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During inflation, scalar fields with masses less than the Hubble scale acquire vacuum expectation values
(VEVs) via stochastic processes driven by quantum fluctuations. For nearly massless spectator scalars
transforming nontrivially under a continuous symmetry group, we demonstrate that the evolution of the
VEV depends on the dimensionality of the scalar field space. Fields in larger representations both attain
larger vacuum expectation values and converge more rapidly to equilibrium. We present an argument
demonstrating how this higher-dimensional evolution can be obtained in unitary gauge for fields
transforming under local symmetries with a mass gap that is small compared to the Hubble scale.
Finally, we show that accounting for the full number of degrees of freedom in the Standard Model Higgs
multiplet tightens Higgs stability constraints on the inflationary scale at the percent level and has more
dramatic consequences for both the VEV and the energy stored in the Higgs field after inflation.
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I. INTRODUCTION

The primordial power spectrum of density fluctuations as
inferred from the cosmic microwave background (CMB)
radiation is broadly consistent with minimal single-field
inflation [1]. During inflation, quantum fluctuations of the
inflaton and metric are stretched to superhorizon scales
where they freeze-out to generate adiabatic, red-tilted
spectra of curvature and gravitational wave fluctuations
[2–5]. Furthermore, any minimally coupled scalar field
with a mass that is small compared to the Hubble scale
during inflation generically acquires a nonzero vacuum
expectation value (VEV); the generation of this VEVand its
evolution can be understood as a stochastic process driven by
quantum fluctuations [6–12]. In particular, absent direct
couplings to the inflaton or curvature scalar, the Standard
Model (SM)Higgs acquires a VEV during inflation [13–17].
This breaking of electroweak symmetry, and its subsequent
restoration during reheating, has been suggested as a means
to produce the Standard Model [18–20], as a source for
gravitational waves [21–23] and primordial black holes

[24] (however, see Ref. [25]), and as a baryogenesis
mechanism [26–29].
One striking feature of the observed SM Higgs is the

instability of its potential at high energy scales [30–33].
Given the observed Higgs and top quark masses, the
running quartic coupling becomes negative at scales
∼109–1013 GeV including 2σ uncertainties on mh, mt,
and αsðmZÞ [34–42]. While the electroweak vacuum itself
is metastable, regions of space in which excursions of the
Higgs VEV venture sufficiently far into the unstable part of
the potential during inflation can be fatal to our Universe.
The exclusion of such regions from our past light cone was
used to derive constraints on the allowable Hubble scale
during inflation in Refs. [43–46].
Beyond the SM Higgs field (and possibly the inflaton),

no other scalars are known to exist in nature. However, the
existence of light scalars during the inflationary epoch has
been routinely invoked for both fundamental and phe-
nomenological reasons. On the fundamental side, scalar
moduli are a common ingredient in realistic models of
string cosmology (see, e.g., Ref. [47] for a review), which
typically yield a large spectrum of moduli, some of which
may be light during inflation. On the phenomenological
side, the curvaton mechanism relies on the quantum
fluctuations from an additional light spectator field to
subsequently generate the curvature perturbation follow-
ing inflation [48–52]. The stochastic inflationary popula-
tion of SM-singlet scalars has also been invoked as a
population mechanism for dark matter [53–59]. A similar
mechanism may be used to produce cold axion dark
matter [60–64].
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The stochastic evolution of scalar fields during inflation
has primarily been studied for real, singlet scalars, follow-
ing the pioneering treatment of Starobinsky and Yokoyama
[12]. In this work, we extend the work of Starobinsky and
Yokoyama to light scalar fields transforming linearly under
a continuous symmetry group. We demonstrate that the
VEV of a scalar field that transforms under a continuous
symmetry undergoes stochastic evolution in a field space
whose dimensionality is determined by the number of real
scalar degrees of freedom. This higher-dimensional diffu-
sion leads to larger asymptotic VEVs, as well as faster
evolution to the asymptotic probability distribution gov-
erning the VEV. We begin by considering global sym-
metries and subsequently discuss the situation when the
symmetry is gauged. As a useful example, we consider a
field moving in a quartic potential, which admits analytic
solutions; however, the techniques may be generalized, and
we also present numerical results for the SM Higgs.
In describing the evolution of the Higgs VEV, studies to

date have implicitly assumed that only the radial mode is
important during the random walk. That is, the Higgs has
been treated as a single real scalar field. In this approach, the
field range of the radial mode is often extended to unphysical
negative values in order to maintain a Z2 symmetry under
which the origin of field space is stationary. However, the SM
Higgs is an SU(2) doublet with 4 degrees of freedom.
Although the Higgs is subject to gauge transformations that
can be chosen to make it appear one-dimensional away from
the origin (i.e., unitary gauge), we argue that its field space is
effectively four-dimensional during at least part of its random
walk during inflation; see [65,66] for related arguments in a
different context.We show that accounting for the larger field
space does not significantly impact the probability for the
Higgs to attain catastrophically large VEVs. However, the
larger field space leads to order unity corrections to the value
of the root-mean-square Higgs VEV and the corresponding
energy density in the Higgs field.
This paper is organized as follows. In Sec. II, we begin by

developing the Fokker-Planck equation describing the sto-
chastic evolution of a scalar field with a continuous global
symmetry, beginning with SOðNÞ and then generalizing to
other symmetry groups. We solve the resulting Fokker-
Planck equation analytically and numerically for a quartic
potential in order to demonstrate three important conse-
quences of the enlarged field space. In Sec. III, we then
discuss gauging the symmetry, and in Sec. IV, we consider
the implications for the stochastic evolution of the SMHiggs
during inflation.We conclude in Sec.Vand provide details of
our computations in appendices. Appendix A considers the
behavior of excited modes in the quartic potential, while
Appendix B provides details of our numerical scheme for
solving the Fokker-Planck equation.
We work in natural units where ℏ ¼ c ¼ kB ¼ MPl ¼ 1,

and our convention for the metric is the “mostly minus”
signature.

II. VACUUM EXPECTATION VALUE

We consider a generic inflationary theory described by
the action S¼ SEHþSinf þSspec, where gravity is described
by the usual Einstein-Hilbert action SEH, Sinf describes a
sector that sources the (quasi-)de Sitter inflationary back-
ground, and Sspec describes a minimally coupled spectator
scalar,

Sspec ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂χ⃗Þ · ð∂χ⃗Þ − Vðχ⃗ · χ⃗Þ

�
: ð1Þ

We take the scalar χ⃗ to transform under a continuous
symmetry group that is respected by the potential. Any
couplings between χ⃗ and the inflaton must typically be
small to avoid spoiling slow-roll inflation, and in what
follows we take them to be zero.
During inflation, χ⃗ acquires a VEV, hχ⃗ · χ⃗i ≠ 0. The

evolution of this VEV can be described by a Fokker-Planck
equation, where the stochastic noise driving the diffusion of
the VEV is provided by quantum fluctuations of subhorizon
modes [12]. We begin by generalizing the treatment of
Ref. [12] to the scenario where χ⃗ transforms in the
fundamental representation of a global SOðNÞ symmetry
before making the further generalization to scalar fields
transforming under other continuous symmetry groups.

A. Global SOðNÞ symmetry

Following the stochastic approach developed in
Ref. [12], we divide each component of the field χ⃗ into
long- and short-wavelength modes,

χiðt; x⃗Þ ¼ χL;iðt; x⃗Þ þ
Z

d3k

ð2πÞ3=2 Θðk − ϵaHÞ

×
�
ak⃗;iχk⃗e

−ik⃗·x⃗ þ a†
k⃗;i
χ†
k⃗
eik⃗·x⃗

�
; ð2Þ

with the division occurring at k ¼ ϵaH. The long-
wavelength modes, denoted by χ⃗L, can to good approxi-
mation be treated classically, while the short-wavelength
modes are quantized. For the long-wavelength modes
to be outside the horizon, we must take ϵ≲ 1.1 For
sufficiently small values of ϵ, the short-wavelength modes
with k≳ ϵaH satisfy the massless Klein-Gordon equation
in de Sitter space, with solution

χk⃗ ¼
Hffiffiffiffiffi
2k

p
�
τ −

i
k

�
e−ikτ; ð3Þ

where τ ¼ −1=aH is conformal time, and H ¼ _a=a is the
Hubble rate. Here and throughout, over dots represent
derivatives with respect to cosmic time t.

1To respect the SOðNÞ symmetry, the parameter ϵ, which
implements the division between long- and short-wavelength
modes, must be identical for each component.
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The equation of motion for the long-wavelength modes,

_χL;iðt; x⃗Þ ¼ −
1

3H
dV
dχL;i

þ fiðt; x⃗Þ; ð4Þ

can be viewed as a Langevin equation with the stochastic
source term fi generated by the “freezing-out” of short-
wavelength modes,

fi ¼
Z

d3k

ð2πÞ3=2 δðk − ϵaHÞð−ϵH _aÞ

×
�
ak⃗;iχ k⃗e

−ik⃗·x⃗ þ a†
k⃗;i
χ†
k⃗
eik⃗·x⃗

�
: ð5Þ

Equations (4) and (5) are straightforward generalizations
of the single-field expressions. The multidimensional
Fokker-Planck equation associated with Eq. (4) governs
the evolution of the one-point probability distribution
function ρð¯χ⃗; tÞ describing the probability to observe the
field χL;i at the value χ̄L;i at time t; for notational simplicity,
we omit the overbars henceforth. From Eqs. (3) and (5), the
two-point function for the short-distance quantum noise is

hfiðx1; t1Þfjðx2; t2Þi ¼
H3

4π2
δijδðt1 − t2Þ

×
sin ðϵaHjx1 − x2jÞ

ϵaHjx1 − x2j
; ð6Þ

yielding for the Fokker-Planck equation

∂ρðχ⃗L; tÞ
∂t ¼ 1

3H

h
ρðχ⃗L; tÞ∇2V þ ∇⃗V · ∇⃗ρðχ⃗L; tÞ

i

þ H3

8π2
∇2ρðχ⃗L; tÞ; ð7Þ

where the derivatives indicated by ∇⃗ are taken with respect
to the field space; see also Ref. [67], which studied
interacting spectator scalars in a general potential. Here
the probability distribution is normalized according toZ

dNχLρðχ⃗L; tÞ ¼ 1: ð8Þ

To solve for ρðχ⃗L; tÞ, we decompose it as a sum of
eigenmodes Φ, whose time dependence is described by an
eigenvalue Λ. The mode functions and their corresponding
eigenvalues carry a set of indices n;m;… that are gener-
alizations of the familiar n;l; m indices of a three-dimen-
sional spherical decomposition to N-dimensional space.
We make the ansatz,

ρðχ⃗L; tÞ ¼ e−vðχ⃗LÞ
X
n;m;…

an;m;…Φn;m;…ðχ⃗LÞe−Λn;…ðt−t0Þ; ð9Þ

where t0 is the initial time (at which we impose our initial
conditions) and we have defined

vðχ⃗LÞ≡ 4π2Vðχ⃗LÞ
3H4

: ð10Þ

The mode functions are normalized according toZ
dNχLΦn;m;…ðχ⃗LÞΦ†

n0;m0;…ðχ⃗LÞ ¼ δn;n0δm;m0…; ð11Þ

which is consistent with the normalization condition in
Eq. (8) due to the existence of a mode with zero eigenvalue
(Λ0 ¼ 0), which we demonstrate below. Substituting the
ansatz of Eq. (9) into the Fokker-Planck equation, Eq. (7),
gives an eigenvalue equation for the modes,

−∇2Φn;m;… þ
h
ð∇⃗vÞ2 −∇2v

i
Φn;m;… ¼ 8π2Λn;…

H3
Φn;m;…:

ð12Þ

For SOðNÞ-invariant initial conditions, the probability
distribution function depends only on the radial variable
χ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

χ⃗L · χ⃗L
p

(see Appendix A for an explicit proof). The
distribution of the radial VEV can be obtained from an
effective one-dimensional probability density,

ρeffðχL; tÞ≡ χN−1
L ρðχL; tÞ · ΩðN−1Þ; ð13Þ

where ΩðN−1Þ is the surface area of a unit N − 1-sphere,
ensuring Z

∞

0

dχLρeffðχL; tÞ ¼ 1: ð14Þ

Finally, it is convenient to work with the dimensionless
variables

t̂≡Ht; χ̂ ≡ χL=H ð15Þ

and the corresponding probability distribution ρ̂ðχ̂; t̂Þ, which
is normalized according to

R
dN χ̂ ρ̂ðχ̂; tÞ ¼ 1. Defining the

effective one-dimensional distribution ρ̂effðχ̂; t̂Þ analogously
in terms of ρ̂ðχ̂; t̂Þ, we then seek solutions of the Fokker-
Planck equation

∂ρ̂eff
∂ t̂ ¼ 1

8π2

�
2
∂2v
∂χ̂2 þ

N − 1

χ̂2

�
ρ̂eff

þ 1

8π2

�
2
∂v
∂χ̂ −

N − 1

χ̂

� ∂ρ̂eff
∂χ̂ þ 1

8π2
∂2ρ̂eff
∂χ̂2 ð16Þ

for ρ̂effðχ̂; t̂Þ.

1. Zero modes for SOðNÞ-invariant potentials
The existence of a zero mode can be demonstrated

analytically for an arbitrary stable SOðNÞ-invariant poten-
tial. Note that
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Φ0ðχ⃗LÞ ¼ N e−vðχ⃗LÞ ð17Þ

satisfies Eq. (12) with eigenvalue Λ0 ¼ 0.
Because all eigenvalues are non-negative, the zero mode

determines the late-time asymptotic form of the probability
distribution. Therefore, the coefficient a0 in the expansion
in Eq. (9) is not sensitive to the initial condition at t ¼ t0.
Instead, a0 can be determined by requiring the probability
distribution function to be unit normalized in the asymp-
totic future, limt→∞

R
dNχLρðχLÞ ¼ 1. Recognizing that the

integrand is proportional to Φ0ðχ⃗LÞ2 and using the eigen-
mode normalization condition, we see that a0 ¼ N , giving

lim
t→∞

ρðχ⃗LÞ ¼ N 2e−2vðχ⃗LÞ; ð18Þ

where the constant N depends on both the dimensionality
of field space and the functional form of the potential.

B. SU(2) and other global symmetry groups

To generalize this treatment to other compact symmetry
groups, we begin with an instructive example. Consider a
scalar field transforming as the fundamental representation
of a global SU(2) symmetry, which can be parametrized as

χ ¼
�
χ1 þ iχ2
χ3 þ iχ4

�
: ð19Þ

We assume the action is invariant under SU(2) rotations, so
the potential is a function of χ†χ ¼ χ21 þ χ22 þ χ23 þ χ24. To
derive the Fokker-Planck equation describing the evolution
of the VEV, we proceed as above for the SOðNÞ case,
decomposing the fields into long- and short-wavelength
components and using the short-wavelength free-field
correlation function to obtain the corresponding stochastic
diffusion. Since we are interested in the magnitude of the
VEV and not its direction in field space, it is again
convenient to work in spherical coordinates on field space.
Explicitly, we write the scalar field as

χL ¼ χ

�
cos θ1 þ i sin θ1 cos θ2

sin θ1 sin θ2 cosϕþ i sin θ1 sin θ2 sinϕ

�
; ð20Þ

where θ1; θ2 ∈ ½0; π� and ϕ ∈ ½0; 2πÞ. The space where the
vacuum expectation value takes values, C2, is isomorphic
to R4, and the Laplacian over the (rescaled) field variables
in the parametrization of Eq. (20) is

∇̂2 ¼ ∂2

∂χ̂2 þ
3

χ̂

∂
∂χ̂ þ

1

χ̂2
∇2

S3 ; ð21Þ

where

∇2
S3 ¼

1

sin2 θ2

∂
∂θ2

�
sin2 θ2

∂
∂θ2

�

þ 1

sin2 θ2

�
1

sin θ1

∂
∂θ1

�
sin θ1

∂
∂θ1

�
þ 1

sin2 θ1

∂2

∂ϕ2

�
:

ð22Þ

The results of Sec. II A 1 can now be applied straightfor-
wardly; for example, at late times, the distribution function
takes its equilibrium form

lim
t→∞

ρðχ⃗LÞ ¼ N 2e−2vðχLÞ; ð23Þ

where again the precise value of the constantN depends on
the dimensionality of field space.
This SU(2) example makes it clear that the derivation of

the Fokker-Planck equation depends only on the manifold
structure of the field space of the spectator scalar and not on
the manifold structure of the group itself. The probability
distribution function (for linear representations) is therefore
determined by the number of real degrees of freedom
possessed by the scalar, as well as the potential. We expect
that our analysis holds for a broad range of possible scalar
field theories; however, it would not apply directly to
theories that have a nontrivial field space metric or
topology.

C. Example: N-dimensional evolution
in a quartic potential

To illustrate the effects of the dimensionality of the field
space, we consider an example where an N-dimensional
scalar field moves in an SOðNÞ-symmetric quartic poten-
tial. We focus on three effects: first, the equilibrium
distribution and VEV attained by the field depend on the
dimensionality of the field space; second, in larger dimen-
sionality spaces, the probability distribution approaches its
equilibrium value faster; and third, we discuss the evolution
of the resulting large-χ tail of the probability distribution.
The advantages of this quartic example are that it allows
analytic solutions and it helps to develop some quantitative
intuition for the N dependence of the results.

1. Equilibrium distribution and VEV

The coefficient N in Eq. (18) can be determined
analytically for the quartic potential, which we write as

V ¼ λ

4
ðχ⃗ · χ⃗Þ2 ≡ λ

4
χ4; ð24Þ

where the normalization of the coupling constant has been
chosen to agree with the conventions of Refs. [6,12] for
N ¼ 1, facilitating comparison. For this potential, we find
the asymptotic probability distribution is given by
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lim
t̂→∞

ρ̂ðχ̂; t̂Þ ¼ 2ΓðN=2Þ
ΓðN=4Þ

�
2

3

�
N=4

λN=4e−2vðχ̂Þ; ð25Þ

which reduces to the results of Ref. [6] for N ¼ 1.
Equivalently, the asymptotic one-dimensional probability
density over the rescaled field is

lim
t̂→∞

ρ̂effðχ̂; t̂Þ ¼
4λN=4

ΓðN=4Þ
�
2π2

3

�
N=4

χ̂N−1e−2π
2λχ̂4=3: ð26Þ

From Eq. (26), we find that the equilibrium average VEV
for a spectator field in a quartic potential is

hχ̂2i ¼ λ−1=2
ffiffiffi
3

2

r
Γðð2þ NÞ=4Þ
πΓðN=4Þ ; ð27Þ

which increases as
ffiffiffiffi
N

p
at large N.

This dependence on N is a consequence of the enlarged
field space available for the random walk of the spectator
VEV in a quartic potential: for a one-dimensional scalar
field, each stochastic jump is either toward or away from
the origin, while in a multidimensional space, there are
many independent directions into which the VEV can
diffuse.
As for the one-dimensional case [12], higher mode

functions can be found numerically. We present our results
for the higher eigenmodes in Appendix A. Critically, we
find that for any fixed mode (e.g., the first excited mode),
the corresponding eigenvalue increases as the dimension-
ality N increases. Equation (9) then implies that the
probability distribution approaches its equilibrium value
faster at larger N, as we now discuss.

2. Approach to equilibrium

The eigenvalues of excited modes in the probability
distribution govern the evolution of Pðχ̂Þ to its asymptotic
form via the exponential factor e−Λn;m;…ðt−t0Þ in Eq. (9). In
Appendix A, we show that for a quartic potential with fixed
coupling λ the eigenvalue for a given mode increases with
N. Therefore, any result derived from the approach to
equilibrium depends on the number of degrees of freedom
in the scalar sector. In particular, the asymptotic probability
distribution and equilibrium VEV derived above become
applicable earlier (i.e., after fewer e-foldings) for scenarios
with more degrees of freedom.
In order to study the approach to equilibrium, we evolve

Eq. (16) numerically. We take Gaussian initial conditions

ρ̂ðχ̂; 0Þ ∝ e−ðχ̂=σÞ2 ; ð28Þ

with σ ≈ 0.0563 [using Eq. (B3)], and consider the sub-
sequent evolution of the probability distribution.
The approach to the equilibrium distribution depends on

both the quartic coupling λ and the dimensionality of the

field N. The qualitative dependence on λ is straightfor-
wardly determined by noting that the parameter λ can be
removed from the dynamics by rescaling the field accord-
ing to χ̂ → λ1=4χ̂ (see Appendix A for details). However,
after rescaling the field, λ reappears in the initial condition,
Eq. (28). Lower λ then corresponds to a more sharply
peaked initial condition with otherwise identical evolution,
therefore taking longer to reach equilibrium. In what
follows, to explore the dependence on N we fix λ ¼ 0.05.
The evolution of the effective one-dimensional proba-

bility with the number of e-folds is shown in Fig. 1, for
N ¼ 1 (top) and N ¼ 4 (bottom). Comparing the curves for
30 and 60 e-folds to the asymptotic result demonstrates that
the N ¼ 4 scenario relaxes to equilibrium faster.
To illustrate the impact of faster relaxation to equilibrium

in higher-dimensional field spaces, we consider the evo-
lution of the energy density hVi ¼ λhχ4i=4. In a larger field
space, the equilibrium vacuum expectation value is
enhanced, which corresponds to an enhanced energy
density stored in the spectator scalar field. For a field with
N real degrees of freedom in a quartic potential, the
asymptotic probability distribution gives

hVieq ¼
λ

4
hχ4ieq ¼

3NH4

32π2
: ð29Þ

FIG. 1. The effective probability distribution ρ̂effðχ̂; t̂Þ as a
function of χ̂ ¼ χ=H, for a quartic potential with λ ¼ 0.05 and
N ¼ 1 (top) or N ¼ 4 (bottom).
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Because the equilibrium value is linearly dependent on the
number of scalar degrees of freedom, to isolate the effect of
the speed of relaxation as the dimensionality is varied, we
consider the evolution of hVi=hVieq. This quantity is shown
in Fig. 2 as a function of time, measured by the number of
e-folds of expansion. As expected from the eigenvalue
analysis, the scalar field with 4 degrees of freedom
approaches its equilibrium value significantly faster than
the singlet scalar field. After 60 e-folds of inflation, the
N ¼ 4 scalar field energy density is 99.7% of its equilib-
rium value while the N ¼ 1 scalar field energy density is
96.2% of its equilibrium density.

3. Effects of higher-dimensional field space on the
tail of the distribution

The high-scale instability in the SM Higgs potential
implies that any Hubble patch where the Higgs field probes
sufficiently far beyond the instability scale evolves to the
true vacuum. Therefore, any enhancement of the proba-
bility for the Higgs to reach large field values may have
critical consequences for the safety of our own Universe.
We have seen above that a higher-dimensional field space
leads to significant enhancement in the equilibrium VEV
attained by the field. We now consider the effect of the
higher dimensionality of the field space on the tail of the
distribution at large values of the VEV. Although we treat a
purely quartic potential with a global symmetry in this
section, the quantitative intuition we develop here is useful
for the more complicated case of the SMHiggs we consider
below in Sec. IV.
At late times, when the probability distribution

approaches its asymptotic form, the probability that the
VEV takes values larger than any given field value χ̂0 ≡
χ0=H is

Pðχ̂ ≥ χ̂0Þ ¼ 1 −
Z

χ̂0

0

dχ̂ρeffðχ̂Þ;

¼ ΓðN=4; 2π2λχ̂40=3Þ
ΓðN=4Þ ; ð30Þ

where Γða; zÞ is the incomplete Gamma function. The
dependence of Pðχ̂ ≥ χ̂0Þ on the number of real degrees of
freedomN is shown in Fig. 3. As N increases, there is more
support at large field values, and therefore the probability of
finding χ̂ ≥ χ̂0 falls off less rapidly. The tail of the
probability distribution is thus enhanced by several orders
of magnitude, as shown in Fig. 4.
The current observable Universe is composed of approx-

imately e3n patches of size ∼H, where n≳ 60 is the number
of e-folds of inflation. The probability that no patch in our
past light cone has a value of χ̂ greater than some value
χ̂−180 is found by solving

FIG. 2. Evolution of the ratio of the expectation value of the
energy density V ¼ λχ4=4 to its equilibrium value as a function of
time (number of e-folds), for scalar fields with N ¼ 1 and N ¼ 4
degrees of freedom and fixed λ ¼ 0.05.

FIG. 3. Asymptotic values of Pðχ̂ > χ̂0Þ for a quartic potential,
as a function of λ1=4χ̂0, for scalar fields with N ¼ 1 to N ¼ 4 real
degrees of freedom.

FIG. 4. Logarithm of the ratio Pðχ̂ > χ̂0Þ for N real degrees of
freedom to N ¼ 1 in a quartic potential, as a function of λ−1=4χ̂0.
The probability of finding χ̂ > χ̂0 can be enhanced by several
orders of magnitude at large λ−1=4χ̂0.
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Pðχ̂ > χ̂−180Þ≲ e−180: ð31Þ

Solving this equation for χ̂−180 with N ¼ 1 in a quartic
potential gives

λ1=4χ̂−180;N¼1 > 2.27 ð32Þ

using the equilibrium probability distribution of Eq. (30).
Because the large-χ tail of the probability distribution is
enhanced as N increases, solving the same equation for
N > 1 results in larger values of χ̂−180. However, the result-
ing numerical shift in χ̂−180 is small: although the tail of the
probability distribution is enhanced by several orders of
magnitude as N increases (see Fig. 4), this enhancement is
counterbalanced by the exponential decrease of the proba-
bility distributionwith χ̂ (independent of the dimensionality).
Given some χ̂0;N¼1, we can analytically solve the

equation

Pðχ̂ > χ̂0;N¼4ÞjN¼4 ¼ Pðχ̂ > χ̂0;N¼1ÞjN¼1 ð33Þ

for χ̂0;N¼4 in a quartic potential to obtain the value χ̂0;N¼4

for which the probability in the tail of the four-dimensional
distribution is equal to the specified probability in the tail of
the one-dimensional distribution. We find

χ̂0;N¼4 ¼
�

3

2π2λ
ln

�
Γð1=4Þ

Γð1=4; 2π2λχ̂40;N¼1=3Þ
��

1=4
: ð34Þ

Using Eq. (34), we find that λ1=4χ̂−180;N¼1 ≳ 2.27
corresponds to

λ1=4χ̂−180;N¼4 ≳ 2.29: ð35Þ

This result holds for the equilibrium probability distri-
bution. However, as we have noted above, the approach
to the equilibrium distribution is faster for N > 1 than for
N ¼ 1, which can be important if the inflationary epoch is
too short for the probability distribution to obtain its
asymptotic form. For sufficiently narrow initial conditions,
the value of χ−180 can be substantially smaller than the
asymptotic results when inflation ends before the equilib-
rium distribution is reached.
We study the tail of the distribution by evolving the

Fokker-Plank equation numerically, as described in
Appendix B. After evolving for 60 e-folds, we determine
χ̂−180, with results shown in Fig. 5. As expected, we see
that at sufficiently small couplings (λ≲ 10−2.5), the field
value χ̂−180 is significantly smaller than its asymptotic
value. For λ ∼ 10−4, we have λ1=4χ̂−180;N¼1 ≈ 1.92 and
λ1=4χ̂−180;N¼4 ≈ 1.96. The bottom panel of Fig. 5 shows
the ratio of λ1=4χ̂−180;N¼1 to its equilibriumvalue.We see that
while N ¼ 4 does approach its equilibrium value at slightly
smaller values of λ, as expected from Sec. II C 2, the
difference between N ¼ 1 and N ¼ 4 lines remains small

over four decades in λ, never differing by more than two
percent.
Given the significant effect of the dimensionality of the

field space on the VEV, energy density, and the speed of
approach to equilibrium, it may appear surprising that the
probability to obtain very large VEVs is not similarly
affected. However, some insight into the large-VEV behav-
ior can be obtained by considering the Fokker-Planck
equation for ρ̂eff, Eq. (16). At large field values χ̂ ≫ 1,
the terms involving N are unimportant compared to the
potential (assuming that ∂v=∂χ̂ falls slower than 1=χ̂). That
is, the dynamics far from the origin are dominated by the
forcing due to the potential gradients. For the quartic
potential, it is straightforward to see that, for field values
much larger than the equilibrium VEV, the dynamics due to
the extra degrees of freedom become subdominant.

III. GAUGING THE SYMMETRY

So far, we have considered fields transforming under a
global symmetry. In this section, we gauge the symmetry
and introduce the associated gauge fields. When the scalar
field obtains a vacuum expectation value during its random
walk, the gauge symmetry is spontaneously broken, and the
physical spectrum develops a mass gap parametrically

FIG. 5. Top: λ1=4χ̂−180, with χ̂−180 defined in Eq. (31). Dots
indicate the value after 60 e-folds, while lines indicate the values
obtained from the asymptotic probability distribution function,
Eqs. (32) and (35). Bottom: the ratio of λ1=4χ̂−180 to its
equilibrium (asymptotic) value.
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given by m ∼ gχ, where g is the gauge coupling. The
physical content of a spontaneously broken gauge theory is
often made more explicit by going to unitary gauge, where
Goldstone bosons are no longer present in the theory as
propagating fields.2 However, the bad UV behavior of the
longitudinal polarization of the gauge-boson propagator in
unitary gauge introduces spurious divergences in loop
diagrams. In Minkowski space, these divergences require
a new counterterm to cancel them [65,69,70],

Lct ¼ −ðN − 1Þiδ4ð0Þ lnðχÞ; ð36Þ

where N − 1 is the number of massive gauge bosons, or
equivalently the number of eaten Goldstone bosons. The
appearance of this counterterm in unitary gauge can also be
seen starting from the Fadeev-Popov Lagrangian in path
integral calculations [70,71]. For simplicity, we take all
Goldstone bosons to be eaten, as in the SM, but the
discussion should generalize straightforwardly to more
general patterns of spontaneous breaking of linearly real-
ized symmetries.
Derivations of the unitary-gauge counterterm from

explicit loop calculations [65,70] clarify how the divergent
δ4ð0Þ in Eq. (36) should be understood. The spurious
quartic divergences that appear in unitary gauge come from
one-loop diagrams of the kind shown in Fig. 6. In these
diagrams, the unitary-gauge form of the gauge boson
propagator gives rise to momentum integrals of the form

Z
d4k
ð2πÞ4

k2

k2 −m2
: ð37Þ

The natural regularization of this momentum integral yields
δ4ð0Þ ¼ R

d4k=ð2πÞ4 ≡ iΛ4, where Λ is a UV cutoff in k
space, and the factor of i arises from the standard Wick
rotation employed to evaluate four-momentum integrals.
With this regularization prescription, the Lagrangian of
Eq. (36) is manifestly Hermitian. These quartic divergences
appear in correlation functions with any number n of
external Higgs bosons, in such a way that the counterterms
needed at each individual n can be resummed to yield the
logarithmic expression in Eq. (36).
Now, let us consider what the consequences of these

spurious quartic divergences are in de Sitter space. In de

Sitter space, the UV structure of the unitary-gauge theory is
identical to that in Minkowski space. We therefore expect
the de Sitter computations that lead to the analogue of
Eq. (37) to generate similar UV divergences. However, we
also expect a number of new features in de Sitter due to the
presence of the de Sitter horizon which alters the form of
the propagator in the infrared. Because modes with masses
m≲H behave differently than those with m≳H, we
expect qualitatively different effects in these two regimes.
In constructing the Langevin and Fokker-Planck equa-

tions for the long-wavelength modes above, the split
between short- and long-wavelength modes imposes an
effective IR cutoff on the theory at the horizon scale. The
effect of this cutoff depends on the mass of the gauge
bosons. On the one hand, for gauge boson masses m ≪ H,
the IR behavior of the unitary-gauge contribution to the
divergent momentum integrals is controlled by the IR
cutoff. In this case, after the UV divergences in the one-
loop effective action are cancelled by the counterterm of
Eq. (36), the loop integrals of Eq. (37) produce a finite and
physical contribution of the form

δL ¼ ðN − 1ÞΛ4
IR lnðχÞ ¼ ðN − 1Þ 3H

4

8π2
lnðχÞ; ð38Þ

where in the second equality we took the fourth power of
the IR cutoff to be the inverse of the subhorizon four
volume. This subhorizon volume is the product of one
Hubble time and the volume of a spatial three-sphere,

Vhor ¼
4

3
π

�
1

H

�
3

×
2π

H
: ð39Þ

On the other hand, when the gauge boson mass is above the
Hubble scale, m≳H, it is instead the gauge boson mass
that controls the IR behavior. In this case, the pole at the
physical gauge boson mass is within the region of inte-
gration in Eq. (37). Accordingly, the IR cutoff from the
finite number of modes within the Hubble volume results in
a negligible contribution to the correlation functions. This
reflects the mass gap in the physical spectrum of the
spontaneously broken gauge theory: when the mass gap is
larger than the Hubble scale, only the radial mode remains
light, and the field is effectively one-dimensional.
To summarize, when the gauge boson mass is below the

Hubble scale, in de Sitter space the bad UV behavior of the
gauge boson propagators in unitary gauge induces a
contribution to the Langevin equation for the long-wave-
length fluctuations. This contribution acts as an addition to
the potential for the radial mode

VðχÞ ¼ λ

4
χ4 − ðN − 1Þ 3H

4

8π2
lnðχÞ

≡ V0ðχÞ þ VugðχÞ: ð40Þ

FIG. 6. Example of one-loop diagrams with one and two
external Higgs bosons that give rise to spurious quartic diver-
gences in unitary gauge.

2For a discussion of unitary gauge at a general location in field
space, where ∂V=∂χi ≠ 0, see [68].
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The Fokker-Planck equation for a single real field in unitary
gauge is then

8π2

H3

∂ρ
∂t ¼

8π2

3H4

�∂2V0

∂χ2 þ ðN − 1Þ
χ2

�
ρ

þ 8π2

3H4

�∂V0

∂χ −
ðN − 1Þ

χ

� ∂ρ
∂χ þ

∂2ρ

∂χ2 : ð41Þ

However, this is exactly the same as the Fokker-Planck
equation describing the evolution of the radial mode in an
N-dimensional field space subject to the potential V0, as we
now show. Taking ρ to depend only on χ, i.e., isotropic in
field space, the N-dimensional Fokker-Planck equation is

8π2

H3

∂ρ
∂t ¼

8π2

3H4

�
ρ

1

χN−1
∂
∂χ

�
χN−1 ∂V0

∂χ
�
þ ∂V0

∂χ
∂ρ
∂χ

�

þ 1

χN−1
∂
∂χ

�
χN−1 ∂ρ

∂χ
�
: ð42Þ

But when Eq. (42) is written in terms of the effective one-
dimensional probability distribution for the radial mode ρeff
[defined in Eq. (13)], it precisely matches Eq. (41) with the
replacement ρ → ρeff .
Since the VEVof the scalar field controls the size of the

mass gap, at sufficiently large values of the VEV (χ ≳H=g)
the field necessarily appears one-dimensional, as only the
radial mode remains light compared to the Hubble
scale. Thus, we generically expect a scalar field transforming
nontrivially under a gauge symmetry to transition between an
N-dimensional regime at small VEVs to a one-dimensional
regime at large VEVs. To fully describe this transition would
require a full loop calculation in de Sitter space, which is
beyond the scope of this paper; however, as we show below,
this treatment is already sufficient to obtain interesting results
for the SM Higgs.
Gauging the symmetry also introduces a distinct new

correction to the potential from the backreaction of the
associated gauge bosons. In unitary gauge, the gauge fields
that correspond to spontaneously broken generators acquire
mass and a longitudinal degree of freedom via the Higgs
mechanism. This mass term breaks the conformal sym-
metry, inducing particle production of the massive degrees
of freedom in the de Sitter background. This process results
in a physical bath of gauge bosons on the horizon scale that
can then backreact on the radial mode.
In the Hartree approximation, we can estimate the

correction to the scalar potential from the interaction with
this background of gauge bosons as

ΔV ≈
1

2
g2hAμAμiχ2: ð43Þ

Approximating the gauge boson expectation value by
hAμAμi ∼ 3H2=ð4πÞ2, we see that the physical bath of
gauge bosons induces a small correction to the scalar mass,

δm2
χ ∼ 3g2

H2

ð4πÞ2 : ð44Þ

For g≲ 1, this correction is unimportant. Further, as the
scalar wanders further from the origin and the gauge bosons
becomemoremassive, this contribution is further suppressed
due to the decay of the gauge boson wave functions. We
conclude that backreaction effects from physical gauge
boson production are unimportant in comparison to the
effects studied here.3

IV. STANDARD MODEL HIGGS DURING
INFLATION

In this section, we examine the consequences of the
enlarged field space for the evolution of the probability
distribution governing the SM Higgs VEV during inflation,
contrasting the case of a scalar field with 4 real degrees of
freedom with the N ¼ 1 description used in recent studies
of the Higgs instability scale, Refs. [43–46]. We find that,
in general, properly accounting for the 4 degrees of
freedom in the Higgs multiplet strengthens constraints
on the Hubble scale during inflation at the percent level.
Meanwhile, the mean-squared Higgs VEV and resulting
energy density are substantially enhanced relative to single-
field estimates.
Our aim in the present work is to understand how the

4 degrees of freedom possessed by the Standard Model
Higgs boson affect its evolution during inflation. To isolate
the impact of the Higgs’s multiple degrees of freedom, we
compare our calculations to the one-dimensional calcula-
tion of Ref. [45]. Thus, we use the approximate Higgs
potential

VðhÞ ¼ −b0 ln
�
H2 þ h2ffiffiffi
e

p
Λ2
max

�
h4

4
; ð45Þ

where h is the Higgs VEV, b0 ¼ 0.12=ð4πÞ2, and
Λmax ¼ 3.0 × 1011 GeV. Because part of the unstable
regime of the potential may be stabilized by thermal
corrections during reheating, we follow Ref. [45] in
considering the probability in the tail beyond the field
value hcr, defined through

hcr ¼ −
V 0ðhcrÞ
3H2

: ð46Þ

Beyond this field value, the slow-roll approximation breaks
down and fluctuations rapidly fall into the true vacuum.
As the SM Higgs evolves to large VEVs, the mass of the

electroweak gauge bosons increases and thus so does the

3In the case of the standard model, this backreaction makes the
Higgs a little less unstable during high-scale inflation. However,
it is numerically subdominant to the backreaction from top
quarks, computed in Ref. [72].
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mass gap in the physical spectrum. For the SM Higgs, the
mass gap surpasses the Hubble scale for VEVs in the
vicinity of h ¼ 2H=g, where g is the coupling constant of
SUð2ÞL. At this scale, we expect the effective dimension-
ality of the Higgs field to transition from four to one. As our
experience with the quartic potential in Sec. II C suggests
(and as we show explicitly for the SM Higgs below),
changing the dimensionality of the Higgs field leads to only
minor shifts in the numerical constraint on H=Λmax com-
pared to the one-dimensional calculation.We thus expect that
physically relevant values ofHmust be substantially smaller
than the instability scale, H=Λmax ≲ 0.1, in which case
H < gðΛmaxÞΛmax=2. Thus, when the SM Higgs reaches
the instability scale and the unstable region of the potential
beyond, the radial mode is the only remaining light degree of
freedom. Nonetheless, we demonstrate in this section that
accounting for the 4 degrees of freedom in the SM Higgs at
small values of h results in percent-level corrections to
constraints on the scale of inflationH, coming from themore
rapid initial spread of the probability distribution in the
enlarged field space.
To numerically study the evolution of the SMHiggs VEV

during inflation, we implement a simple model for the
transition between N ¼ 4 and N ¼ 1-dimensional field
spaces using a hyperbolic tangent step. Explicitly, we take
the effective unitary-gauge potential for the radial mode to be

VðhÞ ¼ −b0 ln
�
H2 þ h2ffiffiffi
e

p
Λ2
max

�
h4

4

− ðN − 1Þ 3H
4

16π2
lnðhÞ

�
1þ tanh

�
h − 2bH=g

c

��
;

ð47Þ

where c parametrizes the width of the step, and b para-
metrizes its position, which occurs at h ¼ 2bH=g. Unless
otherwise noted, we set c ¼ 8 and b ¼ 1; we discuss the
dependence of our numerical results on the details of our
interpolation below. In addition, we use a one-loop running
gauge coupling gðhÞ [73].
Details of the numerical calculation are given in

Appendix B. We again consider the evolution of the
logarithm of the probability density to ensure accurate
results in the tail of the distribution at large h and take the
field to initially be a narrowly peaked Gaussian centered at
the origin. The maximum number of e-foldings permitted
as a function of H=Λmax is shown in Fig. 7. Here we show
results for fields with dimensionality N ¼ 1 and N ¼ 4
held artificially constant throughout the field evolution, as
well as the more physical case of a field that interpolates
between N ¼ 4 degrees of freedom for h=H ¼ χ̂ ≪ 2=g
and N ¼ 1 degrees of freedom for χ̂ ≫ 2=g via Eq. (47).
Our results for N ¼ 1 agree well with those of Ref. [45].
For N ¼ 4, the number of e-foldings permitted decreases,

FIG. 7. The maximum number of e-foldings permitted during
inflation, as a function of the Hubble parameter during inflation
H. Results are shown for scalar fields withN ¼ 1 (thin black) and
N ¼ 4 (dashed blue) degrees of freedom moving in the SM Higgs
potential of Eq. (45). The dotted red curve (“gauged”) corre-
sponds to a field that interpolates between N ¼ 4 and N ¼ 1
degrees of freedom at 2H=g.

FIG. 8. The average VEV squared of the Higgs field (top)
and energy density in the Higgs field (bottom) as a function of
e-folding number for a one-dimensional field (solid lines), four-
dimensional field (dashed lines), and a unitary-gauge field (dotted
lines) evolving in a radial potential given by Eq. (47). We show
the result for H=Λmax taking values 0.055 (black), 0.07 (red),
0.085 (blue), and 0.1 (green) (from top to bottom for each set of
curves on the upper panel, and from bottom to top on the lower
panel). For these results, we set the interpolation parameters
b ¼ 1 and c ¼ 8.
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corresponding to stricter constraints onH=Λmax. This faster
increase of the probability to find the Higgs at catastrophi-
cally large VEVs for N ¼ 4 is a consequence of both
enhanced probability to find the field at larger VEVs and
more rapid evolution to the asymptotic value. At small
values of H=Λmax, where the probability distribution
function is able to evolve for more e-foldings, the differ-
ence between N ¼ 1 and N ¼ 4 is more pronounced, as
expected for the faster evolution seen in larger dimensional
spaces. Overall, however, the differences between N ¼ 1,
N ¼ 4, and the physical unitary-gauge scenario are numeri-
cally small.
Observations typically require around 60 e-folds of

inflation to solve the horizon problem [74], which for
N ¼ 1, yields the conditionH=Λmax ≲ 0.067, in agreement
with Ref. [45]. However, when we account for the full
degree of freedom content of the Standard Model Higgs,
the constraint is strengthened slightly: our unitary-gauge
calculation requiresH=Λmax ≲ 0.066. Consideration of this
effect is thus important for precision determination of
constraints on the inflationary scale H. We have checked
that the unitary-gauge results in Fig. 7 are insensitive to the
details of the transition from N ¼ 4 to N ¼ 1, and in
particular are insensitive to the specific values adopted for

the parameters b and c in Eq. (47). The results of Fig. 7 do
depend weakly on the choice of initial condition. As the
initial condition becomes increasingly peaked at the origin,
the number of allowed e-folds asymptotes to a fixed value,
and thus for sufficiently narrow Gaussian initial conditions,
the resulting constraint on the Hubble scale becomes
independent of the initial conditions. We have checked
that the initial conditions used in Fig. 7, given in Eqs. (B2)
and (B3), yield constraints on the number of allowed
e-folds that agree with the asymptotic values at the
subpercent level. For insufficiently peaked Gaussian initial
conditions, however, the field expands more rapidly toward
the unstable region of the potential, and accordingly fewer
e-folds are allowed.
Although the enlarged dimensionality of the physical

SM Higgs field space has only a small effect on the allowed
scale of inflation, it has a more dramatic effect on the VEV
and the energy density stored in the field, similar to the
results for the quartic potential in Sec. II C. In Fig. 8, we
show the evolution of the VEV and potential energy in the
Higgs field computed from Eq. (46). The four-dimensional
field shows substantially larger VEVs and energy densities
than the one-dimensional field. Increasing N from 1 to 4
increases the energy density by a factor of ∼4, and the VEV

FIG. 9. The evolution of the squared VEV (top panels) and the averaged energy density (bottom panels) for fixed H=Λmax ¼ 0.055,
varying the location and steepness of the transition function. In all cases, the lower, dotted and upper, solid black curves denote the
ungauged N ¼ 1 and N ¼ 4 results, respectively. For the dashed colored curves, the left panels fix the steepness c ¼ 32 and vary the
location b from 0.1 (lower, violet) to 1.3 (upper, red) in steps of Δb ¼ 0.3. The right panels fix b ¼ 1 and vary c from c ¼ 4 (lower,
green) through c ¼ 64 (upper, red) in powers of 2.
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squared by ∼3, broadly in line with the scalings derived
for the quartic potential in Sec. II C. However, a four-
dimensional field moving in the SM Higgs potential also
displays a more substantial dependence on the value of
H=Λmax, reflecting the more rapid evolution of the tails of
the probability distribution function toward the nonquartic
regions of the potential. The running of λ with the VEV
means that, for largerH=Λmax, the field experiences a flatter
potential at large χ̂ ¼ χ=H. Thus, for larger H=Λmax, the
Higgs is able to wander out to larger VEVs relative to
Hubble, while the expected energy density (in units of H4)
in the Higgs field decreases with increasing H=Λmax.
As Fig. 8 shows, the unitary-gauge field [with our default

implementation of the transition, Eq. (47)] realizes a VEV
and an energy density much closer to those of the pure
four-dimensional field than the one-dimensional field.
Unfortunately, results for the VEV and energy density
are somewhat sensitive to the details of how the interpo-
lation from four- to one-dimension in Eq. (47) is imple-
mented, as we show in more detail in Fig. 9. In particular,
our results for the VEV and energy density are relatively
insensitive to the steepness of the transition, but they
depend in detail on its location. This dependence occurs
because the SM gauge bosons become massive before the
Fokker-Planck equation is dominated by the gradient flow
of the SM Higgs potential [see, e.g., Eq. (16)]. Moving the
transition thus directly affects the duration of the evolution
in the four-dimensional potential. Going beyond the para-
metrization of Eq. (47) to a more precise calculation of the
form of the turnover requires explicit loop computations in
de Sitter space and is beyond the scope of this work;
regardless of the remaining uncertainties, however, Fig. 8
makes it clear that it is critical to include the full
dimensionality of the Higgs field to estimate the mean
properties of the field during inflation.

V. CONCLUSION

In this work, we have studied the stochastic evolution of
the VEV of a scalar field transforming in a linear repre-
sentation of a continuous symmetry group in a de Sitter
background. We generalized the derivation of the single-
field Fokker-Planck equation to scenarios where the VEV
takes values in a flat, multidimensional field space. For
gauged symmetries, we demonstrated how this multidi-
mensional evolution is recovered in unitary gauge.
As a useful example, we considered in detail a scalar

field with a pure quartic potential, which admits an
analytical solution for the asymptotic probability distribu-
tion. Enlarging the dimensionality N of the field space has
the important effects of (i) increasing the VEV (as ∼N1=4),
(ii) increasing the energy density stored in the scalar field
(as N), and (iii) making the approach to the asymptotic
probability distribution more rapid.
Applying these insights to the more subtle case of the

SM Higgs, we found that accounting for the enlarged field

space of the physical Higgs boson near the origin in field
space strengthens constraints on the scale of inflation at the
percent level. Although the effect on the probability of the
Higgs to obtain catastrophically large field values is small,
the enlarged field space has a significant effect on the VEV
and energy density. Larger predicted VEVs may have a
significant effect on the duration of reheating [75], with
potential observational consequences in non-Gaussianities
created during Higgs-modulated reheating [76], as well as
on models which rely on the inflationary Higgs VEV for
baryogenesis [26–28].
The techniques developed here are applicable to any

light scalar field, including curvatons [48–51]. The
enhanced VEV, and particularly its faster approach to its
equilibrium value, may be particularly relevant to these
scenarios. Such a curvaton may evade the concerns of
Ref. [77], which demonstrated that the probability density
of a real scalar curvaton may depart significantly from its de
Sitter equilibrium form during slow-roll inflation. We leave
the full study of the VEV of a multidimensional curvaton
and its fluctuations for future work. Other interesting
avenues for future investigation include studying the
impact of the evolving dimensionality of the SM Higgs
field on inflationary constraints in the presence of higher-
dimensional operators, particularly since higher-dimen-
sional operators have been shown to magnify the impact
of small deviations from the benchmark stochastic Higgs
analysis in some cases [78].
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APPENDIX A: EIGENFUNCTIONS AND
EIGENVALUES FOR EXCITED MODES

IN A QUARTIC POTENTIAL

In this appendix, we study the excited eigenfunctions
and eigenvalues in the quartic potential. We begin by
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writing down the general Fokker-Planck equation for an
SO(N) invariant potential, before showing numerically that
higher-dimensional field spaces lead to larger eigenvalues.
As Eq. (9) shows, the contribution of each eigenmode to

the probability distribution decays away as e−Λnðt−t0Þ.
Consequently, the asymptotic distribution is given by the
eigenmode with the eigenvalue of zero, while the approach
to equilibrium is determined by the remaining eigenmodes.
As we are interested in describing the approach to equi-
librium, we consider in this appendix the higher eigenm-
odes, characterized by nonzero eigenvalues, Λn;m;… ≠ 0,
for a quartic potential.
We separate the mode functions Φn;m;… into radial and

angular parts. It is convenient to consider separately N ¼ 2,
which has only an azimuthal angle, and N ≥ 3, which
additionally has polar angle(s), although for rotationally
symmetric initial conditions, only rotationally invariant
modes contribute to ρðχLÞ.
As in the case of a real scalar field, it is convenient when

considering a quartic potential to introduce the rescaled
variables [12]

χ⃗L ¼ Hλ−1=4 ⃗χ̃ and Λn;… ¼ λ1=2HΛ̃n;…: ðA1Þ

We also introduce the rescaled mode functions

Φ̃n;m;…ð ⃗χ̃Þ≡
�

H

λ1=4

�
N=2

Φn;m;…ð ⃗χ̃Þ; ðA2Þ

which obey the normalization conditionZ
dN χ̃Φ̃n;m;…ð ⃗χ̃ÞΦ̃†

n0;m0;…ð ⃗χ̃Þ ¼ δn;n0δm;m0…: ðA3Þ

From Eq. (12), we see that these mode functions satisfy

−∇̃2Φ̃n;m;… þ ½ð ⃗∇̃vÞ2 − ∇̃2v�Φ̃n;m;… ¼ 8π2Λ̃n;…Φ̃n;m;…;

ðA4Þ

where all explicit λ dependence has been removed by the
rescaling. A straightforward generalization of the argument
in Ref. [12] shows that all eigenvalues Λ̃n;… are non-
negative.
The probability distribution over the rescaled field is

ρ̃ðχ̃Þ ¼ ðH=λ1=4ÞNρðχ⃗LÞ, with normalization conditionZ
ρ̃ð ⃗χ̃ÞdN χ̃ ¼ 1: ðA5Þ

The expansion coefficients in the rescaled probability
distribution are given by ãn;m;… ¼ ðH=λ1=4ÞN=2an;m;…,
where an;m;… are the expansion coefficients in Eq. (9).
In the following subsections, we first study the eigen-

value equations forN ¼ 2 andN ≥ 3. We then demonstrate

in Sec. A 3 that modes with L ≠ 0 are unimportant if the
initial condition is sufficiently localized near the origin.
Finally, we present numerical studies of the lowest three
eigenfunctions in Sec. A 4.

1. N = 2 ðSOð2Þ ≅ Uð1ÞÞ
We now consider the excited eigenmodes of a scalar field

with 2 real degrees of freedom, which is appropriate to a
field with an SOðNÞ or U(1) global symmetry. Again, we
specialize to the quartic potential. We use polar coordinates

on field space, with radial coordinate χ̃ ¼
ffiffiffiffiffiffiffiffiffi
⃗χ̃ · ⃗χ̃

q
and

angular coordinate ϕ. We introduce the ansatz

Φ̃n;lð ⃗χ̃Þ ¼ Rn;lðχ̃ÞYlðϕÞ; ðA6Þ

where as usual

YlðϕÞ ¼
1ffiffiffiffiffiffi
2π

p eilϕ; ðA7Þ

with
R
2π
0 dϕYlðϕÞY�

l0 ðϕÞ ¼ δl;l0 .
Due to the rotational symmetry of the Lagrangian, the

potential, and hence v, depends only on χ̃. Therefore, Rn;l
satisfies the equation

8π2Λ̃nlRn;l ¼ −
�
R00
n;l þ

R0
n;l

χ̃
−
l2

χ̃2
Rn;l

�

þ
�
ðv0Þ2 − v00 −

v0

χ̃

�
Rn;l: ðA8Þ

For the quartic potential, this is

8π2Λ̃nlRn;l ¼ −R00
n;l −

R0
n;l

χ̃
þ l2

χ̃2
Rn;l

þ
�
16π4χ̃6

9
− 4π2χ̃2 −

4π2χ̃2

3

�
Rn;l: ðA9Þ

This equation can be solved numerically to find the
eigenvalues and their corresponding eigenmodes, as we
discuss further below.

2. SOðNÞ with N ≥ 3

We now turn our attention to scalar fields with more than

3 real degrees of freedom. Our coordinates are χ̃ ¼
ffiffiffiffiffiffiffiffiffi
⃗χ̃ · ⃗χ̃

q
,

which serves as a radial coordinate in the field space, and
the angular variables ϕ; θ1; θ2;…, which characterize
positions on the sphere SN−1. The Laplacian operator
can be decomposed as

∇̃2 ¼ ∂2

∂χ̃2 þ
N − 1

χ̃

∂
∂χ̃ þ

1

χ̃2
∇2

SN−1 ; ðA10Þ
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where ∇2
SN−1 is the Laplacian on the N − 1-sphere. This

operator can be expressed inductively, starting with the
familiar two-sphere case,

∇2
S2 ¼

1

sin θ1

∂
∂θ1

�
sin θ1

∂
∂θ1

�
þ 1

sin2 θ1

∂2

∂ϕ2
;

∇2
SNþ1 ¼ 1

sinN θN

∂
∂θN

�
sinN θN

∂
∂θN

�
þ 1

sin2 θN
∇2

SN :

ðA11Þ

The eigenfunctions of ∇2
SN−1 are generalized (or scalar)

spherical harmonics, which have the eigenvalues

∇2
SN−1Ym;l1;l2;…ðϕ; θ1; θ2;…Þ ¼ −LðLþ N − 2Þ; ðA12Þ

where L ¼ lmax is the maximum of l1;l2;…. These
spherical harmonics can be expressed in terms of
Legendre functions [79],

Ym;l1≤l2≤…Lðϕ; θ1; θ2;…Þ ¼ 1ffiffiffiffiffiffi
2π

p eimϕ
YN−2

j¼1
jþ1P̄

lj−1
lj

ðθjÞ;

ðA13Þ

where l0 ≡m, jmj ≤ minðliÞ, and

jP̄
l
L
ðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ j − 1

2

ðLþ lþ j − 2Þ!
ðL − lÞ!

s
ðsin θÞð2−jÞ2

× P
−ðlþj−2

2
Þ

Lþj−2
2

ðcos θÞ: ðA14Þ

These spherical harmonics satisfy the normalization
condition4

Z
dΩN−1Ym;l1;l2;…Y�

m0;l0
1
;l0

2
;… ¼ δm;m0δl1;l01

…: ðA15Þ

We make the ansatz that the mode functions may be
decomposed in terms of these harmonics as

Φ̃n;m;…ðχ̃;ϕ; θ1;…Þ ¼ Rn;Lðχ̃ÞYm;l1;…ðϕ; θ1;…Þ: ðA16Þ

Using the rotational invariance of v, Rn;L satisfies the
differential equation

8π2Λ̃n;LRn;L ¼
�
ðv0Þ2−

�
v00 þN−1

χ̃
v0
��

Rn;L

−
�
R00
n;Lþ

N−1

χ̃
R0
n;L−

L
χ̃2
ðLþN−2ÞRn;L

�
:

ðA17Þ

Note that setting N ¼ 2 and L ¼ l recovers Eq. (A8).
Again, this differential equation can be studied numeri-

cally, which we discuss below.

3. Contribution of L ≠ 0 to the probability density

Modes with L ≠ 0 do not contribute if the initial
conditions are spherically symmetric. Recall that the
contribution from each mode is determined by the coef-
ficients ãn;m;…. In general, the coefficients are determined
by the initial condition at time t ¼ t0, as

ãn;m;… ¼
Z

dN χ̃ ρ̃ð ⃗χ̃; t0Þevð ⃗χ̃ÞΦ̃n;m;…ð ⃗χ̃Þ: ðA18Þ

The orthogonality of the generalized spherical harmonics
immediately imposes that ãn;m;… is zero for L ≠ 0 if the
initial state is spherically symmetric.
We can show more generally that if the initial VEV is

localized near the origin, the L ¼ 0 contribution dominates
the probability density ρ. Since the VEV is localized, we
seek the behavior of Rn;Lðχ̃Þ in the small χ̃ limit. In this
limit, Eq. (A18) becomes

−R00
n;L −

N − 1

χ̃
R0
n;L þ LðLþ N − 2Þ

χ̃2
Rn;L ¼ 0: ðA19Þ

As can be seen from Eq. (A8), this equation also holds for
N ¼ 2with L ¼ 1. Because Lþ N − 2 ≥ 0, the differential
equation has the solution

Rn;L ¼ c1χ̃L þ c2χ̃−L−Nþ2: ðA20Þ

For L > 0, we must have c2 ¼ 0, because χ̃−L−Nþ2 → ∞ as
χ → 0, in which case c2 ≠ 0would make the eigenfunction
non-normalizable. This leaves us with

Rn;L ∝ χ̃L ðA21Þ

at small χ̃. Since ãn;m;l1;… is determined by the overlap of
the mode with the initial condition, it is suppressed for
L ≠ 0when the initial condition is localized near the origin.
Consequently, we ignore eigenmodes with L ≠ 0 through-
out this work.
We note that this follows from Eq. (A18) and does not

depend on the functional form of v. Therefore, this result
applies to any potential that depends only on the radial
field coordinate.

4These agree with the familiar N ¼ 3 spherical harmonics up
to factors of ð−1Þm, which are the Condon-Shortly phases and do
not affect orthonormality.
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4. Numerical mode functions

In this subsection, we present a numerical study of the
eigenmodes Rn;0 for n > 0. For numerical computation, it is
convenient to work with the functions

Rn;Lðχ̃Þ ¼ Gn;Lðχ̃Þe−vðχ̃Þ; ðA22Þ
which satisfy the differential equation

8π2Λ̃n;LGn;L ¼ −G00
n;L þ 2v0G0

n;L −
N − 1

χ̃
G0

n;L

þ LðLþ N − 2Þ
χ̃2

Gn;L: ðA23Þ

For a single field, the first two nonzero eigenvalues
are Λ̃1;0 ¼ 0.0889 and Λ̃2;0 ¼ 0.289 (in agreement with
Ref. [12]). For SO(2), we find that the lowest eigenvalues
are Λ̃1;0 ¼ 0.3656 and Λ̃2;0 ¼ 0.933, and for SO(3), we
find Λ̃1;0 ¼ 0.4344 and Λ̃2;0 ¼ 1.034. As N increases, so
do the corresponding eigenvalues. Since the eigenvalues
enter the probability distribution function ρ through the
factor e−Λnðt−t0Þ, this increase in the eigenvalues causes the
contribution of the higher modes to decay away more
rapidly with increasing N.
Finally, for completeness, we discuss the corresponding

eigenfunctions, shown in Fig. 10. As the symmetry group
becomes larger, features in the mode functions are shifted
to larger χ̃ and the VEV accordingly wanders to larger
values, as we saw for the zero mode.

APPENDIX B: NUMERICAL METHODS

In this appendix, we present our numerical implementa-
tion to solve the Fokker-Planck equation. The scalar
potential for fixed one- and four-dimensional theories is
given in Eq. (45), and for unitary gauge in Eq. (47), and the
field value which solves Eq. (46) defines the tail of the
distribution. We also solve the Fokker-Planck equation
for the pure quartic potential, Eq. (24). In each case, we
numerically solve the differential equation for the natural
logarithm of the probability distribution,5

∂X
∂ t̂ ¼ ðN þ 2χ̂v0 − 1Þ

8π2χ̂

∂X
∂χ̂ þ 1

8π2

��∂X
∂χ̂

�
2

þ ∂2X
∂χ̂2

�

þ ðN − 1Þv0 þ χ̂v00

4π2χ̂
; ðB1Þ

where χ̂ ¼ h=H is the rescaled VEV.
For our initial condition, we set the probability distri-

bution as an n-dimensional Gaussian,

ρðh; 0Þ ¼ 1

ð2πhh2iÞN=2 exp

�
−

h2

2hh2i
�
; ðB2Þ

where

hh2i ¼
H2 tanhð

ffiffiffiffi
2λ

p
8ð2πÞÞ

ð2πÞ ffiffiffiffiffi
2λ

p : ðB3Þ

For the SM Higgs, λ can be found by evaluating Eq. (45) at
H ¼ 0. With N ¼ 1, this is identical to the initial condition
used in Ref. [45].

FIG. 10. R0ðχ̃Þ (top), R1;0ðχ̃Þ (middle), R2;0ðχ̃Þ (bottom), for a
real field with Z2 symmetry, SO(2) symmetry, and SO(3)
symmetry.

5When studying the SM Higgs in unitary gauge, we rescale the
probability distribution by a factor of χ3 to match that for the
N ¼ 4 case, as (initially) ρ has most of its support in the region
that is effectively four-dimensional. Note that this rescaling also
alters the boundary condition specified below.
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We numerically solve Eq. (B1) using SciPy’s DOP853
routine [80,81] with fourth-order finite differencing for
derivatives with respect to χ̂. We impose the same boundary
conditions as [45], namely, that ∂X=∂χ ¼ χ∂2X=∂χ2,
which is satisfied by the Gaussian initial condition.
Because the initial conditions are sharply peaked near
χ ¼ 0, we use a grid spanning ð0; χ̂max� whose spacing
increases geometrically from χ̂max=N1 at χ̂ ¼ 0 to χ̂max=N2

at χ̂ ¼ χ̂max, in practice choosing N1 ¼ 8N2. Doing so
provides an excellent compromise between computational
cost and accuracy and produces solutions which satisfy the
probability normalization constraint to a higher precision
than using a uniform grid.
For the pure-quartic and SM Higgs models, we choose

N2 ¼ 384 and 512, respectively, checking that all of our
results are consistent with N2 ¼ 256 and 384. For the

quartic model, we set χ̂max to be a multiple of the critical
value predicted analytically by Eq. (32), finding a factor of
1.2 to be sufficiently large. Similarly, for the SM Higgs
model, we set χ̂max to be 1.4 times the critical value defined
in Eq. (46). In both cases, we verified that increasing the
size of the domain has a negligible effect on our results; in
particular, the results presented in Figs. 5 and 7 change by
no more than one part in 103.
Finally, we cross-checked results for the pure N ¼ 1 and

N ¼ 4 cases using Mathematica, imposing boundary con-
ditions that required (i) the slope of X matches the slope of
the Gaussian initial condition near the origin, and
(ii) Xðχmax; tÞ is equal to a large negative number (the
results are insensitive to the exact value chosen). Our
results agree with those from the above method to within a
percent.
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