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Upcoming cosmic microwave background (CMB) data can be used to explore harmonic 3-point
functions that involve the B-mode component of the CMB polarization signal. We focus on bispectra
describing the non-Gaussian correlation of the B-mode field and the CMB temperature anisotropies (T)
and/or E-mode polarization, i.e., hTTBi, hEEBi, and hTEBi. Such bispectra probe violations of the tensor
consistency relation: the model-independent behavior of cosmological correlation functions that involve a
large-wavelength tensor mode (gravitational wave). An observed violation of the tensor consistency
relation would exclude a large number of inflation models. We describe a generalization of the Komatsu-
Spergel-Wandelt (KSW) bispectrum estimator that allows statistical inference on this type of primordial
non-Gaussianity with data of the CMB temperature and polarization anisotropies. The generalized
estimator shares its statistical properties with the existing KSW estimator and retains the favorable
numerical scaling with angular resolution. In this paper, we derive the estimator and present a set of Fisher
forecasts. We show how the forecasts scale with various experimental parameters such as minimum and
maximum multipole moments, relevant for, e.g., the upcoming ground-based Simons Observatory
experiment and proposed LiteBIRD satellite experiment. We comment on possible contaminants due to
secondary cosmological and astrophysical sources.
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I. INTRODUCTION

Inflationary cosmology was proposed [1–3] to solve
several cosmological puzzles: an early period of accelerated
expansion explains the homogeneity, isotropy, and flatness
of the Universe, as well as the lack of relic monopoles. One
of the great successes of the inflationary paradigm is the
production of small density inhomogeneities that grow to
create the large-scale structure of the Universe today [4–8].
In addition, tensor modes produced during inflation lead
to primordial gravitational waves that are potentially
detectable in the polarization of the cosmic microwave

background (CMB) [9–12]. Observations of the CMB
provide tests of these predictions of inflation and can serve
to distinguish between specific inflationary models.
As yet, CMB observations are consistent with a single

slowly rolling scalar field as the inflaton, the field respon-
sible for inflation [13]. For these single-field slow roll
(SFSR) models, the fluctuations are described by primor-
dial density fluctuations, which are nearly Gaussian,
adiabatic, and nearly scale invariant [2,3]. Gaussianity
implies that the 2-point correlation function of the density
fluctuations uniquely determines all higher even n-point
functions while all odd n-point functions vanish. In
principle, inflation could be described by variants other
than SFSR that introduce significant non-Gaussianity, such
as multifield inflation; models with noncanonical kinetic
terms or non–Bunch-Davies vacua [14]. As yet no evidence
for primordial non-Gaussianity has been found in the
Planck data [15]; hence many of these models have been
ruled out. Conversely, evidence for non-Gaussian statistics
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in upcoming data would imply deviations from SFSR
inflation and would provide an informative probe of the
inflationary dynamics and the associated high-energy
physics [16].
While the usual searches for primordial non-Gaussianity

focus on the n-point statistics of scalar fluctuations, in
this paper we concentrate on the relatively unexplored
observational signatures of non-Gaussian correlations
involving tensor fluctuations, as previously discussed by
[17]. We propose to extend the search for primordial
non-Gaussianity from one that only looks for the “scalar-
scalar-scalar” correlation to one that also searches for
the “scalar-scalar-tensor” correlation [17–23]: the non-
Gaussian correlation between two modes of the primordial
scalar perturbation and a mode of the tensor perturbation
produced during inflation. To enable this goal, we general-
ize the statistical inference framework used for primordial
non-Gaussianity.
The scalar-scalar-tensor correlation is parametrized in

terms of the Fourier coefficients of the curvature (scalar)
perturbation ζ [24,25] and the two helicity modes �2hk that
describe the tensor perturbation [18]:

hζk1
ζk2

�2hk3
i ¼ ð2πÞ3δð3ÞðqÞ�2Fðk1;k2;k3Þ; ð1Þ

with q ¼ k1 þ k2 þ k3. The �2F functions depend on the
inflationary dynamics and can differ between models. Both
ζk and �2hk are described in the early radiation-dominated
Universe at a time when their comoving wavelength 2π=k
(with k≡ jkj) is larger than the Universe’s “comoving
Hubble radius” ðaHÞ−1 in natural units. HðtÞ and aðtÞ are
the Hubble parameter and the Robinson-Walker scale factor
as a function of cosmic time. Both types of perturbations
are assumed to be “adiabatic,” implying that they do not
evolve on these “superhorizon” scales [26].
Evidence for a nonzero ζζh 3-point function would not

only point toward a deviation from SFSR inflation [18] but
also would potentially rule out the majority of currently
formulated models of inflation [21]. The reason for this is a
robust consistency relation for the “squeezed limit”:
jk3j ≪ jk1j ≈ jk2j, of the ζζh correlation. In the squeezed
limit, ζζh is completely determined by PζðkÞ and PhðkÞ,
the power spectra of ζk and �2hk [18,27]:

�2Fðk1;k2;k3Þ
Pζðk1ÞPhðk3Þ

¼
�
4 − ns

2

�
ðk̂1Þaðk̂2Þbe�2

ab ðk̂3Þ: ð2Þ

The relation is independent from the dynamics of scalar
fields present during inflation and holds as long as modes
of the tensor perturbation become adiabatic directly after
reaching a superhorizon scale during inflation [21]. The
“polarization tensors” e�2

ab with a; b ∈ f1; 2; 3g are two
traceless, transverse tensor fields that will be precisely
defined later. ns − 1 parametrizes how much PζðkÞ deviates
from the scale-invariant form; see Appendix C 1.

The tensor consistency relation in Eq. (2) is powerful
because its predictions are falsified if a significant ζζh
correlation is detected in the squeezed limit [28,29]. An
observed violation of the tensor consistency relation would
indicate that inflation is described by a nonstandard variant.
For example, the relation is violated by inflationary models
with light, nonzero spin fields that do not decay quickly
after leaving the horizon [21]. As a consequence, falsifi-
cation of the tensor consistency relation allows ruling out
models that approximately respect the de Sitter isometries
[30], except for isometry-respecting models with so-called
partially massless spin fields [27,31]. Other inflationary
models that cannot be ruled out by falsification are those
that weakly break some of the de Sitter isometries and
couple the extra spin fields to the resulting preferred spatial
slicing [32–34]. Furthermore, in models where a subset of
the de Sitter isometries is strongly broken, there is no
reason for the consistency relation to hold [22,23]. This
last class includes models in which the tensor perturbations
are produced by additional fields [35,36]. These models
generally also make predictions for large tensor non-
Gaussianity in different forms than just the squeezed
ζζh type [37].
It should be noted that tests for the consistency relation

of the squeezed scalar-scalar-scalar (ζζζ) correlation
[38,39], which are similar to the tests for the tensor
consistency relation, are already underway [15]. The
consistency relation for the squeezed ζζζ correlation holds
for single-field inflation models [28].1 A detection of a
significant ζζζ correlation in the squeezed limit would
experimentally rule out the validity of the consistency
relation and would provide evidence for the presence of
more than one time-evolving scalar field during inflation.
The tensor consistency relation in Eq. (2) is arguably more
general than the ζζζ counterpart as it will, in principle, still
hold for models with multiple scalar fields [21,45].
The CMB contains cosmological information both in its

temperature anisotropies (T) and in its linear polarization.
The polarization field can be divided into two components:
the parity-evenE-mode and parity-odd B-mode fields [7,8].
Primordial scalar perturbations source T and E-mode
polarization, while primordial tensor perturbations source
the T, E-, and B-mode fields. Observational searches using
T and E constrain both scalar and tensor perturbations.
However, the contributions to T and E from scalars are
much larger than those of tensors, and so cosmic variance,
due to the limited number of measurable modes, prohibits
strong constraints on tensor perturbations with T and E
data. The inclusion of B-mode data allows for much tighter

1The exception are single-field models that relax the standard
assumption of a Bunch-Davies vacuum state [40,41]. Single-field
nonattractor models [42,43] also do not conform to the consis-
tency relation, but still do not produce an observable ζζζ
correlation in the squeezed limit [44].
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constraints on tensor perturbations [46]. Furthermore,
unlike T, current B-mode observations are not cosmic-
variance limited; hence sensitivity to primordial tensor
perturbations can significantly increase with B-mode
polarization data [47].
For these reasons, this paper focuses on bispectra, the

harmonic equivalent of 3-point correlation functions, that
describe how a single B-mode perturbation is correlated to
perturbations in the E-mode field or the CMB temperature,
i.e., the hTTBi, hEEBi, and hTEBi bispectra. These
correlations are currently unconstrained, but will be within
reach of observations by currently operating [48–51],
upcoming [52–57], and proposed [47,58] experiments.
Since B-modes are sourced by primordial tensor modes,
these bispectra directly probe the ζζh correlation. The use
of the hTTBi, hEEBi, and hTEBi bispectra avoids much of
the scalar-induced cosmic variance that plagues current
constraints on the ζζh correlation.2 These constraints are
expected to improve by an order of magnitude with the
inclusion of current B-mode data [17,22,47]. CMB con-
straints on ζζζ, already close to the cosmic-variance limit,
will not see such improvements.3 Future constraints on ζζh
will benefit from the ongoing, unified experimental effort to
collect B-mode data in order to constrain the ratio of the
primordial tensor-to-scalar ratio r:

rk0 ≡
Phðk0Þ
Pζðk0Þ

: ð3Þ

Besides the fact that a detection of a roughly scale-invariant
tensor power spectrum PhðkÞ would provide a strong
argument against a range of alternatives to inflation
[72–75], constraints on r are used to differentiate between
models of inflation [13]. For slow-roll models, r also
provides the energy scale of inflation V1=4: V1=4 ∼
r1=4 × 1016 GeV [76]. The upper limit on r is determined
by the BICEP2/Keck Array and Planck CMB data to be
r0.002 < 0.064 (at 95% confidence level) [13]. In the case of
a nondetection, upcoming B-mode observations have the

potential to improve over the current 95% upper limit by
factors of approximately 10 [52,56] and 30 [47,58].
Statistical inference on primordial non-Gaussianity is

generally done using statistical “estimators.” Loosely
speaking, an estimator is a rule to transform observed data
into a statistical estimate of a parameter of interest. Here we
concentrate on a CMB bispectrum estimator that transforms
CMB data into an estimate of the amplitude of a given
bispectrum and, simultaneously, the amplitude of the
primordial 3-point function responsible for this bispectrum.
There is a complication associated with the ζζh 3-point
function that prohibits a straightforward implementation of
the standard bispectrum estimator, see Eq. (40) [77–81].
Existing bispectrum estimators rely on a summary statistic
of the CMB bispectrum: the so-called reduced bispectrum
bl1l2l3 , defined in Sec. III of this paper [82]. Data are
usually compared to a version of the reduced bispectrum
that is separable (factorizable) in l1, l2, and l3. For data
with a large harmonic band-limit lmax this separable form
reduces the computational scaling of the estimator from
Oðl5

maxÞ to Oðl3
maxÞ [77]. The problem is that the

ðk̂1Þaðk̂2Þbe�2
ab ðk̂3Þ term that is present in the ζζh 3-point

correlation function results in reduced bispectra that are not
separable into l1, l2, and l3 [83]. Without a separable form
of the reduced bispectrum, inference on ζζh likely becomes
an enormous computational challenge.4

We demonstrate that a numerically efficient estimation of
the amplitude of the ζζh 3-point correlation is still possible
by making use of the full bispectrum instead of the reduced
bispectrum, and we propose a generalization of the stan-
dard bispectrum estimator [Eq. (59)]. This generalization,
which can be seen as the main result of this paper, allows
for computationally efficient (and statistically optimal)
estimation for all ζζh 3-point functions that include the
ðk̂1Þaðk̂2Þbe�2

ab ðk̂3Þ term in the following way:

�2Fðk1;k2;k3Þ ¼ fðk1; k2; k3Þðk̂1Þaðk̂2Þbe�2
ab ðk̂3Þ: ð4Þ

Here it is assumed that f can be expressed as (a sum of
terms) separable in the three wave numbers k1, k2, and k3. It
is argued how numerical evaluation still scales as Oðl3

maxÞ
and how the proposed estimator is exact: it does not rely on

2The only relevant dedicated searches have been for a parity-
violating 3-point tensor-tensor-tensor correlation using the
Planck data in [15] and a search in the WMAP data in [59]
for a ζζh correlation that violates the tensor consistency relation.

3While inference on certain standardized types of ζζζ
non-Gaussianity will only improve by a factor of approximately
two with upcoming CMB data [47], it is possible that more
complicated non-Gaussian features would still be hidden in the
data. This is especially true for models with oscillating or
nonsmooth inflationary potentials (see, e.g., [60–64]) or models
that predict non-Gaussian n-point correlation functions with
n > 3 [27,65,66]. In terms of improving constraints on (espe-
cially squeezed) ζζζ correlation functions, observables such as
galaxy clustering [67,68], 21 cm tomography [69], the cross-
correlation between CMB lensing and galaxy clustering [70] or
the cross-correlation between the primary CMB anisotropies and
small-scale spectral distortions of the CMB [71] have the
potential to significantly improve constraints in the (far) future.

4Approximate methods that retain some computational effi-
ciency without relying on a separable form do exist (the binned
bispectrum estimator [84] and the modal estimator [85–87]) and
have been successfully applied in the Planck analysis [15,88,89].
The first constraint on the amplitude of the ζζh 3-point function
in [59] was made with a modified [90] version of the modal
estimator. Despite the fact that the binned and modal estimators
are broadly applicable, they are relatively involved, are not
strictly statistically optimal, and have an unnecessary computa-
tional overhead in the case of reduced bispectra that are already in
separable form. For inference on such bispectra the dedicated
estimator developed in Refs. [77–81] provides a simpler and
more efficient solution.
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lossy data compression or on the flat-sky approximation
[17,91].
In Appendix A, it is shown how the estimator can be

adapted to other nonstandard 3-point correlation functions.
We derive an estimator for scalar 3-point functions that are
sensitive to the presence of higher-spin fields during
inflation [65,92,93] and provide estimators for 3-point
functions that involve two or three tensor components.
The 3-point functions with multiple tensor components are
relevant for inflation models with pseudoscalar–gauge field
interactions [37,94–96], models with higher-derivative
terms in the inflationary gravitational sector [97], and
bimetric gravity models [98].
To illustrate the potential of the generalized estimator for

testing the tensor consistency relation we provide a number
of Fisher forecasts that represent idealized experimental
outcomes. These forecasts demonstrate the lmin and lmax
dependence of constraints on the amplitude of the squeezed
ζζh correlation. The forecasts also show the influence of
the lensing B-mode power spectrum, the effects of reioni-
zation, and the advantage of using both temperature and
E-mode data in addition to the B-mode data. We comment
on the expected contamination that is associated with
B-mode data and the high-resolution data needed for
squeezed 3-point functions. In future work the generalized
estimator will be applied to simulated microwave sky data
to evaluate the Fisher forecasts.
The current paper is organized as follows. We first

review the CMB anisotropies, the bispectrum, and the
primordial 3-point correlation function in Sec. II. We then
introduce the generalized bispectrum estimator in Sec. III
and present Fisher forecasts for the tensor-scalar-scalar
bispectrum in Sec. IV. We discuss future work in Sec. Vand
conclude in Sec. VI.

II. PRELIMINARIES

A. CMB anisotropies

The data we consider are spherical harmonic modes of
the CMB temperature and linear polarization anisotropies
on the celestial sphere. After a brief review of the general
properties of the harmonic modes, we will demonstrate the
linear relation between the CMB anisotropies and the
primordial scalar and tensor perturbations.
The temperature harmonic modes are related to the CMB

temperature T measured at position n̂ ∈ S2 on the celestial
sphere by

aT;lm ¼
Z
S2
dΩðn̂ÞTðn̂ÞY�

lmðn̂Þ; ð5Þ

where dΩðn̂Þ and Y�
lm are the differential solid angle and a

complex-conjugated spherical harmonic function, respec-
tively. See Appendix B 1 for a summary of our notation.
The symmetric, traceless tensor field that describes the

linearly polarized component of the microwave sky can be

decomposed into two (real) fields: Qðn̂Þ and Uðn̂Þ. These
fields are coordinate-dependent quantities that transform
among themselves when the local coordinate basis (the
tangent space) on the sphere at n̂ is rotated. For that reason,
it is convenient to combine these fields into a complex
“spin-2” field on the sphere, ð�2ÞP, which is defined as
follows:

ð�2ÞPðn̂Þ≡ ðQ� iUÞðn̂Þ: ð6Þ

Under a right-handed rotation of the local coordinate
system around the point n̂ we then have

ð�2ÞPðn̂Þ ↦ ð�2ÞPðn̂Þe∓2iψ ; ð7Þ

where ψ is the angle of rotation. The sign of the exponent is
a convention.
Instead of directly using ð�2ÞP, we will describe polari-

zation in terms of the harmonic modes of two fields that are
scalars under coordinate rotations around n̂: the parity-even
E field and the parity-odd B field. The harmonic modes of
these two fields, the E- and B-modes, are related to the
locally observable field as follows:

aE;lm ¼ −
1

2

X
s∈�2

Z
S2
dΩðn̂ÞðsÞPðn̂ÞsY�

lmðn̂Þ;

aB;lm ¼ −
1

2i

X
s∈�2

sgnðsÞ
Z
S2
dΩðn̂ÞðsÞPðn̂ÞsY�

lmðn̂Þ: ð8Þ

The spin-weighted spherical harmonics sYlm form a
complete and orthonormal basis for spin-s functions on
the sphere, analogous to the regular spherical harmonics.
See Appendix B 1 for a brief overview.
The parity-even E and parity-odd B harmonic modes

transform differently under the parity transformation of the
underlying spherical coordinates. Under parity, the odd
moments of the temperature anisotropies and the E-mode
field gain a minus sign. The opposite behavior holds for the
B-mode field:

aT;lm ↦ ð−1ÞlaT;lm;
aE;lm ↦ ð−1ÞlaE;lm;
aB;lm ↦ ð−1Þlþ1aB;lm: ð9Þ

To describe the primordial adiabatic scalar perturbations
that source the CMB anisotropies, we use the gauge
invariant curvature perturbation ζ [24,25].5 As the initial

5The invariance under the choice of gauge (the choice of
constant-time spacelike hypersurfaces and constant-position
timelike worldlines) of ζ explains why it can simultaneously
be interpreted as, e.g., the spatial curvature on hypersurfaces with
constant energy density or as the energy density perturbation on
spatially flat hypersurfaces [99].
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adiabatic state is constant on superhorizon scales, we only
need to consider the amplitude of ζ on some spacelike
hypersurface in the early radiation-dominated era when all
Fourier modes of interest were superhorizon. The Fourier
coefficients of this amplitude at early time ti are given by

ζk ≡
Z

d3xζðx; tÞjt¼t̃ðti;xÞe
−ik·x; ð10Þ

where t̃ ¼ tþ δtðx; tÞ parametrizes weakly perturbed
spacelike hypersurfaces relative to comoving coordinates
fx; tg of the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) background. Throughout this work, k denotes a
three-dimensional (3D) comoving wave vector.
The primordial tensor perturbation h is the traceless and

divergenceless linear perturbation to the flat FLRW metric:

ds2 ¼ −dt2 þ a2ðtÞ½δab þ habðx; tÞ�dxadxb; ð11Þ
with haa ¼ ∂ahab ¼ 0. Instead of using the coordinate basis
to describe the tensor perturbation, we use a basis that sits
perpendicular to the unit wave vector k̂, spanned by the
êð�Þ unit vectors.

6 On this new basis, the tensor perturbation
conveniently reduces to two helicity states with Fourier
coefficients given by

ð�2Þhk ≡ eab�2ðk̂Þ
2

Z
d3xhabðx; tÞjt¼t̃ðx;tiÞe

−ik·x: ð12Þ

The polarization tensors e�2 are two symmetric, traceless,
and transverse tensor fields that transform h from the
comoving coordinate basis to the êð�Þ basis. The polari-
zation tensors have the following properties:

ðeab�2Þ�ðk̂Þ ¼ eab∓2ðk̂Þ; ð13Þ
eλabðk̂Þeabλ0 ðk̂Þ ¼ 2δλ−λ0 ðλ ∈ �2Þ: ð14Þ

The tensor perturbation h is gauge invariant (in the same
sense as ζ is) [100]. Thehelicity components ð�2Þh are scalars
under coordinate transformations up to a phase factor
depending on the orientation of the basis spanned by êð�Þ.

7

Let us categorize the stochastic primordial (superhor-
izon) amplitudes in terms of their helicity λ:

ðλÞξk ¼
�
ζk for λ ¼ 0

ðλÞhk for λ ¼ �2
: ð15Þ

Following the notation set by [83], we then write down a
compact expression for the observed CMB modes in terms
of these helicity-dependent superhorizon amplitudes and a
set of rotationally invariant transfer functions T lðkÞ:

aðZÞX;lm ¼ 4πð−iÞl
X
λ

sgnðλÞλþx

×
Z

d3k
ð2πÞ3

ð−λÞξkT
ðZÞ
X;lðkÞ−λY�

lmðk̂Þ; ð16Þ

with Z ∈ fζðscalarÞ; hðtensorÞg, sgnð0Þ≡ 0, 00 ≡ 1,
X ∈ fT; E; Bg, and helicity and parity determined by

λ ¼
�
0 for Z ¼ ζ

�2 for Z ¼ h
; x ¼

�
0 for X ¼ T; E

1 for X ¼ B
:

Note that by defining ∓2Y
�
lm in Eq. (16) on the transverse

basis spanned by êð�Þ, we ensure that the aX;lm for Z ¼ h
are independent of the orientation of this basis. This
approach is fully analogous to the decomposition of the
spin-2 polarization field in Eq. (8).
The transfer functions T lðkÞ transform the superhorizon

amplitudes ζk and ðλÞhk to the CMB radiation and its
polarization seen today [8,101]. In short, once the comov-
ing Hubble radius (growing after inflation has ended)
becomes larger than the comoving wavelengths of ζk
and ðλÞhk, they “enter the horizon” and start to evolve with
time. The scalar perturbations sourced by ζ begin to
oscillate under the effects of gravity and photon pressure,
resulting in the acoustic oscillations seen in the CMB
angular power spectra. The helicity components �2h start to
propagate through space as the two polarization states of a
gravitational wave, virtually decoupled from the other
components of the Universe, and decay away with the
expansion of space [76,102,103]. As a result, the most
prominent difference between the scalar and tensor transfer
functions is that the latter result in small values for CMB
fluctuations on small (l > 100) angular scales. Small-scale
tensor perturbations that entered the horizon before recom-
bination decay significantly before leaving their imprint on
the CMB. The transfer functions depend only on the
unperturbed background cosmology and are readily avail-
able through numerical Einstein-Boltzmann solvers such as
CAMB [104,105] or CLASS [106].8 The projection onto the
celestial sphere is also handled by the transfer functions.

6To relate the basis vectors of the comoving coordinates
êðaÞ to those of the noncoordinate basis, we introduce a set of
“polarization” vectors: feþ; e−; e0g, such that êðλÞ ¼ eλaêðaÞ with
λ ∈ fþ;−; 0g. Geometrically, the êð�Þ basis vectors span the
plane perpendicular to the wave vector, while êð0Þ points along the
wave vector. The three vectors form a complete orthonormal
basis. We let êð�Þ describe states of circular polarization; i.e., the
polarization vectors obey ðe�aÞ� ¼ e∓a.

7The polarization tensors are defined in terms of the �
polarization vectors as eab�2 ≡

ffiffiffi
2

p
e�ae�b. In the Cartesian basis,

we may define the polarization vector as e� ¼ f1;�i; 0g= ffiffiffi
2

p
for

a wave vector aligned with the ẑ direction. The addition of a
complex phase expð−iψÞ to this definition amounts to an equally
suitable basis that is simply rotated around the wave vector. The
polarization tensors and helicity components are thus defined up
to expð−2iψÞ. 8See https://camb.info and http://class-code.net.
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See Appendix C 1 for more details on the transfer functions
used in this work.
With Eq. (16), we have quantified the relation between

the CMB anisotropies and the primordial scalar and tensor
fields. The relation reiterates an important point: the
primordial scalar fluctuations do not source the parity-
odd B-mode field at linear order [8]. Higher-order cosmo-
logical effects, such as weak lensing by matter along the
line of sight [107] or second order time evolution of the
scalar perturbations [108–110], create a B-mode signal
even in the absence of a primordial tensor contribution.
Such effects are not included in the linear transfer functions
so their influence has to be described separately. The same
is true for a signal from astrophysical foregrounds. We will
briefly discuss these contributions in Sec. V but will
consider them in more detail in a future paper.

B. Bispectrum and the primordial 3-point function

In Sec. II B 1, we summarize general properties of the
observable of interest: the CMB bispectrum. As we are
interested in bispectra that include a B-mode component,
we explicitly discuss the inclusion of B-mode polarization.
In Sec. II B 2, we then introduce the concept of a linearly
propagated, or primary, bispectrum: a primordial 3-point
correlation function that is evolved to the CMB bispectrum
today by the linear transfer functions introduced in
Sec. II A. In addition, we describe the primordial ζζh
3-point correlation function in more detail.

1. General properties of the bispectrum

The bispectrum is defined as the isotropic 3-point
correlation function represented in terms of spherical
harmonic coefficients. The bispectrum is proportional to
the multivariate generalization of the skewness of a prob-
ability distribution and thus vanishes for purely Gaussian
coefficients.
We can formulate a bispectrum for every combination of

the temperature and polarization components X1; X2; X3 ∈
fT; E; Bg:

Bl1l2l3
m1m2m3;X1X2X3

≡ haX1;l1m1
aX2;l2m2

aX3;l3m3
i: ð17Þ

The aX;l;m are defined in Eqs. (5) and (8). Statistical
isotropy constrains the azimuthal dependence such that
the bispectrum may always be factored into a Wigner
3-j symbol and a factor independent of m1, m2, and m3

[111,112]:

Bl1l2l3
m1m2m3;X1X2X3

¼
�
l1 l2 l3

m1 m2 m3

�
BX1X2X3

l1l2l3
: ð18Þ

We will refer to the left-hand side (lhs) as the bispectrum,
while B on the right-hand side (rhs) is the angle-averaged

bispectrum. See Appendix B for an overview of the Wigner
3-j symbols.
It is possible to construct a parity-invariant bispectrum

from three fields regardless of the parity behavior of the
individual fields. This means that we can form a parity-
invariant bispectrum for all combinations of T, E, and B.
This is not the case for the angular power spectrum.9 From
Eq. (9), we see that invariance under parity alone imposes
that l1 þ l2 þ l3 ¼ even for bispectra with an even
number of B-mode contributions and l1 þ l2 þ l3 ¼
odd otherwise; see Table I [17,113].
Isotropy forces the l1 þ l2 þ l3 ¼ even components of

bispectra to be real while the l1 þ l2 þ l3 ¼ odd parts are
purely imaginary. This constraint can be deduced from the
condition for isotropy in Eq. (18) and the reality condition
of the harmonic coefficients:

a�X;lm ¼ aX;l−mð−1Þm; ð19Þ

which holds because the underlying X ¼ fT; E; Bg fields
are real valued. The combination of these two conditions
together with the reality of the 3-j symbols then implies

ðB�Þl1l2l3m1m2m3
¼

�
l1 l2 l3

−m1 −m2 −m3

�
Bl1l2l3ð−1Þ

P
3

n¼1
mn;

which, through the property of the 3-j symbol in Eq. (B11),
means that complex-conjugating the bispectrum results in
the following behavior:

ðB�Þl1l2l3m1m2m3
¼ Bl1l2l3

m1m2m3
ð−1Þ

P
3

n¼1
ðmnþlnÞ:

Note that the Wigner 3-j symbol vanishes for
m1 þm2 þm3 ≠ 0. Clearly, the above relation also holds
for the angle-averaged bispectrum Bl1l2l3 . We have

TABLE I. Factor gained after a parity transformation P∶ n̂ ↦
−n̂, for bispectra Bl1l2l3

m1m2m3;X1X2X3
grouped by X1, X2, X3 polari-

zation indices.

P∶ n̂ ↦ −n̂

TTT, TTE, TEE, TBB, EEE, EBB ð−1Þl1þl2þl3

TTB, TEB, EEB, BBB ð−1Þl1þl2þl3þ1

9Given the parity transformation rules in Eq. (9), we see that
the 2-point cross correlation function between a B-mode coef-
ficient and a T coefficient transforms under parity as

haB;l1m1
a�T;l2m2

i ↦ haB;l1m1
a�T;l2m2

ið−1Þl1þl2þ1:

Taken together with isotropy, which demands that the cross-
correlation is proportional to δl1l2

δm1m2
, we see that there is no

parity-invariant configuration. The BE power spectrum vanishes
by extension.
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suppressed the X indices as the above holds for all
combinations of polarization indices. See Table II for an
overview of the geometric constraints on parity-invariant,
isotropic bispectra. The fact that the bispectra of interest
here—hTTBi, hTEBi, and hEEBi—are purely imaginary
is a consequence of the complex representation of the
spherical harmonics that we use. Expressed in terms of the
Stokes parameters Q and U, the corresponding 3-point
correlations would be real valued and thus observable.

2. Linearly propagated bispectrum and
primordial 3-point correlation function

We start by defining the linearly propagated, or primary,
bispectrum in its most general form. As mentioned before,
the linearly propagated bispectrum is formed by time
evolving a primordial 3-point correlation function to the
CMB bispectrum today using the linear transfer functions
introduced in Sec. II A. We then introduce the standard
scalar-only (ζζζ) primordial 3-point correlation function as
well as our main focus: the ζζh 3-point correlation
function.
Let us parametrize the superhorizon 3-point correlation

function, the object we are ultimately interested in, as a
helicity-dependent quantity using the amplitudes intro-
duced in Eq. (15):

ðλ1λ2λ3ÞBðk1;k2;k3Þ≡ hðλ1Þξk1

ðλ2Þξk2

ðλ3Þξk3
i; ð20Þ

where the helicity λ is 0 for scalar perturbations and �2 for
tensor perturbations. We can then, using Eq. (16), form the
linearly propagated bispectrum [114]:

Bl1l2l3ðZ1Z2Z3Þ
m1m2m3;X1X2X3

¼
�Y3

n¼1

4πð−iÞln
X
λn

sgnðλnÞλnþxn

×
Z

d3kn

ð2πÞ3 −λnY
�
lnmn

ðk̂nÞT ðZnÞ
Xn;ln

ðknÞ
�

× ð−λ1−λ2−λ3ÞBðk1;k2;k3Þ: ð21Þ
Note that the three Z indices of the bispectrum in Eq. (21)
may each be either ζ or h.
We now consider the symmetries of the primordial

3-point function. The assumed translational invariance of
the process generating the primordial fluctuations implies
momentum conservation in Fourier space:

ðλ1λ2λ3ÞBðk1;k2;k3Þ ¼ ð2πÞ3δð3Þðk1 þ k2 þ k3Þ
× ðλ1;λ2;λ3ÞFðk1;k2;k3Þ: ð22Þ

What remains now is to consider certain expressions for the
helicity-dependent ðλ1;λ2;λ3ÞFðk1;k2;k3Þ functions. In a
regular analysis, these functions would be given by the
model under consideration. Here we are more interested in
classes of models, and so we use general parametrizations.
For the scalar-only (ζζζ) 3-point function, isotropy

demands that F depends only on scalar products of the
three wave vectors: the individual amplitudes and k1 · k2,
k1 · k3, and k2 · k3. F cannot depend on a pseudoscalar
such as k1 · ðk2 × k3Þ in case of a parity-invariant 3-point
correlation function. For simplicity, we use the following
template:

ð000ÞFðk1;k2;k3Þ ¼ fðζζζÞðk1; k2; k3Þ; ð23Þ

where f is generally referred to as the shape of the
bispectrum. We will make use of this standard ζζζ template
to introduce the reader to existing estimation techniques
later in this paper.
For the ζζh case, we use the following parametrization:

ð00�2ÞFðk1;k2;k3Þ ¼ fðζζhÞðk1; k2; k3Þ
× ðk̂1Þaðk̂2Þbe�2

ab ðk̂3Þ: ð24Þ

Recall that roman indices denote three-dimensional spatial
comoving coordinates; they are summed over when
repeated. Note that ð00þ2ÞF and ð00−2ÞF correspond to two
independent 3-point functions; by denoting the shape
function fðζζhÞ independent of helicity, we, however, implic-
itly assume parity invariance.
The class of ζζh 3-point functions described by Eq. (24)

include those predicted by SFSR inflation [18]. The
amplitude of the ζζh 3-point function will be too small
to be observable with CMB data in the SFSR case. More
importantly, the template in Eq. (24) also applies to the
majority of mentioned models that violate the tensor
consistency relation in Eq. (2) and thus potentially produce
an observable signal [19–23]. We may therefore use
Eq. (24) as the basis for inference on such models.
To gain intuition for the characteristics of the ζζh

template, it is useful to realize that the delta function in
Eq. (22) imposes that k1 þ k2 þ k3 ¼ 0; i.e., the 3-point
function is defined on triangular configurations of the three
wave vectors. The fðζζhÞðk1; k2; k3Þ part of the ζζh template
thus assigns a weight to each triangle based on the lengths
of the three sides. While these weights completely deter-
mine the 3-point function in the ζζζ case, the ζζh case
requires that two more aspects are taken into account. First,
the ζζh 3-point function is always suppressed in triangular
configurations wherein the wave vector of the hk Fourier
mode is roughly (anti)parallel to the wave vector(s) of one

TABLE II. Parity conservation forces the bispectrum to be
purely real, to be purely imaginary, or to vanish, depending on its
l1, l2, and l3 multipole indices and its X1, X2, and X3

polarization indices.
P

3
n¼1 ln ¼ odd

P
3
n¼1 ln ¼ even

TTT, TTE, TEE, TBB,
EEE, EBB

Vanish Real

TTB, TEB, EEB, BBB Imaginary Vanish
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or both of the scalar modes. This suppression is not due to
the fðζζhÞ weight function but is a consequence of the nature
of the polarization tensors. Their transverse property
demands that ðk̂Þae�2

ab ðk̂0Þ vanishes as k̂ becomes equal
to k̂0. We thus see a suppression when k̂3 aligns with k̂2

and/or k̂1 in Eq. (24). Second, the transverse traceless
behavior of the ζζh 3-point function is also reflected in its
helicity dependence.
We have demonstrated how the CMB is affected by a

nonzero primordial 3-point correlation function through the
bispectrum. We have also introduced the ζζh 3-point
correlation function in Eq. (24). The bulk of this work
will focus on this 3-point function. Note that the estimation
technique that will be presented in the following sections is,
in principle, also applicable to other types of 3-point
functions. For conciseness, the discussion of some other
templates (including the SFSR scalar-tensor-tensor and
tensor-tensor-tensor 3-point functions [18]) is placed in
Appendix A.

III. ESTIMATOR

This section is organized as follows. We first introduce
the general form of the bispectrum estimator in Sec. III A.
In Sec. III B, we then summarize the existing numerically
efficient implementation of the estimator, and in Sec. III C
we present our new work: the generalization of the fast
implementation to the ζζh case.

A. General bispectrum estimation

We summarize the properties of the now standard CMB
bispectrum estimation method [78,82,115]: a parametric
search for the amplitudes of theoretically motivated bis-
pectrum templates using an estimator that consists of a
cubic and a linear statistic. This method has been the basis
for the Planck non-Gaussianity analysis [15]. A derivation
of the estimator and discussion of its properties can be
found in Appendix D.
The estimator yields an estimate of the overall (dimen-

sionless) amplitude fNL ∈ R of a bispectrum. We thus
parametrize the bispectrum of interest as

BðfNLÞ ¼ fNLB1; ð25Þ

where B1 ≡ BðfNL ¼ 1Þ is a fixed theoretical template with
suppressed l and m indices.
In searches for primordial non-Gaussianity, the template

B1 is given by a normalized version of the linearly
propagated bispectrum in Eq. (21). The linear nature implies
that the fNL parameter corresponds to the overall amplitude
of the primordial 3-point correlation function ð−λ1−λ2−λ3ÞB in
Eq. (21). In principle, the amplitudes of several templates
can be jointly estimated (see Appendix D). Here we only
need the single parameter variant.

The estimator for fNL is given by

f̂NL ¼ 1

6I0

X
all l;m

X
allX

ðB1Þl1l2l3m1m2m3;X1X2X3

× f½ðC−1aÞX1

l1m1
ðC−1aÞX2

l2m2
ðC−1aÞX3

l3m3
�

− ½ðC−1ÞX1X2

l1m1l2m2
ðC−1aÞX3

l3m3
þ cyclic�g; ð26Þ

where X ∈ fT; E; Bg. The data, aX;lm, only enter in
inverse-covariance-weighted form:

ðC−1aÞXlm ¼
X
X0

X
l0;m0

ðC−1ÞXX0
lml0m0aX0;l0m0 : ð27Þ

Here C−1 is the inverse of the block matrix:

Clml0m0 ≡
0
B@

CTT CTE CTB

CET CEE CEB

CBT CBE CBB

1
CA

lml0m0

: ð28Þ

Each element is defined as

CXX0;lml0m0 ¼ haX;lma�X0;l0m0 i; ð29Þ

with X;X0 ∈ fT; E; Bg. This covariance matrix includes
both the signal and the noise covariance and is therefore
generally not diagonal. The estimating procedure considers
the covariances as fixed and known a priori.
Intuitively, the first and second lines, the “cubic term,” in

Eq. (26) serve as a matched filter that correlates the
observed bispectrum with the theoretical template B1.
The terms linear in the data (first times third line) are
usually jointly referred to as the “linear term” and effec-
tively serve to counter the estimator variance induced by
the anisotropic parts of the covariance matrix [78,81]. Only
the cubic part of the estimator is needed in cases where the
covariance matrix in Eq. (28) is rotationally invariant.10

With weakly anisotropic covariance, the linear term can be
neglected for nonsqueezed bispectrum templates and/or
analyses without large-scale (l≲ 100) data [91].
The normalization of the estimator is given by the

following (dimensionless) number:

I0 ¼
1

6

X
all l;m

X
allX

ðB1Þl1l2l3m1m2m3;X1X2X3

× ½ðC−1ÞX1X4

l1m1l4m4
ðC−1ÞX2X5

l2m2l5m5
ðC−1ÞX3X6

l3m3l6m6
�

× ðB�
1Þl4l5l6

m4m5m6;X4X5X6
: ð30Þ

10One can check that the rotational invariance of the bispec-
trum forces the linear term to be proportional to the (unobserv-
able) CMB monopole perturbation when the covariance matrix is
rotationally invariant [115].
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Note that I0 is completely independent from the
observed data.
The estimator is often referred to as “optimal.” The word

optimal refers to the fact that, in the appropriate limit, the
estimator yields an unbiased point estimate of fNL with
variance given by the inverse of the model’s Fisher
information on fNL. It should be noted that this behavior
is strictly true only in the limit where all non-Gaussian
signal vanishes, and this includes fNL → 0. The expression
in Eq. (30) becomes equal to the Fisher information on fNL
in this limit. In Appendix D, we specify the likelihood
function of the data to make the above statements more
precise.
The estimator in Eq. (26) is well-suited to estimate upper

limits on fNL. When a weak non-Gaussian signal is present,
the estimator is still usable, but one has to be wary of biases
and nonoptimal variance [116,117]. This is especially
relevant for B-mode data contaminated by Galactic signal
or high-resolution data with relatively strong non-Gaussian
contributions from, e.g., weak lensing. See the discussion
in Sec. V for more details.
We end this summary with a practical note on the inverse

covariance matrix C−1. The matrix frequently appears as
part of the matrix-vector product C−1a [see Eq. (27)]. The
C matrix, given by the sum of the signal and noise
covariance matrices, is generally too large and dense to
allow for regular matrix operations, such as matrix inver-
sion. However, by separating C into the signal covariance,
which is diagonal in the harmonic basis, and the noise
covariance, which is typically close to diagonal in the
(pixel) coordinate basis, it is straightforward to apply the C
matrix to a vector. This makes it possible to avoid explicitly
calculating the inverse covariance matrix C−1 when com-
puting the matrix-vector product C−1a. Simply put, one
recasts the problem into the linear equation Cx ¼ a and
solves for x using an iterative method. The method
converges to the correct answer as the equation is solved
by x ¼ C−1a. Suitable iterative methods (e.g., the conjugate
gradient method) start with an initial guess for the vector x
and iteratively update this guess until a − Cx falls below a
predetermined threshold. Crucially, these methods only
rely on the capability of applyingC, or related matrices, to a
vector. The inverse operation, where C−1 is applied to
a vector, is not required. See Appendix A from [118] for a
detailed description of such an iterative approach.
However, there are also cases in which the C−1 matrix

does not appear as part of a matrix-vector product. The
linear term and estimator normalization rely on sums over
the elements of the C−1 matrix itself; see the third line
of Eq. (26) and the second line of Eq. (30), respectively.
The distinction between the matrix-vector product and the
matrix itself is important. The iterative methods for the
C−1a operation are not suitable for direct computation of
the full C−1 matrix. Whenever an isolated C−1 matrix
appears, it typically has to be replaced by a Monte Carlo

estimate of C−1 that is generated using inverse-covariance-
weighted Gaussian aX;lm with the same signal covariance,
noise covariance, masking, etc., as the data, i.e., drawn
from the distribution specified by Eq. (28):

ðC−1ÞXX0
lml0m0 ≈ hðC−1aÞXlmðC−1a†ÞX0

l0m0 iMC: ð31Þ

This Monte Carlo average converges to C−1 because

hðC−1aÞXlmðC−1a†ÞX0
l0m0 i ¼ ðC−1ÞXX0

lml0m0 ; ð32Þ

where (h� � �i) denotes the ensemble average over the
multivariate N ð0; CÞ distribution. The Monte Carlo
approach allows one to indirectly compute C−1 using the
iterative methods used for the matrix-vector product C−1a.
For this reason we will encounter Monte Carlo estimates,
denoted by h� � �iMC, throughout this paper.

B. Fast bispectrum estimation

In this section we motivate the need for an efficient way
to evaluate the estimator in Eq. (26) and review the standard
method to do so: the Komatsu, Spergel, and Wandelt
(KSW) estimator [77]. When used to estimate the ampli-
tude of primordial 3-point functions, the KSW estimator
applies to the ζζζ correlation but not to our main interest:
the ζζh correlation. We will introduce the generalized
version of the KSW estimator that can be used for ζζh in
Sec. III C.
The number of numerical operations needed to evaluate

the estimator in Eq. (26) quickly grows to enormous sizes
as the resolution of the data, i.e., lmax, increases. Even
when the costs of computing C−1a are ignored, direct
evaluation of the estimator in Eq. (26) will asymptotically
scale as Oðl6

maxÞ. The isotropy of the bispectrum may be
used to reduce this scaling to Oðl5

maxÞ by, for instance,
fixing m3 ¼ −ðm1 þm2Þ, but this scaling is still
unmanageable.
To avoid the Oðl5

maxÞ scaling, bispectrum estimation
generally focuses on separable bispectrum templates to
reduce the scaling to Oðl3

maxÞ (albeit possibly with a
relatively large prefactor). The most straightforward imple-
mentation of this idea is formulated by Komatsu, Spergel,
and Wandelt [77], in what we will refer to as the KSW
estimator. See Ref. [119] for technical details and
Refs. [80,81] for a generalization that uses E-mode data
in addition to T data.
Simply put, the KSW estimator exploits the idea that for

a hypothetical bispectrum template

Bl1l2l3
m1m2m3

¼ Fl1;m1
Gl2;m2

Hl3;m3
; ð33Þ

the sum in Eq. (26) can be factored into three independent
parts, thereby reducing the scaling to Oðl2

maxÞ. Of course,
this hypothetical bispectrum template is not suitable, as it is
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not rotationally invariant. The decomposition in Eq. (18)
forbids isotropic templates that are explicitly factored like
this. In reality, the KSW approach therefore uses a slightly
modified version of the above decomposition. The numeri-
cal advantage is largely maintained with the modified
version.
The modification comes in the form of the Gaunt integral

expression. It allows the rotationally invariant part of the
product of three (spin-weighted) spherical harmonics to be
expressed in terms of Wigner 3-j symbols. The general
expression can be found in Eq. (B10). Here we only need
the following version:

�
l1 l2 l3

m1 m2 m3

�
J000l1l2l3

¼
Z
S2
dΩðn̂Þ

Y3
i¼1

Ylimi
ðn̂Þ; ð34Þ

with J000l1l2l3
given by

J000l1l2l3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

�
: ð35Þ

Now consider the reduced bispectrum [82]

bl1l2l3
≡ Bl1l2l3

J000l1l2l3

; ð36Þ

where Bl1l2l3 is the angle-averaged bispectrum. We have
suppressed the polarization indices for simplicity. Note that
the reduced bispectrum is only defined for l1 þ l2 þ l3 ¼
even.11 By expressing the bispectrum in Eq. (18) in terms of
the reduced bispectrum, we may insert the Gaunt integral as
follows:

Bl1l2l3
m1m2m3

¼
�
l1 l2 l3

m1 m2 m3

�
J000l1l2l3

bl1l2l3 ;

¼
Z
S2
dΩðn̂Þ

�Y3
i¼1

Ylimi
ðn̂Þ

�
bl1l2l3 : ð37Þ

The crucial insight is that isotropy does not constrain the
reduced bispectrum in any way. Given a reduced bispec-
trum that is separable in Nfact sets of functions as

bl1l2l3 ¼
1

6

XNfact

i¼1

fðiÞl1 g
ðiÞ
l2
hðiÞl3 þ ð5 permÞ; ð38Þ

we may thus express the bispectrum as

Bl1l2l3
m1m2m3

¼
Z
S2
dΩðn̂Þ

�
1

6

XNfact

i¼1

fðiÞl1Yl1m1

× gðiÞl2Yl2m2
hðiÞl3Yl3m3

þ ð5 permÞ
�
ðn̂Þ: ð39Þ

We will refer to bispectra that can be written as the above
expression as “locally separable.” This name refers to the
fact that the integrand of the angular integral is separable in
ðl1; m1Þ, ðl2; m2), and ðl3; m3Þ. We conclude that, while
factored bispectra as in Eq. (33) are forbidden, isotropy
allows a locally separable template such as Eq. (39).
It remains to be demonstrated how separable reduced

bispectra actually lead to a reduction in computational cost.
To see this, we insert Eq. (39) into Eq. (26) and write down
the cubic part of the resulting expression:

f̂NL;cubic ¼
1

6I0

Z
S2
dΩðn̂Þ

×
�XNfact

i¼1

A½fðiÞl �A½gðiÞl �A½hðiÞl �
�
ðn̂Þ: ð40Þ

TheA functionals yield spin-0 fields on the sphere given by
the inverse covariance-weighted data, weighted by the
factors of the reduced bispectrum [fl, gl, and hl, see
Eq. (38)]. For example,

A½fX;l�ðn̂Þ ¼
X
l;m

X
X

fX;lðC−1aÞXlmYlmðn̂Þ: ð41Þ

Note that we have reintroduced the polarization indices and
assume they only run over X ∈ fT; Eg here. The
Monte Carlo expression for the linear term in Eq. (26)
becomes equal to

f̂NL;lin ¼
1

6I0

Z
S2
dΩðn̂Þ

�XNfact

i¼1

A½fðiÞl �

× hA½gðiÞl �A½hðiÞl �iMC þ cyclic

�
ðn̂Þ: ð42Þ

The two additional terms denoted by “cyclic” are obtained

by cyclic permutations of fðiÞl , gðiÞl , and hðiÞl .
Evaluating Eq. (40) does not quite scale as Oðl2

maxÞ as
one might expect but as OðNfactl3

maxÞ. Simply put, the
scaling is determined by the Oðl3

maxÞ scaling of the
recursive algorithms needed to compute the spherical
harmonics that have to be recomputed Nfact times.1211Restricting to l1 þ l2 þ l3 ¼ even does not introduce a loss

of generality for the parity-invariant hTTTi, hTTEi, hTEEi, and
hEEEi angle-averaged bispectra that are usually considered (see
Table II), but, as was shown in Sec. III A, angle-averaged
bispectra can in general be nonzero for l1 þ l2 þ l3 ¼ odd.

12It should be noted that Ref. [119] describes an alternative,
significantly more efficient OðNfactl3

maxÞ algorithm for Eq. (40)
that only runs the expensive Ylm recursion once.
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This is still a significant improvement over the general
Oðl5

maxÞ scaling. Evaluation of the linear term scales as
OðNsimNfactl3

maxÞ, where 100≲ Nsim ≲ 1000 iterations are
typically needed for a sufficiently accurate estimate [119].
The estimator normalization I0 in Eq. (30) is evaluated

by a Monte Carlo estimate. We omit the details of this
aspect of the estimation procedure and mention only the
two methods that are used in practical applications. The
most straightforward estimate of I0 is given by the variance
of the unnormalized estimator applied to an ensemble of
simulated Gaussian data effectively drawn from the dis-
tribution specified by Eq. (28). A similar but slightly more
involved Monte Carlo procedure is described in [119]. This
second method is shown to converge for smaller ensembles
than the first method.
Up to now, this general discussion has not specified the

origin of the bispectrum; the fast estimation technique
applies to all bispectra that can be described by Eq. (38).
With regards to primordial ζζζ non-Gaussianity, the above
construction is useful only when theoretical bispectrum
templates can be reduced to the form of Eq. (38).
Fortunately, this is the case for a large class of linearly
propagated bispectra sourced by the ζζζ correlation. For
such bispectra, the condition in Eq. (38) is met when the
shape of the 3-point function in Eq. (23) is separable in k:

fðζζζÞðk1; k2; k3Þ ¼
1

6

XNprim

i¼1

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3Þ

þ ð5 permÞ: ð43Þ

The local shape in Eq. (C7) is an example of a separable
shape template. The equilateral and orthogonal shape
templates used in the Planck analysis [15] have been
specifically derived to be separable [78,120].
The KSW estimator is expressed slightly differently for

primordial ζζζ 3-point functions than Eq. (40), but the
difference is notational. The cubic estimator corresponding
to a 3-point function described by Eq. (43) is expressed as
follows:

f̂ζζζNL;cubic¼
1

6I0

Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

× ðAðζÞ
ð0;0Þ½fðiÞ�AðζÞ

ð0;0Þ½gðiÞ�AðζÞ
ð0;0Þ½hðiÞ�Þðr; n̂Þ: ð44Þ

This expression and related ones will be described in more
detail in Sec. III C and Appendix A. Here, we show that the
above expression conforms to the general case in Eq. (40).
The main difference between the two expressions is the
appearance of the integral over comoving distance r in
Eq. (44). Without going into details at this point, we simply
note that replacing the integral by a finite number of
quadrature points Nr allows the integral and sum over
i ∈ f1;…; Nprimg to be replaced by a single summation

over i ∈ f1;…; Nfactg with Nfact ¼ NrNprim. This already
brings Eq. (44) closer to Eq. (40). The second difference is
that the AðζÞ functionals in Eq. (44) directly take the shape
functions fðkÞ, etc., as their argument while the A in
Eq. (40) take the reduced bispectrum factors fl as their
argument. This difference can be understood as follows:
AðζÞ, just as A, filters the inverse-covariance weighed data
by fl [see Eq. (41)], but first transforms fðkÞ to fl using
the radiative transfer functions introduced in Eq. (16). In
the end, applying AðζÞ to a function fðkÞ yields a scalar
field on the sphere, just as applying A to fl does. See
Appendix A for the precise definition of AðζÞ.
In summary, a primordial ζζζ 3-point correlation func-

tion described by a separable shape function will source a
separable reduced bispectrum. We have established that
the separability of the reduced bispectrum allows the use of
the KSW estimator [see Eq. (40)]. Finally, the KSW
estimator is a prescription that alleviates the scaling
of the estimator in Eq. (26) from Oðl5

maxÞ to a more
manageable OðNfactl3

maxÞ.

C. Fast scalar-scalar-tensor bispectrum estimation

1. Overview

We now turn to the situation for the ζζh 3-point
correlation function. We explain why the standard KSW
estimator, derived in Sec. III B, does not apply to this type
of correlation. We then come to the main new result of
this paper: we introduce an alternative approach that allows
the construction of an efficient estimator for the ζζh
correlation.
Recall that for the ζζζ correlation the necessary con-

dition for a separable reduced bispectrum is given by
Eq. (43): a separable shape function. Unlike the ζζζ 3-point
correlation function, the ζζh correlation is not uniquely
specified by a shape function. It turns out that when the
reduced bispectrum for the ζζh template in Eq. (24) is
computed, the result is nonseparable in l1, l2, and l3 [59].
This holds true even when the fðζζhÞ shape function in
Eq. (24) is separable in k1, k2, and k3, which means that the
responsible piece is the angular term

hζk1
ζk2

ð�2Þhk3
i ∝ ðk̂1Þaðk̂2Þbe�2

ab ðk̂3Þ: ð45Þ

Despite the angular dependence, this term is a scalar under
spatial coordinate transformations. The term provides a
weight and complex phase to each fk̂1; k̂2g configuration
relative to the wave vector of the tensor perturbation but has
no preference for a global orientation of the three wave
vectors. The associated CMB bispectrum is therefore
isotropic and has a trivial dependence on its m1, m2, and
m3 azimuthal numbers, given by Eq. (18). With the
azimuthal numbers constrained by isotropy, the geometrical
coupling between the wave vectors in Eq. (45) can then
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only manifest itself in an explicit coupling between the l1,
l2, and l3 multipole orders, which in turn prevents the
reduced bispectrum to be separable.
Without a separable reduced bispectrum we cannot

construct the KSW estimator for the ζζh template by
simply inserting the factors of the reduced bispectrum into
Eq. (40). To derive a generalized KSW estimator for this
template, let us observe that each term in the sum over
spatial indices in Eq. (45) is factored in the three wave
vectors. Of course, unlike the summed expression, the
individual terms are not 3-scalars; the decomposition is
coordinate dependent. By itself, each term can be inter-
preted as a homogeneous but anisotropic 3-point function.
Homogeneity is still preserved by the overall delta function
in Eq. (22). The 3-point functions of this form result in
anisotropic bispectra13 that are locally separable in the
sense of Eq. (39). The anisotropic expressions differ from
the isotropic one in Eq. (39) by the fl, gl, and hl factors;
they gain a dependence on m in addition to l.
Roughly speaking, we thus exchange isotropy for

separability. The estimates of the amplitudes of the aniso-
tropic terms combine into an estimate of the amplitude of
the original isotropic template. The trade-off is that several
anisotropic templates have to be considered for one
isotropic template. Constructing analogues of the cubic
and linear estimator terms in Eqs. (40) and (42) for an
anisotropic template will turn out to be rather straightfor-
ward. The generalizations of the A functionals in Eq. (41)
will transform the data in an anisotropic manner, but note
that this operation does not scale differently than the regular
isotropic transformation. The overall scaling of the esti-
mator with lmax will thus be unchanged. The number of
anisotropic terms needed for 3-point functions of the type
in Eq. (45) turns out to be only five. The amount of extra
computations compared to the ζζζ estimator is thus rather
insignificant.
Guided by the rough arguments provided in this section,

we now turn to the actual derivation of the proposed
estimator. We will first derive the expression for the linearly
propagated bispectrum for the ζζh 3-point function and
demonstrate how it is indeed given by a sum of anisotropic
bispectra. We will then construct the actual estimator.

2. Full bispectrum for the scalar-scalar-tensor template

In this section, we derive the linearly propagated
bispectrum for the ζζh 3-point correlation function. As
mentioned in Sec. C 1, we require an expression for the full
bispectrum instead of the angle-averaged or reduced
bispectrum.
The general expression for the linearly propagated

bispectrum in Eq. (21) is most easily evaluated by

separating the integrals over the three wave vectors in
angular and radial integrals. In order to do so we need to
rewrite the delta function that imposes momentum con-
servation in Eq. (22). Additionally, we express all angular
terms of the 3-point function as spin-weighed spherical
harmonics in order to simplify the angular integrals.
We start with the delta function. We make use of the

plane wave expansion in terms of spherical harmonics and
spherical Bessel functions:

eik·x ¼ 4π
X
L;M

iLjLðkrÞY�
LMðk̂ÞYLMðn̂Þ; ð46Þ

with k ¼ kk̂ and x ¼ rn̂. The unit vector n̂ represents the
direction of the line of sight from the origin of the
comoving coordinate system (our location). Using this
expansion we decompose the delta function into radial and
angular parts:

δð3Þðk1 þ k2 þ k3Þ

¼ 8
X
L1;M1

X
L2;M2

X
L3;M3

Z
S2
dΩðn̂Þ

�Y3
i¼1

YLi;Mi
ðn̂Þ

�

×
Z

∞

0

r2dr

�Y3
i¼1

iLijLi
ðkirÞY�

LiMi
ðk̂iÞ

�
: ð47Þ

See Appendix B 3 for details. Although the integral over n̂
is given by the Gaunt integral expression in Eq. (B10), it
will turn out to be important to leave the expression
factorizable in L1, L2, and L3 so we do not solve the
angular integral.
We then move on to the angular part of the ζζh template

in Eq. (24). As discussed, this part is already expressed as a
sum of factorized terms, so we leave it in its uncontracted
form. However, we express the unit vectors and polariza-
tion tensor in terms of spherical harmonics. In a general
coordinate system, not necessarily aligned with k1, k2, or
k3, the two unit vectors in Eq. (24) are decomposed into
dipole (l ¼ 1) moments with a longitudinal (m ¼ 0) and
two solenoidal (m ¼ �1) modes, while the polarization
tensor is decomposed into quadrupole (l ¼ 2) moments
with longitudinal (m ¼ 0), solenoidal (m ¼ �1), and trans-
verse (m ¼ �2) modes. To retain the correct transformation
properties, the quadrupole moment is expressed in terms of
spin-�2 spherical harmonics on the plane perpendicular to
k̂3. As the 45 resulting combinations have to sum to
a 3-scalar, each combination has to be weighted by the
appropriate Wigner 3-j symbol. The resulting expression is
given by [83]

ðk̂1Þaðk̂2Þbe�2
ab ðk̂3Þ¼

ð8πÞ3=2
6

X
ma;mb;

M

�
1 1 2

ma mb M

�

×Y�
1ma

ðk̂1ÞY�
1mb

ðk̂2Þ∓2Y
�
2Mðk̂3Þ: ð48Þ

13The bispectrum is isotropic by definition so an anisotropic
bispectrum should be understood as a shorthand for a harmonic
3-point function that does not obey Eq. (18).
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The selection rules of the 3-j symbol limit the azimuthal modes to only nine combinations: those that
obey ma þmb þM ¼ 0.
We may now use Eqs. (47) and (48) to decompose the ζζh 3-point function in radial and angular parts, resulting in the

following expression:

ð00�2ÞBðk1;k2;k3Þ ¼ ð2πÞ3 ð8πÞ
3=2

6
8

X
ma;mb;M

�
1 1 2

ma mb M

�
Y�
1ma

ðk̂1ÞY�
1mb

ðk̂2Þ∓2Y
�
2Mðk̂3Þ

×
Z

∞

0

r2dr
Z
S2
dΩðn̂Þ

�Y3
i¼1

X
Li;Mi

ð−1ÞL1=2jLi
ðkirÞY�

Li;Mi
ðk̂iÞYLiMi

ðn̂Þ
�
fðζζhÞðk1; k2; k3Þ: ð49Þ

As is required for the KSW estimator, we assume that the
shape function fðζζhÞ is separable; i.e., it obeys

fðζζhÞðk1; k2; k3Þ ¼
1

6

XNprim

i¼1

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3Þ

þ ð5 permÞ: ð50Þ
The Nprim sets of f, g, and h functions depend on the model
under investigation so we leave them unspecified.

We have now gathered all ingredients to form the linearly
propagated CMB bispectrum for the ζζh 3-point correla-
tion function. We do so by combining Eqs. (49) and (50)
and inserting the result into Eq. (21). Because we have
separated the 3-point function in radial and angular parts,
the expression neatly factors into six independent integrals.
We evaluate the angular integrals using the generalized
Gaunt integral relation in Eq. (B10). The resulting con-
tribution to the CMB bispectrum is then as follows:

Bl1l2l3ðζζhÞ
m1m2m3X1X2X3

¼ ð8πÞ3=2
36

X
ma;mb;M

�
1 1 2

ma mb M

�Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

×
X
L1;M1

�
il1þL1J0001L1l1

�
1 L1 l1

ma M1 m1

�
ðKðζÞ

ðX1Þ½fðiÞ�Þl1;L1
ðrÞ

�
YL1M1

ðn̂Þ

×
X
L2;M2

�
il2þL2J0001L2l2

�
1 L2 l2

mb M2 m2

�
ðKðζÞ

ðX2Þ½gðiÞ�Þl2;L2
ðrÞ

�
YL2M2

ðn̂Þ

×
X
L3;M3

�
il3þL3J−2022L3l3

½1þ ð−1Þx3þL3þl3 �
�

2 L3 l3

M M3 m3

�
ðKðhÞ

ðX3Þ½hðiÞ�Þl3;L3
ðrÞ

�
YL3M3

ðn̂Þ

þ ð5 permÞ: ð51Þ

Here we have, as a shorthand, defined the following set of
functionals for all Z ∈ fζ; hg, X ∈ fT; E; Bg:

ðKðZÞ
ðXÞ½f�Þl;L ≡ 2

π

Z
∞

0

k2dkfðkÞT ðZÞ
X;lðkÞjLðkrÞ: ð52Þ

The T lðkÞ transfer functions were introduced in Eq. (16).
To evaluate the sum over the tensor helicities we have made
use of the following relation:

X
λ3∈�2

sgnðλ3Þλ3þx3J−λ30λ32L3l3
¼ J−2022L3l3

½1þ ð−1Þx3þL3þl3 �;

which reflects that the fðζζhÞ shape function in Eq. (49) is
helicity independent. Recall that x3 ∈ f0; 1g indicates

whether the X3 CMB field is parity even or parity odd.
The J symbols are defined in Eq. (B9).
The expression for the bispectrum in Eq. (51) is a bit

verbose, but this expanded form will make it easier to
construct the estimator in Sec. III C 3. The expression
shows how the bispectrum can be separated into factors
that only depend on l1, l2, or l3. Of course, the expres-
sion, taken as a whole, ought to be isotropic. This may
be checked by summing over all azimuthal dummy in-
dices (ma, mb, M, M1, M2, M3).

14 As expected, the

14First express the angular integral overYL1M1
,YL2M2

, andYL3M3

in terms of the Gaunt integral and then sum over the five 3-j
symbols that depend on azimuthal numbers using Eq. (B17) [83].
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resulting expression reduces to the isotropic form in
Eq. (18) but yields a nonseparable angle-averaged/reduced
bispectrum.
Each term in the sum over ma, mb, and M in Eq. (51)

describes an anisotropic bispectrum. Each of these bispec-
tra is “locally” separable in the sense of Eq. (39). The
integral over the comoving radial coordinate r in Eq. (51)
may be replaced with a weighted sum over Nquad integra-
tion points. Combined with the Nprim terms in the primor-
dial shape function there will then be Nfact ¼ NprimNquad

locally separable terms.
The allowed combinations of L1, L2, and L3 per

ðl1;l2;l3Þ triplet in Eq. (51) are quite limited; depending
on the polarization indices of the bispectrum only 8 or 12
combinations are allowed [83]. Recall that the capital L’s
arise from the expansion of the delta function in Eq. (47).
The specific values can be found by systematically going
over the 3-j symbols, including the ones hidden in the J
symbols [see Eq. (B9)]. First, note that J0001L1l1

and J0001L2l2
require L1 þ l1 and L2 þ l2 to be odd. The triangle
conditions of the 3-j symbols in the second and third lines
then enforce L1 ¼ jl1 � 1j and L2 ¼ jl2 � 1j. The term in
square brackets in the fourth line forces L3 þ l3 to be even
when x3 ¼ 0 or odd when x3 ¼ 1. The triangle condition of
the 3-j symbol in the fourth line then requires L3 ¼
fl3; jl3 � 2jg for x3 ¼ 0 and L3 ¼ fjl3 � 1jg for
x3 ¼ 1. Finally, when the angular integral over YL1M1

,
YL2M2

, and YL3M3
is performed using Eq. (B10), it becomes

clear how L1 þ L2 þ L3 ¼ even is (again) imposed as well
as jL1 − L2j ≤ L3 ≤ L1 þ L2.
We have derived the linearly propagated bispectrum for

the ζζh 3-point correlation function: a crucial ingredient for
the derivation of the estimator. The resulting bispectrum is
given in Eq. (51). We have showed that the bispectrum
can be viewed as a sum of anisotropic bispectra. As a
sanity check of the derivation one may verify that the
bispectrum holds up to the general constraints due to parity
invariance that were formulated in Sec. II B 1. For polari-
zation triplets X1, X2, X3 with even parity, i.e., X3 ≠ B, the
bispectrum is real and nonzero when l1 þ l2 þ l3 ¼ even.
On the other hand, when X3 ¼ B (so x3 ¼ 1), the bispec-
trum becomes purely imaginary and nonzero only for
l1 þ l2 þ l3 ¼ odd.

3. K functionals

Before constructing the estimator it is instructive to take
a more detailed look at the Kl;L functionals defined in
Eq. (52). They will become an important part of the
estimator. We thus have a brief digression in which we
illustrate the role of the functionals in Eq. (51). Readers
who are more interested in the actual estimator may skip
this section.
The K’s are a straightforward generalization of the αlðrÞ

and βlðrÞ functions introduced in the KSW description for

the local model [77].15 In the original KSW description the
K’s serve to transform the factors of the 3-point function to
the factors of the reduced bispectrum, i.e., fðkÞ ↦
K½f� ¼ fl. For the ζζh estimator, the K’s still serve to
transform factors of the 3-point function into factors of the
bispectrum. The difference is that, as can be seen in
Eq. (51), the factors of the 3-point function now each
require multiple transformations to account for their non-
scalar nature.
Let us first focus on the K functionals that are relevant

for regular ζζζ non-Gaussianity estimation: the K’s with
L ¼ l and transfer functions for Z ¼ ζ. It is convenient to
consider a constant input function fðkÞ ¼ 1, and the
resulting functions are equal to the αXl ðrÞ functions defined
in Ref. [80],

ðKðζÞ
ðXÞ½1�Þl;lðrÞ ¼ αXl ðrÞ

¼ 2

π

Z
∞

0

k2dkT ðζÞ
X;lðkÞjlðkrÞ; ð53Þ

where X ∈ fT; Eg because of the ζ transfer function. The
αXl ðrÞ functions have a special interpretation: they serve as
the transfer functions in coordinate space instead of Fourier
space. Equation (53) is an inverse Fourier transform (i.e.,
inverse spherical Hankel transform) of the transfer function
T lðkÞ, and it is true that the observable CMB harmonic
modes sourced by ζ may be expressed as follows [79]:

aðζÞX;lm ¼
Z

∞

0

r2drζlmðrÞαXl ðrÞ; ð54Þ

for X ∈ fT; Eg. Here ζlmðrÞ are the spherical harmonic
coefficients of the same initial amplitude of the curvature
perturbation as in Eq. (10) but now decomposed on
spherical shells around the origin of the comoving coor-
dinate system:

ζlmðrÞ ¼
Z
S2
dΩðn̂Þζðx; tÞjt¼t̃ðx;tiÞY

�
lmðn̂Þ: ð55Þ

Recall that t̃ðx; tiÞ denotes a spacelike hypersurface in the
early radiation-dominated era.
The solid lines in Fig. 1 show αXl ðrÞ for X ¼ T and

X ¼ E as a function of the comoving radius on the initial
spatial hypersurface. The lines show how ζlmðrÞ contrib-
utes to aX;lm for l ¼ 60 over a range of comoving radii
around 14000 Mpc. In terms of the conformal time along

15The functions αlðrÞ and βlðrÞ from Ref. [77] are given by
ðKðζÞ

ðTÞ½1�Þl;l and ðKðζÞ
ðTÞ½PΦ�Þl;l respectively. PΦ is the power

spectrum of the gauge-invariant ΦH Bardeen potential [100]
instead of the curvature perturbation ζ we use; the two gauge-
invariant quantities are related as ζ ¼ −3ΦH=2 and ζ ¼ −5ΦH=3
for superhorizon adiabatic perturbations in the radiation and
matter dominated eras respectively [99].
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the path of a radially traveling photon (Δτ ¼ r=c), this range
of r is roughly centered around the epoch of recombination.
Another response at r ≈ 9000 Mpc corresponds to the
rescattering of CMB photons at reionization. Finally, at r≲
3000 Mpc there is a slowly rising response as r approaches
zero forX ¼ T andl ≲ 150 that corresponds to the late-time
integrated Sachs-Wolfe (ISW) effect.
The fact that KðζÞ½1� yields the radial transfer functions

provides a physical reason why the K functionals result in
functions that are highly localized in r. During bispectrum
estimation the integral over r has to be evaluated as
efficiently as possible; the localized nature of the radial
functions is thus highly beneficial. We will now see how
and why the radial functions used for the ζζh bispectrum
differ from the ones used for regular scalar-sourced
bispectra. These new functions will turn out to be slightly
less localized in r, but the difference is minor.
Equation (54) must hold because the harmonic modes of

the curvature perturbation on spherical shells ζlmðrÞ in
Eq. (55) are related to the harmonic modes of the Fourier
representation of ζ through the following simple relation:

ζlmðkÞ ¼ 4πð−iÞl
Z

∞

0

r2drζlmðrÞjlðkrÞ: ð56Þ

Here the ζlmðkÞ are the coefficients of the spherical
harmonic decomposition of the angular part of ζk in
Eq. (10):

ζk ¼
X
l;m

ζlmðkÞYlmðk̂Þ: ð57Þ

One can check that Eq. (54) holds by inserting Eqs. (57)
and (56) into Eq. (16) and making use of the orthonormality
of the spherical harmonics.
In turn, Eq. (56) is valid because ζ is a 3-scalar, and it has

no intrinsic angular dependence. The projection from the
Fourier basis to a basis of spherical shells at comoving radii
r is thus completely determined by the “orbital” angular
momentum of the field; i.e., the projection is determined by
the plane wave decomposition of the 3D Fourier basis
functions in Eq. (46). Simply put: projecting a Fourier
mode of a 3-scalar to an angular mode with multipole order
l and azimuthal mode m sitting on a shell at radius r only
requires transformations involving jl and Ylm. Inserting
Eq. (56) into Eq. (57) demonstrates this behavior.
For fields that are not 3-scalars, a relation such as

Eq. (56) will not hold. In these cases, the coupling between
the intrinsic angular dependence of the field and that of the
plane wave contributes to the projection. The exact
expressions for these “total angular momentum” projection
operators may be found in Refs. [121–123]. We will use the
general properties of these operators to gain a better
understanding of the role of the second multipole index
of the Kl;L functionals.
In the above we argued that the projection of a single

Fourier mode, i.e., a plane wave, to an angular mode with
multipole order l and azimuthal mode m sitting on a shell
at radius r will only involve jl and Ylm. The same
projection for an intrinsically dipolelike (l0 ¼ 1) field that
is modulated by a plane wave will involve operators
constructed out of jl�1 and Yl�1m. Two distinct projections
exist in this case: one for the longitudinal (m0 ¼ 0)
component of the dipolelike field and one for the solenoidal
(m0 ¼ �1) components [121]. Similarly, the projection of
an intrinsically quadrupolelike (l0 ¼ 2) field modulated by
a plane wave will involve jl, Ylm; jl�1, Yl�1m; and jl�2,
Yl�2m. Again, there are distinct projections for the longi-
tudinal (m0 ¼ 0), solenoidal (m0 ¼ �1), and transverse
(m0 ¼ �2) components of the field. This time, a projection
using l and l� 2 only contributes to the parity-even
component of the resulting field; the l� 1 projections only
contribute to the parity-odd component [121].
Having gained this intuition, it is now understood

why only the terms with L1¼jl1�1j and L2 ¼ jl2 � 1j
contribute in the second and third lines of Eq. (51),
respectively. Each of the two lines describes how a dipole
moment constructed out of one of the two unit wave vectors
in the 3-point function template in Eq. (45) is projected to a
set of angular modes on spherical shells at radius r. The
prefactor given to Kl;LYLM in the second and third lines of
Eq. (51) will change depending on whether the longitudinal
mode (e.g., ma ¼ 0) or the solenoidal modes (e.g.,
ma ¼ �1) are projected.

1 ×104

1 ×101

FIG. 1. Radial transfer functions (solid lines) demonstrating the
response of the l ¼ 60 temperature (top) and E-mode (bottom)
CMB anisotropies to the curvature perturbation at comoving
radial distance r. The response shown here corresponds to the
epoch of recombination. The dashed and dot-dashed lines show
the radial parts of the functions used to project a dipole moment
constructed from the curvature perturbation to the (l ¼ 60) CMB
harmonic modes. For low multipole orders, such as the one
depicted here, these functions are significantly less localized in r
than the transfer function and thus require a wider range of
integration points.
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The K functionals with L ¼ l� 1 differ substantially
from the L ¼ l variants used in the ζζζ KSW estimator.
This is especially true for low (l≲ 500) multipole orders.
We plot the K½1�l;l�1 functions next to the regular radial
transfer functions in Fig. 1 to illustrate this. Note that for
l≳ 500 the functions with L ¼ l� 1 converge to the
shape of those with L ¼ l although there remains a small
phase shift in r regardless of l.
In a similar way, the fourth line of Eq. (51) describes the

projection of the quadrupole moment constructed out of the
polarization tensor in Eq. (45). As we established before,
the L ¼ l� 1 components are needed for the B-mode field
while the L ¼ l;l� 2 components are used for the parity-
even T and E fields. The prefactor of Kl3;L3

YL3M3
is now

dependent on M, which denotes whether the longitudinal
(M ¼ 0), solenoidal (M ¼ �1), or transverse (M ¼ �2)
components of the quadrupole are taken into account. To
illustrate how the Kl;L functionals change when the Z ¼ h
transfer functions are used instead of the Z ¼ ζ transfer
functions we considered before, we plot Kl;L½1� for Z ¼ h
and L ¼ l;l� 2 in Fig. 2. The plotted range again roughly
corresponds to the recombination era. Not shown is another
small response that corresponds to the reionization era.
There is no equivalent for the late-time ISWeffect. In Fig. 3
we plot the same functions but for L ¼ fl� 1g. These
functions are used to project the quadrupole moment of the
3-point function to the CMB B-mode field.
The small aliasing effects seen in Figs. 2 and 3 are purely

numerical; both jL and T l in Eq. (52) oscillate rapidly with
k. The integral thus requires a large number of k integration
points to completely converge for each value of r. It should
be noted that the integral is a candidate for the FFTLog
algorithm described in Appendix B of Ref. [124]. This

algorithm, which uses the fast Fourier transform to speed
up Hankel transforms such as Eq (52), would significantly
lower the evaluation cost of the integral and would likely
increase the accuracy of the result. The increased speed
would be particularly useful for analyses that recompute the
transfer functions often in order to marginalize over
uncertainties in the ΛCDM parameters. We have not used
the FFTLog algorithm in this work, but we have verified
that the bispectrum and the results in Sec. IV are not
sensitive to the numerical artifacts seen in the figures.
The point of this section was to explain the role of the

Kl;L functionals present in the ζζh bispectrum in Eq. (51).
As illustrated in the figures, the functionals with l ≠ L, i.e.,
the ones needed for the ζζh bispectrum, differ substantially
from the l ¼ L functionals that are used for the standard
ζζζ bispectrum.

4. Estimator

Using Eq. (51), the expression for the ζζh bispectrum,
we now write down the estimator for the amplitude of this
bispectrum template. For simplicity we start by neglecting
the linear term in the estimator in Eq. (26) and focus on the
cubic term.
The expression for the bispectrum in Eq. (51) is sourced

by the ζζh template. The order matters, the observed CMB
bispectrum is also sourced by the 3-point functions with
permuted ζ and h indices. However, it will be convenient to
keep ignoring the ζhζ and hζζ contributions for now and
start by constructing the estimator for the ζζh template
only. We thus divide the (cubic part of) the estimator in
three parts,

f̂totNL;cubic ¼ f̂ζζhNL;cubic þ f̂ζhζNL;cubic þ f̂hζζNL;cubic; ð58Þ

and start with the first term on the rhs.
We reap the benefits of our work in the previous sections;

the cubic estimator is simply constructed by inserting the
expression for the bispectrum, Eq. (51), into the general
expression for the estimator in Eq. (26) and keeping the

1 ×103

1 ×102

FIG. 2. The three radial functions needed to compute the
response of the l ¼ 60 temperature (top) and E-mode (bottom)
CMB anisotropies to a quadrupole moment constructed from the
3-tensor metric perturbation at comoving radial distance r.

1 ×102

FIG. 3. Similar to Fig. 2 but instead showing the two radial
functions needed to compute the response of the l ¼ 60 B-mode
CMB anisotropies to a quadrupole moment constructed from the
3-tensor metric perturbation at comoving radial distance r.
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terms cubic in the data. Let us again stress that this result is
only achieved through the use of the full bispectrum as
opposed to the angle-averaged or reduced bispectrum. The
resulting expression for the cubic part of the estimator, and
the main result of this paper, is given by

f̂ζζhNL;cubic ¼
ffiffiffi
2

p

54I0

X
ma;mb;

M

�
1 1 2

ma mb M

�Z
S2
dΩðn̂Þ

×
XNprim

i¼1

Z
∞

0

r2drðAðζÞ
ð1;maÞ½fðiÞ�A

ðζÞ
ð1;mbÞ½gðiÞ�

×AðhÞ
ð2;MÞ½hðiÞ�Þðr; n̂Þ þ ð2 cyclicÞ: ð59Þ

We have again made use of the shape template in Eq. (50).
The two extra terms are cyclic permutations of fðiÞ, gðiÞ,
hðiÞ. The six permutations of the shape function in Eq. (51)
thus reduce to three. This is possible due to the invariance
under a simultaneous interchange of fðiÞ, gðiÞ andma,mb in
Eq. (59) or, more physically, the indistinguishability of the
two scalar components of the 3-point function.
The similarity of Eq. (59) to the standard ζζζ KSW

estimator in Eq. (44) is evident. The most important
difference between the expressions is the anisotropy in
the dependence on ma, mb, and M in Eq. (59); as a
reminder, in order to construct the equivalent of a KSW
estimator for the ζζh template, we needed to construct
pieces of the bispectrum separable in l1, l2, and l3, and
this could only be done at the expense of introducing
several anisotropic templates. As discussed previously, the
estimates of the amplitudes of the anisotropic terms
combine into an estimate of the amplitude of the original
isotropic template. The anisotropy appears in the Wigner
3-j symbol and the ma, mb, and M indices of the

generalized A functionals in Eq. (59). We will discuss
the meaning of the ma, mb, and M indices and the 3-j
symbol in more detail in the remainder of this section, but
in short each ðma;mb;MÞ triplet corresponds to a combi-
nation of the longitudinal, solenoidal, and/or transverse
angular modes of the contracted angular term [see Eq. (45)]
that is present in the ζζh 3-point function. For a given
ðma;mb;MÞ triplet, Eq. (59) estimates the contribution
from the corresponding combination of angular modes to
the data; the 3-j symbols then provide a relative weight to
each contribution when all are summed into the final
estimate f̂ζζhNL;cubic.
Before coming to the computational scaling of the

estimator, let us focus our attention to the generalized A
functionals in Eq. (59). For a given input function fðkÞ,
AðZÞ

ðS;nÞ½f� returns a scalar field on a spherical shell at

comoving radial coordinate r. The S index denotes whether
the associated factor of the 3-point function is a monopole
(S ¼ 0), dipole (S ¼ 1), or quadrupole (S ¼ 2) source. The
n index tells us whether we are considering the longitudinal
(n ¼ 0), solenoidal (n ¼ �1), or transverse (n ¼ �2) part
of the source. From Eq. (59) we see that for the ζζh
bispectrum we only need the S ¼ 1 functionals for the Z ¼
ζ part and the S ¼ 2 functionals for the Z ¼ h part.
At each radial coordinate r we may decompose the A

functionals in terms of spherical harmonics:

AðZÞ
ðS;nÞ½f�ðr; n̂Þ ¼

X
L;M

ðAðZÞ
ðS;nÞ½f�ÞLMðrÞYLMðn̂Þ: ð60Þ

The resulting harmonic modes are given by linear trans-
formations of the inverse-covariance-weighted data. Based
on the primordial index Z, we identify two cases:

ðAðZÞ
ðS;nÞ½f�ÞLMðrÞ≡

8>>><
>>>:

ð4πÞ1=2P
l;m

ilþLJ000SLl

�
S L l

n M m

�P
X
ðKðζÞ½f�ÞXl;LðrÞðC−1aÞXlm Z ¼ ζ;

ð4πÞ1=2P
l;m

ilþLJ−202SLl

�
S L l

n M m

�P
X
½1þ ð−1ÞxþLþl�ðKðhÞ½f�ÞXl;LðrÞðC−1aÞXlm Z ¼ h:

ð61Þ

Note that for the Z ¼ ζ case, the sum over X only runs over
fT; Eg, while for Z ¼ h it runs over fT; E; Bg. The parity
behavior associated with a given polarization index X is
denoted by x. The K functionals are defined in Eq. (52).
The data are filtered by the different K functionals in an
anisotropic manner depending on the value of n. For
example, the ðAðS;2ÞÞLM modes are sourced by the m ¼
−ðM þ 2Þ modes of the data.
The inverse spherical harmonic transformation needed to

evaluate Eq. (60) scales as Oðl3
maxÞ and will in reality

determine the overall scaling of the estimator evaluation.

One might worry that the sums over l and m needed to
construct the harmonic coefficients in Eq. (61) will con-
tribute significantly to the computational scaling. This is
not the case, as the selection rules of the Wigner 3-j
symbols forbid most values of l and m. Only l ∈ L� 1

and m ¼ −ðM þ nÞ are needed to compute AðζÞ
LM while for

AðhÞ
LM only l ∈ fL; L� 1; L� 2g and m ¼ −ðM þ nÞ are

required.
To compute the angular integral in Eq. (59), the

pixelization scheme used for the A½f� fields (or “maps”)
must support harmonic band limits given by the sum of the
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band limits of the three individual maps [see Eq. (B8)]. In
reality, the AðζÞ maps will likely be bandlimited by the
instrumental beam or noise covariance. On the other hand,
the AðhÞ maps only contain information on large (l≲ 200)
scales; the tensor transfer functions suppress all information
in the data on smaller scales. Small-scale tensor perturbations
produced by an approximately scale-invariant process are
inaccessible through the primary anisotropies. Unlike scalar
perturbations, small-scale tensor perturbations decay away
with cosmic expansion before recombination.
It is instructive to take a closer look at how the

symmetries of the spherical harmonics and the 3-j symbols
relate the harmonic coefficients of the A functionals with
ðS; nÞ to those with ðS;−nÞ. This relation can be used to
approximately half the number of inverse harmonic trans-
formations needed to evaluate Eq. (59). Assuming that the
input function fðkÞ is real valued, the coefficients transform
as follows under complex conjugation:

ðAðZÞ
ðS;nÞ½f�Þ�LM ¼ ðAðZÞ

ðS;−nÞ½f�ÞL−Mð−1ÞnþMþS: ð62Þ

It follows that the functionals in Eq. (60) map input
functions to complex fields on the sphere that obey

ðAðZÞ
ðS;nÞ½f�Þ�ðn̂Þ ¼ ðAðZÞ

ðS;−nÞ½f�Þðn̂Þð−1ÞnþS: ð63Þ

Going back to the estimator in Eq. (59), we see that only
five out of the nine allowed combinations ofma,mb, andM
need to be considered: the remaining terms may be found
with the use of Eq. (63). We may, for example, use the
following five combinations:

ðma;mb;MÞ ∈ fð1; 1;−2Þ; ð1; 0;−1Þ; ð0; 1;−1Þ;
ð1;−1; 0Þ; ð0; 0; 0Þg: ð64Þ

The ma ¼ mb ¼ M ¼ 0 case is unique, the other four
combinations in Eq. (64) are related to the remaining four
combinations by a factor of (−1). The 3-j symbol in
Eq. (59) does not change if this minus sign is added to its
lower indices. For the A maps, Eq. (63) tells us that the
addition of a minus sign to the n index is equivalent to
complex conjugation. For the products of A maps the
following thus holds:

AðζÞ
ð1;maÞA

ðζÞ
ð1;mbÞA

ðhÞ
ð2;MÞ þAðζÞ

ð1;−maÞA
ðζÞ
ð1;−mbÞA

ðhÞ
ð2;−MÞ

¼ 2ReðAðζÞ
ð1;maÞA

ðζÞ
ð1;mbÞA

ðhÞ
ð2;MÞÞ: ð65Þ

Note that we have suppressed the fðiÞ, gðiÞ, and hðiÞ input
functions to the A’s. Equation (65) implies that, instead of
computing nine products, one can only calculate five
products of complex A maps and discard the imaginary
parts to evaluate Eq. (59). The fact that only five out of nine
terms are needed can be understood from the original

expression for the angular term. Starting with the nine
terms in the sum over a and b in Eq. (45), the symmetry
under the simultaneous exchange of a, b and ζk1

, ζk2

removes 3 degrees of freedom. The vanishing trace of the
polarization tensor removes the fourth.
It is easy to see that the two additional estimator terms

with permuted indices in Eq. (58) are constructed by
permuting the columns of the 3-j symbol together with
the ðma; ζÞ, ðmb; ζÞ, and ðM; hÞ index pairs of the three A
functionals in Eq. (59). The 3-j symbol is invariant under
such permutations. The product ofA maps is also invariant
under such permutations because of the symmetrized form
of the shape function in Eq. (50). The total cubic term of the
estimator is therefore simply given by

f̂totNL;cubic ¼ 3f̂ζζhNL;cubic: ð66Þ

After deriving the cubic part of the estimator, the linear
term is obtained in an analogous way. It can be found by
inserting the bispectrum in Eq. (51) into Eq. (26) and
keeping the terms linear in the data:

f̂ζζhNL;lin¼−
ffiffiffi
2

p

54I0

X
M;ma;mb

�
1 1 2

ma mb M

�Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

×ðhAðζÞ
ð1;maÞ½fðiÞ�A

ðζÞ
ð1;mbÞ½gðiÞ�iMCA

ðhÞ
ð2;MÞ½hðiÞ�

þ8permÞðr;n̂Þ: ð67Þ

We again assume an input shape function parametrized by
Eq. (50). The eight additional permutations in Eq. (67) are
those constructed by cyclic permutations of fðiÞ, gðiÞ, hðiÞ
and by varying which pair of A’s sits in the hiMC brackets.
Similar to the total cubic term, it may be checked that

including the two cyclic permutations of ζζh simply
amounts to

f̂totNL;lin ¼ 3f̂ζζhNL;lin: ð68Þ

Finally, the normalization of the estimator I0 may be
estimated by simply applying the unnormalized estimator
to an ensemble of simulated data. Given the expressions for
the cubic and linear terms presented here, the efficient
algorithm from Ref. [119] for the estimation of the
normalization can also be used for this type of bispectrum.
We omit the details of this implementation.
This concludes the derivation of the estimator for the ζζh

3-point function. The resulting expression is given in
Eq. (59). In Appendix A, we show how one would repeat
this effort for several more involved 3-point functions.

IV. FISHER FORECASTS

We forecast the expected uncertainty on an upper limit
on the amplitude of a squeezed ζζh 3-point correlation
function. We illustrate the constraining power of current
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and upcoming CMB experiments, and demonstrate how the
upper limit depends on certain instrumental effects. We
expand on previous forecasts in Refs. [17,22] by taking into
account the dependence on the lower harmonic band limit
of the data, the addition of E-mode data and the extra
variance induced by weak lensing. In a future paper,
we apply the derived estimator to a set of map-based
simulations to better judge the effects of foreground
contamination, nontrivial noise covariances, and secondary
non-Gaussian contamination. In this light, the forecasts
presented here should be considered as a baseline for more
realistic forecasts.

A. Procedure

Before presenting the results from the Fisher forecasts,
this section specifies the exact parametrization of the ζζh
3-point function. We also explain the assumed experimen-
tal setup and the numerical implementation of forecast
calculation.
We parametrize the k-dependent part of the ζζh template

in Eq. (24) as follows:

fðζζhÞðk1; k2; k3Þ ¼ 16π4A2
sftotNLfðk1; k2; k3Þ: ð69Þ

As represents the amplitude of the curvature perturbation
(see Appendix C 1). We imagine an analysis that looks for a
deviation from the tensor consistency relation by placing an
upper limit on the amplitude of the squeezed 3-point
function; we thus use the standard local shape of the
fðk1; k2; k3Þ template as a generic squeezed shape template.
See Eq. (C7) for the precise expression. The local shape
differs slightly from the SFSR shape template [18] used in
Refs. [17,22,59]. However, the two templates give almost
equal weight to squeezed configurations with a large-
wavelength tensor perturbation. Given that the tensor
perturbation only sources CMB anisotropies on large
angular scales, we may, for all practical purposes, consider
the shapes as equal here. This is reflected in the results we
obtain: our forecasts agree with those in Refs. [17,22] when
parameters overlap.16

For simplicity, we only consider the hTTBi, hEEBi, and
hTEBi bispectra in the forecasts. We thus do not take into
account the information contained in the hTTTi, hTTEi,
hTEEi, and hEEEi bispectra. The main justification for this
choice is the associated extra cosmic variance due to the
lack of a B-mode component. Additionally, it should be
noted that the squeezed hTTTi bispectrum is expected to be
relatively strongly contaminated by a secondary non-
Gaussian signal [125]. It is expected to be of limited use
for our purpose; see the discussion in Sec. V.

We use the inverse Fisher information I0 as an estimate
for the estimator variance. The 1σ upper limits that we will
quote are simply given by 1=

ffiffiffiffiffi
I0

p
. We calculate the Fisher

information in the limit of no non-Gaussian signal con-
tribution; i.e., we use Eq. (30). We further simplify the
situation by assuming isotropic signal and noise covarian-
ces. The resulting diagonal covariance matrices, together
with the orthonormality relation of the Wigner 3-j symbols
in Eq. (B14) allow the Fisher information to be expressed in
terms of angle-averaged bispectra. The effects from incom-
plete sky coverage are treated in a simplified manner by
taking into account an increase in estimator variance
proportional to the observed fraction of the sky (fsky).
Given this trivial scaling, we assume fsky ¼ 1 in all of the
following. Finally, we use the lensed version of the CMB
power spectra, but neglect the non-Gaussian aspects of
CMB lensing. See the discussion in Sec. V D.
The resulting simplified expression for the Fisher infor-

mation I0 is given by

I0 ¼ fsky
X

l1≤l2≤l3

X
allX

1

Δl1l2l3

ðB1ÞX1X2X3

l1l2l3

× ½ðC−1ÞX1X4

l1
ðC−1ÞX2X5

l2
ðC−1ÞX3X6

l3
�ðB�

1ÞX4X5X6

l1l2l3
; ð70Þ

with ðB�
1ÞX1X2X3

l1l2l3
¼ ðB1ÞX1X2X3

l1l2l3
ð−1Þl1þl2þl3 and with total

angle-averaged bispectrum given by

ðB1ÞX1X2X3

l1l2l3
¼ ðB1ÞX1X2X3ðζζhÞ

l1l2l3
þ ðB1ÞX1X2X3ðζhζÞ

l1l2l3

þ ðB1ÞX1X2X3ðhζζÞ
l1l2l3

: ð71Þ

The factor of Δl1l2l3
in Eq. (70) simply results from using

ð1=6ÞPl1;l2;l3 ¼
P

l1≤l2≤l3 1=Δl1l2l3 where Δl1l2l3 is
defined to equal 6 for identical l indices, 1 for unequal
indices, and 2 otherwise. This simplification is possible
because the bispectrum is invariant under all six permu-
tations of its ðl; mÞ index pairs.17 Written as such,
permutations of fX1; X2; X3g, fX4; X5; X6g, and fζ; hg
become distinct and have to be explicitly summed over.
As explained in Sec. III C 2, we may obtain the angle-

averaged version of the ζζh bispectrum by summing over
the ma, mb, M, M1, M2, and M3 indices in Eq. (51) and
inserting the resulting bispectrum into Eq. (18). This will
yield the expression first derived in Ref. [83]. The first term
in Eq. (71) for the primordial shape in Eq. (50) is given by

16The definition in Eq. (69) differs from the one used in
Refs. [17,31] by a factor of

ffiffiffi
r

p
: fhereNL ¼ ffiffiffi

r
p

fthereNL , where r is the
tensor-to-scalar ratio. To compare our results to those in Ref. [22],
use fhereNL ¼ ðλsstϵÞthere.

17Note that the angle-averaged bispectrum used in Eq. (70) is
only invariant under cyclic permutations of l1, l2, and l3. For
odd permutations, it picks up a factor of ð−1Þl1þl2þl3 . Although
we consider the l1 þ l2 þ l3 ¼ odd case here, the factors of
(−1) cancel in the expression for the Fisher information, so we
may still use the 1=Δl1l2l3 simplification.
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ðB1ÞX1X2X3ðζζhÞ
l1l2l3

¼ ð8πÞ3=2
3

X
L1;L2;L3

�Y3
i¼1

ð−iÞli−Li

�
J000L1L2L3

J000l1L11
J000l2L21

J20−2l3L32

8<
:
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L1 L2 L3
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9=
;

×
1

6

XNprim

i¼1
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∞

0

r2dr½ðKðζÞ
ðX1Þ½fðiÞ�Þl1;L1

ðKðζÞ
ðX2Þ½gðiÞ�Þl2;L2

ðKðhÞ
ðX3Þ½hðiÞ�Þl3;L3

�ðrÞ þ ð5 permÞ: ð72Þ

The other two terms in Eq. (71) are obtained by permuting
the ζ and h indices. The five permuted terms in Eq. (72)
refer to permutations of the fðiÞ, gðiÞ, and hðiÞ functions. The
K functionals were introduced in Eq. (52).
The evaluation of Eq. (70) has an overall Oðl3

maxÞ
scaling. The computation is feasible because the K func-
tionals in Eq. (72) can be precomputed. However, for high
band limits (e.g., lmax ¼ 5000 used below) the procedure is
unwieldy. This is especially true when multiple choices for
the inverse signalþ noise covariance matrix C−1 are to be
explored. The computation of multiple Wigner 9-j symbols
at every valid ðl1;l2;l3Þ triplet exacerbates the situation
compared to the Fisher information for a ζζζ bispectrum.
To get around the computational complexity of Eq. (70),

we split the problem into two parts: We first store a sparsely
sampled representation of Eq. (72). We then interpolate this
representation over all multipole orders when the sums over
l1, l2, and l3 are performed. This approach results in an
insignificant reduction in accuracy but reduces evaluation
time significantly. Computing I0 with lmax ¼ 5000 takes
roughly 30 CPU minutes. The method is effective because
the smoothness of the primordial templates and transfer
functions (in k and l, respectively) translate into an angle-
averaged bispectrum that is rather smooth with l1, l2,
and l3.

18

The sparse sampling is determined by the following
binning scheme: Δl ¼ 1 for l ≤ 50, Δl ¼ 4 for
50 < l ≤ 200, Δl ¼ 12 for 200 < l ≤ 500, Δl ¼ 24
for 500 < l ≤ 2000, and finally Δl ¼ 40 for l > 2000.
This binning scheme is used for the l1, l2, and l3

dimensions. In each resulting three-dimensional bin, a
single valid sample (depending on the parity and triangle
constraints) is selected. The angle-averaged bispectrum for
each ðX1; X2; X3Þ polarization tuple is then calculated over
all selected samples. The integral over r in Eq. (72) is
evaluated using the trapezoidal rule with 500 integration
points that span 0 ≤ r ≤ 18000. Most points are placed
around regions corresponding to the reionization and
recombination eras. With some effort, we expect that the
number of r samples can be reduced by a factor of 10. The
resulting sparse, angle-averaged bispectra are compact
enough to be saved to disk. Finally, to evaluate Eq. (70)

the sparse representations are interpolated over all valid
multipole combinations using a three-dimensional linear
interpolation scheme. The result is weighed by the
(unbinned) inverse covariance matrices in Eq. (70).
The above algorithm is implemented in a publicly

available Python code library.19 The code makes heavy
use of the scientific SciPy and NumPy libraries.20

Performance-critical steps are compiled to optimized
machine code at runtime by Numba: a just-in-time Python

compiler [126]. The Wigner symbols are evaluated using
the WIGXJPF library [127]. The radiation transfer functions
and CMB power spectra are computed using CAMB. Finally,
every step of the code has been written with the message
passing interface (MPI) standard in mind; computing in
parallel on distributed memory systems is therefore pos-
sible. The code should be relatively easily adaptable to
other (smooth) bispectrum templates. The repository also
contains the necessary scripts to reproduce the results in the
following section.
In summary, we use the Fisher information to forecast

the expected upper limits on the amplitude of the squeezed
ζζh 3-point function. The exact form of the ζζh correlation
is specified in Eqs. (24) and (69) with the standard local
shape template for fðk1; k2; k3Þ.

B. Results

The results presented in this section fall into three
categories. We first study how the expected upper limits
on the ζζh amplitude vary as functions of minimum and
maximum multipole moments. Second, we explore how
advantageous it is to use both T- and E-mode data together
with the B-mode data. Finally, we investigate the deterio-
ration of the upper limits due to gravitational lensing. We
emphasize that by using the Fisher information, Eq. (70), to
determine the best-achievable upper limits we are effec-
tively investigating how well a finite number of purely
Gaussian distributed data points can constrain the ζζh
amplitude to be zero.
We start by exploring how the minimum multipole

moment of the B-mode data affects the constraining power.
The flat-sky forecasts in Ref. [17] did not probe this regime.
The lowest achievable lower band limit lB

min is one of the
18This is only true when the factor of ð−iÞl1þl2þl3 in Eq. (72)

is ignored. If required (for the cross-correlation of two different
templates), this phase can be included after the interpolation step.

19https://github.com/adrijd/cmb_sst_ksw.
20https://www.scipy.org.

DUIVENVOORDEN, MEERBURG, and FREESE PHYS. REV. D 102, 023521 (2020)

023521-20

https://github.com/adrijd/cmb_sst_ksw
https://github.com/adrijd/cmb_sst_ksw
https://www.scipy.org
https://www.scipy.org
https://www.scipy.org


main distinctions between ground-based and satellite CMB
experiments. The atmosphere prohibits measurements over
large angular scales. Current B-mode data from ground-
based observatories reach lB

min ≈ 50. Polarization modula-
tion techniques, such as spinning half-wave plates, might
allow future efforts to reach an effective lB

min ≈ 30 [52].
Without atmospheric contamination satellite missions can
in principle reach lB

min ¼ 2. In reality, it remains to be seen
if uncertainty on systematic instrumental effects and
Galactic foregrounds will allow such a challenging meas-
urement to be made. A more conservative estimate for a
satellite (or balloon-borne) experiment would be lB

min ≈ 20.
In Fig. 4 we show the achievable 1σ upper limits on ftotNL

as a function of overall band-limit lmax and lower band-
limit lB

min. There is no contribution from instrumental
noise, and the only source of uncertainty is the cosmic
variance induced by the Gaussian components of ζ and h.

The lensing contribution to the B power spectrum is
assumed to be “delensed” to only 10% of the ΛCDM
amplitude (ABB

lens ¼ 0.1). It is clear that as long as the
Gaussian contribution to h is neglected, i.e., r ¼ 0, the
upper limits strongly benefit from a low lB

min. Scattering at
reionization significantly contributes to the l≲ 20 B-mode
components of the bispectrum for r < 0.001. The lensing
contribution to B is essentially negligible at such large
angular scales, so the low-lB-mode data become a highly
sensitive probe of the squeezed bispectrum. When r ≠ 0,
the additional cosmic variance induced by h quickly closes
this window, even though there still remains a significant
dependence on lB

min for r ≠ 0. We find that for r ≥ 10−2,
the 1σ upper limits conform rather well to the
lmaxðlogðlB

max=lB
minÞÞ1=2 scaling conjectured in Ref. [21].

Here lmax refers to the band limit of the T- and E-mode
data, while lB

max refers to the band limit of the B-mode data.
The scaling fits well when lB

max ≈ 150: roughly the maxi-
mum multipole order that contains usable information on
the primordial tensor perturbation for a 90% delensed B-
mode power spectrum. The curves in the two panels in
Fig. 4 that have r < 10−2 do not fit the scaling: the
relatively strong contributions from reionization and lens-
ing are not captured by the analytic relation. Finally, the
observation that a lower r will tighten the upper limit on the
ζζh amplitude should not be mistaken with the idea that a
lower r will increase the potential of detecting the ζζh
correlation. Letting r → 0 increases the potential of ruling
out a nonzero ftotNL because of lower cosmic variance, but
for a detection of ftotNL, r has to be nonzero. The precise
relation between ftotNL and r is model dependent. Our choice
to parametrize the ζζh amplitude in a model-independent
way hides this subtlety; see Footnote 16.
The relative importance of the low-lB-mode data also

grows when the lensing contribution to the B power
spectrum is increased. This behavior is depicted in Fig. 5.
As we move from no lensing BB contribution to the full
ΛCDM amplitude, the low-lB-mode data become more
relevant. This is a simple consequence of the shape of the
lensing contribution relative to the bispectrum. The domi-
nant lensing contribution to the estimator variance, i.e., theB
lensing power spectrum, is roughly constant with l on large
scaleswhile the hTTBi, hEEBi, and hTEBi bispectra peak at
configurations with large-scale B-mode components.
Note that the lower band limit used for the T and E data

is set at l ¼ 2 for all results presented in this section. The
rationale behind this choice is that the WMAP and Planck
data already provide cosmic-variance limited data for T and
E on large angular scales. Note that this is not strictly true
for the E-mode data. Current l≲ 30 E-mode data are
systematic limited [128,129]. We have checked that by
conservatively removing the l ≤ 30 E-mode data the
curves do not visibly change.
We now focus on the individual and combined contri-

bution of the hTTBi, hTEBi, and hEEBi bispectra.

FIG. 4. Achievable 1σ upper limits on ftotNL, i.e., the unavoidable
errors solely caused by cosmic variance, as a function of
maximum harmonic band limit lmax. Here, the ftotNL parameter
is the amplitude of the ζζh 3-point function with a local shape
function. The lines in each panel correspond to lower band limits
lB
min of the B-mode data. The vast improvement due to low-

multipole B-mode data seen in the upper-left panel is caused by
the contribution from reionization to the bispectrum. When the
tensor power is increased (the other three panels) the scaling with
lB
min becomes more regular: the contribution from reionization

gets suppressed by the B-mode power spectrum. Still, the low
multipole orders contain a significant amount of information on
the 3-point function. These results take into account the Fisher
information in the hTTBi, hTEBi, and hEEBi CMB bispectra.
The lensing contribution to the B-mode power spectrum is
assumed to be “delensed” to only 10% of the ΛCDM amplitude
(ABB

lens ¼ 0.1).
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In Ref. [17] only the hTTBi bispectrum was taken into
account. Reference [22] additionally calculated the Fisher
information associated with the hEEBi bispectrum. In
Fig. 6 we demonstrate how combining the information
in T and E (in addition to B) yields much better results than
the Fisher information of the individual cases would
suggest. This effect is also seen in the ζζζ non-
Gaussianity estimation and can be traced back to the fact
that the T and E transfer functions for ζ are out of phase
[79]. The same is true for the radial transfer functions we
use; see Fig. 1. This effect holds up under slightly more
realistic circumstances: by adding 4 μK-arcmin white noise
to the T harmonic modes and 4

ffiffiffi
2

p
μK-arcmin to the E and

B harmonic modes, we see the same behavior.
Finally, we investigate the relation between the lensing

amplitude and the instrumental noise level. As mentioned
before, the lensing signal serves as a cosmic variance
contribution to the estimator variance. The lensing con-
tribution to the T- and E-mode power spectra provides a
relatively minor contribution, while the contribution from
the lensed B power spectrum is significant. Fortunately, the
lensing contribution to the B-mode field is not entirely
irreducible: with knowledge of the lensing potential, the

lensing contribution can be reduced, or delensed [130]. In
Fig. 7 we show upper limits as a function of instrumental B-
mode noise for the case of only 10% lensing contribution to
the B-mode power spectrum (ABB

lens ¼ 0.1) and for the full
lensing contribution. The instrumental B-mode noise
ranges from 50 to 0.3 μK-arcmin. To put this in context:
the upper value roughly corresponds to the noise level in
the Planck data. The Simons Observatory [52] and
LiteBIRD [58] experiments aim to achieve a B-mode noise
level of approximately 3 μK-arcmin, while the CMB-S4
proposal [47] aims for approximately 1 μK-arcmin. From
Fig. 7 it becomes clear that the lensing BB contribution
starts to dominate over the instrumental noise for noise
amplitudes below 5 μK-arcmin. This is unsurprising given
that the large-scale B-mode lensing contribution is well
approximated by 5 μK-arcmin white noise [131]. We can
thus infer that for the Simons Observatory or LiteBIRD
experiments the gain from B-mode delensing would be
noticeable but relatively minor, while an experiment such
as CMB-S4 would need at least a factor of 10 of delensing
in the B-mode power to make use of the potential of the
instrumental sensitivity.
In summary, the forecasts demonstrate that the statistical

improvement with minimum and maximum multipole
moments roughly follows the expected behavior for a
squeezed 3-point function, with the exception that a low
lmin for the B-mode data is more advantageous than one

FIG. 5. Cosmic variance limited 1σ upper limits on ftotNL as a
function of maximum harmonic band limit lmax. Here, the ftotNL
parameter is the amplitude of the ζζh 3-point function with a
local shape function. The lines in each panel correspond to lower
band limits lB

min of the B-mode data. As the lensing contribution
to the B-mode power spectrum ABB

lens is increased from the upper-
left panel to the lower-right panel, upper limits worsen and
become more dependent on the low-multipole B-mode data.
These limits take into account the Fisher information in the
hTTBi, hTEBi, and hEEBi CMB bispectra. The tensor contri-
bution to the CMB power spectra is sourced by an r ¼ 0.001
primordial tensor power spectrum.

FIG. 6. How the expected upper limits (1σ) on the amplitude
ftotNL of the ζζh 3-point function change when E-mode data are
excluded (dashed lines) or when T data are excluded (dot-dashed
lines). Combined constraints (i.e., from the Fisher information in
the hTTBi, hTEBi, and hEEBi bispectra) (solid lines) are
significantly stronger than those obtained from a naive addition
of the Bþ T and Bþ E Fisher information. This effect holds
when (white) noise is added to the data; the left panel shows the
noiseless case, while in the right panel 4 (4

ffiffiffi
2

p
) μK-arcmin noise

is added to the T (E, B) harmonic modes. For these noise levels,
the T (E) data are cosmic-variance limited up to l ≈ 4000 (2500).
For data with higher band limits (lmax) the constraints saturate
due to the noise. The addition of white noise to the B-mode data is
responsible for the overall upward shift of the curves in the right
panel. Note that the lower harmonic band limit of the B-mode
data is set to l ¼ 2 for this figure.
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would naively expect. Constraints benefit significantly
from the simultaneous use of T- and E-mode data. Last,
future experiments will need to delens their B-mode data
significantly to keep improving upper limits. It should be
noted that these conclusions will likely differ for shapes
that are not squeezed.

V. DISCUSSION

Generally, we expect two effects that will influence our
ability to measure primordial non-Gaussianity. The first
effect is a bias in the estimated amplitude of the primordial
signal, i.e., a mismatch between the true amplitude and the
expectation value of the estimate, due to other non-Gaussian
signals that mimic the primordial signal. The nonprimordial,
non-Gaussian signal is, for example, caused by secondary
extragalactic sources and Galactic foregrounds. In some
cases, these biases may be subtracted from the estimate or
captured by a joint estimate; see, e.g., the lensing-ISW bias
in the Planck analysis [15]. A second, more irreducible
effect comes from the fact that the non-Gaussian signal,
primordial or secondary, will contribute to the estimator
variance. When this contribution exceeds the contribution
from (cosmic) variance from the Gaussian CMB component
and detector noise, simulations of the responsible non-
Gaussian signal are needed to accurately characterize the
estimator variance.Whilewewill leave a detailed discussion
of both effects to a future publication, herewe provide a brief
discussion. We focus on contaminants for squeezed

bispectra with one large-scale B-mode component, as such
bispectra will provide the largest constraining power for the
primordial ζζh 3-point function.

A. Polarized Galactic foregrounds

The large-scale polarization B- and (to a lesser extent) E-
mode fields are dominated by Galactic emission: at low
frequencies by synchrotron radiation and at higher frequen-
cies by polarized dust emission [132]. Because the pri-
mordial B-mode signature is expected at large angular
scales (l≲ 100), inference on the tensor-to-scalar ratio r
relies heavily on multifrequency data to break the degen-
eracy between foreground and CMB power. Similarly,
inference on the bispectra we are interested in would
require uncontaminated large-scale B-mode data.
One would naively expect that component-separated B-

mode data suitable for constraints on r are also suitable for
constraints on bispectrawithB-mode components.However,
there is an extra complication for bispectrum inference:
residual anisotropic or non-Gaussian correlations between
foreground B and foreground T or E signals. Residual
correlations of this type might not be important for a power
spectrum analysis but will bias a bispectrum analysis.
Unfortunately, it is quite natural to expect a Galactic signal
to source a squeezed bispectrum: small-wavelength fore-
ground power in a given direction is likely not independent
from the foreground signal on largerwavelengths in the same
direction. The question is thus whether multifrequency
cleaning of the data will suppress such correlations enough.
Characterization of the non-Gaussian aspects of the

polarized Galactic signal is relatively unexplored at this
point. Early results obtained from the Planck data in
Ref. [133] suggest that there are indeed significant
squeezed hTTBi, hTEBi, and hEEBi bispectra on large
angular scales in the thermal dust component of the
Galactic signal. No significant bispectrum is found in
the synchrotron emission. Reference [133] does not find
a significant non-Gaussian correlation when foreground-
cleaned Planck B-mode data are correlated with the T and/
or E components of the Galactic dust. Although this
analysis omits the very large angular scales (l ≤ 40), it
does suggests that the standard component separation
methods sufficiently suppress Galactic foregrounds given
the Planck noise level. It should also be noted that in a
related study no evidence was found for a dust bispectrum
template in the foreground-cleaned Planck temperature
data [134]. More investigation is clearly still needed; just
as it seems to be the case for inference on r, one would
expect foreground uncertainty to be the limiting factor for
inference on the ζζh 3-point correlation function.

B. Secondaries sourced by ζ

We now consider non-Galactic secondary non-Gaussian
signals that are sourced by the curvature perturbation ζ (as
opposed to h). We again focus on squeezed bispectra with a

FIG. 7. Expected upper limits (1σ) on the amplitude ftotNL of the
ζζh 3-point function as a function of the (white) noise amplitude of
the B harmonic modes. It can be seen how decreasing the B-mode
noise is useful only up to a certain limit given by the amplitude of
the lensingBB contribution. For theB-mode data that are delensed
to only 10% of theΛCDM amplitude (ABB

lens ¼ 0.1) (left panel), the
constraining power saturates roughly below 1 μK-arcmin.Without
delensing, the constraints already start to saturate below
5 μK-arcmin. This behavior is essentially independent of the
noise level of the T andE data: the same curve is seen regardless of
whether 1 (

ffiffiffi
2

p
) (solid lines) or 10 (10

ffiffiffi
2

p
) (dotted lines) μK-arcmin

noise is added to the T (E) data. Note that the harmonic band limit
of the data is set to lmax ¼ 5000.
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large wavelength B-mode, as such bispectra may bias the
inference on the primordial signal.
The most well-studied secondary signal is sourced by the

correlation between the late-time ISWeffect and the lensing
potential [135]. A similar correlation exists between the
quadrupole perturbation that sources the polarized reion-
zation signal and the lensing potential [136]. The ISW
effect and the polarization generated at reionization only
affect the CMB over large angular scales. On the other
hand, the lensing potential modulates small-scale power.
The associated bispectra are thus of the squeezed type. The
ISW effect only affects the temperature anisotropies, and
the polarized reionization signal is purely E. This means
that although hTTBi, hTEBi, hEEBi bispectra are pro-
duced [136,137], the only significant configurations will
have large-scale T- or E-mode components instead of a
B-mode component.
In general, the requirement of a squeezed bispectrum

with a large-scale B-mode contribution is highly con-
straining. There are no obvious (non-Galactic) candidates
that preferentially source a B-mode signal on large angular
scales. Nonlinear effects other than lensing that produce the
B-mode signal, such as patchy reionization [138] and the
polarized Sunyaev Zel’dovich (PSZ) effect [139,140], do so
only at relatively small angular scales. Unclustered, extra-
galactic point sources may be weakly polarized and have a
reduced bispectrum that is approximately constant with
multipole order [141]. They thus contaminate all bispectra,
regardless of shape. However, especially for squeezed
models, the point-source bias is found to be negligible:
the two types of bispectra can be estimated independently
[15,141].

C. Secondaries sourced by h

The ζζh 3-point correlation function is contingent upon
the existence of the primordial tensor perturbation h. For
completeness, we thus briefly discuss a possible secondary
non-Gaussian signal sourced by a purely Gaussian tensor
perturbation h.
In this case, the most obvious single-B-mode bispectrum

candidate will be due to the interplay between two effects:
(1) the standard correlation between the lensing potential ϕ
and the ISW and polarized reionization signal, together
with (2) the fact that lensing will now convert some of the
(Gaussian) primordial B-mode signal to E-mode polariza-
tion [142]. In the resulting hBEXi bispectrum, B is the
standard primordial B-mode signal, E is the primordial
B-mode signal lensed to an E-mode signal, and X is
the standard scalar-induced T or E signal. To first order
in the lensing potential, the bispectrum should be given by
the triangular configurations of CBB

l CϕX
l0 . The suppression

by r, due to the presence of the primordial B-mode power
spectrum, makes this bispectrum lower in amplitude than
the standard lensing-ISW bispectrum discussed in Sec. V
B. More importantly however, the fact that the lensing-ISW

and lensing-reionization correlation CϕX
l is only nonzero

for l≲ 100 [136] means that there will be no significant
bispectrum configurations with a large-scale B-mode com-
ponent and two small-scale (l > 100) T and/or E compo-
nents: the relevant configuration for a bias.
Analogous to the E-mode-lensing correlation in Sec. V B,

the B-mode signal from reionization, present when r ≠ 0, is
also correlated to small-scale power through a correlation
with the lensed signal. The difference is that isotropy and
parity invariance forbid a correlation between B and the
regular gradient-type lensing potential. Instead the B-mode
signal is correlated to the curl-type lensing potential sourced
by the h perturbation [143,144]. Unlike the ζζζ case, there
will now exist hBXX0i bispectra, where B is the unlensed B-
mode field and X the curl-lensed T- or E-mode field (and
X0 ∈ fT; Eg). To leading order we expect such bispectra to
be proportional to the triangular configurations of CBω

l CXX0
l0 ,

where CBω
l is the cross-correlation between the curl compo-

nent of the lensing deflection angle and the reionization B
signal. The power spectrum of the tensor-induced ω, i.e.,
Cωω
l , is strongly suppressed compared to scalar-induced

lensing and decays rapidly for l > 2 [143,144]. One would
expect similar behavior for the amplitude of CBω

l and thus
expect that CBω

l CXX0
l0 is negligible. Still, the associated

bispectra are maximized in the squeezed limit with a
large-scale B-mode, so they should be considered as a
potential bias to a primordial signal.
The tensor-induced temperature quadrupole on the last-

scattering surface seen by galaxy clusters will source the
PSZ effect [145,146]. The resulting small-scale power will
be correlated with the primary B-mode field from reioni-
zation and will thus source a squeezed hBEEi bispectrum
(among others). The B-mode component is on large angular
scales, which means that the bispectrum has the right shape
to be a potentially relevant contaminant of the primordial
bispectrum.
Finally, second-order perturbation theory predicts that a

correlation between short-wavelength scalar modes and
primordial tensor modes emerges as the latter reenter the
horizon during matter domination. This occurs regardless
of any primordial ζζh correlation [147]. The correlation is
usually studied as a quadrupole asymmetry in the matter/
galaxy power spectrum, but can be understood as a
squeezed ζζh 3-point correlation. Consequently, this sec-
ond order effect is, in principle, imprinted in the CMB
bispectra that we are interested in, but the imprint is likely
too small to be observable.

D. Contributions to the covariance

In the previous three sections, we focused on possible
biases to the estimator. All discussed effects will also
contribute to the covariance of the estimate. Fortunately, in
most cases these effects are subdominant to the Gaussian
contribution to the covariance, given by the inverse of
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Eq. (30). However, as we illustrate in Appendix D, the
covariance of the estimator receives additional contribu-
tions from any connected 4- and 6-point correlation
function present in the data. For example, for the ζζζ,
temperature-only bispectrum, the connected moments due
to lensing will introduce significant additional covariance
on small angular scales. The variance due to the connected
4-point function alone is expected to dominate the cosmic-
variance induced estimator variance for local-type non-
Gaussianity for lmax ≳ 3500 [148] (and hence will be a
concern for experiments such as Simons Observatory and
CMB-S4). The total effect on the estimator covariance will
depend on the shape of the primordial bispectra that are
estimated: local, or squeezed, shapes will likely be affected
the most.
We focus primarily on bispectra with a single B-mode

component; in the previous sections, we argued that such
bispectra are less susceptible to secondary biases. However,
this argument does not hold for the variance of the
estimator: when lensing is introduced, it is expected that
the estimator covariance is affected in a way that is rather
similar to the temperature-only case mentioned above. For
example, consider the hTTBi bispectrum; the variance of its
estimate will be approximately proportional to the
hTTTTBBi 6-point function. In the noiseless Gaussian
case, this 6-point function reduces to terms proportional to
CTT
l CTT

l0 C
BB
l00 . When lensing is introduced, the power

spectra are replaced by their lensed versions (which has
a large effect on CBB

l ). However, there should also be a
contribution proportional to the connected hTTTTi 4-point
function from lensing. One would expect this contribution
to saturate the constraining power for lmax ≳ 3500, just as it
does for the temperature-only case mentioned above. For
the variance on estimates using the hEEBi or hTEBi
bispectra a similar argument applies [131]. In other words,
we expect that an estimate of the ζζh 3-point function using
high-resolution data will have large non-Gaussian contri-
butions to its (co)variance, at least for squeezed bispectrum
shapes with a B-mode contribution on large angular
scales.21 Note that this non-Gaussian contribution to the
variance is not included in the Fisher forecasts presented
in Sec. IV.
In a future study we hope to identify all these contri-

butions to the covariance and estimate their effects on our
ability to extract the primordial signal. We note that, in
principle, secondary biases and non-Gaussian contributions
to the covariance from lensing can likely be reduced
significantly by delensing [149]. As some of the contri-
butions to the covariance might be hard to compute

analytically, applying the developed estimator on a suite
of realistically lensed simulations would be an important
aspect of such a study.

VI. CONCLUSIONS

The CMB bispectrum sourced by primordial scalar-
tensor interactions is a well-defined observable that can
be probed effectively with upcoming CMB polarization
data. Inference on these types of primordial interactions
probes nonstandard early-Universe models that are essen-
tially unconstrained by current studies. In addition, infer-
ence on the squeezed ζζh 3-point function provides a
powerful consistency test of the standard inflationary
paradigm.
In this work, we derived a numerically efficient and

optimal estimator for the amplitude of CMB bispectra
sourced by primordial ζζh 3-point correlation functions.
We demonstrated that despite the intrinsic geometrical
complexity of the bispectrum, an efficient estimator can
be formulated; see Eq. (59). There is a limited computa-
tional overhead compared to standard ζζζ bispectrum
estimation [see Eq. (44)], but the same asymptotic scaling
with data resolution is reached. The derived estimator
provides complementarity to the more general modal and
binned bispectrum estimators [84–87,90] and should, due
to its numerical advantage, be the preferred method for
high-resolution data.
We studied the bispectrum sourced by a squeezed ζζh

3-point function in more detail. We presented a set of
Fisher forecasts that form a baseline to which more realistic
forecasts will be compared in future work. The presented
forecasts demonstrate a relatively strong dependence on the
size of the largest angular scale accessible in the data. We
also demonstrated how constraints from the combination of
temperature, E- and B-mode data are significantly better
than those only from temperature and B-mode data or only
from E- and B-mode data. Finally, we found that the
lensing contribution to the B-mode data starts to signifi-
cantly impact the constraints from experiments such as the
Simons Observatory and LiteBIRD. For a more futuristic
experiment like CMB-S4, delensing of the large-scale
B-mode data will be crucial.
Although the Fisher forecasts provide us with a good

indication of the ultimate constraining power of future
CMB experiments, future forecasts will need to include
more realism. This requires applying the estimator directly
to simulated sky maps. Besides allowing the characteriza-
tion of standard complications such as nontrivial noise
properties and sky cuts, this approach is the appropriate
way to study effects that are more specific to, e.g., the ζζh
bispectrum. Examples of such effects include the incom-
plete removal of Galactic B-mode signal or non-Gaussian
polarized secondary sources. Lensed sky simulations will
also allow one to quantify the expected extra estimator
variance due to non-Gaussian 4- and 6-point correlation

21Because the effect should only become dominant for
l≳ 3500, there should be a negligible effect on primordial
bispectra with more than one B-mode component and/or shapes
that are more equilateral. In these cases, the signal drops sharply
for lB ≳ 200.
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functions in the lensed CMB fields, as well as the effects of
delensing these fields. Although current data are incon-
clusive, it seems likely that the eventual limit on future
constraints will be from foreground uncertainty on large
angular scales and the non-Gaussian lensing contribution
on small scales. Before this point is reached, however, the
data will contain a large amount of unexplored cosmo-
logical information. With an efficient estimator in hand, we
should now turn towards map-based simulations to predict
the exact amount of information.
In the next decade, we will significantly improve our

measurements of the CMB polarization field. With this in
mind, we should consider interesting science targets
beyond the tensor-to-scalar ratio that can provide insight
into the early Universe. One of these targets is probing the
primordial interactions between scalars and tensors as well
as tensor self-interactions. Currently, the most sensitive
probe of these interactions comes from including the B-
mode field into CMB bispectrum inference. The work
presented here is a contribution toward the development of
a complete framework to constrain these interactions with
upcoming CMB data.
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APPENDIX A: ESTIMATOR FOR
OTHER ANGULAR TERMS

In this appendix, we show how the f̂NL estimator for
3-point functions with other angular terms. Besides provid-
ing a few useful examples, it can be seen how each
estimator still asymptotically scales as Oðl3

maxÞ. For each
template we show the expression for the bispectrum and the
cubic part of the estimator. As demonstrated in Sec. III C 4,
it is straightforward to derive the linear term of the
estimator given the cubic term.

1. Scalar-scalar-scalar

a. Standard scalar-only template

For comparison and completeness, we first treat the
standard ζζζ template, i.e., a template with no contracted
angular term. Assuming a shape template such as Eq. (43),
the expression for the bispectrum in Eq. (21) simplifies to

Bl1l2l3ðζζζÞ
m1m2m3X1X2X3

¼ 1

6

Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr
X
l1;m1

½ðKðζÞ
ðX1Þ½fðiÞ�Þl1;l1ðrÞ�Yl1m1

ðn̂Þ

×
X
l2;m2

½ðKðζÞ
ðX2Þ½gðiÞ�Þl2;l2ðrÞ�Yl2m2

ðn̂Þ
X
l3;m3

½ðKðζÞ
ðX3Þ½hðiÞ�Þl3;l3ðrÞ�Yl3m3

ðn̂Þ þ ð5 permÞ: ðA1Þ

Note that the five extra terms are permutations of the input functions f, g, and h. With this bispectrum, the cubic term of the
estimator becomes

f̂ζζζNL;cubic ¼
1

6I0

Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2drðAðζÞ
ð0;0Þ½fðiÞ�AðζÞ

ð0;0Þ½gðiÞ�AðζÞ
ð0;0Þ½hðiÞ�Þðr; n̂Þ; ðA2Þ

which is the standard result [80], but rephrased in our notation. See Eqs. (60) and (61) for the definition of the AðS;nÞ
functionals. In the ðS; nÞ ¼ ð0; 0Þ case used here, the functionals are much less complicated: the 3-j symbols reduce to a
delta function which simplifies the expression to

AðζÞ
ð0;0Þ½f�ðr; n̂Þ ¼

X
l;m

ð−1Þl
X

X∈fT;Eg
ðKðζÞ½f�ÞXl;lðrÞðC−1aÞXlmYlmðn̂Þ: ðA3Þ

Note that the ð−1Þl factors are not present in the original expression [80]. They do not change the estimator, as only
configurations with l1 þ l2 þ l3 ¼ even contribute. The K functionals are defined in Eq. (52).
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b. Scalar-only template with angular dependence of massive spinning particles

The second ζζζ template is inspired by the three-point function template derived in Ref. [31]. The template captures the
imprint of a massive spin-s field during inflation. Although the template only involves the curvature perturbation, it does
include a contracted angular term

ð000ÞFðk1;k2;k3Þ ¼
1

6
fðζζζÞðk1; k2; k3ÞPsðk̂2 · k̂3Þ þ ð5 permÞ; ðA4Þ

¼ 1

6

XNprim

i¼1

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3ÞPsðk̂2 · k̂3Þ þ ð5 permÞ: ðA5Þ

Ps is a Legendre polynomial of degree s. The five additional permutations are permutations of the three wave vectors.
In order to write down the corresponding bispectrum, we expand the Legendre polynomial in terms of spherical

harmonics:

Psðk̂ · k̂0Þ ¼ 4π

2sþ 1

Xs

m0¼−s

Ysm0 ðk̂ÞY�
sm0 ðk̂0Þ: ðA6Þ

The bispectrum for a spin-s template then becomes

Bl1l2l3ðζζζÞ
m1m2m3X1X2X3

¼ 4π

6ð2sþ 1Þ
Xs

m0¼−s

ð−1Þm0
Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr½ðKðζÞ
ðX1Þ½fðiÞ�Þl1;l1ðrÞ�Yl1m1

ðn̂Þ

×
X
L2;M2

�
il2þL2J000sL2l2

�
s L2 l2

−m0 M2 m2

�
ðKðζÞ

ðX2Þ½gðiÞ�Þl2;L2
ðrÞ

�
YL2M2

ðn̂Þ

×
X
L3;M3

�
il3þL3J000sL3l3

�
s L3 l3

m0 M3 m3

�
ðKðζÞ

ðX3Þ½hðiÞ�Þl3;L3
ðrÞ

�
YL3M3

ðn̂Þ

þ ð5 permÞ: ðA7Þ

The five additional terms are obtained by simultaneously permuting fðiÞ, gðiÞ, and hðiÞ with the 1, 2, and 3 indices. The cubic
term of the estimator for this bispectrum is given by

f̂ζζζNL;cubic ¼
1

18I0

4π

2sþ 1

Xs
m0¼−s

ð−1Þm0
Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2drðAðζÞ
ð0;0Þ½fðiÞ�AðζÞ

ðs;−m0Þ½gðiÞ�AðζÞ
ðs;m0Þ½hðiÞ�Þðr; n̂Þ

þ ð2 cyclicÞ: ðA8Þ

The two extra terms are cyclic permutations of fðiÞ, gðiÞ, and hðiÞ.

2. Scalar-tensor-tensor

To illustrate the situation for a scalar-tensor-tensor 3-point function, we use a template inspired by the SFSR result [18]:

ð0λ2λ3ÞFðk1;k2;k3Þ ¼ fðζhhÞðk1; k2; k3Þeλ2abðk̂2Þeabλ3 ðk̂3Þ ðA9Þ

¼
XNprim

i¼1

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3Þeλ2abðk̂2Þeabλ3 ðk̂3Þ: ðA10Þ

The polarization tensors e�2 are defined in Eqs. (13) and (14), the a and b indices run over the three spatial dimensions. We
use the Einstein summation convention. Using the notation from Ref. [83], we may expand the polarization tensors as:

CMB B-MODE NON-GAUSSIANITY: OPTIMAL BISPECTRUM … PHYS. REV. D 102, 023521 (2020)

023521-27



e�2
ab ¼ 3ffiffiffiffiffiffi

2π
p

X
M;ma;mb

∓2Y
�
2Mα

ma
a αmb

b

�
2 1 1

M ma mb

�
: ðA11Þ

The α coefficients obey the following orthogonality relation:

αma α
b
m0 ¼ 4π

3
ð−1Þmδ−m0

m : ðA12Þ

Using this relation together with the orthogonality relation of the Wigner 3-j symbols in Eq. (B13), the contraction of two
polarization tensors can be expressed as follows:

eλabðk̂Þeabλ0 ðk̂0Þ ¼ 8π

5

X2
m0¼−2

ð−1Þm0
−λY

�
2−m0 ðk̂Þ−λ0Y�

2m0 ðk̂0Þ: ðA13Þ

The bispectrum corresponding to the template in Eq. (A10) thus becomes

Bl1l2l3ðζhhÞ
m1m2m3X1X2X3

¼ 8π

5

X2
m0¼−2

ð−1Þm0
Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr½ðKðζÞ
ðX1Þ½fðiÞ�Þl1;l1

ðrÞ�Yl1m1
ðn̂Þ

×
X
L2;M2

�
il2þL2J−2022L2l2

½1þ ð−1Þx2þL2þl2 �
�

2 L2 l2

−m0 M2 m2

�
ðKðhÞ

ðX2Þ½gðiÞ�Þl2;L2
ðrÞ

�
YL2M2

ðn̂Þ

×
X
L3;M3

�
il3þL3J−2022L3l3

½1þ ð−1Þx3þL3þl3 �
�

2 L3 l3

m0 M3 m3

�
ðKðhÞ

ðX3Þ½hðiÞ�Þl3;L3
ðrÞ

�
YL3M3

ðn̂Þ: ðA14Þ

The cubic part of the estimator is given by

f̂ζhhNL;cubic ¼
4π

15I0

X2
m0¼−2

ð−1Þm0
Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2drðAðζÞ
ð0;0Þ½fðiÞ�AðhÞ

ð2;−m0Þ½gðiÞ�AðhÞ
ð2;m0Þ½hðiÞ�Þðr; n̂Þ: ðA15Þ

The expressions for the hζh and hhζ parts are derived in an analogous way.

3. Tensor-tensor-tensor

Finally, we derive the estimator for a tensor-tensor-tensor 3-point function. We again take the SFSR prediction [18] as
inspiration for our template:

ðλ1λ2λ3ÞFðk1;k2;k3Þ ¼ fðhhhÞðk1; k2; k3Þ
× ½k̂a2 k̂b2eλ1abðk̂1Þecdλ2 ðk̂2Þeλ3cdðk̂3Þ − 2eλ1abðk̂1Þeλ2cdðk̂2Þebcλ3 ðk̂3Þk̂a2 k̂d3� þ ð2 cyclicÞ ðA16Þ

¼
XNprim

i¼1

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3Þ

× ½k̂a2 k̂b2eλ1abðk̂1Þecdλ2 ðk̂2Þeλ3cdðk̂3Þ − 2eλ1abðk̂1Þeλ2cdðk̂2Þebcλ3 ðk̂3Þk̂a2 k̂d3� þ ð2 cyclicÞ: ðA17Þ

The two extra terms are cyclic permutations of the three wave vectors.
To derive the bispectrum, we need to expand the unit wave vectors in spherical harmonics [83]:

k̂a ¼
X
m

αamY1mðk̂Þ: ðA18Þ

The α coefficients obey the relation in Eq. (A12). Together with Eqs. (A11), (B8), and (B13) we then expand the first
angular term in Eq. (A17) as follows:
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k̂a2 k̂
b
2e

λ1
abðk̂1Þecdλ2 ðk̂2Þeλ3cdðk̂3Þ ¼

64π2

75

X
L;M;M0;M00

J0−λ2λ222L

�
2 2 L

M M00 M0

�
−λ1Y

�
2M

ðk̂1Þ−λ2Y�
LM0 ðk̂2Þ−λ3Y�

2M00 ðk̂3Þ: ðA19Þ

The J symbols are defined in Eq. (B9). The second angular term in Eq. (A17) is expressed in terms of Wigner 6-j symbols
by making use of the relation in Eq. (B16), see also Ref. [150]. The resulting expression is:

eλ1abðk̂1Þeλ2cdðk̂2Þebcλ3 ðk̂3Þk̂a2 k̂d3 ¼
ð8πÞ5=2

6

X
L;J

M;M0 ;M00

ð−1ÞLþ1Jλ20−λ221L Jλ30−λ321J

�
J L 2

M00 M0 M

��
J L 2

1 1 2

��
1 2 J

1 2 1

�

× −λ1Y
�
2M

ðk̂1Þ−λ2Y�
LM0 ðk̂2Þ−λ3Y�

JM00 ðk̂3Þ: ðA20Þ

It is convenient to separate the corresponding bispectrum into a part sourced by the first angular term and a part sourced by
the second term. The first part is given by

Bl1l2l3ðhhh;1Þ
m1m2m3X1X2X3

¼ 64π2

75

X
L;M;M0;M00

�
2 2 L

M M00 M0

�Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

×
X
L1;M1

�
il1þL1J−2022L1l1

½1þ ð−1Þx1þL1þl1 �
�

2 L1 l1

M M1 m1

�
ðKðhÞ

ðX1Þ½fðiÞ�Þl1;L1
ðrÞ

�
YL1M1

ðn̂Þ

×
X
L2;M2

�
il2þL2J−2022L2l2

J02−222L ½1þ ð−1Þx2þL2þl2þL�
�

L L2 l2

M0 M2 m2

�
ðKðhÞ

ðX2Þ½gðiÞ�Þl2;L2
ðrÞ

�
YL2M2

ðn̂Þ

×
X
L3;M3

�
il3þL3J−2022L3l3

½1þ ð−1Þx3þL3þl3 �
�

2 L3 l3

M00 M3 m3

�
ðKðhÞ

ðX3Þ½hðiÞ�Þl3;L3
ðrÞ

�
YL3M3

ðn̂Þ

þ ð2 cyclicÞ: ðA21Þ

The two extra terms are given by cyclic permutations of the fðiÞ, gðiÞ, and hðiÞ input functions together with the 1, 2, and 3
indices. The second part is given by:

Bl1l2l3ðhhh;2Þ
m1m2m3X1X2X3

¼ ð8πÞ5=2
3

X
L;J

M;M0 ;M00

ð−1ÞLþ1

�
J L 2

M00 M0 M

��
J L 2

1 1 2

��
1 2 J

1 2 1

�Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

×
X
L1;M1

�
il1þL1J−2022L1l1

½1þ ð−1Þx1þL1þl1 �
�

2 L1 l1

M M1 m1

�
ðKðhÞ

ðX1Þ½fðiÞ�Þl1;L1
ðrÞ

�
YL1M1

ðn̂Þ

×
X
L2;M2

�
il2þL2J−2022L2l2

J−20221L ½1þ ð−1Þx2þL2þl2þLþ1�
�

L L2 l2

M0 M2 m2

�
ðKðhÞ

ðX2Þ½gðiÞ�Þl2;L2
ðrÞ

�
YL2M2

ðn̂Þ

×
X
L3;M3

�
il3þL3J−2022L3l3

J−20221J ½1þ ð−1Þx3þL3þl3þJþ1�
�

J L3 l3

M00 M3 m3

�
ðKðhÞ

ðX3Þ½hðiÞ�Þl3;L3
ðrÞ

�
YL3M3

ðn̂Þ

þ ð2 cyclicÞ: ðA22Þ

The cubic estimator is also most easily expressed in two parts. The part corresponding to the first bispectrum, Eq. (A21),
is given by

f̂hhh;1NL;cubic ¼
32π2

225I0

X
L;M;M0;M00

�
2 2 L

M M00 M0

�
J02−222L

Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2dr

× ðAðhÞ
ð2;MÞ½fðiÞ�BðhÞ

ðL;M0Þ½gðiÞ�AðhÞ
ð2;M00Þ½hðiÞ�Þðr; n̂Þ þ ð2 cyclicÞ: ðA23Þ
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The two extra terms are cyclic permutations of fðiÞ, gðiÞ, and hðiÞ. The second part, corresponding to Eq. (A21), is given by

f̂hhh;2NL;cubic ¼
ð8πÞ5=2
18I0

X
L;J

M;M0 ;M00

ð−1ÞLþ1

�
J L 2

M00 M0 M

�
J−20221L J−20221J

�
J L 2

1 1 2

��
1 2 J

1 2 1

�

×
Z
S2
dΩðn̂Þ

XNprim

i¼1

Z
∞

0

r2drðAðhÞ
ð2;MÞ½fðiÞ�CðhÞðL;M0Þ½gðiÞ�CðhÞðJ;M00Þ½hðiÞ�Þðr; n̂Þ þ ð2 cyclicÞ: ðA24Þ

We have introduced the B and C functionals. They are completely analogous to the A functionals, defined in Eqs. (60) and
(61), but slightly differ in their spherical harmonic coefficients:

ðBðhÞ
ðS;nÞ½f�ÞLMðrÞ≡ ð4πÞ1=2

X
l;m

ilþLJ−202SLl

�
S L l

n M m

�X
X

½1þ ð−1ÞxþLþlþS�ðKðhÞ½f�ÞXl;LðrÞðC−1aÞXlm; ðA25Þ

ðCðhÞðS;nÞ½f�ÞLMðrÞ≡ ð4πÞ1=2
X
l;m

ilþLJ−202SLl

�
S L l

n M m

�X
X

½1þ ð−1ÞxþLþlþSþ1�ðKðhÞ½f�ÞXl;LðrÞðC−1aÞXlm: ðA26Þ

Computing the combination of Eqs. (A23) and (A24) will
still asymptotically scale as Oðl3

maxÞ. Although more terms
have to be computed compared to the previous templates,
this computational overhead is easily outweighed by the
fact that the h transfer functions impose lmax ≈ 200.

APPENDIX B: USEFUL MATHEMATICAL
IDENTITIES

1. Spin-weighted spherical harmonics

The spin-weighted spherical harmonics (SWSHs) sYlm
are generalizations of the standard spherical harmonics
Ylm. Both types of spherical harmonics are functions on the
sphere S2. Indeed, one may relate

0Ylm ¼ Ylm: ðB1Þ

The relation between the two sets of functions for nonzero s
can be found in the literature [151,152].
The SWSHs are conveniently defined on the standard

spherical coordinate system by taking the Wigner D-
matrices (irreps of the three-dimensional rotation group)
parametrized in terms of the Euler angles and fixing the
polar axis as follows:

sYlmðθ;ϕÞ ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Dl

−msðϕ; θ;ψÞ
				
ψ¼0

: ðB2Þ

With a slight abuse of notation, we use n̂ in the arguments
of the spherical harmonics to refer to the θ and ϕ angles
that describe the spherical decomposition of the 3D unit
vector, i.e., n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. Similarly,

we denote the differential solid angle with dΩðn̂Þ,
i.e.,

R
S2 dΩðn̂Þ≡

R
2π
0 dϕ

R
π
0 dθ sin θ.

The functions form an orthonormal and complete system
for each integer22 spin weight s:

Z
S2
dΩðn̂ÞsYlmðn̂ÞsY�

l0m0 ðn̂Þ ¼ δll0δmm0 ; ðB3Þ
X
l;m

sYlmðn̂ÞsY�
lmðn̂0Þ ¼ δðcos θ − cos θ0Þδðϕ − ϕ0Þ: ðB4Þ

This leads to the following forward and inverse trans-
formations for (square-integrable) spin-weighted functions
on the sphere:

sflm¼
Z
S2
dΩðn̂ÞðsÞfðn̂ÞsY�

lmðn̂Þ ∀ l∈ fjsj;…;lmaxg;

∀ m∈ f−l;lg;

ðsÞfðn̂Þ¼
Xlmax

l¼jsj

Xl
m¼−l

sflmsYlmðn̂Þ ∀ n̂∈ S2: ðB5Þ

We include the Condon-Shortley phase convention in
our definition of the SWSHs. Under complex conjugation
and parity [ðθ;ϕÞ ↦ ðπ − θ;ϕþ πÞ] the functions there-
fore obey

sY�
lmðn̂Þ ¼ ð−1Þsþm

−sYl−mðn̂Þ; ðB6Þ

22Throughout this work we only describe (representation of)
three-dimensional (3D) rotations so we limit ourselves to (non-
negative) integer multipole order (l) and integer magnetic or
“azimuthal” numbers (m and s).
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sYlmð−n̂Þ ¼ ð−1Þl−sYlmðn̂Þ: ðB7Þ

In particular, this implies that sf�lm ¼ −sfl−mð−1Þmþs

holds for two spin-weighted functions ð�sÞf that obey
ððsÞfÞ� ¼ ð−sÞf. For s ¼ 0 this simply means that f is a
real-valued function.
A tensor product of SWSHs may be decomposed into a

direct sum by making use of the Wigner 3-j symbols (see
next section):

s1Yl1m1
ðn̂Þs2Yl2m2

ðn̂Þ¼
Xl1þl2

l3¼jl1−l2j

Xl3

m3¼−l3

Xl3
s3¼−l3

J−s1−s2−s3l1l2l3

×

�
l1 l2 l3

m1 m2 m3

�
s3Y

�
l3m3

ðn̂Þ; ðB8Þ

with

Js1s2s3l1l2l3
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

s1 s2 s3

�
:

ðB9Þ

Note that the upper limit on the first sum in Eq. (B8)
implies that the harmonic band limit of a product of
functions on the sphere is given by the sum of their
individual band limits. Equation (B8) also shows that the
integral over a product of three SWSHs is given by

Z
S2
dΩðn̂Þs1Yl1m1

ðn̂Þs2Yl2m2
ðn̂Þs3Yl3m3

ðn̂Þ

¼ J−s1−s2−s3l1l2l3

�
l1 l2 l3

m1 m2 m3

�
: ðB10Þ

Note though that this only holds for the s1 þ s2 þ s3 ¼ 0
case. For the s1 ¼ s2 ¼ s3 ¼ 0 case this integral is referred
to as the Gaunt integral.

2. Wigner 3-j, 6-j, and 9-j symbols

The Wigner 3-j symbols are real valued and serve to
describe the decomposition of tensor products of SWSHs
into direct sums of SWSHs [see Eq. (B8)] (this also holds,
in more generality, for irreps of the rotation group such as
the Wigner-D matrices). The 3-j symbols are closely

related to the Clebsch-Gordan coefficients but are normal-
ized such that they are the exact coefficients needed to form
a rotationally invariant product of three SWSH coefficients
[recall the definition of the angle-averaged bispectrum in
Eq. (18)]. In the following, we list a limited number of
symbol properties; see Ref. [153] for an exhaustive
description.
The 3-j symbols pick up a (real) phase factor when the

sign of the three “magnetic” indices is simultaneously
changed,

�
l1 l2 l3

m1 m2 m3

�
¼ ð−1Þl1þl2þl3

�
l1 l2 l3

−m1 −m2 −m3

�
:

ðB11Þ

The symbols are invariant under cyclic permutations ofm1,
m2, and m3 but pick up a factor of ð−1Þl1þl2þl3 for
anticyclic permutations. The symbols are only nonzero
for m1 þm2 þm3 ¼ 0, jl1 − l2j ≤ l3 ≤ l1 þ l2, and
jmij ≤ li ∀ i ∈ f1; 2; 3g. There are two orthogonality
relations:

X
L;M

ð2Lþ1Þ
�
l1 l2 L

m1 m2 M

��
l1 l2 L

m0
1 m0

2 M

�
¼ δm1m0

1
δm2m0

2
;

ðB12Þ

X
m1;m2

�
l1 l2 L

m1 m2 M

��
l1 l2 L0

m1 m2 M0

�
¼ δLL0δMM0

2Lþ1
: ðB13Þ

In particular, in the case of equal symbols one has

Xl1
m1¼−l1

Xl2
m2¼−l2

Xl3
m3¼−l3

�
l1 l2 l3

m1 m2 m3

�
2

¼ 1: ðB14Þ

As mentioned, the Wigner 3-j symbols are used to
couple two SWSHs or, equivalently, find the third angular
state that combines two SWSHs into a rotationally invariant
quantity. In general, there is no unique way to couple three
SWSHs; there are two distinct sequences of applying
Eq. (B8) to the product. The Wigner 6-j symbol is used
to transform between these two possible final angular
states [153]:

X
L

ð2Lþ 1Þð−1Þl1þl3þm1þm4

�
l1 l2 l4

l3 l5 L

��
l1 L l5

m1 M m5

��
l3 L l2

−m3 M m2

�

¼
�
l1 l4 l2

m1 m4 −m2

��
l3 l4 l5

m3 −m4 −m5

�
: ðB15Þ

By using one of the orthogonality relations of the 3-j symbols, the 6-j symbol may equivalently be expressed as
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�
l1 l2 l3

l4 l5 l6

��
l1 l2 l3

m1 m2 m3

�
¼

X
m4;m5;m6

ð−1Þ
P

6

i¼4
liþmi

�
l1 l5 l6

m1 m5 −m6

��
l4 l2 l6

−m4 m2 m6

�

×

�
l4 l5 l3

m4 −m5 m3

�
: ðB16Þ

The 6-j symbols are invariant under all permutations of their columns and under the simultaneous permutation of upper and
lower arguments in two columns. The symbols also obey several triangle conditions that can be deduced from the top rows
of each of the 3-j symbols in the above expression. There also exist an orthogonality relation for the 6-j symbols [153].
Finally, the Wigner 9-j symbols are defined to describe the transformation between different couplings of four SWSHs.

The symbols may be expressed in terms of either 6-j or 3-j symbols [153]. The latter expression is given by

8>><
>>:

l1 l2 l3

l4 l5 l6

l7 l8 l9

9>>=
>>;
�
l1 l2 l3

m1 m2 m3

�
¼

X
m4;…;m9

�
l4 l5 l6

m4 m5 m6

��
l7 l8 l9

m7 m8 m9

��
l4 l7 l1

m4 m7 m1

�

×

�
l5 l8 l2

m5 m8 m2

��
l6 l9 l3

m6 m9 m3

�
: ðB17Þ

The 9-j symbols are invariant under reflections of their arguments along either diagonal and even permutations of rows or

columns; odd permutations result in a factor of ð−1Þ
P

9

i¼1
li . Elements of each row and column are constrained by the

triangle conditions of the 3-j symbols in the above expression. There also exists an orthogonality relation for the 9-j
symbols; details can be found in Ref. [153].

3. Delta function

The delta function is expanded as

δð3Þðk1 þ k2 þ k3Þ ¼
1

ð2πÞ3
Z

d3xeiðk1þk2þk3Þ·x: ðB18Þ

By making use of the Rayleigh equation

eik·x ¼
X
l

ilð2lþ 1ÞjlðkrÞPlðk̂ · n̂Þ ðB19Þ

¼ 4π
X
l;m

iljlðkrÞY�
lmðk̂ÞYlmðn̂Þ; ðB20Þ

we produce two equivalent expressions for the delta function,

δð3Þðk1 þ k2 þ k3Þ ¼ 8

Z
∞

0

r2dr
X
l1;m1

X
l2;m2

X
l3;m3

�Y3
i¼1

jliðkirÞY�
limi

ðk̂iÞ
�Z

S2
dΩðn̂Þ

�Y3
i¼1

Yli;mi
ðn̂Þ

�
ðB21Þ

¼ 8

Z
∞

0

r2dr
X
l1;m1

X
l2;m2

X
l3;m3

�Y3
i¼1

il1jliðkirÞY�
limi

ðk̂iÞ
�
J000l1l2l3

�
l1 l2 l3

m1 m2 m3

�
: ðB22Þ

Note that x ¼ rn̂ and k ¼ kk̂. We have used Eq. (B10) to arrive at the second expression. The J symbol is defined in
Eq. (B9). See Ref. [154] for these and alternative expressions.
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APPENDIX C: COSMOLOGY CONVENTIONS

1. Power spectra

Because of the assumed statistical homogeneity of the
superhorizon 2-point correlation functions of the ampli-
tudes of both the spatial components of ζ and ðλÞh, these
correlations are represented as diagonal in the 3D Fourier
basis. Statistical isotropy limits the diagonal to only depend
on the wave number k. We use the following conventions
for the correlation functions:

hζkζ�k0 i ¼ ð2πÞ3δð3Þðk − k0ÞPζðkÞ; ðC1Þ

hðλÞhkðλ0Þh�k0 i ¼ ð2πÞ3δð3Þðk − k0Þδλ;λ0
PhðkÞ
2

: ðC2Þ

The power spectra are parametrized as follows:

PζðkÞ ¼ 2π2
Asðk0Þ
k3

�
k
k0

�
nsðk0Þ−1

; ðC3Þ

PhðkÞ ¼ 2π2
rk0Asðk0Þ

k3

�
k
k0

�
ntðk0Þ

; ðC4Þ

with tensor-to-scalar ratio rk0 (i.e., the ratio at the pivot scale),
scalar amplitude As, pivot scale k0, and scalar (tensor)
spectral tilt ns (nt). We have used fixed values for some
of these parameters: fAsðk0Þ ¼ 2.1056 × 10−9; k0 ¼
0.05 Mpc−1; nsðk0Þ ¼ 0.9665; ntðk0Þ ¼ 0g. The remaining
cosmological parameters that govern the radiation
transfer functions are set to fTCMB ¼ 2.7255 K; H0 ¼
67.66 km s−1 Mpc−1; Ωbh2 ¼ 0.02242; Ωch2 ¼ 0.11933;
τ ¼ 0.0561g, and the CAMB defaults of December 2018.
We extract the radiation transfer functions from CAMB.

We normalize the default output from CAMB such that the
CMB power/cross spectra are related to the primordial
power spectra defined above as

haðZÞX;lma
ðZÞ�
Y;l0m0 i ¼ δll0δmm0CðZÞ

XY;l ðC5Þ

¼ δll0δmm0
2

π

Z
∞

0

k2dkPZðkÞT ðZÞ
X;lðkÞT ðZÞ

Y;lðkÞ;

ðC6Þ

with Z ∈ fζ; hg and XY ∈ fTT; EE; TE; ET; BBg.

2. Local 3-point correlation function

The local shape template used in Sec. IV is given by [89]

flocalðk1; k2; k3Þ ¼ 2

��
1

ðk1k2Þ3
�
þ 2 perm

�
: ðC7Þ

The template is symmetric under permutations of the
three wave numbers and is perfectly scale invariant

(i.e., proportional to k−6 for k1 ¼ k2 ¼ k3). If desired,
including the scalar or tensor spectral tilt simply amounts to
the replacement k↦kðk0=kÞðns−1Þ=3 or k ↦ kðk0=kÞnt=3,
where k0 is some fiducial pivot scale.

APPENDIX D: ESTIMATOR DERIVATION

We review the derivation of the estimator in Eq. (26) and
its behavior in the presence of the non-Gaussian signal.

1. Estimation theory

The statistical estimate of a parameter produced by an
unbiased estimator has an expectation value that is equal to
the true value of the parameter. If such an unbiased
estimator saturates the Cramér-Rao bound, it achieves
the lowest possible variance (or covariance for multiple
parameters) on the estimate, independent from the true
value(s) of the parameter(s). We will briefly introduce the
Cramér-Rao bound.
Consider a dataset x ¼ fx1; x2;…; xng drawn from the

likelihood PrðxjθÞ: a probability density function (PDF)
with unknown fixed parameters θ ¼ fθ1; θ2;…; θdg.
Under the assumption that the PDF satisfies the following
regularity condition:

Z
dnx

∂ logPrðxjθÞ
∂θi PrðxjθÞ¼ 0; ∀ i∈ f1;…;dg; ðD1Þ

it can be shown that the covariance matrix Cθ of an
unbiased estimate of the parameters θ is bounded by the
inverse of the Fisher information matrix:

Cθ̂ ≥ I−1ðθÞ: ðD2Þ

This bound is the Cramér-Rao bound. In the matrix
notation used here, the inequality refers to the positive
definiteness of the Cθ̂ − I−1 matrix. The elements of the
information matrix are directly obtained from the PDF:

I ijðθÞ ¼
Z

dnx

�∂ log PrðxjθÞ
∂θi

��∂ log PrðxjθÞ
∂θj

�
PrðxjθÞ:

ðD3Þ

The Fisher information does not depend on the observed
data; it only depends on the parameter vector.
It can be shown that an unbiased estimator θ̂ ¼

fθ̂1; θ̂2;…; θ̂dg that saturates the bound for all values of
the parameters θ must satisfy

∂ log PrðxjθÞ
∂θi ¼

X
j

I ijðθÞðθ̂j − θjÞ: ðD4Þ

Although it is generally nontrivial to construct an estimator
that fulfills this relation for all possible values of θ, the
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relation suggests a simple recipe for the construction of an
estimator θ̂ that fulfills the Cramér-Rao bound in the case
where θ is known,

θ̂i ¼
X
j

I−1
ij ðθÞ

∂ log PrðxjθÞ
∂θj þ θi; ðD5Þ

where I−1 is the inverse of the Fisher matrix. In reality, θ is
unknown. However, an estimator constructed in this way
may still be useful for estimates of θ that are close to the
assumed value. This is the approach we will take.

2. CMB bispectrum estimation

We now construct the bispectrum estimator and provide
a brief discussion of its statistical properties. We will see
that the estimator is unbiased and becomes statistically
optimal (saturates the Cramér-Rao bound) in the limit of
vanishing non-Gaussianity.

a. Probability density function

It is clear from the previous section that a closed-form
expression for the likelihood of the data is required to

construct the estimator. However, there exists no such
expression when the condition of Gaussian initial pertur-
bations is relaxed. Without a closed-form expression, we
thus construct an approximation to the full non-Gaussian
likelihood by perturbing around the Gaussian form. The
specifics of this perturbation are determined by the con-
nected moments, or cumulants, predicted by the model.
Given a characteristic function and its associated prob-

ability distribution, one can distinguish between the
moments about the origin of the distribution (the n-point
correlation functions) and the connected moments about
the origin (the cumulants). The connected moments are
proportional to the MacLaurin coefficients of the natural
logarithm of the characteristic function. The connected
moments about the origin are proportional to the
MacLaurin coefficients of the characteristic function itself
(i.e., without the logarithm). In more practical terms the
moments about the origin, the n-point correlation func-
tions, may be expanded in terms of the connected moments
with the help of Wick’s theorem [155]. For the mean-zero
distributions we are interested in, the first moments of a
random field, expressed as a set of spherical harmonic
modes falmg, are expanded as follows:

hal1m1
al2m2

i ¼ hal1m1
al2m2

ic; ðD6Þ

hal1m1
al2m2

al3m3
i ¼ hal1m1

al2m2
al3m3

ic; ðD7Þ

hal1m1
al2m2

al3m3
al4m4

i ¼ hal1m1
al2m2

al3m3
al4m4

ic þ hal1m1
al2m2

ichal3m3
al4m4

ic
þ hal1m1

al3m3
ichal2m2

al4m4
ic þ hal1m1

al4m4
ichal2m2

al3m3
ic; ðD8Þ

hal1m1
al2m2

al3m3
al4m4

al5m5
i ¼ hal1m1

al2m2
al3m3

al4m4
al5m5

ic; ðD9Þ

hal1m1
al2m2

al3m3
al4m4

al5m5
al6m6

i ¼ hal1m1
al2m2

al3m3
al4m4

al5m5
al6m6

ic
þ hal1m1

al2m2
al3m3

al4m4
ichal5m5

al6m6
ic þ 14 perm

þ hal1m1
al2m2

al3m3
ichal4m4

al5m5
al6m6

ic þ 9 perm

þ hal1m1
al2m2

ichal3m3
al4m4

ichal5m5
al6m6

ic þ 14 perm: ðD10Þ

The quantities on the lhs represent the moments and
the quantities on the rhs are the connected moments
(denoted by h� � �ic). For a distribution with a vanishing
mean, there is no distinction between the moments and
connected moments for n ¼ 2 and n ¼ 3. For n ¼ 4 and
higher, we see a distinction. A Gaussian distribution is a
distribution for which all connected moments with n > 2
vanish.
The approximation to the likelihood of the data we will

use is known as the Edgeworth series. More specifically, it
is an Edgeworth expansion around a mean zero multivariate
Gaussian distribution. We truncate the series such that the
only relevant cumulants are the 2- and 3-point functions.

A detailed derivation of this procedure can be found in
Ref. [156]. In short, one Taylor expands the non-Gaussian
part of a general characteristic function to first order and
discards all terms except the third-order moments. Fourier
transforming this truncated series together with the
unmodified Gaussian part yields the PDF. Although the
Edgeworth expansion is an asymptotic series, truncating it
to third order does not guarantee a well-defined (i.e.,
positive and normalized) PDF [157]. However, as long
as we are only interested in the weakly non-Gaussian
regime, where the third-order moment is subdominant to
the second, we assume that these subtleties can be safely
ignored.
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Representing the likelihood for a measured set of n spherical harmonic modes a ¼ faX;lmg as the truncated Edgeworth
series yields [78,115]

PrðajC;BÞ ¼
�
1þ 1

6

X
l1 ;l2 ;l3
m1 ;m2 ;m3

Bl1l2l3
m1m2m3;X1X2X3

f½ðC−1aÞX1

l1m1
ðC−1aÞX2

l2m2
ðC−1aÞX3

l3m3
�

− ½ðC−1ÞX1X2

l1m1l2m2
ðC−1aÞX3

l3m3
þ cyclic�g

�
e−

1
2
a†C−1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detCp ; ðD11Þ

where C and B denote the 2- and 3-point correlation
functions of a. The notational shorthand C−1a is defined in
Eq. (27). The above expression is that of a nested model:
when B vanishes, we recover the mean zero Gaussian
model. The extra terms denoted by “cyclic” are given by the
two cyclic permutations of the three ðl; m; XÞ triplets.
It is straightforward to incorporate harmonic modes

sourced by a combination of primordial scalar and tensor
perturbations in the above description. Consider the fol-
lowing decomposition:

aX;lm ¼ aðζÞX;lm þ aðhÞX;lm þ nX;lm: ðD12Þ

Since the noise nX;lm is independent from the primordial
fields and since all components have zero mean, the most
general bispectrum then is expressed as

B ¼ BðζζζÞ þ 3BðζζhÞ þ 3BðζhhÞ þ BðhhhÞ: ðD13Þ

Inserting Eq. (D13) into Eq. (D11) produces a likelihood
for a that takes into account the non-Gaussian correlation
between the primordial scalar and tensor fields.

b. Estimator

The condition in Eq. (D4) implies that an unbiased esti-
mator of a vector of parameters f̂NL¼ff̂1NL;f̂2NL;…;f̂dNLg
constructed as follows saturates the Cramér-Rao bound in
the limit where the parameter vector goes to the null vector,
i.e., fNL → 0:

f̂INL ¼
X
J

I−1
IJ ðfNLÞ

∂ log PrðajfNLÞ
∂fJNL : ðD14Þ

The I and J indices run over the dimensions of the
parameter vector space. Note that f̂NL and fNL can be
understood either as scalars or as vectors; in the latter case,
the I−1 is the inverse of the d × d Fisher matrix instead of
the scalar Fisher information. To identify PrðajC;BÞ in
Eq. (D11) with PrðajfNLÞ, we treat the bispectrum as fixed
up to a scaling fNL ∈ Rd and consider the shape of the
bispectrum and the covariance as fixed. More specifically,
we assume

BðfNLÞ ¼ fNL · B1; ðD15Þ

where the inner product is defined in the parameter vector
space. This expression is a generalization of Eq. (25) that
allows the bispectrum to consist of a sum of bispectra each
with its own fNL parameter. To construct the estimator we
now simply insert Eq. (D15) into the expression for the
PDF in Eq. (D11) and insert the result into Eq. (D14). We
may expand the logarithm in a power series and neglect all
terms but the one that is OðBÞ. This is a valid approach
because the second term in the brackets in Eq. (D11) must
be ≪ 1 in the weak non-Gaussian regime. This yields the
estimator constructed by Ref. [78] (which is a refinement to
the cubic expression originally introduced in Ref. [82]):

f̂INL ¼ 1

6

X
J

I−1
0;IJ

X
alll;m

X
allX

ðBJ
1Þl1l2l3m1m2m3;X1X2X3

× f½ðC−1aÞX1

l1m1
ðC−1aÞX2

l2m2
ðC−1aÞX3

l3m3
�

− ½ðC−1ÞX1X2

l1m1l2m2
ðC−1aÞX3

l3m3
þ cyclic�g: ðD16Þ

Note the use of I−1
0 ≡ I−1ð0Þ instead of I−1ðfNLÞ: strictly

speaking, the inverse of the Fisher matrix will depend on
the parameter vector. This reflects the fact that a true
optimal estimator should vary between datasets based on
the value of fNL. Of course, such optimality is not possible
with the point estimator we use here: fNL is unknown. A
true optimal weighting would be achieved with a Bayesian
approach in which the likelihood of the data is calculated
for each value of fNL. In reality, this reweighting of the
estimator is not important for values of fNL that are of
interest [158]. For fNL ¼ 0 the estimator is optimal by
construction and the Fisher matrix has a simple analytic
solution:

I0;IJ ¼
1

6

X
alll;m

X
allX

ðBI
1Þl1l2l3m1m2m3;X1X2X3

× ½ðC−1ÞX1X4

l1m1l4m4
ðC−1ÞX2X5

l2m2l5m5
ðC−1ÞX3X6

l3m3l6m6
�

× ðBJ�
1 Þl4l5l6m4m5m6;X4X5X6

: ðD17Þ
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c. Statistical properties estimator

The estimator f̂NL is a function, or “statistic,” of the data
a, so the statistical properties of the estimator may be
derived from the likelihood of the data. Here we present a
heuristic overview of the statistical properties, given differ-
ent models for the data. It should be understood that an
analytic approach such as the one presented here is mainly
useful to gain intuition; characterization of the estimator
applied to a real dataset requires the use of simulations.
To derive the bias, covariance, and higher-order

moments of the estimate, we first define what we mean
by the pth moment of the estimate,

hf̂pNLi≡ Eðf̂pNLjfNLÞ ðD18Þ

¼
Z

Daf̂pNL PrðajfNLÞ; ðD19Þ

where Z
Da≡Y

l;m

Z
dalm; ðD20Þ

and where f̂pNL denotes the pth power of the estimate. This
notation is understood to generalize to the multivariate case
as, e.g., hf̂2NLi → hf̂INLf̂JNLi, hf̂3NLi → hf̂INLf̂JNLf̂KNLi. It is
then convenient to note that the expression for PrðajfNLÞ in
Eq. (D11) consists of two parts: a regular Gaussian PDF
and a second part that consists of a Gaussian PDF times
terms cubic and linear in a. This means that we can divide
the integral in Eq. (D19) into a purely Gaussian integral
(h� � �iG) and another Gaussian integral (h� � �iG0 ) with an
integrand that is multiplied with these cubic and linear
terms. Since the estimator in Eq. (D16) is an odd function
of a, the h� � �iG integral will always vanish for p ¼ odd. On
the other hand, the h� � �iG0 part will always vanish for a
moment with p ¼ even.
With this knowledge and the likelihood of the data in

Eq. (D11), deriving the bias of the estimator comes down to
evaluating Eq. (D19) for p ¼ 1. This is an odd moment, so
only the h� � �iG0 integral has to be evaluated. The result is
that hf̂NLi ¼ fNL; i.e., the estimate is unbiased regardless
of the value of fNL. For the (co)variance of the estimate,
i.e., Varðf̂NLÞ≡ hf̂2NLi − hf̂NLi2, we need to additionally
evaluate Eq. (D19) for p ¼ 2. Doing so, we find
Varðf̂NLÞ ¼ I−1

0 − f2NL, which is equal to the optimal
value I−1ðfNLÞ only when fNL ¼ 0. So we establish that

in the limit of fNL → 0, the estimator is unbiased and
optimal. In cases where fNL ≠ 0, the estimator is still
unbiased23 but suffers from nonoptimal (co)variance
[116,117]. This is expected, as the situation does not
conform to Eq. (D4) anymore. Finally, note that for
fNL ≠ 0, the estimate itself becomes (weakly) non-
Gaussian. For instance, there will be a nonzero hf̂3NLi
moment with an OðfNLB4

1C
−6I−3

0 Þ amplitude.
In the above we assumed that the likelihood for the data

is described by Eq. (D11). When an additional 3-point
function, not parametrized by an fNL parameter, is intro-
duced in the likelihood, the estimator becomes biased. The
exact bias depends on the shape of the added 3-point
function; see the discussion in Sec. V.
An interesting situation arises when the data are drawn

from a distribution with nonzero higher-order connected
moments. This situation is not only hypothetical: lensing
introduces a significant connected 4-point function, as well
as smaller connected 6-, 8-, etc., point functions [131]. To
describe the statistical properties of the estimator in the
presence of lensing, we thus need to update the likelihood
of the data in Eq. (D11) with these nonzero higher-order
connected moments. Let us focus on the connected 4-point
function, denoted by T. The Edgeworth expansion will now
include OðTa4=C4Þ, OðTa2=C3Þ, and OðT=C2Þ terms in
addition to the Oð1Þ, OðB1a3=C3Þ, and OðB1a=C2Þ terms
already present in Eq. (D11). With these additions, the bias
of the estimator does not change, but the variance of the
estimator receives an OðB2

1TC
−5I−2

0 Þ contribution. By
extension, the addition of connected 6-, 8-, or higher-point
functions to the likelihood will also contribute to the
estimator variance. The estimate itself will also become
non-Gaussian with these additions. For instance, there is an
OðB4

1TC
−8I−4

0 Þ connected 4-point function of f̂NL when a
connected 4-point function T is added to the likelihood.
Computing a semianalytic estimate of the additional
estimator variance is highly challenging due to the number
of elements that make up the higher-order connected
moments. See Refs. [91,159] for details on a semianalytic
approach in the flat-sky approximation. We briefly discuss
the expected additional lensing-induced estimator variance
in Sec. V D.

23Of course, any statements about unbiasedness rely on the
assumed validity of the truncated Edgeworth expansion, which,
as mentioned, should be reconsidered in cases of large deviations
from Gaussianity.
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