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Discrepant measurements of the Universe’s expansion rate (H0) may signal physics beyond the standard
cosmological model. Here I describe two early modified gravity mechanisms that reconcile H0 value by
increasing the expansion rate in the era of matter-radiation equality. These mechanisms, based on viable
Horndeski theories, require significantly less fine-tuned initial conditions than early dark energy with
oscillating scalar fields. In imperfect dark energy at equality (IDEE), the initial energy density dilutes
slower than radiation but faster than matter, naturally peaking around the era of equality. The minimal IDEE
model, a cubic Galileon, is too constrained by the cosmic microwave background (Planck) and baryon
acoustic oscillations (BAO) to relieve the H0 tension. In enhanced early gravity (EEG), the scalar field
value modulates the cosmological strength of gravity. The minimal EEG model, an exponentially coupled
cubic Galileon, gives a Planckþ BAO valueH0 ¼ 68.7� 1.5 (68% CL), reducing the tension with SH0ES
from 4.4σ to 2.6σ. Additionally, Galileon contributions to cosmic acceleration may reconcile H0 via late-
universe phantom expansion (LUPE). Combining LUPE, EEG and Λ reduces the tension between Planck,
BAO, and SH0ES to 2.5σ. I will also describe additional tests of coupled Galileons based on local gravity
tests, primordial element abundances and gravitational waves. While further model building is required to
fully resolve the H0 problem and satisfy all available observations, these examples show the wealth of
possibilities to solve cosmological tensions beyond Einstein’s general relativity.
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I. INTRODUCTION

Observational cosmology has established a simple and
successful standard model of the Universe. ΛCDM is
named after the dominant components: the cosmological
constant (Λ) accelerates the expansion at late times and
cold dark matter (CDM) drives the formation of the large-
scale structure (LSS). In addition, the model includes other
matter species known from Earthly experiments (atoms,
photons, neutrinos) and assumes the validity of Einstein’s
general relativity (GR). This remarkably simple model
successfully describes most cosmological observations in
terms of a handful of parameters [1]. But despite ΛCDM’s

success, several datasets interpreted within the standard
model are in conflict [2].
The most significant tension involves the Universe’s

expansion rate. Late-universe measurements of H0 clash
with observations of early-universe processes interpreted
within ΛCDM. Late probes include distance ladder [3] and
lensing time delays [4,5]. They are direct and largely
independent of the cosmological model. Probes based on
early-Universe processes (or early probes) rely on Planck’s
cosmic microwave background (CMB) plus baryon acous-
tic oscillations (BAO) data [1]. Early probes are indirect and
rely on the predictions of the ΛCDM model. Unless the
Hubble problem is due to unknown systematics, its sig-
nificance demands physics beyond the simple ΛCDM
model [6,7].
New-physics solutions to the Hubble problem reflect the

conflict between the early and late universe. Late-universe
solutions rely on new astrophysical effects [8] or dark
energy (DE) beyondΛ [9–17]. AdjustingH0 for fixedCMB
angular scale requires that the density of DE grows in time
instead of remaining constant, i.e., a phantom equation of
state
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wϕ ¼ P
E
< −1; ð1Þ

where E, P are the energy and pressure density of DE,
respectively.While disfavored by combining BAO and type
Ia supernovae (SNe) [14,18–20], other analyses favor late-
time solutions to the Hubble problem [4,21–24].
Galileon gravity [25] once provided a late-universe

solution to the Hubble problem. Simple models with
Λ ¼ 0 were compatible with Planck and BAO [10] and
unambiguously predicted a value of H0 in agreement with
distance ladder, well before the Hubble problem was trou-
bling. Latter investigations showed that the only Galileon
compatible with CMB × LSS cross-correlation modifies the
speed of gravitational waves (GWs) [11]. The observation of
coincident gravitational and electromagnetic radiation from
the neutron star merger GW170817 [26] swiftly ruled out
Galileons as a solution to the Hubble problem, along with
many other theories of gravity [27–30].
Early-universe solutions invoke new physics before

recombination to “recalibrate” the comoving acoustic scale,

rs ¼
Z

∞

zd

csðz0Þ
Hðz0Þ dz

0; ð2Þ

which depends on the ratio of the sound speed and the
expansion rate up to the redshift of baryon drag. These
solutions work because BAO measure the dimensionless
quantity H0rs. A larger value of H0 requires decreasing rs
by increasing H. Consistency between BAO and SNe (aka
inverse distance ladder) introduces a relation between H0

and rs which is largely insensitive to late-universe physics
[18,31–33]. Combined inverse and direct distance ladders
prefer a shorter acoustic scale than Planckþ BAO in
ΛCDM (Fig. 1). This hints at an early-universe solution
to the Hubble problem.
Early solutions rely on new sources of energy contributing

to the expansion rate before recombination, cf. Eq. (2).
Possible scenarios include additional radiation [24,34,35],
neutrinos with enhanced interactions [36–39], variation of
fundamental constants [40] and nonstandard dark matter
[16,41,42]. Another idea is based on early dark energy, an
analog to time-dependent DE but active in the early universe.
EarlyDEcanbe studied via time-dependent parametrizations
of the energy density in the Friedmann equation [14,43,44]
(see [45,46] for earlier works) and/or the effective gravita-
tional constants in the evolution of perturbations [47].
Dynamical early DE models introduce a quintessence

scalar field to solve the Hubble problem [48–50]. A
potential VðϕÞ with a minimum is required to combine
the phenomenology of thawing quintessence [51] and
damped oscillations [52]: the scalar field is initially
subdominant and frozen by Hubble friction. It thaws as
the energy density of matter becomes comparable to the
potential. Then it begins rolling down the potential and

oscillating around theminimum, losing energy in the process
until it becomes subdominant again. Data requires that the
scalar starts evolving around the era of equality, setting the
initial condition ϕi so VðϕiÞ ∼ eV4. The scalar’s energy
density is constant before equality, with VðϕiÞ=ρrðzBBNÞ ∝
ðTeq=TBBNÞ4 ∼ 10−24 when compared around big-bang
nucleosynthesis (BBN). Without a mechanism to adjust ϕi
[53], quintessence fields require very fine-tuned initial
conditions to solve the Hubble problem.
Studies of dynamical early DE models have been

restricted to quintessence scalars with different potentials
and simple extensions [54,55]. This covers but a narrow
sliver in the space of known gravitational theories [56]. It is
plausible that novel signatures and interesting features (e.g.,
reduced fine-tuning) can be found among extensions of
early DE. The goal of this work is to explore novel
solutions to the Hubble problem in viable theories beyond
GR, focusing on novel early modified gravity mechanisms
and their phenomenology.

A. Summary and guide for the busy reader

This work considers three potential solutions to the
Hubble problem in scalar-tensor theories of gravity:

FIG. 1. Galileons, early modified gravity and the Hubble
problem. Model-independent constraints on H0 (dotted bands)
prefer a lower acoustic scale rs thanΛCDM. Filled contours show
the model-dependent Planckþ BAO constraints for Galileon
models implementing imperfect dark energy at equality (IDEE),
enhanced early gravity (EEG), and late-universe phantom ex-
pansion (LUPE). In IDEE-only models (dashed) the stringent
constraints limit the impact on rs. Coupled EEG models (solid)
relax the bounds considerably, extending the degeneracy across
the BAOþ SNe direction. Uncoupled/coupled LUPE models
with Λ ¼ 0 (red/orange) predict a high central value of H0

compared to the canonical Λ ≠ 0 cases (purple, dark green),
but have a worse fit and are ruled out by other observations.
LUPE models with Λ ≠ 0 (magenta) provide an intermediate
case. (The figure is adapted from [33].)
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(1) Imperfect dark energy at equality (IDEE).—The
scalar kinetic energy dilutes faster than matter but
more slowly than radiation, naturally peaking in the
era of equality (III B). Minimal IDEE cannot rec-
oncile Planckþ BAO and distance ladder (IV B).

(2) Enhanced early gravity (EEG).—The scalar field
value modulates the strength of gravity via the Ricci
coupling and can increase the expansion rate at early
times (III C). Planckþ BAO allow EEG to accom-
modate higher values of H0, closer to the distance-
ladder measurement (IV C). Local tests of gravity
strongly constrain EEG (V B).

(3) Late-universe phantom expansion (LUPE).—The
scalar energy density increases with time at low
redshift, wϕ < −1 (III D). LUPE models with Λ ¼ 0
are ruled out, but coupled LUPEwithΛ ≠ 0 can ease
the H0 tension (IV D).

The constraints and evolution in each scenario are sum-
marized in Figs. 1 and 2, respectively.
While IDEE, EEG, and LUPE are general mechanisms,

the results refer to a coupled cubic Galileon scalar-tensor
theory of gravity (II A). In this theory IDEE relies on the
initial field velocity _ϕi and EEG on the initial field value ϕi
modulating the effective Planck mass (i.e., gravitational
constant) via a coupling to curvature. LUPE requires a
negative sign of the quadratic kinetic term (accelerating),
causing the scalar energy density to grow in time. The three
mechanisms can operate together or independently.
Readers interested in either of the above mechanisms are
directed to visit the sections cited above, in whatever order
they consider appropriate.
The main findings are summarized in Sec. VI, along with

ideas for further model building and observational tests.
Section II introduces the class of viable Galileon theories.
Their cosmological dynamics are presented in Sec. III.
Section IV presents the cosmological constraints (Planck,
BAO, distance ladder) and Sec. V discusses the challenges

faced by coupledmodels, including BBN, local gravity tests,
and GWs. The Appendices contain additional discussions.

II. GALILEON GRAVITY AFTER GW170817

This section presents the gravity theories studied as
potential solutions to the Hubble problem. I will describe
Galileon gravity theories and their status, focusing on
constraints from cosmology and GW observations. In
Sec. II A, I will narrow down to theories compatible with
the GW speed and present (exponentially) coupled cubic
Galileons, the class of models used here to investigate
IDEE, EEG, and LUPE.
Most Galileon gravity theories are specific realizations

of the Horndeski class [57–59], the most general action for
a tensor and a scalar field, generally covariant, Lorentz
invariant and leading to second order equations of motion
in four space-time dimensions:

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½gμν;ϕ� þ Lm

�
; ð3Þ

where Lm ¼ Lm½gμν;ψM� is the matter Lagrangian density,
minimally coupled to the Jordan frame metric gμν and the
gravitational interaction is given by

L2 ¼ G2ðϕ; XÞ; ð4Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð5Þ

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ϕ;μνϕ
;μν�; ð6Þ

L5 ¼ G5ðϕ; XÞGμνϕ
;μν −

1

6
G5Xðϕ; XÞ½ð□ϕÞ3

þ 2ϕ;μ
νϕ;ν

αϕ;α
μ − 3ϕ;μνϕ

;μν□ϕ�: ð7Þ

The four Lagrangians Li encode the dynamics of the scalar
field ϕ of the Jordan-frame metric gμν. They contain four
arbitrary functions Giðϕ; XÞ of the scalar field and its
canonical kinetic term, 2X ≡ −∂μϕ∂μϕ. Subscripts ϕ; X

denote partial derivatives, e.g., GiX ¼ ∂Gi∂X . I will follow the
conventions of the HI_CLASS code [60,61], including
natural units (c ¼ h ¼ 1) and mostly plus signature of
the metric ð−;þ;þ;þÞ.
The uncoupled covariant Galileon [25,62,63] is the most

general Horndeski completion of a theory realizing the
Galilean symmetry ϕ → ϕþ cþ bμxμ in flat space-time.
The theory is defined by the following Horndeski functions:

G2 ¼ c1M3ϕ − c2X; G3 ¼
c3
M3

X; ð8Þ

G4 ¼
M2

P

2
−

c4
M6

X2; G5 ¼
3c5
M9

3

X2; ð9Þ
FIG. 2. Scalar field energy density in scenarios reconciling
early- and late-universe values of H0. LUPE acts at low z, while
IDEE and EEG reduce rs. An early quintessence model is shown
for comparison (Agrawal et al., Ref. [49]).
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where MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass and

M3 ¼ ðH2
0MPÞ1=3. While the linear potential ∝ c1ϕ is

compatible with Galilean symmetry, it does not lead to
interesting phenomenology and it is common to set it to zero
(see Ref. [64] for an analysis including c1).
Uncoupled covariant Galileons (8) have interesting cos-

mological solutions, including an unambiguous prediction of
H0 compatible with the distance ladder. If the quadratic
kinetic term has negative sign (c2 < 0), the theory predicts
LUPE, accelerating solutions without the need of Λ. These
Λ ¼ 0 models require a sizable neutrino mass

P
mν ∼

0.6 eV to fit CMBþ BAO observations [10], a value well
within the range of laboratory experiments [65] but that
excludedby cosmological data if assumingΛCDM.The high
value of the neutrino mass is also necessary to solve the H0

problem: the
P

mν ≈ 0models do not only yield a worse fit,
but also predict a value of H0 above the distance-ladder
measurement [9].
The evolution of the metric potentials constrains the

parameter space of Λ ¼ 0 uncoupled Galileons (8). The
minimal theory (c4, c5 ¼ 0) always predicts growing
potentials at low redshift, instead of decaying as in
ΛCDM. The growth of the potentials leads to an anti-
correlation between CMB temperature and the low redshift
galaxies (CMB×LSS) via the integrated Sachs-Wolfe
(ISW) effect, in stark disagreement with current measure-
ments [66]. General Galileons (c4, c5 ≠ 0) can accommo-
date decaying potentials in some regions of the parameter
space [11].
General uncoupled Galileons that agree with CMB ×

LSS modify the GW speed [11]. The simultaneous detec-
tion of gravitational and electromagnetic radiation from
the neutron star merger GW170817 [26] placed a tight
bound on the GW speed jcg − 1j≲ 10−15. This event
severely constrains cosmologically viable Λ ¼ 0
uncoupled Galileons [27–30] among many other theories
beyond GR (see [67–69] for earlier works). The limits are at
the level jc4j; jc5j ≲ 5 × 10−17 [27]. Combining GW speed
and CMB × LSS seals the deal of all uncoupled Horndeski
Galileons (8) without a cosmological constant.
Galileon theories beyond Horndeski [70–72] can be

made compatible with the GW speed but are ruled out
by other GW observations [73,74] and cosmology [75].
Beyond-Horndeski theories in the Gleyzes-Langlois-
Piazza-Vernizzi (GLPV) class can be constructed in which
cg ¼ 1 on any space-times [27,28,76]. GLPV Galileons
with cg ¼ 1 have identical cosmological expansion to their
Horndeski analogs, potentially providing a late-time sol-
ution to the Hubble problem compatible with the GW
speed. However, GLPV theories predict a very rapid decay
of GWs into scalar field excitations [73,74], and the
deviations from Horndeski need to be very suppressed
for any GW signal to be detected. The remaining beyond-
Horndeski term compatible with GW speed and decay does
not have the Galileon form [Eq. (40) of [70] ].

GW speed and decay bounds allow Horndeski theories
with general G2, G3, but restrict L4, L5 to G4ðϕÞ; G5 ¼ 0.
Galileon theories are equipped with the Vainshtein screen-
ing mechanism [77] suppressing small-scale deviations
from GR, including effects in the emission of GWs
[78–80] (although see Ref. [81] for a possible counter-
example). Still, these theories are still subject to GW
constraints (instabilities induced by GWs [82] and standard
sirens) which I will discuss in Sec. V C.

A. Coupled cubic Galileon

I will explore the coupled cubic Galileon [83–91], a
variant of the Galileons described above, restricted to be
compatible with GW observations but extended through a
nonminimal coupling between the scalar field and and the
Ricci scalar. The coupling is introduced via a ϕ-dependence
of G4, the coefficient of the Ricci scalar in the Horndeski
action

LG3;C ¼
M2

P

2
CðϕÞRþ2

c3
M3

X□ϕþc2X−2ΛþLm; ð10Þ

or equivalently, G4 ¼ CðϕÞ, G3 ¼ −2 c3
M3 X and G2 ¼

c2X − 2Λ in Eqs. (4)–(6). The main effect of the coupling
is to modify the strength of gravity, now depending on the
value of the field.1

Coupled cubic Galileon theories admit a binary classi-
fication into canonical or acceleratingmodels. An arbitrary
redefinition of the scalar field by a constant factor,

ϕ → αϕ∶ c2 → α2c2; c3 → α3c3; β → αβ; ð11Þ

in the Lagrangian (10) fixes one of the coefficients without
any loss of generality [9]. For a real-valued α, the above
transformation always preserves the sign of c2, the quad-
ratic kinetic term. Canonical and accelerating models
correspond to a positive and negative sign of c2, respec-
tively. The differences between both will be explored in
Secs. III D and IV D.2

For further simplicity, I will consider only an exponential
form of the coupling:

1The coupled theory (10) is a minimal extension of the
uncoupled Galileons (9). One may also introduce the coupling
directly into the matter action Lmðgμν;ψMÞ → LmðC̃ðϕÞgμν;ψMÞ
via the so-called Einstein frame metric C̃ðϕÞgμν. This theory can
be recast into a minimally coupled Horndeski form via a field-
dependent rescaling of the metric (into the so-called Jordan
frame). The resulting action is not equivalent to Eq. (10) as G2 is
corrected by some terms depending on C̃ðϕÞ; see [92] for general
expressions and Ref. [90] for an explicit example.

2The literature often refers to self-accelerating models, in
which the universe’s acceleration is supported to the conformal
coupling. This is defined as the acceleration condition being
satisfied in the Jordan frame (used here), but not in the Einstein
frame (see footnote 1). I will not consider self-acceleration
further.
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CðϕÞ ¼ eβϕ=Mp: ð12Þ

The exponential form is particularly simple to study.
All couplings with Cϕ ≠ 0 break the shift symmetry
ϕ → ϕþ C, but the exponential coupling introduces only
a constant term in the scalar field equation. Thus, there is no
dependence on ϕ in the scalar field equations. The
dependence on the scalar field value is thus limited to
the gravitational sector, as ϕ modulates the strength of
gravity. Compared to other choices of the coupling func-
tion, the exponential form leads to convenient simplifica-
tions in the analysis of the cosmology described in Sec. III.

III. COSMOLOGICAL DYNAMICS

In this section, I will discuss the cosmological dynamics of
coupled cubic Galileons (10), specializing to the exponential
form of the coupling (12). Section III A introduces the
dynamical equations and important concepts related to the
theory. The following subsections detail how solutions of
the coupled cubic Galileon lead to IDEE (III B), EEG (III C),
and LUPE (III D). The early time dynamics are further
discussed in Appendix C.

A. General considerations

Let us start by presenting the general equations for
the background metric and scalar field for coupled cubic
Galileons. I will then review the classification of Galileons
into canonical and accelerating and some properties of the
exponential coupling.

1. Equations and definitions

The expansion history is governed by the modified
Friedmann equation,

M2�H2 ¼ ρm þ Ê; ð13Þ

where ρm is the total matter density in CLASS units
[Mpc−2] [93]. The effective Planck mass,

M2� ≡ 2G4 ¼ CðϕÞ; ð14Þ

modulates the strength of gravity on the cosmological
background and the kinetic energy density,

Ê ¼ c2
6

_ϕ2 − 2
c3
M3

H _ϕ3 −HC0 _ϕ; ð15Þ

represents the remaining contributions of the scalar field
to the expansion rate. Note that all the terms in Ê are
proportional to _ϕ, while M2� depends only on ϕ. The
Galileon energy fraction today is then

Ωϕ;0 ¼ Ω̂ϕ;0 þ ð1 −M2�Þ; ð16Þ

where the kinetic contribution (15) reads

Ω̂ϕ;0 ¼
c2
6
ξ2 − 2c3ξ3 − C0ξ; ð17Þ

and the dimensionless field velocity [10],

ξ≡ _ϕH
MpH2

0

; ð18Þ

provides a convenient variable.
The scalar field equation can be written in a current

conservation form:

_J þ 3HJ ¼ Pϕ: ð19Þ

Here the shift-charge density (or shift charge),

J ¼ c2 _ϕ − c3
6H

H2
0Mp

_ϕ2 ¼ MpH2
0

H
ðc2ξ − 6c3ξ2Þ; ð20Þ

is the time component of a Noether currentJ μ associated to
shift symmetry ϕ → ϕþ C. The kinetic term,

D≡ ∂J
∂ _ϕ ¼ c2 − 12c3ξ; ð21Þ

i.e., the coefficient of ϕ̈ in Eq. (19) determines the stability
of the theory. It needs to be positive for the stability of both
the background and linear perturbations. Finally, the source
term is given by

Pϕ ¼ 3C;ϕð _H þ 2H2Þ; ð22Þ

and is proportional both to the coupling strength β ¼
C;ϕ=C and the Ricci scalar evaluated on the cosmological
background.

2. Canonical vs accelerating Galileon

Let us now examine the kinetic structure and solutions of
cubic Galileons, starting with the uncoupled case. Solutions
to Eq. (19) with Pϕ ¼ 0

J ðaÞ ¼ J 0

a3
; ðPϕ ¼ 0Þ ð23Þ

correspond to the shift-charge density diluting with the
Universe’s volume. The scalar field is thus drawn towards
J ∝ c2ξ − 6c3ξ2 → 0, corresponding to two solutions:

ξ¼ 0; Ω̂ϕ;0¼ 0; D¼ c2 ðtrivialÞ

ξ¼ c2
6c3

; Ω̂ϕ;0¼
−c32
216c23

; D¼−c2 ðtrackerÞ: ð24Þ
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The sign of the kinetic term c2 determines which solution is
stable via the no-ghost condition D > 0, Eq. (21).
The above solutions reveal a binary classification of

Galileons:
(i) Canonical Galileons c2 > 0 are driven towards the

trivial solution. As Ωϕ;0 → 0, a cosmological con-
stant is necessary for these models to be viable.

(ii) Accelerating Galileons c2 < 0 are driven towards
the tracker solution. As Ωϕ;0 > 0, accelerating mod-
els produce LUPE and can accelerate the Universe
without a cosmological constant.

The approach to these solutions is determined by the
relationship between the shift charge and the scalar
velocity, described in Fig. 3. The above classification is
robust against rescalings of the scalar field, which preserve
the sign of c2. In contrast, the sign of either β, c3 can be
fixed by a field rescaling that preserves the form of the
action, see Eq. (11).
Canonical and accelerating Galileons are indistinguish-

able at early times, either because the cubic Galileon term
dominates the dynamics (j _ϕj ≫ jc2=6c3j) (e.g., IDEE) or
because the kinetic energy is negligible (Ω̂ϕ ∼ 0). The
differences occur at late times, leading to the different values
of Ω̂ϕ;0 in the asymptotic solutions (24) andwill be discussed
in Sec. III D. A nonzero coupling sources the shift-charge
density, driving the solution away from J → 0, Eq. (24).
This is shown in Fig. 3 and discussed below.

3. Coupling and Vainshtein mechanism

The coupling to curvature introduces a source to the
shift-charge density (22),

Pϕ ¼ 3

2

C;ϕ

C
ðρm þ Ê − 3ðpm þ P̂ÞÞ; ð25Þ

where the above expression uses the Friedman (13) and
acceleration equation, and P̂ is the scalar field pressure
removing the effect of the strength of gravity (analog to Ê,
cf. Eq. (3.5) of Ref. [94]).
The contribution of radiation and ultrarelativistic matter

to the coupling is negligible since ρrad ¼ 3prad. This
follows from the coupling involving the Ricci scalar, which
is sourced by the trace of the energy momentum tensor
T ∝ 1–3wm. Sources to the coupling in the matter era will
be discussed in Sec. III C. Early-universe processes in the
radiation era are presented in Appendix C.
Analytic expressions exist for exponential coupling

when the Galileon kinetic energy is negligible. For an
exponential coupling β≡ C;ϕ=C is constant and the source
term (25) is independent of the field value. Then the field
equation (19) can be integrated directly:

J ≈
1

a3
3

2
β

Z
a

0

da0a02Hða0ÞΣða0Þ; ð26Þ

where the kick function reads

Σ≡ ρm þ Ê − 3ðpm þ P̂Þ
H2

≈
ρm − 3pm

ρ
¼ 1 − 3wm: ð27Þ

This solution accounts for the effects of M2� ≠ 1 on the
expansion (13) but neglects Ê; P̂ ∼ 0, a very good approxi-
mation at early times. Note that the kick function also
affects the integrand via

HðaÞ ∝ a−3ð1þwÞ=2 ¼ aΣ=2−2: ð28Þ

It is possible to decompose the solution for the shift-
charge (26) as

J ¼ J 0

a3
þ JM þ J Σ; ð29Þ

where J 0 describes a general initial condition, JM is the
contribution from the fraction of nonrelativistic matter and
J Σ represents the contribution from deviations from
radiation domination in the early universe. The contribution
from nonrelativistic matter ΣM ≈ ρmat=ρrad ¼ a=aeq leads
to a shift charge:

JM ¼ 3

4
H0

ffiffiffiffiffiffi
Ωr

p
β
a2

aeq
¼ 3

2
β
ΩmH2

0

a3
· t: ð30Þ

Appendix C describes additional sources J Σ in the early
Universe. No realistic source is able to contribute signifi-
cantly to the scalar field initial conditions due to the
nonlinear derivative interactions.

FIG. 3. Kinetic structure of cubic Galileons. The relation
between the shift-charge density (20) and the field derivative
Eq. (18) is shown for canonical (c2 > 0, thick) and accelerating
(c2 < 0, thin) models. Absence of ghosts requires a positive slope
for the curve (21), with the minimum of J corresponding to the
transition to instability. Stable accelerating/canonical models tend
to ξ ≠ 0, ξ ¼ 0 respectively (24). A positive coupling strength
β > 0 sources J , delaying the approach to the asymptotic
solution. Negative coupling strength β < 0 drives the field
towards the ghost region.

MIGUEL ZUMALACÁRREGUI PHYS. REV. D 102, 023523 (2020)

023523-6



The noncanonical nature of the cubic Galileon leads to
the cosmological Vainshtein screening [83,90], an efficient
suppression of the coupling at early times. If the cubic
Galileon term dominates, the scalar energy fraction is
related to the shift charge as

Ω̂ϕ;3 ≈
1ffiffiffiffiffiffiffiffiffiffiffiffi
27jc3j

p H0

H

�
J
H

�
3=2

; ðc3ξ ≫ c2Þ; ð31Þ

where Eqs. (15) and (20) have been used. In contrast, if the
quadratic term dominates, the equivalent expression reads

Ω̂ϕ;2 ≈
J 2

6H2
; ðc3ξ ≪ c2Þ: ð32Þ

The ratio between the energy scales associated to the cubic
Galileon and canonical kinetic term is

Ω̂ϕ;3

Ω̂ϕ;2

¼ 12
c3
c2

_ϕH
H2

0

¼ 12
c3
c2

ξ; ð33Þ

so the cubic term dominates for large dimensionless field
velocities.
The cosmological Vainshtein screening stems from the

H0=ð
ffiffiffiffiffiffiffijc3j

p
HÞ factor in Eq. (31), suppressing the effects of

the coupling on the shift-charge J at early times. While the
cosmological Vainshtein screening may be circumvented
by reducing the value of c3, such a reduction will incur in
constraints from local gravity tests in the late universe,
unless the coupling is reduced accordingly (see Sec. V B).
The effects of the screening will be shown explicitly in
Sec. III C and Appendix C.

B. Imperfect dark energy at equality

Imperfect dark energy at equality (IDEE) is a distinct
form of early dark energy beyond GR characterized by a
contribution to the expansion history that peaks around
matter-radiation equality. IDEE is sourced by the cubic
Galileon term, which effectively modifies gravity and
changes the evolution of the perturbations (e.g., CMB).
In order to affect the acoustic scale IDEE requires a
significant kinetic energy of the Galileon: an initial scalar
field kinetic energy Ω̂ϕ;i ∼ 10−4 around the nucleosynthesis
era evolves into a ∼% level contribution at equality,
sufficiently to reconcile early and late measurements ofH0.
To understand the dynamics of IDEE, I assume that the

contribution from L3 → c3 _ϕ
3H dominates the energy

budget (15)

Ê ≈ −2
c3
H2

0

_ϕ3H; ðc3ξ ≫ c2Þ; ð34Þ

so

Ω̂ϕ ≈ −2
c3
H2

0

_ϕ3

H
¼ −2c3ξ3

�
H0

H

�
4

; ð35Þ

where the final expression uses the dimensionless field
velocity (18). These equations can be used to set the initial
condition for the field derivative _ϕ. Note that the energy
density scaling of IDEE relies only on the domination of
the cubic term. It is otherwise independent of the Galileon
energy scale jc3j, provided that the initial field velocity is
sufficiently high, as prescribed by Eq. (34).
The characteristic scaling of IDEE

Ê ∝ a−3=4ðwm−5Þ ¼
�
a−3.5; wϕ ¼ 1

6
ðrad:Þ

a−3.75; wϕ ¼ 1
4

ðmat:Þ ð36Þ

follows from substituting the solution for ξ from the
off-tracker evolution (19) and neglecting the coupling
Pϕ ∼ 0; n ∝ a−3 determines the scaling of the energy
density. This particular evolution, diluting faster than matter
but more slowly than radiation, allows IDEE to emerge
aroundmatter-radiation equality. Figure 4 shows the scaling
of IDEE for different initial conditions, along with its effects
on the acoustic scale (2). Values of the initial field derivative
such that Ω̂ϕ;i ∼ 10−4 at z ¼ 1010 (around the BBN epoch)
grow into sizable early dark energy contributions∼5% at the
epoch of equality, sufficient to lower the acoustic scale at the
level needed to reconcile CMBþ BAO and distance-ladder
inferences of the Hubble parameter.
IDEE models also induce deviations from general

relativity. These are best parametrized by the dimensionless
braiding function [94],

αB;3 ≡ −2
c3
M2�

_ϕ3

H2
0H

≈ Ω̂ϕ; ð37Þ

where the second equality applies to the limit in which the
cubic Galileon dominates the energy density, Eq. (34). αB
describes the kinetic mixing between the scalar field
perturbations and the gravitational potentials on the cos-
mological background (see [95] for a covariant descrip-
tion). The function αB also parametrizes the deviation from
the uncoupled cubic Galileon from behaving as a perfect
fluid [96,97]. The last equality shows that this deviation
from GR is as important as the contribution to the
expansion history. The deviations from GR induced by
IDEE turn out to be very restrictive for IDEE models when
compared with Planck data, as I will show in Sec. IV B.
Noncubic covariant Galileon theories (8) dilute more

slowly with the expansion, restricting their early-universe
dynamics. If the quartic Galileon G4 ∝ X2 term dominates,
its energy density scales as E4 ∝ awm−3, diluting faster than
matter in the radiation era and tracking the matter density
afterwards. The quintic Galileon G5 ∝ X2 always dilutes
more slowly than matter, as E4 ∝ a

3
8
ðwm−7Þ, corresponding to
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wϕ ¼ − 1
4
;− 1

8
in the radiation and matter eras respectively.

Note that c4, c5 ≠ 0 may contribute to the early-universe
dynamics, provided that their effect on the speed of GWs is
suppressed at late times. This could happen if the field
velocity kinates away, Eq. (49), soon after matter-radiation
equality. While possible, this type of early modified gravity
requires much more fine-tuning than the cubic Galileon
implementation of IDEE.
The properties of IDEE in the simple cubic Galileon

model were first discussed in Ref. [98], where it was also
pointed out that the initial kinetic energy of the field would
grow until the epoch of equality and could lower the
acoustic scale. Previous works analyzing Galileons with
general initial conditions focused on the general model
[9,87,99–101], in which the cubic and quintic terms scale
faster than matter, leading to tight constraints on Ω̂ϕ;i. A
more recent analysis considered the cubic Galileon sepa-
rately [102], but used the same priors as in previous models
and did not explicitly discuss the relevant region in which
early dark energy modifies the acoustic scale.

C. Enhanced early gravity

Enhanced early gravity (EEG) consists of a time modu-
lation of the effective Planck mass due to the scalar field
dynamics and its coupling to curvature. At early times the
strength of gravity is enhanced by a constant factor, as the
cosmological Vainshtein mechanism prevents any signifi-
cant evolution of ϕ. At late times, the scalar’s time variation
weakens the strength of gravity, with potentially detectable
signatures in local gravity and the large-scale structure of
the Universe.
In EEG models, the initial effective Planck mass affects

the expansion rate at early times. This effect changes the
expansion rate by

ΔH
H

≈M−1� − 1; ð38Þ

where M� ¼ CðϕÞ and other contributions to the Galileon
energy density, including IDEE, have been neglected
Ω̂ϕ ∼ 0. At a fixed matter content, reducing the Planck
massM2� < 1 increases the expansion rate, in turn reducing
the acoustic scale rs, Eq. (2).
A successful EEG model requires the strength of gravity

to decrease between the early and the late universe. The
effective Planck mass affects all scales in the homogeneous
universe, including cosmological distances, e.g., the
comoving angular diameter distance

DMðzÞ ¼
Z

z

0

dz0

Hðz0Þ ¼
Z

z0

0

dz0

M�
ffiffiffiffiffiffiffiffiffiffiffi
ρþ Ê

q : ð39Þ

Thus, ifM2� were constant throughout, the angular diameter
distance would be modified by the same multiplicative
factor as the acoustic scale. This constant factor would
cancel on the angular scale

θ� ≡ rsðz�Þ
DMðz�Þ

; ð40Þ

leaving the value ofH0 obtained from the CMB unchanged.
Decreasing rsðz�Þ relative to DMðz�Þ requires a positive
coupling β > 0. Ultimately, EEG works because the same
sign of the coupling strength β required to increase H0

drives the field away from the ghost region, cf. Fig. 3.
The cosmological Vainshtein mechanism prevents M2�

from evolving at early times. Assuming matter domination
the shift-charge density solution (26) is

J ¼ βHðaÞ; ð41Þ

where I have neglected any initial shift charge (or equiv-
alently Ω̂ϕ ∼ 0). Cosmological Vainshtein screening occurs
when the cubic Galileon term dominates, in which case the
above shift-charge density translates to

FIG. 4. Imperfect dark energy at equality (IDEE) in canonical uncoupled models. The initial energy density of the scalar field dilutes
faster than radiation but more slowly than matter (left panel). By virtue of this scaling, the relative scalar field abundance peaks around
the era of matter-radiation equality (middle panel), lowering rs and increasing H0 for fixed θ⋆. Energy contributions of additional
relativistic particles and an early quintessence model [49] are shown for comparison. The equation of state of the scalar remains in the
range wϕ ∈ ð0; 1=3Þ until the kination phase at low z (right panel).
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_ϕ ≈

ffiffiffiffiffiffiffiffiffiffi
β

−6c3

s
H0; ðc3ξ ≫ c2Þ: ð42Þ

The scalar evolution is very suppressed compared to the
characteristic evolution scale of other species, set by
H ≫ H0. For this reason the coupling is extremely inef-
fective in giving the scalar field an initial velocity, as
discussed in Appendix C. In contrast, the unscreened
regime for canonical kinetic term corresponds to

_ϕ ¼ β

c2
H; ðc3ξ ≪ c2Þ: ð43Þ

In that case the scalar evolves at a rate ∝ H set by cosmic
expansion. Note that the above expression applies to
canonical models: in accelerating models the derivative
of the field is set by the nontrivial tracker solution (24).
The evolution of the scalar field leads to a running of the

effective Planck mass,

αM ≡ d logðM2�Þ
d logðaÞ ¼ β

_ϕ

H
; ð44Þ

where the second equality corresponds to the exponential
coupling. The matter-domination solution in the screened
regime (42),

αM ¼
ffiffiffiffiffiffiffiffiffiffi
β3

−6c3

s
H0

H
; ðc3ξ ≫ c2Þ; ð45Þ

leads to a negligible running at early times, as expected.
The unscreened regime (42) for canonical models,

αM ¼ β2

c2
; ðc3ξ ≪ c2Þ; ð46Þ

leads to a constant running of M2� in the matter era.
αM is a standard parametrization of the impact of

deviations from GR on cosmic structure formation. Just
as a constant M2� has no effect on background observables
[cf. Eq. (40)], a constant M2� can be compensated by
rescaling the abundances of all matter species so that
Ωi=M2� is constant, leading to no net effect on the
perturbations [94]. A running of the Planck mass produces
deviations from GR in structure formation, potentially
observable on the LSS of matter and the CMB.
Unscreened evolution (46) is expected at intermediate

and low redshifts, leading to effects in LSS and secondary
CMB anisotropies. Allowing αM to affect early evolution
and primary CMB requires very low values of c3 ≲ 10−9

for jc2j ¼ 1 (cf. Fig. 15). Since this work is focused mainly
on the CMB, I will set c3 ¼ −1 in the canonical models
with Λ ≠ 0 (in accelerating models it is set by Ωϕ;0). Note
that Brans-Dicke theories without Vainshtein screening
also produce EEG, leading to a degeneracy between the
coupling strength and H0 (Fig. 7 of [103]) (see also
[104–107]). The field begins evolving at matter radiation
equality in those models, when the coupling to curvature
overcomes the Hubble friction.
The value of the scalar field is also related to the strength

of gravity measured on small scales, including the Solar
System. The potential to test EEG using precision tests of
GR as well as the difficulties in modeling the connection
between cosmological and small scales will be discussed in
Sec. V B. While a full investigation of these issues is
beyond the scope of this work, I remind the reader that all
expressions in this section refer to the cosmological
evolution of the effective Planck mass.

FIG. 5. Enhanced early gravity (EEG) in canonical coupled models. The effective contribution to the expansion history Eq. (13),
including effect ofM2� on cosmic expansion, follows the dominant component at early times (left panel). IfM2

�;i < 1 the strengthening of
gravity Δρ=ρ increases the expansion rate before recombination, lowering the acoustic scale and increasing H0 for fixed θ⋆. Energy
contributions of additional relativistic particles and the quintessence early dark energy model [49] are shown for comparison. Right
panel: Effective Planck mass evolution (top), the coupling β is chosen to fix the effective Planck mass today M2

�;0 ¼ 1 from the initial

value M2
�;i; reduced scalar field density (bottom), Ω̂ϕ excludes the contributions of Λ and the effect of M2� on the expansion. H0 values

are for fixed θ⋆.
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D. Late-universe dynamics

The late-time dynamics of Galileons are determined
mostly by the sign of the quadratic kinetic term c2. In
accelerating models c2 < 0 the stable solution (24) corre-
sponds to a growing Ω̂ϕ and leads to late-universe phantom
expansion (LUPE). In canonical models c2 > 0 the stable
solution (24) corresponds to a trivial configuration Ω̂ϕ → 0.
Accelerating models are very efficient at producing dark

energy. The nontrivial tracker solution with Ω̂ϕ;0 > 0 in
Eq. (24) is stable. This solution is characterized by a
growing scalar field velocity,

ξ ≈ const; _ϕ ∝
1

H
; ð47Þ

where the coupling has been neglected (β ∼ 0). With this
solution the scalar kinetic energy

Ω̂ϕ ≈ ξ2
�
H0

H

�
4
�
c2
6
− 2c3ξ

�
− C0ξ

�
H0

H

�
2

ð48Þ

rapidly dominates the energy budget (see Fig. 6).
No cosmological constant is needed in accelerating

models. Instead, the dark energy fraction today can be
obtained by choosing the ratio of c2, c3 corresponding to
the tracker solution in Eq. (24), corrected by contributions
due to the coupling, cf. Eq. (16). Because the dark energy
density grows (instead of being constant) wϕ < −1, a larger
value of H0 can be obtained for fixed distance to the last-
scattering surface. This is the reason why Galileon models
with Λ ¼ 0 predict a Hubble constant well above typical
ΛCDM values, requiring sizable neutrino masses

P
mν ∼

0.6 eV to both give a good fit and avoid a too-high value of
H0 (see Appendix B). Because of their interest as DE

models, the late-time dynamics of accelerating Galileons
have been studied extensively in previous works, e.g.,
Refs. [10,63,99,102].
In canonical models the energy density of the scalar field

decreases very fast once the quadratic term dominates the
dynamics. This dynamical regime, known as kination, is
characterized by a rapid loss of kinetic energy of the field

_ϕ ∝ J ∝ a−3; ρϕ ∼ _ϕ2=2 ∼ a−6; ð49Þ
where the coupling has been neglected (β ∼ 0). This loss of
energy will continue until the coupling term becomes
dominant. In uncoupled models it will evolve towards
the trivial vacuum _ϕ ¼ 0, Ωϕ;0 ¼ 0, as anticipated in the
solution [Eq. (24)]. Uncoupled canonical models can thus
provide only negligible amounts of dark energy in the late
universe, requiring an additional cosmological constant to
produce acceleration. If the coupling is nonzero, the field
will stabilize at a nonzero value of the shift charge as
described in Sec. III C.
Canonical models with Λ ≠ 0 retain the freedom to set

c2=c3 even after using up the scalar field rescaling (11).
This ratio determines onset of the kination phase, which
begins when

ξ ∼
c2
6c3

: ð50Þ

Lowering c3 allows for a conformal coupling (β ≠ 0) to
play a role at earlier times, by weakening the cosmological
Vainshtein screening (cf. Sec. III C). Values c3 ≳ 10−9

ensure kination occurs after recombination, and thus that
the primary CMB is only affected by IDEE and EEG, as
described in the above sections. For these reasons, I will set
c3 ¼ −1 in this analysis. Some of the consequences of
varying c3 are shown in Fig, 15, but a more detailed study
of the role of c3 is left for future work.

IV. COSMOLOGICAL CONSTRAINTS

This section presents tests of different solutions to theH0

problem, as implemented in coupled cubic Galileon the-
ories. Section IVA contains an overview of the models,
data and methods used. Section IV B presents the limits on
IDEE and uncoupled models. Section IV C discusses EEG
in canonical coupled models. Section IV D addresses the
status of LUPE in accelerating models, the role of the
coupling at late times and prospects to reduce the tension
between Planck and weak lensing surveys. Appendix B
discusses uncoupled LUPE models.

A. Overview of models, datasets and analysis

The models under study can be classified along two
separate properties:

(i) By coupling, into uncoupled β ¼ 0 and coupled
β ≠ 0. Uncoupled models can impact rs only via

FIG. 6. Late-Universe Phantom Expansion (LUPE). The energy
density of accelerating Galileons (c2 < 0) grows at low z,
increasing the Hubble rate for fixed θ�. The curves assumed
minimal neutrino mass, Σmν ∼ 0.6 eV is needed to reproduce the
SH0ES result (Λ ¼ 0). The LUPE contribution to the equation of
state (lower panel) to the dark energy is weighted by Ωϕ in
models with Λ ≠ 0.
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IDEE, coupled models produce EEG (cf. Secs. III B
and III C).

(ii) By kinetic term sign, into canonical (c2 > 0) and
accelerating (c2 < 0). Canonical models require
Λ ≠ 0. Accelerating models produce LUPE and
need either Λ ≠ 0 or

P
mν ≫ 0.06 eV if Λ ¼ 0

(cf. Sec. III D).
I will consider several combinations of models and data-
sets, as shown in Table I. Uncoupled, LUPE, Λ ≠ 0models
are discussed in Appendix B.
IDEE is produced by the initial field velocity _ϕi. This is

specified via a flat prior on the initial dark energy
abundance log10ðΩ̂ϕ;iÞ ∈ ½−8; 0�, cf. Eq. (35) evaluated at
zi ¼ 1010 (around the BBN era). The lower limit in the
logarithmic prior of Ωϕ;i is indistinguishable from ΛCDM,
while the upper limit corresponds to the scalar field
dominating the energy budget in the radiation era. The
initial field velocity will be varied freely for all models
presented below.
EEG relies on the initial value of the scalar ϕi, which is

approximately constant at early times, cf. Sec. C. I will
set ϕi through a flat prior on the initial Planck mass
M2

�;i ¼ eβϕi ∈ ð0;∞Þ, where M2
�;i > 0 is necessary for the

stability of tensor perturbations. Since M2
�;i ¼ 1þ βϕiþ

Oðϕ2
i Þ, a prior on M2

�;i is equivalent to a prior on the initial
condition for small deviations in the strength of gravity. In
uncoupled models I set ϕi ¼ 0, as the initial value is
irrelevant due to shift symmetry. M2

�;i and the coupling
strength β will be varied freely for all coupled models.
The coupling strength is varied in the range

β ∈ ½−0.5;∞Þ.3 Ghost instabilities can occur for negative
coupling β < 0 (Fig. 3), the prior allows the data to explore
that region as well. Note that β could be set instead by
fixing the final effective Planck massM2

�;0. In this analysis I

will not be concerned aboutM2
�;0, deferring the issue to the

discussion of local gravity tests and GW-induced insta-
bilities in Secs. V B and V C.
Galileon coefficients govern the low redshift Galileon

dynamics, including LUPE. In canonical models the scalar
field is normalized to c2 ¼ þ1 and the cubic coupling is
fixed to c3 ¼ −1 to simplify the pre-recombination dynam-
ics, cf. Secs. III C and III D. In accelerating models the
values of the Galileon coefficients c2, c3 are fully fixed by
normalization of the field and fixing the scalar field
abundance today Ωϕ;0.
Accelerating Λ ¼ 0 LUPE models require sizable neu-

trino masses [10]. In those cases I will vary mν ∈ ð0;∞Þ
assuming a degenerate hierarchy. Neglecting the neutrino
mass splittings has negligible differences in cosmological
predictions, note that the total mass required in LUPEΛ ¼ 0
models,

P
mν ≈ 0.6 eV [11] is significantly larger than both

the minimal mass and the mass allowed assuming ΛCDM
[108,109] (seeRef. [110] for analysis of uncoupledGalileons
using different hierarchies). All other cases will assume a
single massive neutrino with minimal mass mν ¼ 0.06 eV.
Other cosmological parameters were chosen following

the Planck analyses [1]. I will assume the universe to have
zero spatial curvature, with the fraction of scalar field
energy densityΩϕ given by the closure relation

P
iΩi ¼ 1.

The standard cosmological parameters 100θ� (or H0),
ωcdm, ωb, lnð1010AsÞ, ns, and τreio ∈ ½0.04;∞Þ are varied
with flat priors unless explicitly stated. By default I will
consider the helium fraction YHe to be set by BBN given ωb
and the expansion rate at early times. I will discuss
constraints from light element abundances in Sec. VA.
To test solutions to the Hubble problem, I will consider

CMB data from Planck (P), distances from baryon acoustic
oscillations (B) and a prior on the H0 from the SH0ES
collaboration (S) in the following combinations:

(i) Planckþ BAO (PB), as the default combination.
This determines the model-dependent early-universe
inference of H0 and the room to accommodate late-
universe measurements. PB results are summarized
in Table II.

(ii) Planckþ BAOþ SH0ES (PBS), including a dis-
tance-ladder prior on H0. This analysis will serve to
find the global best fit. I will consider this combi-
nation in a few selected cases. PBS results are
summarized in Table III.

The CMB data choice follows the Planck 2018 baseline
analyses [1]. It includes high-l temperature TT, E-mode
polarization EE, their cross correlation (TE) as well as
low-l TT and EE spectra [111]. I will not consider the
Planck lensing likelihood to focus on testing primary
anisotropy effects, as much as possible. Omitting CMB
lensing will not significantly impact uncoupled IDEE
results, which are strongly constrained by temperature
and polarization alone. Coupled models can be further
constrained by CMB lensing, as late-time dynamics of the

TABLE I. Overview of coupled cubic Galileon, Eq. (10) model
and datasets combinations. The PB, PBS parameter constraints
are shown in Tables II and III, respectively, including reference
ΛCDM results. Uncoupled accelerating Λ ≠ 0 models are dis-
cussed in Appendix B.

Uncoupled
(IDEE) Ωϕ;i

Coupled
(EEG) M2

�;i; β Section

Canonical þ Λ PB, PBS IV B
PB, PBS IV C

Accelerating (LUPE)
þP

mν (Λ ¼ 0) PB PB
IV DþΛ (

P
mν fixed) PB

3The Planckþ BAO analysis of canonical models included an
upper limit β ∈ ½−0.5; 0.5�. This was removed in the Planckþ
BAOþH0 analysis for which β ∈ ½−0.5;∞Þ. Both analyses
yield very similar bounds on β, suggesting that the more
restrictive prior was broad enough, cf. Sec. IV D.
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scalar field will modify the lensing potential via nonzero
αM, Eq. (44). This analysis will be left for future work.
BAO data is necessary for a precise inference of H0,

anchoring rs as determined by the CMB to the late-universe
expansion. For BAO data I will use the measurements from
galaxy samples from the Baryon Oscillation Spectroscopic
Survey (BOSS) data release 12 [112] and the low-z sample
combining the 6dF survey [113] and the main galaxy

sample from SDSS data release 7 [114]. I will use the
galaxy BAO data as given, including density field
reconstruction. This methodology is conservative for
canonical uncoupled models where the late-time dynamics
is indistinguishable from Λþ GR. However, the use of
reconstructed data for coupled or accelerating models
assumes the validity of reconstruction. This has been tested
in simple extensions of ΛCDM which assume GR
[115,116]. However, modified gravity can enhance non-
linear effects, including the shift of the BAO scale [117].
As direct H0 measurement I will use the SH0ES project

2019 measurement H0¼ 74.03�1.42 ½kms−1Mpc−1� [3],
resulting in a 4.4σ tension with Planckþ BAO andΛCDM.
This value relies on a distance-ladder measurement of the
expansion rate with improved Cepheid variable star mea-
surements from the Large Magellanic Cloud. The method-
ology has been shown to be robust by other analyses [118–
122]. Other late-universe measurements of the Hubble
parameter tend to produce larger values ofH0 than Planckþ
BAO within ΛCDM that are either in tension (lensing time
delays [4]) or compatible (standard sirens [123], tip of the
red-giant branch [124]), see Ref. [7] and Sec. 5.4 of [1] for
recent overviews. Adding a prior on H0 serves to find the
best-case scenario and its goodness of fit in light of all
available (although possibly discrepant) datasets.
Type Ia SNe data will not be included in this analysis, but

left for future work. In coupled Galileons the interpretation
of SNe data requires modeling the variable strength of
gravity on small scales and its effect on the intrinsic SNe
luminosity, as discussed in Sec. V B 2. Note that a time

TABLE II. Planck + BAO marginalized constraints on cosmological and Galileon parameters. Quantities show mean and
68% confidence level, upper limits correspond to 95% confidence. ΛCDM and uncoupled canonical are practically indistinguishable
due to the stringent bounds on IDEE. In EEGmodels the coupling increases the uncertainty onH0 by a factor∼3 in coupled models with
Λ ≠ 0 (canonical and accelerating) slightly increasing the central value as well. Λ ¼ 0 accelerating models (coupled and uncoupled)
predict a high value of H0, but have a bad fit and are ruled out by other observations [11]. Note that the central value of the initial
effective Planck mass isM2

�;i ∼ 1: CMBþ BAO data has no preference in the absence of late-universe information. The last line shows
the best-fit log-likelihood for the reference ΛCDM and differences for each Galileon: all models with Λ ≠ 0 have a slightly better fit,
while accelerating models with Λ ¼ 0 are disfavored.

ΛCDM GR

uncoupled
canonical

þΛ IDEE only

coupled
canonical
þΛþ EEG

coupled
accelerating

þΛþ EEG;LUPE

uncoupled
accelerating
þmν þ LUPE

coupled
accelerating

þmν þ EEG;LUPE

H0 67.72� 0.46 67.84� 0.49 68.7� 1.5 69.1� 1.4 71.97� 0.71 71.5� 1.3
100ωb 2.242� 0.014 2.242� 0.014 2.244� 0.021 2.23� 0.02 2.228� 0.014 2.224� 0.017
ωcdm 0.119� 0.001 0.1195� 0.0011 0.1200� 0.0012 0.1205� 0.0013 0.1203� 0.0012 0.1204� 0.0013
τreio 0.0554� 0.0078 0.0552� 0.0079 0.0553� 0.0084 0.0532� 0.0074 0.0507� 0.0078 0.0506� 0.0079
ns 0.9664� 0.0038 0.9668� 0.0039 0.9683� 0.0074 0.9614� 0.0068 0.964� 0.004 0.9626� 0.0057
σ8 0.8086� 0.0074 0.8092� 0.0073 0.82� 0.01 0.836� 0.016 0.792� 0.022 0.788� 0.025P

mν 0.06 0.06 0.06 0.06 0.576� 0.082 0.590� 0.097

Ωϕ;0 <3 × 10−7 (95%) −0.023� 0.056 0.110� 0.082 0.7128� 0.0072 0.708� 0.012
log10ðΩ̂ϕ;iÞ <− 5.22 (95%) <− 5.26 (95%) <− 5.33 (95%) <− 5.44 (95%) <− 5.03 (95%)
β 0 0.135� 0.099 0.08� 0.07 0 −0.002� 0.024
M2

�;i 1 0.988� 0.035 1.015� 0.031 1 1.012� 0.025

− logðLÞ 1388.08 −0.81 −0.47 −0.57 þ9.80 þ10.03

TABLE III. Best fit Planckþ BAOþ SH0ES cosmological
and Galileon parameters. These are shown instead of the
marginalized constraints because the datasets are in tension.
The last line shows the best-fit log-likelihood for the reference
ΛCDM and differences for each Galileon model, for the PBS
datasets.

ΛCDMGR

uncoupled
canonical
þΛ IDEE

coupled
canonical
þΛ þ EEG

H0 68.42 68.75 70.37
100ωb 2.265 2.264 2.259
ωcdm 0.1180 0.1183 0.1183
τreio 0.0550 0.0533 0.0585
ns 0.9670 0.9691 0.9778
σ8 0.8016 0.8023 0.814

Ωϕ;0 10−7 0.032
log10ðΩ̂ϕ;iÞ −5.53 −6.67
β 0 0.09
M2

�;i 1 0.955

− logðLÞ 1397.53 −2.04 −4.07
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variation of SNe luminosity invalidates the inverse standard
ladder method (BAOþ SNe) of inferring the acoustic scale
(Fig. 1). SNe modeling issues are absent in uncoupled
Galileons, but SNe will not qualitatively change the
conclusions of this analysis. In canonical uncoupled
models (Λ ≠ 0) the expansion history is indistinguishable
from ΛCDM at low redshift. Accelerating uncoupled
models (LUPE) are disfavored by SNe, but the tension
can be read directly by comparing the contours with the
inverse-distance ladder (BAOþ SNe) in Fig. 1.
To obtain the theoretical predictions I used the HI_CLASS

code4 [60,61,93], where the exponentially coupled cubic
Galileon model (Sec. II A) was implemented using the
covariant Lagrangian approach developed in version 2.0
(see Ref. [61] for details). The parameter space of each
model and dataset combination was sampled using aMarkov
chain Monte Carlo (MCMC) analysis with a Metropolis-
Hastings proposal distribution. The sampling relied on
MontePython (version 3) [125,126], modified to record errors
whenever model predictions cannot be computed, such as
unstable regions of the parameter space. To ensure conver-
gence the MCMC runs until the variance across chains over
in-chain variance (Gellman-Rubin convergence ratio) is
smaller than 0.05. The resulting chains were analyzed with
MontePython, GetDist [127], and CosmoSlik [128].

B. Uncoupled models: Autopsy of IDEE

IDEE provides a source of early dark energy that peaks
in the era of equality. The cosmological limits are too
stringent for IDEE to play any role in solving the Hubble
problem. One reason is that scalar field perturbations have a
period of fast growth that affects the CMB spectrum in a
characteristic scale-dependent manner.
The initial fraction of dark energy Ωϕ;i is constrained by

Planckþ BAO to the point where its effect on the acoustic
scale and H0 is negligible. Figure 7 shows the posteriors
marginalized over the initial energy density and the Hubble
parameter for uncoupled models. The relationship Ωϕ;i −
H0 in the absence of constraints is shown for fixed θ� and
other cosmological parameters. Using IDEE to solve the
Hubble problem would require Ωϕ;i ≳ 10−4.2 in the canoni-
cal model (cf. Sec. III B), while CMBþ BAO bounds are at
the level of Ωϕ;i ≲ 10−5.2 at 95% CL (see Table I).
The bounds on IDEE make canonical uncoupled models

indistinguishable from ΛCDM. The impact of IDEE in the
late universe is bound to be smaller than on the primary
CMB, due to the IDEE scaling in the matter era and the late
kination phase (cf. Fig. 6). As a consequence, the parameter
bounds are almost identical to those of the reference
ΛCDM analysis. The role of IDEE is also negligible on
accelerating uncoupled models. Those cases are indistin-
guishable from setting _ϕi to the tracker value, Eq. (24).

The best-fit likelihood to Planckþ BAO is significantly
worse than the canonical case. Moreover, other analyses rule
out the model including CMB × LSS cross-correlations
[11,129] and a combination of late-universe datasets [110].
Including a distance-ladder prior on H0 does not alter

these conclusions significantly. The bound on IDEE
becomes slightly higher log10ðΩϕ;iÞ < −4.94 95% CL for
the canonical model. Trying to fit datasets in tension leads to
larger shifts on the remaining cosmological models, with a
changeΔH0=σH0

¼ 1.51 drivenmainly byΔns=σns ¼ 1.05,
Δωb=σωb

¼ 0.80, Δωcdm=σωcdm
¼ −0.82, as can be seen

comparing Tables II and III.
An autopsy of IDEE shows that the strong limits on Ωϕ;i

originate from the growth of the scalar field perturbations
around the horizon crossing. This can be understood by
examining the mass squared for the field fluctuations,

μ2 ¼ c2sk2

a2H2
þm2

ϕ; ð51Þ

where cs is the scalar sound speed and the time and scale
dependence of the mass is shown in the left panel of Fig. 8.
A consequence of cubic Galileon domination is that the
scale-independent contribution is negative m2

ϕ < 0, a fea-
ture known as tachyon instability. Tachyons are associated
with growing scalar field perturbation VX ≡ δϕ

_ϕ
∼ e�μt (i.e.,

imaginary frequency) on scales larger than the scalar field
sound horizon k < cs=ðaHÞ. For perturbations at a scale k,

FIG. 7. Planckþ BAO constraints on the initial IDEE abun-
dance and the Hubble parameter. Contours show 68%, 95%, and
99% CL posteriors for uncoupled canonical Λ ≠ 0 (purple) and
accelerating Λ ¼ 0; mν > 0 (red) models. The black dashed line
shows the effect of IDEE on H0 via the acoustic scale, for fixed
cosmological parameters. Gray bands correspond to the distance-
ladder measurement.

4https://www.hiclass-code.net
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the growth begins around the horizon crossing. The rate of
tachyonic growth is modulated by jm2

ϕj. This is proportional
to Ωϕ and thus enhances the scalar field perturbations
significantly before recombination inmodels able to affect rs.
The growth of scalar perturbations is tamed by the scalar-

field pressure, i.e., the scale-dependent term in the effective

mass (51). Stability on small scales requires c2s > 0, or
equivalently, that small-scale perturbations in the field have
oscillatory solutions. This oscillatory regime begins once
the sound speed dominates the effective mass, with scalar
field perturbations decaying by virtue of the Hubble
friction. This transition corresponds to the red/blue border

FIG. 8. Autopsy of IDEE in uncoupled canonical Galileons with Ωϕ;i ¼ 10−4. Left panel: Effective squared mass of scalar
perturbations (51). Negative values (red region) induce growth of perturbations after horizon crossing (solid line) and before the scalar-
field pressure stabilizes the growth (dashed line), leading to oscillatory behavior (blue region). Right panel: Evolution of the field
perturbation VX ≡ δϕ= _ϕ for scales corresponding to the first peaks and troughs of the CMB. For the modes dominating the first acoustic
peaks, recombination occurs when the modes are still growing due to the tachyon or have barely begun oscillating.

FIG. 9. Impact of IDEE on the CMB. Solid lines show the predictions for canonical uncoupled for different values of Ωϕ;i, along with
their predictions for the Hubble parameter. θ� and other cosmological parameters are fixed. The dashed line shows the best fit to PBS
data. Left and right panels show TT and EE spectra, respectively. Residuals (lower panels) are compared to binned Planck data. Low
multipoles (l < 50) are shown in logarithmic scale and compared with unbinned Planck data.
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in the left panel of Fig. 8. Different physical scales undergo
growth and oscillations at different times, leading to
different amplitudes at recombination (Fig. 8, right panel).
The scale dependence of the field perturbations is trans-
ferred to the gravitational potentials and other species via
the modified Einstein’s equations.
The interplay between growth and oscillations leaves a

characteristic imprint on the CMB spectra. The tachyonic
growth is largest for modes that enter the horizon soon
before recombination and correspond to the first peaks
and troughs of the CMB spectra (Fig. 8). These modes
have no time for the oscillatory phase to stabilize their
growth, leading to a larger impact on relatively low
multipoles in the CMB, as shown in Fig. 9. The
differences are strongest for the TT spectrum on the
larger angular scales (l≲ 1000), particularly on the first
peak and through. Overall there is an enhancement of the
odd peaks (1, 3, and 5) and a suppression of the even
peaks (2 and 4). However, this effect cannot be compen-
sated adjusting the value ωb. This odd/even pattern is
overlaid with an overall suppression of intermediate
angular scales (1000≲ l≲ 2000), and an enhancement
of small angular scales l≳ 2000. The EE polarization
spectrum (right panel in Fig. 9) shows a similar trend, with
deviations becoming smaller in higher multipoles.

C. Coupled models: Viability of EEG

Now I will discuss EEG models, focusing on the initial
effective Planck mass M2

�;i, its effect before recombination
and its impact on the Hubble rate and other cosmological
parameters. I will also describe the main features of EEG
and the differences to IDEE and other early dark energy
scenarios. Due to the Vainshtein mechanism both canonical
and accelerating models have the same early-time behavior.
For this reason, I will focus on canonical models and leave
the discussion of both accelerating models and constraints
on the coupling β for Sec. IV D.
A nonzero coupling introduces a significant degeneracy

between the initial effective Planck mass and the Hubble
parameter with the potential to accommodate high values
compatible with late-universe constraints. Figure 10 shows
the marginalized posteriors on the M2

�;i-H0 plane, exhibit-
ing the anticorrelation between both quantities, as antici-
pated in Fig. 1 and described in Sec. III C. This relation can
be understood as follows: a weakening of gravity at early
times M2

�;i < 1 increases the early expansion rate before
recombination and reduces the acoustic scale. Then the
same projected CMB scales correspond to a larger value of
H0, as long as the late time effective Planck mass is larger
than the pre-recombination value (e.g., todayM2

�;0 < M2
�;i),

which requires a positive coupling constant β > 0. While
the effect of the initial effective Planck mass is the basis
of EEG other parameter degeneracies also play a role in
relieving the Hubble tension.

EEG introduces new degeneracies with cosmological
parameters, contributing to accommodate larger values of
H0 in EEG with respect to ΛCDM and IDEE. These
degeneracies and the resulting enlarged posteriors are
apparent from a triangle plot, Fig. 11. For the purpose
of the Hubble problem, the most important is the anti-
correlation between M2

�;i and both the baryon density ωb

and spectral index ns. As both ωb, ns are themselves
correlated with H0, decreasing M2

�;i leads to a higher
Hubble rate by virtue of these degeneracies. These effects
are on top of the direct reduction in the acoustic scale
caused by EEG. There is an additional, mild anticorrelation
between M2

�;i and the amplitude of perturbations σ8 (or
equivalent As). Interestingly, the dark matter abundance
ωcdm has no apparent correlation with M2

�;i, although it
correlates weakly with the coupling β. The introduction of a
coupling increases the limits on IDEE Ωϕ;i only slightly
and does not allow it to play any role on the Hubble tension
(cf. Table II).
The anticorrelation between ωb andM2

�;i is driven by the
BBN relation between the baryon and helium abundances
assumed in the analysis (cf. Fig. 11, upper right panel). This
relation limits the damping scale by linking the helium
fraction toωb andM2

�;i. The degeneracy is analog to bounds
on additional relativistic species (cf. Fig. 39 of [1]), as both
increasingNeff or decreasingM2

�;i lead to a faster expansion

FIG. 10. Degeneracy between the initial effective Planck mass
M2

�;i and the Hubble parameter for coupled cubic Galileons.
Regions correspond to 68%, 95% and 99% CL marginalized
posteriors for Planckþ BAO (filled), Planckþ BAOþH0 (un-
filled) and distance-ladder measurement of H0 (filled gray). The
anticorrelation between H0 and M2

�;i is due mainly to the impact
of the early expansion rate on the acoustic scale (cf. Sec. III C)
and other parameter degeneracies (Fig. 11).
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rate in the BBN era, although the CMB is independently
sensitive to relativistic species via perturbations (see
Sec. VA). Lifting the standard BBN assumption will thus
increase the range of allowed values for M2

�;i and H0, but
considering the measured primordial helium abundances
will limit this range, cf. Fig. 41 of [1].

Note that for a constant M2� the equations for the
cosmological expansion and linear perturbations depend
only on the ratio ω̃i ≡ ωi=M2� of the different matter
components [94]. Therefore, the predictions remain
unchanged if all physical densities ωi are rescaled, leaving
ω̃i invariant. This might suggest a correlation ωb ∝ M2�,

FIG. 11. Planckþ BAO constraints on cosmological parameters for coupled Galileon models. Regions correspond to 68%, 95%, and
99% CL. The β −M2

�;i constraints are shown in Fig. 13 and constraints on log10ðΩϕ;iÞ can be found in Table II. The top right panel shows
the effect of M2

�;i on the baryon-helium abundance induced by BBN.
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very different from the anticorrelation observed in the data,
roughly ωb ∝ M−1=2

�;i . This apparent contradiction can be
explained by noting that (1) M2� is not constant, with
M�;0 > M�;i due to the coupling and (2) unlike ωb;ωcdm,
the radiation density is fixed by the CMB temperature
today and cannot be rescaled. Moreover, as discussed
above the baryon fraction degeneracy is set by standard
BBN and the effect of helium on the CMB damping.
While Planckþ BAO constraints on EEG models allow

a ∼3× wider range of values for H0, they show no
significant preference towards either lower or higher values
relative to ΛCDM. Including a prior from distance ladder
shifts the posteriors towards high values of H0. This
analysis results in a ∼2σ preference towards stronger
gravity at early times M2

�;i < 1, with ΔM2
�;i=σM2

�;i
≡

ðM2
�;iðPBSÞ−M2

�;iðPBÞÞ=σM2
�;i
ðPBÞ¼−1.01 relative to the

Planckþ BAO case. The shift of other cosmological
parameters when including the H0 prior follows the same
trends as for uncoupled IDEE models, with the dominant
shifts being Δωb=σωb

¼ 0.93, Δωcdm=σωcdm
¼ −0.43,

Δns=σns ¼ 0.97, Δσ8=σσ8 ¼ 0.50, and Δβ=σβ ¼ 0.51,
leading to change in the Hubble rate by ΔH0=σH0

¼
1.37. While the relative shifts caused by the H0 prior on
cosmological parameters are similar as in uncoupled IDEE
models, the larger uncertainties of coupled models lead to a
stronger net shift.
The main effect of enhanced early gravity is to lower the

amplitude of the CMB spectra when M2
�;i < 1. Figure 12

shows the impact of M2
�;i on the temperature and polari-

zation power for fixed cosmological parameters and choos-
ing the coupling β so the effective Planck mass today is
M�;0 ¼ 1 (this is not assumed in the MCMC analysis). The
lower temperature power is caused by an enhanced Sachs-
Wolfe effect: stronger gravity deepens the gravitational
potentials, increasing the redshift of photons emitted from
overdense regions. The dependence of this effect on the
angular scale is mild, allowing small shifts in cosmological
parameters to partially compensate for the differences.
These degeneracies are not accounted for in the solid lines
of Fig. 12, leading to a seemingly worse fit than if other
cosmological parameters had been varied.
EEG models present important differences relative to

IDEE and canonical models for early dark energy. In EEG
models the scalar field modulates the strength of gravity,
but because of the Vainshtein mechanism the value of the
field remains approximately constant in the early universe,
cf. Sec. III C. This is equivalent to a constant energy density
contribution, which does not affect the ratio of energy
densities of all matter and radiation species before recom-
bination. This is in sharp contrast with both IDEE and
quintessence models of early dark energy in which scalar
energy density evolves before recombination (cf. Fig. 4).
The constancy of the scalar field before recombination also
prevents deviations from GR to affect the perturbations

(i.e., αM ∼ αB ∼ 0), whose dynamics is the same as in
standard cosmology but with abundances rescaled by M2�
[94]. In contrast, IDEE models induce deviations from
GR proportional to Ωϕ, including the tachyonic growth
described in Sec. IV B.

D. Late-time dynamics of coupled models

Let us now examine the late-time dynamics of coupled
cubic Galileons. I will discuss the constraints on the
coupling and the status of canonical (EEG) and accelerating
(LUPEþ EEG) models. Uncoupled, LUPE-only models
are discussed in Appendix B, including the role of Λ andP

mν. The constraints on the coupling strength β and the
initial effective Planck mass M2

�;i are shown in Fig. 13.
The effect ofM2

�;i, described in Sec. IV C, is very similar
across all coupled models. The preferred values of M2

�;i
depend only mildly on the model, although including a
distance-ladder prior on H0 shows a preference for
M2

�;i < 1 corresponding to EEG, cf. Fig. 10. There is a
significant widening of the H0 posteriors due to EEG and
the parameter degeneracies already discussed in Sec. IV C.
The main difference is the central value of the Hubble
parameter, which is sensitive to the late-universe expansion
and differs in accelerating models via LUPE. In the case of
Λ ¼ 0 accelerating Galileons, that central value is much
closer to the distance-ladder measurement than in canonical
models with Λ. The accelerating model with Λ ≠ 0 is an
intermediate case between the two.
The coupling is constrained by stability criteria and the

late-time evolution of the model. Negative values are
mostly excluded as they drive the field evolution towards
a ghost instability (cf. Sec. III A). Very small negative
values may be supported by the initial field velocity, but
this is related to the initial energy density Ωϕ;i and very
limited by the analysis of IDEE models (Sec. IV B). The
Vainshtein mechanism prevents β from playing any role
before recombination (cf. Sec. III C). Therefore, the cou-
pling is constrained by late-universe physics, including low
redshift expansion history and secondary CMB anisotro-
pies (ISW effect, CMB lensing). As late-time dynamics
depends greatly on the presence of Λ and the accelerating
or canonical nature of the model, each subclass has
different limits on β, as evident from Fig. 13.
The strongest constraints on β occur in accelerating

models with Λ ¼ 0, where the field time derivative is
largest. The absence of a cosmological constant requires a
large _ϕ at late times to support Ωϕ;0 ≈ 0.7, Eq. (24). This
variation translates on a sizable running of the effective
Planck mass αM ∝ β _ϕ, Eq. (44), which is severely con-
strained by the ISW effect’s impact on the CMB’s large
angular scales. Thus, a coupling is very constrained and
tends to exacerbate the problems of accelerating Galileons.
Coupled models fare no better than the uncoupled version.
They are disfavored by Planckþ BAO (the best-fit
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likelihood is even worse for the coupled model, despite
being an extension cf. Table I). Being so close to the
uncoupled version they are also strongly ruled out by other
observations, such as LSS × CMB cross-correlations [11].
The exponential coupling can thus not save accelerating
Λ ¼ 0 Galileons, offering no solution to the H0 problem.
Accelerating models with a cosmological constant have

milder bounds on β. Allowing for Λ ≠ 0 eliminates the
burden of cosmic acceleration from the Galileon field,
which becomes a subdominant contribution to the energy
density. The velocity of the field is not tied anymore to the
requirement of cosmic acceleration and can be lowered
significantly. Note that Table II shows Ωϕ;0 ≈ 0.11, but this
includes the contribution from the effective Planck mass
today M2

�;0, which does not contribute to either _ϕ0 or αM.
Coupled accelerating models with nonzero Λ give a
reasonably good fit to CMBþ BAO, while increasing
the allowed value of H0 both due to EEG and subdominant
LUPE contribution. Other cosmological data (such as Ia
SNe and LSS × CMB) may place further limits on this
scenario.
Canonical models have the loosest constraints on β. In this

case, cosmic acceleration is entirely supported by the
cosmological constant, and thus the contribution from the
scalar field to the energy density can be arbitrarily small.

Planckþ BAO prefer a very subdominant contribution
Ωϕ;0 ∼ 0.02, which is further split into the strength of gravity

∝ M2
�;0 − 1 and the kinetic terms Ê ∝ _ϕ, cf. Eq. (15).

The kinetic terms Ê are typically small, as the field derivative

FIG. 12. CMB effects of canonical EEG models. Solid lines represent different values of the initial effective Planck massM2
�;i for fixed

θ� and cosmological parameters and fixing the coupling β to set the effective Planck mass to M2
�;0 ¼ 1 today (β ¼ 0.28, 0.45, 0.61 for

decreasing M2
�;i). Degeneracies between M2

�;i and cosmological parameters allow for a better fit for large values of H0 relative to the
ΛCDM fit to the same data (cf. Table III). The dashed line shows the best-fit EEG to Planck+BAO+H0. Left and right panels show TT
and EE spectra, respectively. Residuals (lower panels) are compared to binned Planck data. Low multipoles (l < 50) are shown in
logarithmic scale and compared with unbinned Planck data.

FIG. 13. Constraints on the initial effective Planck mass M2
�;i

and the coupling strength β for coupled luminal Galileons.
Regions correspond to 68%, 95%, and 99% CL marginalized
posteriors for Planckþ BAO (filled) and Planck+BAO+H0

(unfilled).

MIGUEL ZUMALACÁRREGUI PHYS. REV. D 102, 023523 (2020)

023523-18



is sourced by the coupling∝ βρmat ∝ a−3, which reduces the
value of αM, cf. Eq. (46). In contrast, accelerating models are
driven by the nontrivial solution, Eq. (24), associated with
larger field derivatives.
Finally, let us examine the status of the tension between

Planck and weak gravitational lensing of galaxies. The
quantity S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
captures this tension, with weak

lensing surveys [130,131] finding lower values than Planck
for ΛCDM and simple extensions. Figure 14 shows an
anticorrelation between H0 and S8, leading to Λ ≠ 0 EEG
models increasing H0 to produce lower values of S8. The
trend is due to the impact of H0 on Ωm ¼ ðωm þ ωbÞ=h2.
The accelerating Λ ¼ 0 scenario lowers S8 via lower values
of σ8 (see Fig. 11). While these results suggest that a
common solution to the Hubble and weak lensing tensions
might be possible in EEG models, it is important to
emphasize that the S8 values in Fig. 14 were derived for
ΛCDM. Weak lensing observations depend on the cosmo-
logical model and are very sensitive to the properties of
gravity: addressing the weak lensing tension requires a
comparison of EEG models with weak lensing data.
While this analysis has focused on Planck, BAO, and

SH0ES, all coupled models can be further constrained by
additional cosmological probes and tests of gravity. In
Sec. V, I will outline some remaining challenges for
coupled models, including big-bang nucleosynthesis, pre-
cision tests of gravity and gravitational waves.

V. CHALLENGES FOR COUPLED GALILEONS

In this section, I describe further observational con-
straints that may challenge coupled models implementing
enhanced early gravity and/or late universe phantom

expansion. I will first discuss the effect of the effective
Planck mass on primordial nucleosynthesis (Sec. VA).
Then I will address the issue of local tests of gravity,
including scalar fifth forces, the value of the Planck mass
and its time variation (Sec. V B). Finally, I will discuss how
GWs may induce instabilities in the scalar perturbations,
pushing the theory beyond its regime of validity (Sec. V C).

A. Primordial element abundances

The primordial abundance of light elements is sensitive to
the expansion rate in the era of big-bang nucleosynthesis
(BBN). It can be used to place constraints on the initial
effective Planck mass M2

�;i independent of the CMB. I will
explain how to translate knownBBN limits on the expansion
history to EEG models and discuss their implications.
BBN limits are often quoted in terms of additional light

particles, such as the number of neutrino species Nν. By
comparing the Hubble law in coupled models (13) to the
effects of additional radiation in the expansion history, one
can derive a relation between the initial effective Planck
mass and extra radiation,

1

M2
�;i

¼ 1þ Δρ
ρ

¼ 1þ 7

43
ΔNν; ð52Þ

where the second equality uses ρ ¼ π2

30
ð2þ 7

2
þ 7

4
NνÞ

accounting for photons, electrons and neutrinos active in
the BBN era [132]. Note that ΔNν is defined relative to a
fiducial value Nν ¼ 3, neglecting the small correction from
the energy injected by positron annihilation that lead to the
difference between Nν and the more widely used Neff

[133]. Note that the equivalence between Nν and M2
�;i can

be applied to nucleosynthesis constraints because BBN is
sensitive to additional components only through the
expansion history. In contrast, CMB anisotropies are
sensitive to perturbations in the additional species, includ-
ing a phase shift due to the supersonic propagation of
neutrinos [134–136].
Limits on the initial effective Planck mass from primor-

dial abundances of deuterium and helium can be translated
using Eq. (52) using no CMB data. Because the CMB
responds differently to relativistic particles and modified
gravity, I will only quote values not involving any input
from Planck (see Sec. 7.6 of Ref. [1] for the Planck
implications on BBN and Neff ). From more to less
conservative, several 95% CL limits with no CMB infor-
mation are

(i) M2
�;i > 0.860 (ΔNν < 1) for helium only [132,137],

(ii) M2
�;i > 0.911 (ΔNν < 0.6) including the degeneracy

with ωb, Fig. 10 of [132], and
(iii) M2

�;i > 0.939 (ΔNν < 0.4) marginalized over ωb,
which is the value quoted in the most recent review
of particle properties [138].

FIG. 14. Summary of cosmological tensions in H0 and
S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. Vertical bands correspond to 68% and

95% CL ΛCDM inferred values from weak lensing surveys
[130,131]. These bands are model dependent and do not include
deviations from GR in gravitational lensing. Regions correspond
to 68%, 95%, and 99% CL marginalized posteriors for Planckþ
BAO in EEG models.
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All the above values are less stringent than the Planckþ
BAO constraints (Sec. IV C). Other measurements of
primordial abundances may produce stronger constraints
or even a preference for EEG. For instance, an early work
[139] reports BBN limits on early dark energy equivalent
M2

�;i > 0.957 at 95% CL orΔNν < 0.2–0.3. In contrast, the
helium abundance reported in Ref. [140] translates to
0.862 < M2

�;i < 0.972 (ΔNν ¼ 0.58� 0.40) using BBN
theory and 0.912 < M2

�;i < 0.976 (ΔNν ¼ 0.37� 0.22)
when also including Planck data [1].
Besides avoiding CMB data, the above bounds assume

that the only effect on the expansion history is from a
constant effective Planck mass. This is an excellent
assumption in IDEE models, for which ΩϕðzBBNÞ ≲ 10−5

(Planckþ BAO limits) and even ΩϕðzBBNÞ ∼ 10−4 is
required to reconcile H0 values. The assumption remains
valid in the presence of a coupling thanks to the cosmo-
logical Vainshtein screening, which prevents the scalar field
to vary significantly at early times (Sec. C). BBN con-
straints can be more stringent for coupled theories without
cosmological screening, as the effective Planck mass can
vary during the BBN era [141–144].
It is worth emphasizing that the BBN predictions have

been included in the CMBþ BAO constraints on EEG, and
play an important role by relating the helium fraction, ωb

and M2
�;i. As discussed in Sec. IV C and emphasized in

Fig. 11 (top right), lifting the assumption of standard BBN
will lead to looser constraints. In that case, including
bounds on helium and deuterium abundances will be
particularly important to supplement Planck data (see
Fig. 41 of Ref. [1] for the case of additional relativistic
particles). While current CMBþ BAO places more strin-
gent limits than BBN on M2

�;i and EEG, any improvement
on the measured primordial abundances can be used as a
further test.

B. Gravity on small scales

Deviations from Einstein’s general relativity are very
well constrained by local gravity tests. There are at least
three effects that may be used to constrain coupled
Galileons and limit EEG and LUPE solutions to the
Hubble problem:

(i) scalar forces
(ii) local strength of gravity
(iii) time variation of the local strength of gravity.

Reliable constraints based on these effects require solutions
of the coupled Galileon theory connecting the cosmological
solution to very small scales. In this section, I will discuss
the challenges to connect cosmological and local dynamics
of coupled Galileons, limits on the above effects from lunar
laser ranging (LLR) and other precision gravity tests and
the challenges in interpreting type Ia supernovae (SNe)
observations in coupled models.

1. Scalar forces

The Galileon scalar field mediates an additional, attrac-
tive interaction. While the scalar force is very suppressed
within the Vainshtein radius [77]

R3
V ¼ 4GM

H2
0

β
c3
c22

; ð53Þ

it leads to a small deviation from the 1=r2 dependence of
the gravitational force that causes a small shift in the orbital
phase of bound objects and can be probed by sensitive
enough measurements (e.g., [145]). Lunar laser ranging
(LLR) measurements set the following bounds:

jc3j
β3

> 0.1; ð54Þ

for the phase shift of the Moon to be within the observa-
tional limits [146]. Note that screening implies that the
coefficient of the cubic kinetic term c2 does not enter
this bound.
The upper bound (54) leads to β ≲ 2.15 for the canonical

EEG models studied here (fixed c2 ¼ 1; c3 ¼ −1), a value
well above the cosmological bounds, cf. Fig. 13. The above
bounds implicitly assume

jc3j
c22

β > 3.4 × 10−25; ð55Þ

i.e., the Moon’s orbit is confined within the Vainshtein
radius of the Earth (53) The lower limit on the coupling
(55) is relevant only if c3 ∼ 0. Even in the lack of screening
jc3j=c22 → 0, a change in the gravitational strength is
proportional to

ϕ0 ¼ 2GM
r

β2

c2
; ð56Þ

and thus negligible if β is sufficiently small. An estimate for
the bounds in the uncoupled regime (56) can be obtained by
comparing the coupled free theory to the Brans-Dicke
Lagrangian, Sec. 3.1 of [147], where one can identify β ∼ 1,
c2 ∼ ωBD ≳ 4 × 104 and the lower limit is required for
compliance with Solar System tests. Comparing the theory-
dependent coefficient of Eq. (56) with the Brans-Dicke case
suggests that β ≲ 2 × 10−2

ffiffiffiffiffi
c2

p
is in agreement with obser-

vations even in the lack of screening.
The above limits on the scalar force follow from an

expansion around the Minkowski solution. However, the
time evolution of the scalar field modifies the Galileon
terms. These corrections have been computed only on de-
Sitter backgrounds in which the field evolution is stationary
_ϕ ¼ constant, cf. Appendix B of Ref. [25]. For cubic
Galileon only the quadratic term is affected. This can be
seen from expanding the action for the total field locally
ϕloc ¼ ϕþ φ as
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L ∼
�
c2 − 4

c3
H2

0

□ϕ

�
ð∂φÞ2 − 4

c3
H2

0

ð∂φÞ2ð□̂φþ δΓ∂ϕ̄Þ;
ð57Þ

where ϕ ¼ ϕðtÞ is the cosmological solution and φ ¼
φðt; x⃗Þ is the local correction. Since cosmological evolution
is slow compared to dynamical timescales of the Solar
System, the term in brackets can be taken as constant and
the difference between the connections δΓ ∼H can be
neglected. Then, cosmological evolution amounts to a
redefinition of c2, which does not affect the constraints
on the scalar force in the screened regime (54).
The local time variation will be most decisive on the

coupling function, as it affects the strength of gravity
measured in the Solar System.

2. Local strength of gravity and supernovae

The scalar field coupling modulates the local value of the
Newton’s constant, which depends on the local value

ϕlocðt; x⃗Þ ¼ ϕþ φ; ð58Þ

where ϕ ¼ ϕðtÞ is the cosmological solution and φ ¼
φðt; x⃗Þ is a local correction. For exponential couplings the
measured value is recovered if βϕloc ≈ 0 in the Solar
System today. Because of the space-time dependence of
the field, this condition does not necessarily reduce to
fixing M2

�;0 ¼ 1 [or ϕðt0Þ ¼ 0] on the cosmological sol-
ution. A detailed calculation of ϕloc needs to account for
vastly different scales, including how the cosmological
solutions adapt to the local dark matter halo, how that
solution adapts to the galaxy, and so forth, all the way to the
Solar System. In addition, it is necessary to model the
evolution of the scalar field over the timescales in which
those structures form. While such an analysis is well
beyond the scope of this work, I will discuss possible
outcomes for the local solution.5

Shift symmetry ϕloc → ϕloc þ C guarantees the exist-
ence of solutions where the field evolves at the cosmo-
logical rate around a matter source. For a spherically
symmetric configuration such a stationary solution takes
the form [152]

ϕloc;s ¼ _ϕðt0Þ · tþ φsðrÞ; ð59Þ

where the only differences with Eq. (58) is that the field
velocity _ϕ is constant and the local correction is static
_φs ¼ 0. Introducing the above ansatz in the dynamical
equations explicitly neglects field accelerations ϕ̈loc; ϕ̈,
losing any information about how that solution is reached.
Stationary solutions (59) are a likely end point for the
dynamical evolution near a matter source, once the local
value values of the scalar field reach equilibrium with the
cosmological evolution. The main question is whether this
occurs before the present time or in the cosmological future.
Two scenarios are possible depending on the relation

between the local and cosmological evolution6:
(i) Homogeneous evolution.—If _ϕloc ≈ _ϕ in the Solar

System, then M2
�;0 ≈ 1 is a necessary condition. In

this case αM is constrained directly by the variation
of Newton’s constant (Sec. V B 3).

(ii) Inhomogeneous evolution.—If _ϕloc ≪ _ϕ then
ϕlocðt0; 0Þ ∼ 0 requires M2

�;0 > 1. The latter condi-
tion is compatible with EEG, but requires a sizable
value of the coupling β, which enhances the scalar
force (54). In this case _ϕlocðt0; x⃗0Þ could be small
enough to satisfy bounds on the time variation of
Newton’s constant (Sec. V B 3), but cosmological
effects will be larger.

The case _ϕloc ≫ _ϕ is both nonviable and unlikely; non-
viable because it would yield a large time variation of
Newton’s constant, and unlikely because the Vainshtein
mechanism slows down the field evolution in screened
regions.
The analysis of the time-dependent Galileon equation in

a screened region suggests that inhomogeneous evolution
could happen in small scales. The starting point is a
spherically symmetric field configuration in Minkowski
space, where the field evolution is governed by [150]

Ztt
̈̂ϕ¼ βTþc2

1

r2
ðr2ϕ̂0Þ0 þ4c3

�
ð _̂ϕ0Þ2þ ϕ̂0

r3
ðr2ϕ̂0Þ0

�
; ð60Þ

where primes denote radial derivatives, t, r are in units of
M ¼ ðH2

0MpÞ1=3 and ϕ̂ðr; tÞ ∝ ϕloc, ρ have been made
dimensionless. The kinetic coefficient is given by

Ztt ¼ c2 þ 4c3

�
ϕ̂00 þ 4

ϕ̂0

r

�
; ð61Þ

and the screened region is characterized by Ztt ≫ c2. While
one does not expect the field to evolve in a strictly static
space-time, this simple configuration was used to model

5See Ref. [148] for a detailed analysis of this issue in nonlocal
gravity theories without the Vainshtein mechanism and Ref. [149]
for a study of the interplay between local solutions and cosmo-
logical time dependence in cubic Horndeski theories. The time
evolution and stability of spherically symmetric systems ap-
proaching the Vainshtein screened solution was studied in
Ref. [150]. Reference [151] finds a suppression of the local
field velocity in Chameleon models.

6In Ref. [153] the authors argue that inhomogeneous evolution
leads to either a violation of the equivalence principle, a scalar
force larger than the gravitational force in some intermediate
region (e.g. between the Solar system and cosmological scales) or
a fine-tuned suppression of _ϕloc, valid only at the present.
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the approach to the static, Vainshtein-screened solution.
A similar analysis might shed light on the interplay
between the small-scale and the cosmological solution,
which would appear as a boundary condition in this
situation.
The evolution timescale in a screened region can be

estimated evaluating Ztt on the static screened solution. For

ϕ̂ ≈ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðrÞ=ðϕ̂c3rÞ

q
valid deep in the Vainshtein radius

(53) it reads

Ztt ∼
7

2

c3
π

�
rV
r

�
3=2

ðr ≪ rVÞ: ð62Þ

Thus the characteristic timescale for the field evolution is
rescaled by a factor ∼

ffiffiffiffiffiffi
Ztt

p
∝ ðr=rVÞ3=4, slowing down

evolution in screened regions. This is analog to the
cosmological screening mechanism discussed in Sec. III C.
SNe observations need to be reinterpreted in coupled

Galileons to reflect the variable strength of gravity. The
intrinsic luminosity of SNe is expected to depend on the
Chandrasekhar mass, the threshold for a white dwarf to be
supported by electron degeneracy pressure. Its dependence
on the strength of gravity,

Mch ∝ G−3=2 ∝ CðϕlocÞ3=2; ð63Þ

implies that the intrinsic luminosity of a SNe will vary with
ϕloc. Early works on the subject argued that stronger gravity
(lower Mch) leads to dimmer SNe (lower ejected mass)
[154–156]. However, a more recent study based on a
semianalytical model for SNe light curves concludes that
the opposite is true, with stronger gravity producing
brighter SNe after standardization [157].7

If the scalar field evolves homogeneously, the variation
of M2� produces a redshift-dependent correction to the
luminosity distance observed by SNe (this can be tested
even independently of the specific model [160]). If the
evolution is inhomogeneous, the SNe luminosity will also
depend on the properties of the host galaxy/halo, leading to
an additional scatter in the Hubble diagram. If the scatter is
significant, it can be probed by methods used to search for
lensing signatures of compact dark matter [161].
Any other observation that may rely on the strength of

gravity needs to be reinterpreted in coupled models. One
example is the measurement of the Hubble rate inferred
from lensing time delays, for which the Hubble parameter
inferred from a lens at redshift zL scales as H0;zL ¼
H0;true=M2�ðzLÞ [162]. GW standard siren observations
need to be reinterpreted along similar lines once they

become available over a larger redshift range. Unlike for
SNe, in both gravitational lensing and GWs the relationship
between the luminosity and the strength of gravity is well
understood, and the only challenge is modeling the con-
nection between the cosmological evolution and the rel-
evant scales.

3. Time variation of Newton’s constant

The variation of the local scalar field value is equivalent
to a time-varying Newton’s constant, an effect that
can be constrained via precision tests of gravity. The
most precise current bound based on LLR is [163]
_GN
GN

¼ ð7.1� 7.6Þ × 10−14 yr−1, or equivalently [148]

C0

C

_ϕloc

H0

¼ β
_ϕloc

H0

¼ −ð0.99� 1.06Þ × 10−3
�
0.7
h

�
; ð64Þ

where it has been assumed that G̈N ¼ 0 and the result is
quoted in terms of the scalar field variation using
GN ∝ CðϕlocÞ−1.
The time variation of Newton’s constant is strongly

correlated with the vector describing the rotation of the
Moon’s core, Sec. 4.1 of [163]. Since the core rotation is
poorly constrained independently, the above limits assume
the core rotation vector obtained from the standard with
_GN ¼ 0. More conservative assumptions about the Moon’s
inner structure might lead to weaker constraints.
Note that the central value of _GN=GN corresponds to a

growing strength of gravity. In contrast, coupled cubic
Galileons predict a decrease _GN < 0. This is a theoretical
and observational requirement. Theoretically, it follows
from the need of positive coupling constant β > 0, required
to prevent ghosts (cf. III A). Observationally it is required
for solving the Hubble problem via EEG and the need to
increase the strength of gravity.
The impact on the model parameters and the H0 tension

requires understanding the connection between the
global and local dynamics of the scalar. If the scalar field
evolves homogeneously, the bound on the variation of
the gravitational constant (64) can be translated directly
into a stringent limit on the effective Planck mass running
today [91]:

β
_ϕloc

H0

≈ αMðt0Þ: ð65Þ

Comparison with the approximate expressions in Sec. III C
indicate that only very small values of the coupling would
be allowed, ruling out EEG.
Reducing the cubic coupling c3 reduces αM for a

fixed value of today’s effective Planck mass M2
�;0 ¼ 1.

This slowdown works by weakening the cosmological
Vainshtein mechanism, allowing the field to start evolving
earlier, as shown in Fig. 15 for models where β is adjusted so

7This calculation suggests that SNe luminosity scales as ∝
G1.46 [158]. See Ref. [159] for an analysis of a model with
variable gravitational constant using different prescriptions for its
effect of SNe luminosity.
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M2
�;0 ¼ 1. Values c3 ≲ 10−9 correspond to evolution before

recombination, and potentially impact primary CMB anisot-
ropies. The slowdown achievable is not enough to prevent
LLR constraints on Newton’s constant variation, at least
assuming a sizeable EEG (M2

�;i ∼ 0.95, assuming homo-
geneous evolution (65) and assuming the latest result with
standard value of the Moon’s core rotation (64). In addition,
reducing the cubic coupling makes Galileons vulnerable to
scalar-force constraints, Eq. (54).
If the local evolution is inhomogeneous the limit needs to

be satisfied for the value of the scalar field in the Solar
System. A tentative order of magnitude estimate of the
Vainshtein suppression suggests applying the constraint
(64) to the Planck mass dressed by the kinetic term as
discussed in Sec. V B 2:

β
_ϕloc

H0

∼
αMffiffiffiffiffiffiffiffi
Zeff
tt

p : ð66Þ

If the above scaling holds, the dependence of the kinetic
term with the radius in a screened region (62) indicates that
the time variation of the Newton’s constant could be very
suppressed locally, allowing EEG to remain compatible
with time variation of Newton’s constant.
The back-of-the-envelope slowdown in screened regions

(66) is likely an overestimation. While better modeling is
needed, the true solution is likely to lie within the two limits,
Eqs. (65) and (66). The homogeneous case iswell beyond the
limit (64) for the EEG, models in which the effective Planck
mass evolves significantly M2

�;i ∼ 0.95 → M2
�;0 ≈ 1, since

that evolution occurs mostly at low redshift. A very efficient
suppression of _ϕloc implies that a large coupling β is required
to connect EEG at early times to the correct local value

ϕloc → 1 today. Large β would be problematic for both
cosmology (Fig. 13) and scalar force constraints Eq. (54).

C. Gravitational waves

Coupled cubic Galileon gravity avoids constraints from
the GW speed and decay by construction. In this section, I
will discuss other GW tests of coupled cubic Galileons,
focusing on the scalar instabilities induced by passing GW.
Cubic Galileon interactions may induce instabilities in

the scalar sector: a background GW can flip the sign of the
kinetic term for scalar-field perturbations triggering a ghost
or gradient instability [82]. This requires a GW with
sufficient amplitude propagating on a nonscreened region,
which is estimated to have happened in a significant
fraction of the universe unless

αB;3 ≲ 10−2; ð67Þ

where the cubic Galileon term contribution to the braiding
is given by Eq. (37). The relevant quantity above is the
contribution of the cubic term to the braiding αB (the
coupling also contributes to αB, but not to the instability).
Whether a given model triggers the instability depends on
the time variation of the field at low redshift.
Models in which the field evolves rapidly are most

susceptible to the instability. Figure 16 shows examples
selected from the best-fit models in the cosmological
analysis (cf. Sec. IV). The instability is triggered in all
accelerating models unless a cosmological constant is
allowed and the contribution of the scalar field to the

FIG. 15. Effective Planck mass M2� (top) and its running αM
(bottom) for EEG. Lines show the dependence on the cubic
Galileon coupling c3, with c3 ¼ −1 corresponding to the value
analyzed in Sec. IV D. Lowering c3 reduces the running of the
Planck mass. All models have M2

�;i ¼ 0.95, and coupling strength
β fixed soM2

�;0 ¼ 1. The constraint on Newton’s constant variation
assuming homogeneous evolution (65) is shown for comparison.

FIG. 16. GW-induced scalar instabilities for different models.
Curves show the cubic braiding (37) for some best-fit models
resulting from the analysis of Sec. IV. Accelerating (magenta) or
canonical models with sizable couplings (dark cyan dashed) are
able to trigger the instability at late times (shaded region),
Eq. (67), where it has been assumed that no GW sources exist
for z > 30. The role of the coupling β is shown for a canonical
model (dark cyan) with the best-fit value (solid) and a value close
to the excluded region (dashed). Accelerating Λ ¼ 0 models
produce even larger values αB;3ðt0Þ ∼ 1 (not shown).
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energy density is very subdominant. In canonical Λ ≠ 0
models the field variation at late times is driven by the
coupling. The instability is triggered only for values of β
that are sizable, yet allowed by cosmology (cf. Fig. 13). In
canonical uncoupled models the field’s kinetic energy
dilutes very fast at late times and remains well below
the unstable region. Note that any feasible amount of IDEE
cannot trigger the instability. This is due both to the
stringent bounds from CMB and the fact that GWs sources
with enough amplitude exist only at relatively low redshift,
after IDEE peaks. While including limits from the insta-
bility improves over the CMBþ BAO constraints, these
improvements are milder than suggested by studies based
on parametrizations of the alpha functions [164].
While taking the GW-induced instability as a hard

constraint is complementary to the cosmological analysis,
it is important to remember that they are conservative from
a theoretical point of view. The fate of the theory after the
instability is reached is uncertain. Specifically, it is not clear
whether the instability is associated with any prediction
which violates current experimental bounds, and simple
models exist in which a similar instability is associated with
no pathological behavior [82]. All that can be said for sure
is that a high-energy completion of the theory is needed to
address the consequences of entering the unstable region.
Coupled Galileons also predict a mismatch between

distances measured from GWs (standard sirens) and electro-
magnetic or geometric observations (e.g., SNe, BAO). This
difference is produced by the effect of the conformal
coupling G4;ϕ ≠ 0 on the GW propagation. Current bounds

are very weak j C0
C

_ϕ
H0

j≲Oð10Þ [165], well below the level of
other probes discussed here. Upcoming GW observation
campaigns and new detectors will improve these limits
considerably [56,166,167]. However, it has been argued that
the interpretation of standard sirens needs to be reconsidered
in theories with screening mechanisms [168–170] (see also
Ref. [171]). Because standard sirens are not yet a competitive
test, I will not discuss them further.

VI. CONCLUSIONS

Discrepancies in the Hubble constant inferred by differ-
ent methods could be an indication of physics beyond the
simple ΛCDMmodel and its underlying assumptions. Here
I have examined three different mechanisms by which
gravity theories beyond Einstein’s GR may alleviate the
discrepancy on the H0 values inferred via BAOþ CMB
and distance-ladder observations. Imperfect dark energy at
equality (IDEE) and enhanced early gravity (EEG) modify
the pre-recombination expansion history to reduce the
acoustic scale rs for fixed angular projection θ�. Late-
universe phantom acceleration (LUPE) is based on the dark
energy density growing at low redshift wϕ < −1. Each
mechanism can operate individually or in combination with
the others.

The three mechanisms exist in the coupled cubic
Galileon, a simple scalar-tensor theory compatible with
the speed of GWs, lack of GW decay and equipped with
the Vainshtein screening mechanism. This investigation
focused on an exponential form of the coupling G4 ¼
CðϕÞ ∝ eβϕ, and considers the two possible signs of the
quadratic kinetic term ∝ c2ð∂ϕÞ2, dubbed canonical
(c2 > 0) and accelerating (c2 < 0). Different combinations
of model properties (coupled/uncoupled × canonical/
accelerating) were tested against Planck þ BAO, including
in some cases the SH0ES distance-ladder measurement
of H0 to address the tension in extended models.
The main findings regarding the cosmology of these

models can be summarized as follows:
(1) IDEE relies on the scaling of the scalar field energy

density, which dilutes faster than matter but more
slowly than radiation (Fig. 4). It requires a large
initial velocity for the field _ϕi. Values corresponding
to ΩϕðzBBNÞ ∼ 10−4 would lower rs enough to
reconcile CMBþ BAO with SH0ES for fixed θ�.

(2) Planckþ BAO constrain IDEE toΩϕðzBBNÞ≲ 10−5,
below the level necessary to solve the H0 problem
(Fig. 7). The strong bounds on IDEE stem from
modified gravity and expansion. A tachyon insta-
bility enhances the growth of scalar-field perturba-
tions after Hubble crossing, impacting mainly the
first CMB peaks (Figs. 8 and 9).

(3) EEG relies on the couplingCðϕÞR, allowing the scalar
field to modulate the strength of gravity via the
effective Planck mass M2� ¼ G=Geff ¼ CðϕÞ ¼
expðβϕÞ. EEG requires for the field to roll in the late
universe to reduce rs at fixed θ� (Fig. 5). Initial
conditions corresponding to M2

�;i ∼ 0.95 evolving to
M2

�;0 ¼ 1 could solve the H0 problem.
(4) Planckþ BAO data is compatible with EEG in the

range 0.92 < M2
�;i < 1.06 (95%CL). Thedegeneracy

between M2
�;i −H0 and other parameters weakens

CMBþ BAO bounds toH0 ¼ 68.7� 1.5 (68% CL)
with a ≈ threefold increase in uncertainty, relative
to ΛCDM (Fig. 10). This reduces the tension with
SH0ES from 4.4σ to 2.6σ (combining errors in
quadrature).

(5) LUPE models rely on the sign of the kinetic term
(c2 < 0), causing the scalar field energy density to
increase wϕ < −1 and accelerate the universe
(Fig. 6). By itself LUPE has no impact on rs,
but raises H0 for fixed θ�. Data requires a combi-
nation of Ωϕ;0;ΩΛ;0 ≠ 0 or

P
mν ∼ 0.6 eV if Λ ¼ 0

(Appendix B).
(6) Planckþ BAO allow only LUPE models with

Λ ≠ 0. The coupling strength is severely restricted
in the Λ ¼ 0 case to jβj < 0.05 95% CL, preventing
a coupling from improving the fit for the accelerat-
ing cubic Galileon (Fig. 13). Λ ≠ 0 models reduce
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H0 tension to 2.5σ via a combination of LUPE
and EEG.

It is remarkable that modified gravity solutions to the
Hubble problem require far less fine-tuned initial condi-
tions than other early dark energy models. IDEE stems
from the initial field velocity and scales only mildly with
the dominant matter component. EEG stems from the initial
field value and its contribution remains constant at early
times thanks to the cosmological Vainshtein mechanism.
Generic initial conditions of the field produce some amount
of IDEE and EEG in coupled cubic Galileons. To reconcile
H0, EEG requires ϕi=Mp ∼ −0.05=β, a sub-Planckian
value of the initial scalar value for typical values of β.
Early modified gravity solutions require Ωϕ;i ∼ 0.05
(EEG), Ωϕ;i ∼ 10−4 (IDEE) around BBN to solve the
Hubble problem. These are relatively small differences
compared with those needed for canonical oscillating fields
Ωquint;i ∼ ðTeq=TBBNÞ4 ∼ 10−24. While the fine-tuning of
initial conditions fares better than in other scenarios, the
issues associated to Λ and cosmic acceleration remain.
Among the three mechanisms, EEG is the best candidate

to reconcile CMBþ BAO and the distance ladder, although
a combination of EEG and LUPE remains promising in
light of those cosmological datasets. These scenarios
reduce the tension between Planckþ BAO and SH0ES
to the ≈2.5σ level, comparable to other late DE solutions
[172]. Analyses involving additional datasets are necessary
to further constrain these mechanisms. Particularly, late-
universe cosmological measurements (e.g., redshift space
distortions, weak lensing from galaxy shear and CMB,
LSS × CMB cross-correlations or type Ia SNe) will
improve the bounds on the coupling β for EEG and Ωϕ

for LUPE, respectively. LSS tests, recently used to con-
strain early quintessence [173], will also shed light on early
modified gravity. Such analyses will help clarify whether
EEG and LUPE models can simultaneously alleviate the
Hubble and weak lensing tensions, as suggested by Fig. 14.
A variety of additional data can be used to probe these
mechanisms further, with precision tests of gravity posing
the most outstanding challenge for coupled models.
EEG models need to match the observed strength of

gravity measured in the Solar System, which is given by the
local field value ϕlocðt0; x0Þ and its derivative (Sec. V B).
The nonlinear nature of the problem (Vainshtein screening)
and the hierarchy of scales involved (cosmological back-
ground to Solar System) require further modeling to
reliably address this issue. Two scenarios are plausible:
(1) if the local field velocity is comparable to the cosmo-
logical value, then EEG is severely limited by the time
variation of Newton’s constant and the stringent bounds
from LLR (Fig. 15). (2) If the local field velocity is
significantly slower than the cosmological one, a large
coupling value is required to recover the correct local
strength of gravity today, entering into conflict with
cosmology and constraints on scalar forces. A related issue

is the interpretation of SNe and other observations in
models in which the strength of gravity depends on redshift
and host properties.
Big-bang nucleosynthesis is sensitive to the early

expansion history, allowing the observed abundance of
light elements to place bounds on EEG (Sec. VA). These
bounds are by themselves weaker than the Planckþ BAO,
but when combined might improve limits on the initial
effective Planck mass. Note also that the standard BBN
relation between the baryon and helium fraction was
assumed and played an important role in constraining
EEG via the damping tail (Fig. 11, right). Varying the
helium fraction freely will likely weaken the Planckþ
BAO limits on EEG.
GW-induced instabilities are sensitive to the late-

universe evolution (Sec. V C). Avoiding the instability
limits the value of the coupling beyond CMBþ BAO
bounds for EEG and severely limits LUPE, even for Λ ≠ 0.
While these limits are enticing, it is important to remember
that instabilities signal a breakdown of the theoretical
description, rather than a prediction contradicting known
data. A UV-complete theory is needed to establish whether
EEG and LUPE models can be ruled out by GW-induced
instabilities.
EEG, LUPE and IDEE are general mechanisms that can

be explored in theories beyond the simple exponentially
coupled cubic Galileon. While none of the models studied
here are likely to pass all tests, it is plausible that further
model building may overcome these difficulties. The notion
of IDEE can be generalized beyond the cubic Galileon.8 In
models with a canonical kinetic term one can advance the
onset of the kination phase by increasing the hierarchy
c2=jc3j, perhaps even in the pre-recombination era. Early
modified gravity is also compatible with quartic or quintic
Horndeski terms, as long as a kination phase ensures that
the speed of GWs is within acceptable bounds at low
redshift. Other simple variations include modifying the
coupling function beyond the simple exponential form or

8A straightforward IDEE generalization, known as the nKGB
model, is specified by the following Horndeski functions:

G2 ¼ −X; G3 ∝ Xn ð68Þ
(n ¼ 1 corresponds to the case studied here). A calculation
analogous to the one outlined in Sec. III B shows the following
dependence on the equation of state for the scalar field:

wϕ ¼ 1 − wm

4n
: ð69Þ

The conditions for the scalar energy density to dilute slower than
radiation but faster than matter is simply n > 1=2, approaching
the matter scaling in the limit n → ∞. A different value of n may
improve the behavior of cosmological perturbations relative to
the n ¼ 1 case studied here. A generalization of this model has
been studied in Ref. [174] as a LUPE solution.
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adding a potential term. These modifications may help lock
up the local value of the scalar field in dense environments,
in a manner analogous to the Symmetron model [175].
Needless to say, the properties leading to IDEE, EEG, and
LUPE (and perhaps completely different solutions to the
Hubble problem) are likely to exist in extensions of GR
other than Horndeski gravity. In this sense, this work is
only a first systematic exploration of the possibilities of
theories beyond Einstein’s GR to address the Hubble
problem.
The mechanisms described here are extremely predic-

tive. They can be tested using a wide range of observations
across vastly different scales and epochs, from precision
gravity tests in the laboratory and the Solar System or GW
astronomy, all the way to the large-scale structure of the
universe, abundance of primordial elements, primary and
secondary CMB effects and the cosmic expansion. Future
data on these fronts will be able to determine whether the
Hubble problem and other cosmological tensions are due to
new physics beyond the ΛCDM model. If cosmological
tensions endure upcoming scrutiny, combining theoretical
and observational insights will be key to illuminate the
necessary amendments to the standard model and their
fundamental implications for our understanding of nature.
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APPENDIX A: ALTERNATIVE SCALAR
ENERGY DENSITY

Alternatively to Eq. (13), one can define the Friedmann
equation and total scalar energy density as

H2 ¼ ρm þ E; ðA1Þ

E ≡ Ê þ ð1 −M2�ÞH2: ðA2Þ

There are thus two equivalent ways to describe the cosmic
expansion:

(i) E [Eq. (A1)] is the energy density inferred when
interpreting an expansion history within
Einstein’s GR.

(ii) M2� and Ê [Eq. (13)] separate the effect from the
strength of gravity and other contributions from the
scalar field (∝ _ϕ).

Both descriptions are equivalent and related by Eq. (A2).
Note that increasing the effective Planck mass, M2� > 1,
reduces the expansion rate, which is seen as a negative
contribution to E in Eq. (A2).

APPENDIX B: UNCOUPLED LUPE
Λ ≠ 0 MODELS

I will briefly discuss constraints on uncoupled accel-
erating cubic Galileon and the role assumptions about the
cosmological constant and massive neutrinos. The datasets
used in these analysis are Planck 2015 and BAO, with the
choices and methodology described by Renk et al. [11].
Specifically, no IDEE or EEG is included in these models.
These results are included for completeness, but separate
from the main text because they rely on older datasets than
the Planck 2018, the main analyses presented in Sec. VI.
I considered the following LUPE scenarios:
(1) accelerating uncoupled cubic Galileon with Λ ¼ 0

and free
P

mν (cubic model in Ref. [11])
(2) model (1) with free Λ,

P
mν and

(a) ΩΛ;0 ∼ 0, Ωϕ;0 ∼ 0.7
(b) ΩΛ;0 ∼ 0.7, Ωϕ;0 ∼ 0

(3) model (1) with free Λ but fixed
P

mν ¼ 0.06 eV
(a) ΩΛ;0 ∼ 0, Ωϕ;0 ∼ 0.7
(b) ΩΛ;0 ∼ 0.7, Ωϕ;0 ∼ 0.

The values of ΩΛ;0 and Ωϕ;0 refer to the initial proposal
for the sampling distribution, not to hard priors on the
parameters. This distinction was necessary because both
regions of the parameter space had to be explored sepa-
rately. The main results are shown in Fig. 17, where I have
also included the coupled accelerating Λ ≠ 0 model (with
Planck 18) to compare the effects of EEGþ LUPE,
cf. Sec. IV D.
The uncoupled Galileon is all or nothing. Comparison

between different initial sampling distributions (a vs b)
shows that only one form of energy density dominates.
The secondary component is limited to Ωϕ;0 < 0.022 in
both Λ-dominated scenarios (b) and ΩΛ;0 < 0.019 in
ϕ-dominated, free

P
mν (1a) and a more stringent limit

ΩΛ;0 < 0.003 for ϕ-dominated, fixed
P

mν (2a), with all
values corresponding to 95% CL exclusions. The coupled
model allows a much wider mixture between the two dark
energy components because EEG lifts the restrictions on
the acoustic scale.
These analyses confirm the role of the neutrino mass in

ϕ-dominated scenarios. Sizable
P

mν is necessary both to
obtain a better fit and to reconcile the SH0ES value of H0,
but this only happens in Λ ∼ 0 models. The Λ ¼ 0 (1)
and ϕ-dominated, Λ ∼ 0 (2a) scenarios show only minor
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differences, consistent with the limits on Λ discussed
above. The model with fixed

P
mν (2a) predicts a

Hubble parameter above the SH0ES central value, but is
excluded by the analysis with variable neutrino mass (1a),
of which (2a) is a particular case. In the Λ-dominated cases
(b) the neutrino mass is constrained at a similar level as in
standard ΛCDM, with negligible differences between
variable (1b) and fixed (2a)

P
mν.

APPENDIX C: COUPLING AND EARLY
FIELD DYNAMICS

Let us examine the effects of a nonzero coupling on the
initial conditions of the field. Using the general equations
presented in Sec. III A, I will discuss the Vainshtein
screening mechanism and its effect on three possible
sources of initial IDEE: pressureless matter, particles
becoming nonrelativistic and a hypothetical kination phase.
The high efficiency of the Vainshtein mechanism makes
those sources completely negligible for all practical pur-
poses. The same suppression of early dynamics makes EEG
a much more robust and simple mechanism to lower the
acoustic scale.
The Galileon is sourced by the trace of the matter and

reduced dark energy momentum tensor (see the end of
Sec. III A). Several early universe phenomena contribute
to the source term-sigma Σ, cf. Eq. (29), and may affect
the initial kinetic energy of the Galileon. An example is
whenever the temperature in the early universe drops
below the mass of a particle: for some time that particle
remains important in the energy budget, while becoming
partially nonrelativistic and thus contributing to Σ. This

phenomenon is known as “kicks” in the context of
Chameleon theories [143,176] (see Ref. [177] for a study
of theories with noncanonical kinetic terms of the Dirac-
Born-Infeld type and Ref. [53] for massive neutrino kicks
used to set initial conditions for early quintessence). Phase
transitions contribute similarly to the shift-charge density.
At the end of this section, I will also examine the effects of
a hypothetical kination phase, the most favorable situation
to overcome the cosmological Vainshtein screening.
We will express the contribution of a kick to the integral

in Eq (26) as

J ∝
Z

daHðaÞa2ΣðTðaÞÞ ∼H0

ffiffiffiffiffiffi
ΩR

p
aeΣ̄; ðC1Þ

assuming radiation domination and neglecting the effect of
Σ on the expansion (28). The above approximating is
equivalent to treating the kick as a step function with
astart ≪ ae, which is adequate to give an idea of the order of
magnitude and time dependence. Typical contributions for
massive standard model particles are Σ ∼ 0.05–0.1 (see
Ref. [143] for a detailed computation).
It is possible to express the shift charge as an energy

density fraction for the Galileon using Eqs. (19) and (15). If
the cubic term dominates then

Ω̂ϕ;3 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a

jc3jΩR

r �
β

Z
a

0

da0ΣðTða0ÞÞ
�

3=2
ðC2Þ

∼
1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffijc3jΩR

p a2eðβΣ̄Þ3=2
ffiffiffiffiffi
a
ae

r
; ðC3Þ

where the last equality uses the simplified kick expression
(C1). While this contribution dilutes slower than radiation
(Ω̂ϕ;3 ∝

ffiffiffi
a

p
), the initial kick is suppressed by a2e ≪ 1. This

dependence implies that kicks at an earlier epoch are less
important, making it very hard to invoke early universe
physics (e.g., new heavy particles with m > mτ).
The scaling of the cubic Galileon reflects the cosmo-

logical Vainshtein screening. This is very different in the
case of a quadratic kinetic term, for which

Ω̂ϕ;2 ∼
3

8c2
β2
�
ae
a

�
2

Σ̄: ðC4Þ

For a canonical kinetic term, a kick contributes a sizable
amount of kinetic energy in the field Ω̂ϕ;2 ∼ Σ̄β2, which
nonetheless kinates away rapidly as Ω̂ϕ;2 ∼ a−2. In contrast,
the cubic Galileon is very hard to excite, but any energy
injected into the field is persistent, with Ω̂ϕ;3 growing in the
radiation era as characteristic of IDEE models, cf. Sec. III B.
Nonluminal Galileons scale more favorably with cosmic

expansion, but are equally hard to excite due to the
Vainshtein mechanism. If the quartic or quintic term were
to dominate the evolution (both the shift charge and the
energy density), the contribution of a kick reads

FIG. 17. Role of Λ; mν on LUPE-only models. Contours show
68%, 95%, and 99% CL posteriors on uncoupled accelerating
cubic Galileon with minimal/variable neutrino mass and cosmo-
logical constant for Planck 2015 and BAO data (see [11] for
details). Accelerating uncoupled Λ ≠ 0 Galileons are either
dominated by the cosmological constant or the LUPE energy
density, but the coupled (EEG) model allows a more flexible
combination of both dark energy components.
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Ω̂ϕ;4 ∼
5

8ð12c4Ω2
rÞ1=3

�
a
ae

�
4=3

a8=3e ðβΣ̄Þ4=3 ðC5Þ

Ω̂ϕ;5 ∼
7

10

�
3

10c5Ω3
r

�
1=4

�
a
ae

�
7=4

a3eðβΣ̄Þ5=4 ðC6Þ

so early kicks are suppressed by powers of the initial scale
factor. Note that while Ω̂ϕ;4–5 grows faster than in the cubic
case, this dependence does not compensate for the
Vainshtein mechanism, seen here as positive powers of
ae, which make kicks at very early times negligible. Note
also that the enhancement produced by the small coeffi-
cients c4, c5 (less screening) will not lead to a large kick,
but rather to the cubic or canonical term becoming the
relevant one.
Just for fun, let us now examine the best-case scenario to

generate a large IDEE fraction through a coupling. The best
case to generate a large shift-charge density would be a
kination phase (e.g., driven by the inflaton) with
wm ≈ −1;Σ ≈ −2; H ∝ a−3. Note that negative Σ requires
a negative coupling β < 0 to produce a positive shift
charge. Then the integral in Eq. (26) readsZ

daa2HðaÞΣ ¼ −2H0

ffiffiffiffiffiffi
Ωr

p
ae ln ðae=aiÞ; ðC7Þ

where I assumed that kination dominates from ai to ae and
the universe becomes radiation dominated at ae (hence
relating He ¼ H0

ffiffiffiffiffiffi
Ωr

p
a2e). To evaluate the impact of a

kination phase on the Galileon density fraction one can
substitute Σ̄ → −2 ln ðae=aiÞ in the expressions in
Appendix B. The logarithmic factor gives a mild depend-
ence on the duration of the kination phase, which can be
made arbitrarily large in the limit ai → 0, if the kination
phase lasts long enough.
While possible, imparting a substantial initial energy to the

Galileon using a kination phase is extremely unrealistic. The
problem is thevery rapid scaling of the energy density during
a kination phase, with ρi=ρe ¼ ðae=aiÞ6. Themost favorable
scenario to affect the acoustic scale via IDEE requires
kination to end right before nucleosynthesis, ae ∼ 1010,
while at the same time producing Ω̂ϕðzBBNÞ ∼ 10−4.

This would require the kick to be as large as Σ̄β ¼
−2β logðae=aiÞ ∼ 2 × 109ðΩ̂ϕ;i=10−4Þ2=3ð10−10=aeÞ, corre-
sponding to an initial energy density at the beginning of
kination given by ρi=ρe¼ejΣ=βj¼ejβj−12×109∼6×10868588963,
where the last value assumes β ∼ 1.9 Needless to say, this
energy scale is deeply trans-Planckian, well beyond the
range of validity of the theory as well as the range of validity
of classical gravity.
It is clear from the above discussion that the cosmo-

logical Vainshtein screening precludes any early universe
process to produce a sizable contribution to IDEE. Inflation
would dilute the initial energy density of the scalar field
very efficiently, requiring a mechanism to produce a sizable
amount of IDEE at reheating or later. This necessarily
involves physics beyond the classical coupled Galileon
theory, possibly through an ultraviolet completion. This
may happen in scenarios of Galilean genesis [178], a
variant of the coupled cubic Galileon in which the scalar
field is responsible for setting the initial conditions in the
early universe. In this scenario, reheating is conjectured to
occur when the field configuration exits the effective field
theory regime of validity. While a high-energy completion
of the theory is necessary for a first principle calculation, it
is plausible that the Galileon field producing IDEE might
be generated with a sizable kinetic energy (note that this
scalar field might be different from the one causing
Galilean genesis).
The Vainshtein mechanism ensures that the initial

effective Planck mass M2�ðϕÞ is robust against physical
processes in the early universe. The smallness of the
relative variation of the field _ϕ=ðHϕÞ guarantees that
M2�ðϕÞ will remain approximately constant until the
Hubble rate decreases to a value H ∼H0=

ffiffiffiffiffiffiffijc3j
p

. Thus
whatever the initial condition ϕi set in the early universe, its
effect on the strength of gravity is robust by virtue of the
same physics that prevent the generation of IDEE Ω̂ϕ. It is
interesting that, already at the theoretical level, enhanced
early gravity is much more robust.
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Lehébel, Phys. Rev. Lett. 120, 241101 (2018).

[77] A. Vainshtein, Phys. Lett. 39B, 393 (1972).
[78] C. de Rham, A. J. Tolley, and D. H. Wesley, Phys. Rev. D

87, 044025 (2013).
[79] Y.-Z. Chu and M. Trodden, Phys. Rev. D 87, 024011

(2013).
[80] F. Dar, C. De Rham, J. T. Deskins, J. T. Giblin, and A. J.

Tolley, Classical Quantum Gravity 36, 025008 (2019).
[81] P. Brax, L. Heisenberg, and A. Kuntz, J. Cosmol. Astro-

part. Phys. 05 (2020) 012.
[82] P. Creminelli, G. Tambalo, F. Vernizzi, and V.

Yingcharoenrat, J. Cosmol. Astropart. Phys. 05 (2020) 002.
[83] N. Chow and J. Khoury, Phys. Rev. D 80, 024037 (2009).
[84] F. P. Silva and K. Koyama, Phys. Rev. D 80, 121301 (2009).
[85] S. Appleby and E. V. Linder, J. Cosmol. Astropart. Phys.

03 (2012) 043.
[86] S. A. Appleby and E. V. Linder, J. Cosmol. Astropart.

Phys. 08 (2012) 026.
[87] J. Neveu, V. Ruhlmann-Kleider, P. Astier, M. Besanćon, A.

Conley, J. Guy, A. Möller, N. Palanque-Delabrouille, and
E. Babichev, Astron. Astrophys. 569, A90 (2014).

[88] S. Bhattacharya, K. F. Dialektopoulos, and T. N. Tomaras,
J. Cosmol. Astropart. Phys. 05 (2016) 036.

[89] C. Burrage, D. Parkinson, and D. Seery, Phys. Rev. D 96,
043509 (2017).

[90] C. Burrage, J. Dombrowski, and D. Saadeh, J. Cosmol.
Astropart. Phys. 10 (2019) 023.

[91] S. Tsujikawa, Phys. Rev. D 100, 043510 (2019).
[92] J. M. Ezquiaga, J. García-Bellido, and M. Zumalacárregui,

Phys. Rev. D 95, 084039 (2017).
[93] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astro-

part. Phys. 07 (2011) 034.
[94] E. Bellini and I. Sawicki, J. Cosmol. Astropart. Phys. 07

(2014) 050.
[95] D. Bettoni and M. Zumalacárregui, Phys. Rev. D 91,

104009 (2015).
[96] O. Pujolas, I. Sawicki, and A. Vikman, J. High Energy

Phys. 11 (2011) 156.
[97] I. Sawicki, I. D. Saltas, L. Amendola, and M. Kunz, J.

Cosmol. Astropart. Phys. 01 (2013) 004.
[98] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman, J.

Cosmol. Astropart. Phys. 10 (2010) 026.
[99] A. Barreira, B. Li, C. M. Baugh, and S. Pascoli, Phys. Rev.

D 86, 124016 (2012).
[100] J. Neveu, V. Ruhlmann-Kleider, A. Conley, N. Palanque-

Delabrouille, P. Astier, J. Guy, and E. Babichev, Astron.
Astrophys. 555, A53 (2013).

[101] J. Neveu, V. Ruhlmann-Kleider, P. Astier, M. Besançon, J.
Guy, A. Möller, and E. Babichev, Astron. Astrophys. 600,
A40 (2017).

[102] C. Leloup, V. Ruhlmann-Kleider, J. Neveu, and A. De
Mattia, J. Cosmol. Astropart. Phys. 05 (2019) 011.
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