 − f2 _f1; ζαÞ; ð11Þ

with

ζα ¼ f1 _ξ
α
2 − f2 _ξ

α
1 − δα0ð _f1ξ02 − _f2ξ01Þ ð12Þ

depending on ξ1 and ξ2 as well as f1 and f2.
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This bracket shows that Vbackground is non-Abelian, with

bracket ½f1; f2�background ¼ f1 _f2 − f2 _f1, while Vpert is
Abelian, ½ξα1; ξα2�pert ¼ 0. However, the full bracket in V
has an extra term ζα, which can be written as ζα ¼
ϕðf1Þξα2 − ϕðf2Þξα1 with the homomorphism

ϕðfÞξα ¼ f_ξα − δα0 _fξ
0 ð13Þ

from Vbackground to the derivations on Vpert. (It clearly maps
to derivations, because Vpert is Abelian. The homomor-
phism property can be shown by a direct calculation.)
Therefore, the bracket on V can be written as

½ðf1; ξα1Þ; ðf2; ξα2Þ� ¼ ð½f1; f2�background; ½ξα1; ξα2�pert
þ ϕðf1Þξα2 − ϕðf2Þξα1Þ; ð14Þ

identifying

V ¼ Vbackground ⋉ϕ Vpert ð15Þ

as the semidirect product of the Lie algebras Vbackground

and Vpert.
According to Eq. (14), both Vbackground and Vpert are

subalgebras of V, given by the restricted pairs ðf; 0Þ
and ð0; ξαÞ, respectively: Brackets ½ðf1; 0Þ; ðf2; 0Þ� ¼
ð½f1; f2�background; 0Þ and ½ð0; ξα1Þ; ð0; ξα2Þ� ¼ ð0; ½ξα1; ξα2�pertÞ
respect the restricted forms. However, in the full algebra,
only the restricted form of Vpert is respected, because
for f1 ¼ 0, ½ð0; ξα1Þ; ðf2; ξα2Þ� ¼ ð0; ½ξα1; ξα2�pert − ϕðf2Þξα1Þ
has a vanishing background field for any ðf2; ξα2Þ. (Thus,
Vpert is not only a subalgebra in V but also an ideal.)
The restricted form of Vbackground is not preserved in the
full algebra, because for ξα1 ¼ 0, ½ðf1; 0Þ; ðf2; ξα2Þ� ¼
ð½f1; f2�background;ϕðf1Þξα2Þ is, generically, no longer
of the restricted form. It is therefore impossible to
separate background transformations from perturbation
transformations.
Mathematically, the algebra V is not a direct product,

which would have a version of the bracket (14) with ϕ ¼ 0,
but a semidirect product. If the product were direct, any
representation of V would be a superposition of tensor
products of a representation of Vbackground and a represen-
tation of Vpert. In particular, spaces invariant under the
transformations contained in V (which are trivial repre-
sentations of the algebra) could be constructed from tensor
products of spaces separately invariant under the trans-
formations contained in Vbackground and Vpert, respectively.
This is what the dressed-metric approach assumes,
using deparametrization to construct an invariant space
for the transformations contained in Vbackground, and curva-
ture perturbations to construct an invariant space for the
transformations contained in Vpert. However, since the

required product of transformations is semidirect but
not direct, the approach implements incorrect transforma-
tion properties. For instance, this approach implies a
vanishing bracket of a background transformation and
a perturbation transformation, while Eq. (14) requires
½ðf1; 0Þ; ð0; ξα2Þ� ¼ ð0;ϕðf1Þξα2Þ.
To summarize, we do not have a direct product that could

be implemented by separate treatments of invariance, such
as deparametrization for the background and curvature
perturbations for the inhomogeneous fields. While the
dressed-metric approach is formally consistent in that it
eliminates the relevant transformations, it does so incor-
rectly by ignoring their interrelated off-shell nature. In the
next section, we will demonstrate explicitly that there is no
off-shell completion of the attempted invariance proposed
by the dressed-metric approach, but first we review the
off-shell structure in a canonical setting.

B. Canonical formulation

One might think that the canonical formulation should
not have a nonzero commutator of background and
perturbative transformations, because fields on a fixed
spatial slice do not have any time dependence, such that
the time derivatives on the right-hand side of Eq. (9) vanish.
(Time dependence in canonical transformations is not
explicit but is implemented by an additional term added
to the usual constraints which depends on the momenta of
lapse and shift and has coefficients given by initial values
of time derivatives of the fields [20,21].) However, the
canonical description must be equivalent to the four-
dimensional formulation, and therefore it should give rise
to a related semidirect product of background and pertur-
bation transformations. The main mathematical difference
is that canonical transformations form a Lie algebroid
[22,23] rather than a Lie algebra.

1. Algebroid

Geometrically, the product remains semidirect, not
because of time derivatives but because the canonical
generators, given by constraints, refer to directions normal
to spatial slices rather than time directions determined by a
coordinate [24]. As a consequence, a perturbative inho-
mogeneous transformation changes the normal directions,
such that a subsequent background transformation acquires
new directions compared with one applied before the
inhomogeneous transformation; see Fig. 1.
The specific commutator follows from a restriction of the

full hypersurface deformation brackets of the Hamiltonian
and diffeomorphism constraints,H½N� andD½Ma�.We obtain
background transformations by applying the Hamiltonian
constraint to homogeneous lapse functions N̄, while pertur-
bative inhomogeneous constraints are obtained by specializ-
ing the Hamiltonian constraint to a small inhomogeneous
perturbation, δN, and the diffeomorphism constraint to a
small inhomogeneous vector field, δMa. The leading
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perturbative expressions are then obtained by expanding the
constraintsH½δN� andD½δMa� up to quadratic dependenceon
the fields, counting δN and δMa as first-order contributions.
The general bracket [25]

½H½N1�; H½N2�� ¼ D½qabðN1∂bN2 − N2∂bN1Þ� ð16Þ

with the inverse spatial metric qab ¼ a−2δab then turns into

½H½N̄�; H½δN�� ¼ D½a−2N̄∂aδN� ð17Þ

with a nonzero right-hand side. More generally,

½H½N̄1 þ δN1�; H½N̄2 þ δN2��
¼ D½a−2ðN̄1∂aδN2 − N̄2∂aδN1Þ�; ð18Þ

while all brackets involving D½δMa� are zero to first pertur-
bative order.
The brackets [Eq. (18)] are formulated for generators of

symmetries labeled by five spatial functions, given by N̄,
δN, and the three components of δMa. These functions
correspond to the background function f and four compo-
nents of the space-time vector field ξa encountered in the
four-dimensional formulation. However, algebraically the
bracket in Eq. (18) is quite different from Eq. (14) not only
in its specific form, but also because the generator on the
right-hand side depends on the scale factor a (or the spatial
metric) in addition to the functions N̄, δN, and δMa that
determine a transformation. In physics terminology, the
bracket belongs to a Lie algebra with structure functions
(depending on a), not structure constants. Mathematically,
a well-defined algebraic object can be constructed by
proposing that N̄, δN, and δMa are not only functions
on space, but also functions of the metric. The bracket (18)
is then meaningful because the factor of a−2 on the right-
hand side is then no longer an external function but merely
changes the dependence of N̄, δN, and δMa on a.
The notion of a Lie algebroid [26] formalizes this

motivation. Because the functions N̄, δN, and δMa (now
also depending on the spatial metric in addition to the
spatial position) can be added for any fixed metric, they
form a vector space. If the metric is allowed to vary, the
functions N̄, δN, and δMa form a vector bundle over the
space of metrics with five-dimensional fibers (not counting
the spatial dependence of δN and δMa). The bracket in

Eq. (18) implies that sections of the vector bundle, picking
one choice of ðN̄; ðδN; δMaÞÞ for every metric, form a
Lie algebra. In addition, the fibers are related to the tangent
space of the space of metrics, because a choice of
ðN̄; ðδN; δMaÞÞ defines a space-time vector field and
therefore a Lie derivative of the metric. The corresponding
map from the fibers to the tangent space of the space
of metrics is called the anchor map of the Lie algebroid,
and it obeys certain relationships with the bracket; see
Eq. (21) below.
In the canonical formulation, the background bracket

is Abelian because ½H½N̄1�; H½N̄2�� ¼ 0 for any spatially
constant N̄1 and N̄2. The generators of perturbative
inhomogeneous transformations, H½δN1� and H½δN2�, also
form an Abelian Lie algebra, because the right-hand side of
Eq. (16) vanishes to the order considered here when both
N1 ¼ δN1 andN2 ¼ δN2 are of first order. In particular, the
individual brackets have structure constants and do not
require a Lie-algebroid treatment. The Lie-algebroid struc-
ture of the full bracket (16) therefore seems to remain only
in the nontrivial relation [Eq. (17)] between background
and perturbation generators. It is nevertheless possible to
interpret both background and perturbations as Lie algeb-
roids, Ebackground and Epert, respectively, over the same base
manifold Xpert of perturbed metrics. (Background metrics
might seem sufficient for Ebackground, but using the same
base manifold for Ebackground and Epert is convenient for the
construction of a semidirect product.)
With a base manifold of metrics, Eq. (18) determines the

algebroid bracket only for constant sections—that is, N̄ and
ðδN; δMaÞ, which do not depend on the metric (while the
perturbations δN and δMa may always depend on the
spatial position). If we allow metric-dependent functions,
the Lie algebroid Ebackground is no longer Abelian because
the background part of the bracket (18) should then be
generalized to

½H½N̄1�; H½N̄2�� ¼ H½N̄1δnN̄2 − N̄2δnN̄1�; ð19Þ

where δnN ¼ ð∂N=∂qabÞLnqab is the normal derivative
of N, constructed by the chain rule using the Lie derivative
Ln along the vector field normal to hypersurfaces. (This
extension can be derived from the Poisson bracket of
Hamiltonian constraints with metric-dependent lapse func-
tions.) The Lie algebroid Epert remains Abelian because the

FIG. 1. Nonzero commutator of a homogeneous background transformation and a perturbative transformation (here, linear spatial
dependence), equal to a nonzero spatial displacement.
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right-hand side of an equation analogous to Eq. (19) with N̄
replaced by δN would be of second order.
The anchor map of a Lie algebroid E, defined as

ρ∶ΓðTEÞ → ΓðTXÞ ð20Þ

such that

½e1; fe2� ¼ f½e1; e2� þ ðρðe1ÞfÞe2 ð21Þ

for any e1; e2 ∈ ΓðTEÞ and f ∈ C1ðXÞ, is necessarily zero
for Abelian brackets—that is, for Epert in our case. The non-
Abelian bracket of Ebackground is compatible with the anchor
map N̄ ↦ δqab ¼ N̄Lnqab. These two anchor maps are
equivalent to the first-order perturbative content of the full
anchor, given by ðN;MaÞ ↦ δqab ¼ LNnþMqab [22].
Abstractly, we denote elements in the fiber of the first

Lie algebroid, Ebackground, simply by N̄ ∈ R. Elements of
fiber of the second Lie algebroid, Epert which is Abelian, are
given by ðδN; δMaÞ, where δN and δMa depend on the
spatial position and therefore form infinite-dimensional
fibers. The map

ψðN̄ÞðδN; δMaÞ ¼ ð0; a−2N̄∂aδNÞ ð22Þ

defines a Lie algebroid morphism from Ebackground to the
derivations on Epert. (This map is well defined because
background metrics, parametrized by the scale factor a, are
included in both base manifolds. It maps to derivations
because Epert is Abelian. In order to show the morphism
property, note that δnN̄ is of first order, such that
δnN̄∂aδN ∼ 0 is of second order and therefore treated
as zero.)
We can now combine the bracket (18) for nonzero

background perturbations with the bracket (19) for metric-
dependent background functions, writing them directly
for the generators ðN̄; ðδN; δMaÞÞ. Also using vanishing
brackets involving spatial deformations at the perturbative
level, we obtain

½ðN̄1; ðδN1; δMa
1ÞÞ; ðN̄2; ðδN2; δMa

2ÞÞ�
¼ ð½N̄1; N̄2�;ψðN̄1ÞðδN2; δMa

2Þ − ψðN̄2ÞðδN1; δMa
1ÞÞ;
ð23Þ

where ½N̄1;N̄2�¼ N̄1δnN̄2− N̄2δnN̄1. [For instance, Eq. (18)
is included in this equation if we set δMa

1 ¼ 0 ¼ δMa
2

and assume metric-independent N̄1 and N̄2, such that
½N̄1; N̄2� ¼ 0. The bracket (19) is obtained if only N̄1 and
N̄2 are nonzero.] The general form of the bracket (23) is
the same as the bracket of a semidirect product of Lie
algebroids defined in Ref. [27], where the analog of Epert

(but not of Ebackground) is required to be Abelian in order to
avoid obstructions. The general construction determines a

semidirect product with an anchor map inherited directly
from Ebackground, just as we have found here. We therefore
have shown that

E ¼ Ebackground ⋉ψ Epert: ð24Þ

Comparing with the four-dimensional perspective,
although the precise algebraic structure of canonical trans-
formations is rather different from that found in Sec. II A 2,
the bracket of a semidirect product of background and
perturbation transformations is obtained in both cases. The
structure in the canonical approach is rather different than
in the four-dimensional formulation, but it has the same
implications for background and perturbation transforma-
tions. In particular, only perturbation transformations form
an ideal in the full algebroid E, while background trans-
formations form a subalgebroid that is not an ideal.
According to Eq. (23), a dressed-metric-like approach that
implicitly assumes a direct product incorrectly implements
brackets of the form ½ðN̄; ð0; 0ÞÞ; ð0; ðδN; δMaÞÞ� ¼
ð0;ψðN̄ÞðδN; δMaÞ ¼ ð0; ð0; a−2N̄∂aδNÞÞ, instead assum-
ing a zero bracket.

2. Poisson structure

A formal derivation of the crucial equation (17) through
Poisson brackets of phase-space representations of the
hypersurface deformation generators shows the interplay
of different perturbative orders in this result. Following
the formalism developed in Refs. [28,29] or [30] for
canonical perturbation theory in metric variables, we
coordinatize the gravitational phase space in triad form,
given by the components Ea

i of a densitized triad and the
corresponding components of extrinsic curvature, Ki

a. With
perturbative inhomogeneity, we write Ea

i ¼ pδai þ δEa
i and

Ki
a ¼ kδia þ δKi

a, where the background variables p and k
depend only on time and their internal frame has been fixed
by choosing the background fields to be proportional to the
Kronecker delta.
Notice that δEa

i and δK
i
a describe the full inhomogeneity

contained in the perturbative treatment. That is, these
fields will be assumed to be small compared with back-
ground fields, but not split into a hierarchy of the form
δf ¼ δfð1Þ þ δfð2Þ þ � � � of linear and higher-order pertur-
bations. Such a hierarchy, which is often used in cosmology
in order to obtain linear higher-order equations, is not
possible in our context, because we will need a phase-space
structure for inhomogeneity. Since individual orders in
δf ¼ δfð1Þ þ δfð2Þ þ � � � do not constitute independent
degrees of freedom, they do not permit a phase-space
structure and therefore cannot be used in our calculations.
After deriving consistent Hamiltonians for some inhomo-
geneity δf, a hierarchy δfð1Þ þ δfð2Þ þ � � � could be intro-
duced at the level of equations of motion, if desired.
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For simplicity, we will assume that p > 0, fixing the
orientation of space. The background variables can then be
derived from the fields by integrating over a fixed spatial
region V of coordinate volume V0 ¼

R
V d

3x:

p ¼ 1

V0

Z
V
Ea
i δ

i
ad3x; k ¼ 1

V0

Z
V
Ki

aδ
a
i d

3x: ð25Þ

In order to avoid double-counting the background varia-
bles, we impose linear second-class constraints

Z
V
δEa

i δ
i
ad3x ¼ 0 ¼

Z
V
δKi

aδ
a
i d

3x ð26Þ

on the perturbation fields. With these conditions, we obtain
the basic Poisson brackets

fk; pg ¼ 8πG
3V0

;

fδKi
aðxÞ; δEb

j ðyÞg ¼ δbaδ
i
j

�
δðx; yÞ − 1

V0

�
: ð27Þ

(The subtraction of the constant 1=V0 refers to the Dirac
bracket of fields subject to linear second-class constraints,
but it will not contribute to the following calculations.)
For a spatially flat isotropic model in triad form, we have

the background constraint

H̄ ¼ −
3V0

8πG
ffiffiffiffi
p

p
k2; ð28Þ

the first-order constraint

Hð1Þ½δN� ¼ 1

16πG

Z
d3xδN

�
−4k

ffiffiffiffi
p

p
δcjδK

j
c −

k2ffiffiffiffi
p

p δjcδEc
j þ

2ffiffiffiffi
p

p ∂c∂jδEc
j

�
; ð29Þ

and the second-order constraint

Hð2Þ½N̄� ¼ N̄
16πG

Z
d3x

� ffiffiffiffi
p

p
δKj

cδKk
dδ

d
kδ

d
j −

ffiffiffiffi
p

p ðδKj
cδcjÞ2 − 2

kffiffiffiffi
p

p δEc
jδK

j
c

−
k2

2p3=2 δE
c
jδE

d
kδ

k
cδ

j
d þ

k2

4p3=2 ðδEc
jδ

c
jÞ2 −

1

2p3=2 δ
jkð∂cδEc

jÞð∂dδEd
kÞ
�
: ð30Þ

Moreover, the first-order diffeomorphism constraint is

D½δMc� ¼ 1

8πG

Z
V
d3xδMcðpδdk∂cδKk

d − p∂jδK
j
c − kδjc∂dδEd

j Þ: ð31Þ

The background diffeomorphism constraint vanishes identically, and no second-order expression is required for our
purposes.
Let us first consider only the background constraint, N̄ H̄, and the first-order constraint, Hð1Þ½δN�, in the Poisson bracket

fN̄ H̄; Hð1Þ½δN�g ¼ 1

16πG

Z
V
d3xN̄δN

�
2k2δcjδK

j
c − 2

k3

p
δjcδEc

j þ 2
k
p
∂c∂jδEc

j

�
: ð32Þ

It is easy to see that this bracket, which is a first-order expression, is not a linear combination of the available first-order
constraints,Hð1Þ½δN� andD½δMc�. Therefore, if we combine only background and first-order constraints, we not only fail to
produce the correct bracket [Eq. (17)] of perturbative hypersurface deformations, but worse, obtain an anomalous gauge
system in which the constraint brackets do not close.
This problem can easily be solved by realizing that the second-order constraint Hð2Þ½N̄�, while it can be ignored in the

constraint equations imposed on first-order dynamics, should be included in the constraint brackets because its Poisson
bracket with a first-order constraint is of first order. The second-order constraint therefore contributes to the first-order
gauge flow relevant for a theory of first-order perturbations. Indeed, the Poisson bracket

fHð2Þ½N̄�; Hð1Þ½δN�g ¼ 1

32πG

Z
V
d3xN̄

�
δN

�
−8k2δcjδK

j
c þ 4

k3

p
δjcδEc

j þ 4
k
p
∂c∂jδEc

j þ 4k2δcjδK
j
c

�

þ 4

�
δKj

c∂j∂cδN − δcjδK
j
cδdk∂d∂kδN −

k
p
δEc

j∂c∂jδN

��
ð33Þ
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provides just the right terms for Eqs. (32) and (33) to combine into

fN̄ H̄þHð2Þ½N̄�; Hð1Þ½δN�g ¼ 1

8πG

Z
V
d3x

N̄∂cδN
p

ðpδdk∂cδK
j
d − p∂jδK

j
c − kδjc∂dδEd

j Þ

¼ D½p−1N̄∂cδN�; ð34Þ

equivalent to Eq. (17).
With hindsight, the result of this rather technical calcu-

lation is not surprising if one only considers that a second-
order constraint can generate a first-order gauge flow.
Together with the general condition that all flows of the
same order should be included on the same footing, it is
clear that one cannot obtain an anomaly-free constrained
system to first order if only the background and first-order
constraints are included. In our following discussion, it will
be useful to see the presented details of how this calculation
works in order to rule out the specific proposal made in the
dressed-metric approach.
The result [Eq. (34)] is closely related to our discussion

of semidirect products because it can be considered a
representation of Eq. (18) by specific phase-space functions
N̄ H̄þHð2Þ½N̄� and Hð1Þ½δN� instead of abstract generators
H½N̄ þ δN�. As the derivation shows, we need very specific
relationships between the coefficients in N̄ H̄þHð2Þ½N̄� and
Hð1Þ½δN� for the nontrivial right-hand side to follow. Had
the product of background and perturbation generators
been direct, a simple representation of a single background
Hamiltonian would have been sufficient, only required to
commute with the first-order perturbation Hamiltonian.
As already noticed, such a behavior has been implicitly
assumed in Ref. [1], but it is erroneous on grounds of both
the abstract reasoning of Secs. II A 2 and II B 1, and the
specific representation considered here.

III. THE METRIC’S NEW CLOTHES

In Riemannian geometry, the metric gαβ is subject to the
tensor transformation law such that the line element

ds2 ¼ gαβdxαdxβ ð35Þ

is invariant with respect to coordinate changes, dxα
0 ¼

ð∂xα0=∂xαÞdxα. The line element therefore provides a
coordinate-independent meaning of distances on which
Riemannian geometry is based. In a geometrical field
theory such as general relativity, this important condition
on the metric is an off-shell property which cannot be tested
if one restricts one’s attention only to solutions of the
canonical constraints or to Dirac or other observables.
If the theory is quantized canonically, coordinate trans-

formations are unmodified, because the space-time coor-
dinates xα are not phase-space functions. (We ignore here
the possibility that one might wish to modify the geometry

in addition to canonically quantizing gravity—for instance,
by making it noncommutative. Such a procedure would go
beyond standard canonical quantization, and it is certainly
not envisioned in Ref. [1].) Some of the components of gαβ,
however, represent phase-space degrees of freedom and
may therefore be subject to quantum corrections not only in
their dynamics but also in their behavior under gauge
transformations. The covariance question in canonical
quantizations of gravity therefore asks whether a quantum
modified (or dressed) g̃αβ has off-shell transformations
consistent with coordinate transformations. If this question
is not answered in the affirmative, the standard interpre-
tation of the metric through a line element is no longer
available, demoting g̃αβ to a purely formal object without
geometrical significance.
In Ref. [1], different versions of line elements have

uncritically been introduced for modified metrics without
asking the covariance question. In fact, since the formalism
defined in Ref. [1] is purely on-shell, using deparametriza-
tion of the background dynamics together with Bardeen
potentials or curvature perturbations, it is not amenable to a
direct test of covariance. This lack of control on an
important physical requirement may in itself present a
good reason to discard the dressed metric.
It is possible to go even further and show that the

modified dynamics used by the dressed-metric approach in
order to obtain bouncing background solutions cannot
represent on-shell solutions of a covariant off-shell theory.
To do so, we use the canonical version of the tensor-
transformation law dual to standard coordinate transforma-
tions, given by gauge generators subject to hypersurface
deformation brackets. As we have already seen, perturba-
tive inhomogeneity to first order requires us to use the
Hamiltonian constraint up to second order because a
second-order contribution may well generate a first-order
flow. The dressed-metric approach is halfway aware of
this important fact because it derives a dynamical flow
using second-order generators, determining the dynamical
vector field

Xα
Dyn ¼ Ωαβ

o ∂βSo½Nhom� þΩαβ
1 ∂βS02½Nhom� ð36Þ

in the notation of Ref. [1]. The generator S02 corresponds to
our Hð2Þ, but it is written in terms of curvature perturba-
tions, Tk⃗, and their momenta, Pk⃗, for tensor modes:
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S02½a3l3=pϕ� ¼
1

2

X
k⃗

�
4
κ

pϕ
jPk⃗j2 þ

k2

4κ

a4

pϕ
jTk⃗j2

�
; ð37Þ

using the choice of lapse function, Nhom ¼ a3l3=pϕ,
preferred in Ref. [1]. Here, pϕ is the constant background
momentum of the free, massless scalar field used for
deparametrization, while κ ¼ 8πG and l is a length
parameter that is not relevant for our purposes. (The
discussion for scalar modes is very similar to tensor modes
once curvature perturbations are used. The only difference
would be in the background functions, which are no longer
given directly in terms of a by solutions of certain differ-
ential equations. Since our arguments in what follows do
not depend on the specific form of background coefficients,
the simpler case of tensor modes is sufficient.)
Quantization is then performed separately for So and S02.

The background generator So, or our H̄, is modified by loop
quantization, replacing its quadratic momentum depend-
ence in Eq. (28) with a bounded function. (The precise
form of this modification does not matter for the arguments
given below.) The perturbation part S02, however, remains
quadratic in momenta and has only slightly modified
coefficients:

S̃02½a3l3=pϕ� ¼
1

2

X
k⃗

�
4κhp̂−1

ϕ ijPk⃗j2

þ k2

4κ
hp̂−1=2

ϕ â4p̂−1=2
ϕ ijTk⃗j2

�
; ð38Þ

where background operators are reduced to (internal) time-
dependent functions by taking expectation values in a
background state. The same expectation values are then
used to define a dressed metric in the proposed line element

ds̃2 ¼ g̃abdxadxb

¼ −l6hp̂−1
ϕ i1=2hp̂−1=2

ϕ â4p̂−1=2
ϕ i3=2dϕ2

þ hp̂−1
ϕ i−1=2hp̂−1=2

ϕ â4p̂−1=2
ϕ i1=2dx⃗2; ð39Þ

such that the coefficients in Eq. (38) correspond to the
classical expression if one were to use the dressed metric to
compute it. [The proposal in Ref. [1] also includes a metric
operator such that

dŝ2 ¼ ĝabdxadxb ¼ −l6p̂−1
ϕ â6p̂−1

ϕ dϕ2 þ â2dx⃗2: ð40Þ

However, since geometrical procedures do not measure
operators, this object does not have any well-defined
meaning, other than that it produces Eq. (39) as a formal
expectation value.]
The coefficients of the dressed metric are background

functions and are thereforemodified if one inserts solutions of
the holonomy-modified background constraint. Moreover,

there are state-dependent quantum corrections in these
coefficients, defined through expectationvalues, which could
be derived systematically in a moment expansion in the
framework of effective canonical constraints; see for instance
Refs. [31–33]. However, these two quantum corrections
cannot counter modifications of the background constraint
so as to produce the bracket (17), for the following reasons:
(1) The off-shell behavior of the metric does not depend

on what kind of background solutions are entered,
and therefore it does not know about holonomy
modifications. For the off-shell behavior, relevant
for covariance, coefficients in Eq. (39) depending on
a and pϕ (and possibly their moments) are merely
phase-space coordinates, just like the corresponding
functions in the modified background constraint.
The off-shell theory of the dressed-metric approach
therefore corresponds to a system in which only the
background constraint, H̄, has been modified by
using holonomies, but not the second-order con-
straint, Hð2Þ. Moreover, also the first-order con-
straint, Hð1Þ, is unmodified because Ref. [1] uses
the classical curvature perturbations without mod-
ifications that would result if gauge transformations
generated by Hð1Þ were modified; see Refs. [29,34].
The bracket (33) then remains unchanged while
Eq. (32) is modified, eliminating important cancel-
lations that led to the combined result in Eq. (34).
The dressed-metric approach functions by modify-
ing only the background constraint, making it
impossible to realize a valid version of the pertur-
bative hypersurface deformation bracket [Eq. (17)].

(2) If moments of a state that result from a systematic
semiclassical expansion of the expectation values in
Eq. (38) were to counter the background modifica-
tion, they would have to be fixed, severely restricting
the class of quantum states that are allowed to
propagate. Even if there were moments such that
the bracket (17) could be closed after background
modifications, the resulting mismatch of classical
and quantum degrees of freedom would amount to
an anomaly. (Recall that an anomaly in a constraint
system implies that the system becomes overcon-
strained, imposing an additional constraint such as
fN̄ H̄; Hð1Þ½δN�g ¼ 0 if the left-hand side is no
longer zero on the solutions space of the original
constraints.)

In addition to violating covariance, the dressed metric
has the following problem: It depends on the ordering
chosen for operators in the expectation value components.
Moreover, for different background gauges, corresponding
to different phase-space functions for the background lapse
N̄, different operator products appear, giving rise to differ-
ent ordering ambiguities. Therefore, choosing a different
background gauge in general results in an inequivalent
dressed metric. Ordering issues can potentially be ignored
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if one uses sharply peaked states, such that fluctuation
terms are negligible. Such an assumption is sometimes
suggested by the dressed-metric approach, as in “one
knows that there exist background quantum geometries
Ψo which are very sharply peaked” (emphasis in Ref. [1]).
However, this assumption is not justified in the Planck
regime [35–37], where a dressed metric would be most
relevant. (Claims as expressed in the quotation are some-
times applied even in the Planck regime, but they are
based on the erroneous, and usually implicit, assumption
that a large comoving volume may be assumed for a
homogeneous background even at large curvature. This
assumption is inconsistent with the generic behavior close
to a spacelike singularity as described by the Belinskii-
Khalatnikov-Lifshitz (BKL) scenario [38], according to
which homogeneous dynamics may approximately be
assumed at any point, but only in asymptotically small
regions without a positive lower bound on the comoving
volume. While the local classical dynamics does not
depend on the size of the comoving volume, quantum
fluctuations—and therefore the availability of sharply
peaked states—do.)

IV. CONCLUSIONS

Covariance in canonical quantum gravity is a subtle
issue. It requires a formulation of quantum effects such that
the classical hypersurface deformation brackets [Eq. (16)]
are obtained in the classical limit of the theory, while a
closed, anomaly-free set of brackets is realized for nonzero
ℏ which vanishes when the constraints are solved but is not
necessarily of the classical form. This statement includes
two conditions, which cannot always both be met. For
instance, a possible Abelianization of the bracket in some
midisuperspace models [39,40] always leads to anomaly-
free quantum constraints but even then is not guaranteed to
be compatible with covariance [41,42]. Although such
quantum theories in the latter case are formally consistent
as quantizations of constrained systems, they cannot be
interpreted as models of quantum space-time because there
is no well-defined sense in which they are covariant.
As an alternative to realizations of the hypersurface

deformation brackets, analog actions in space-time tensor
form, such as certain scalar-tensor theories, have been
proposed as a possible way to demonstrate covariance.
However, while such analog actions may work in simple,
isotropic models with a small number of degrees of
freedom, in all known cases they fail to describe anisotropic
models or perturbative inhomogeneity correctly. For in-
stance, the Palatini-fðRÞ model proposed in Ref. [43]
claimed to show that loop quantum cosmology is
covariant—is equivalent to a scalar-tensor theory with a
nondynamical scalar [44] in which any correction to
general relativity amounts to a simple cosmological con-
stant in vacuum models. It therefore cannot possibly
describe holonomy modifications in anisotropic vaccum

models, ruling it out as a possible covariant version of loop
quantum cosmology. More recent analog actions [45,46]
based on mimetic gravity [47,48] again work in isotropic
models but fail to describe anisotropies or perturbative
inhomogeneity correctly [49–51].
As shown here, the dressed-metric approach also fails to

provide a covariant version of perturbative inhomogeneity in
loop quantum cosmology—in particular, in the presence of
holonomy modifications of the background dynamics that
may make it possible to have bouncing solutions. Although
we have focused on the specific formulation described in
Ref. [1] for technical details of the constructions, similar
arguments apply to related (or precursor) formulations in
Refs. [52,53] or the “hybrid” approach [54–56], which share
with the dressed-metric approach the crucial feature of
separating the background degrees of freedom from inho-
mogeneous modes, making it impossible to implement the
key relation (17), which belongs to a semidirect product of
Lie algebroids. Our derivations specifically show that such
approaches cannot yield a covariant first-order perturbation
theory. Since a theory that admits a perturbative treatment is
covariant if and only if it is covariant at all orders, our results
are sufficient to rule out the existence of any covariant theory
that could complete dressed-metric approaches to higher
orders of inhomogeneity: If terms violating covariance at
first order were canceled by higher orders, the assumption
that the theory permits a valid perturbative treatment would
not be met. Only a completely nonperturbative theory might
then be able to capture effects such as those imagined in a
dressed-metric-like treatment, but since it would not allow an
expansion by perturbative inhomogeneity, the equations of
the dressed-metric approach would not approximate this
theory in any way.
Our result adds to mounting evidence that models of loop

quantum gravity cannot be covariant without drastic mod-
ifications of space-time structure; see also Refs. [57,58]. It is
sometimes suggested that a noncovariant model which
implements some quantum effects in an otherwise consistent
waymay beuseful as a “first approximation” to a complicated
formulation of cosmological dynamics in full quantum
gravity. However, violating an important consistency con-
dition such as covariance is not an approximation at all,
because it usually gives rise to uncontrolled, spurious
solutions that overshadow the relevant behavior, or to over-
constrained dynamics. (See also Ref. [59] for a similar result
in a different setting.) As an example, covariant versions of
holonomy-modifiedmodels of loop quantum gravity, derived
in Refs. [34,60–63], generically imply signature change at
Planckian density. The would-be bounce is then a four-
dimensional Euclidean region in which no deterministic
evolution exists [64,65]. Nondeterministic behavior is an
example for an effect that cannot be considered a small
correction tomodified but still deterministic dynamics, even if
the modes used to determine the structure of space-time and
propagation properties are perturbative.
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