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A redshift tomography of the Pantheon type Ia supernovae (SnIa) data focusing on the best fit value of
the absolute magnitude M and/or Hubble constant H0 in the context of ΛCDM indicates a local variation
(z≲ 0.2) at 2σ level, with respect to the best fit of the full dataset. If this variation is not due to a statistical
fluctuation, it can be interpreted as a locally higher value of H0 by about 2%, corresponding to a local
matter underdensity δρ0=ρ0 ≃ −0.10� 0.04. It can also be interpreted as a time variation of Newton’s
constant which implies an evolving Chandrasekhar mass and thus an evolving absolute luminosity L and
absolute magnitude M of low z SnIa. The local void scenario would predict a degree of anisotropy in the
best fit value of H0 since it is unlikely that we are located at the center of a local spherical underdensity.
Using a hemisphere comparison method, we find an anisotropy level that is consistent with simulated
isotropic Pantheon-like datasets. We show however, that the anisotropic sky distribution of the Pantheon
SnIa data induces a preferred range of directions even in simulated Pantheon data obtained in the context of
isotropic ΛCDM. We thus construct a more isotropically distributed subset of the Pantheon SnIa and show
that the preferred range of directions disappears. Using this more isotropically distributed subset we again
find no evidence for statistically significant anisotropy using either the hemisphere comparison method or
the dipole fit method. In the context of the modified gravity scenario, we allow for an evolving normalized
Newton’s constant consistent with general relativity (GR) at early and late times μðzÞ ¼ Geffðz; gaÞ=GN ¼
1þ gaz2=ð1þ zÞ2 − gaz4=ð1þ zÞ4 and fit for the parameter ga assuming L ∼ Gb

eff . For b ¼ −3=2
indicated by some previous studies we find ga ¼ −0.47� 0.36 which is more than 1.5σ away from
the GR value of ga ¼ 0. This weak hint for weaker gravity at low z coming from SnIa is consistent with
similar evidence from growth and weak lensing cosmological data.

DOI: 10.1103/PhysRevD.102.023520

I. INTRODUCTION

Since the discovery of the accelerating expansion of the
Universe [1,2], the ΛCDMmodel based on the existence of
a cosmological constant [3] has been particularly simple
and consistent with most cosmological observations includ-
ing cosmic microwave background (CMB) perturbations
[4–6], type Ia supernovae (SnIa) standard candles [7,8]
and cosmic chronometer probes of the expansion rate HðzÞ
[9–11], baryon acoustic oscillations (BAO) standard ruler
probes of HðzÞ [12,13], large scale matter perturbations
observed through redshift space distortions (RSD) [6,14,15],
weak lensing (WL) [16,17], cluster count data [18–20] etc.
Despite its overall success and simplicity, theΛCDMmodel
faces challenges on both theoretical and observational
grounds. Theoretical challenges of ΛCDM include the fine
tuning [21,22] and coincidence [23,24] problems, leading to
a largevariety of alternative theories attempting to solve these
problems, see e.g. Refs. [21,25–35]. Observationally, there

have been indications that different cosmological observa-
tions favor different values for the basic parameters of the
model (at a level of 2σ or more) [36–40] indicating that new
degrees of freedom may be required to make the model
simultaneously consistent with all these observations. These
“tensions” of ΛCDM include the following:

(i) The H0 problem > 4σ: CMB and BAO cosmo-
logical measurements using the last scattering
sound horizon as a standard ruler and assuming
a ΛCDM background expansion, report H0 ¼
67.4� 0.5 km s−1 Mpc−1 [6], a best fit value which
is about 9% lower compared to the local meas-
urement of H0 coming from SnIa data, that publish
H0 ¼ 74.03� 1.42 km s−1Mpc−1 [41]. The dis-
crepancy ranges from 4.4σ to more than 5σ
[42–44] depending on the combination of local
data considered. A similar value of H0 ≈ 72�
2 km s−1Mpc−1 is reported by string lens systems
and time delay measurements [45,46]. Never-
theless, independent measurements of cosmic
chronometers (based on models of evolving
galaxy star luminosity) report a best fit value of
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H0 ¼ 67.06� 1.68 km s−1Mpc−1 [11] favoring
the CMB and BAOmeasurements. On the contrary,
measurements of H0 based on a combination of
cosmological data including a calibration of the tip
of the red giant branch which is applied on SnIa
(instead of the Cepheid calibration method) [47],
quasars, time-delay measurements, cosmic chro-
nometers as well as γ ray bursts [48–50] report a
value that is intermediate between the CMB BAO
and local measurements.

(ii) The growth tension ≃3σ: The growth rate and
magnitude of linear cosmological perturbations
depend on the matter density parameter Ω0m and
on the amplitude of the primordial power spectrum
which is measured through the parameter σ8, the
linear amplitude of matter fluctuations on scales
8 h−1 Mpc. Weak lensing (WL) [51–55] and redshift
space distortion (RSD) [56–65] cosmological ob-
servations measuring directly the growth rate of
cosmological perturbations (dynamical probes) in-
dicate that the observed growth rate is weaker than
expected in the context of ΛCDM with parameters
determined from the observed background expan-
sion rate using geometric probes (SnIa, BAO and
CMB standard ruler data). This discrepancy is ex-
pressed as a preference for lower values of the
parameters Ω0m and σ8 by dynamical probes com-
pared to the corresponding values favored by the
geometric probes. The level of the growth tension is
at least about 2 − 3σ [56–58,61–63] but it can vary
up to about 5σ (when the EG statistic data are used
[66]) depending on the model parametrization and
the type of dataset considered. Notice however that
if CMB constraints on the background ΛCDM
parameters are not taken into account while keeping
only background constraints from SnIa, the tension
of the best fit ΛCDM model with the growth data
in the context of GR decreases to a level below 2σ
[67]. Similarly, the tension decreases if marginalized
confidence contours are used [15].

(iii) Low-z galaxy BAO vs high z Lyα BAO curiosity
(≃2σ): There is a ∼2σ tension [68,69] between the
value of Ω0m favored by Ly-α BAO measurements
(Ω0m ≃ 0.19� 0.07 for z > 2.4), which favor lower
values of Ω0m, and the values of Ω0m favored by
galaxy BAO measurements (Ω0m ≃ 0.37� 0.07 for
z < 0.6) that favor higher values of Ω0m.

(iv) Low l—high l CMB power spectrum curiosity
(≃2σ): There is a mismatch of the cold dark matter
density parameterΩch2 best fit that is derived using
high (l > 1000) and low multipoles (l < 1000).
This tension is approximately at a 2.5σ level
[70,71] and is such that the low lmultipoles predict
a lower value of Ωch2 than the high-l multipoles.
It is also described by the need to introduce the
AL parameter [71] which multiplies the amplitude

of the lensing potential power [71]. Thus, this
tension is also described by the fact that the
high-l TT multipoles are observed to correspond
to a higher ϕϕ lensing potential (the high-l secon-
dary peaks of the TT CMB power spectrum are
smoother than expected in the context of the best
fit Planck15=ΛCDMmodel parameters). The value
of the best fit Hubble parameter is also about
2.5σ lower when obtained from the higher-l multi-
poles (H0 ¼ 64.1� 1.7 km s−1Mpc−1) compared
to the corresponding best fit value obtained
from the low-l CMB spectrum multipoles
(H0 ¼ 69.7� 1.7 km s−1Mpc−1) [70].

The strongest of the above tensions which has also been
called a “problem” due its persistence in time and its
increasing statistical significance is the Hubble parameter
tension. This is heavily based on the use of SnIa as standard
candle probes of the cosmic expansion rate. SnIa have been
extensively used as standard candles to probe the expansion
rate (Hubble parameter) HðzÞ of the late Universe (z < 2).
The theoretically predicted apparent magnitude mthðzÞ of
SnIa is connected with the Hubble free luminosity distance
DLðzÞ≡H0dLðzÞ=c as

mthðzÞ ¼ M þ 5 log10 ½DLðzÞ� þ 5 log10

�
c=H0

1 Mpc

�
þ 25

ð1:1Þ

where M is the color and stretch corrected absolute
magnitude of SnIa (assumed constant) and dLðzÞ is the
luminosity distance of each SnIa which in a flat Universe is

dLðzÞ ¼ cð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð1:2Þ

Using Eq. (1.1), measurements of the SnIa apparent
magnitude mðzÞ at various redshifts can be used to
determine the present day Hubble parameter H0 as well
as its redshift dependence through Eq. (1.2). For the
determination of H0, Riess et al. [72] used local distance
ladder measurements (Cepheid calibrations at z ≃ 0.01) to
measure directlyM and then a kinematic local expansion of
DLðzÞ as

DLðzÞ¼ z

�
1þ1

2
ð1−q0Þz−

1

6
ð1−q0−3q20þ j0Þz2þ�� �

�

ð1:3Þ

to fit for the parameters H0, q0, j0 [73] using low z
SnIa (z≲ 0.2).
For the determination of cosmological parameters in

HðzÞ, higher z SnIa are used and the degenerate parameters
M, H0 are usually marginalized as nuisance parameters
[7,8,74]. For example, in the context of ΛCDM with
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H2ðzÞ ¼ H2
0½Ω0mð1þ zÞ3 þ ð1 −Ω0mÞ� ð1:4Þ

Equation (1.1) is used for the construction and minimiza-
tion of χ̄2ðΩ0mÞ≡ R

dMχ2ðM;Ω0mÞ where the degener-
ate combination

M≡M þ 5log10

�
c=H0

1 Mpc

�
þ 25 ¼M − 5log10ðhÞ þ 42.38

ð1:5Þ

(H0 ¼ 100h km s−1Mpc−1) has been marginalized.
The marginalization of the parameter M however can

lead to loss of useful physical information related to
possible spatial variations of H0 and/or time variations
of the absolute magnitude M. For example, a value of M
that evolves with redshift in a way that leads to low M
values at low z could imply either higher local values of
H0 due to a local matter underdensity or lower values of
the absolute magnitudeM at recent cosmological times due
to e.g. a time variation of Newton’s constant.
The former case is in agreement with a few independent

groups that have found evidence for a local matter under-
density on scales 100–300h−1 Mpc [75,76] with δρ0=ρ0 in
the range between −0.1 and −0.3 using either SnIa [77]
in the context of a Lemaitre-Tolman Bondi (LTB) metric
[78–80] (δρ0=ρ0 ≃ −0.15) or galaxy survey catalogues [81]
to construct luminosity density samples in the redshift
range of 0.01 < z < 0.2 (δρ0=ρ0 ≃ −0.3). A local matter
underdensity of about 15% corresponds to a local variation
(increase) ofH0 by about 2% which is in the right direction
but not large enough to explain theH0 tension which would
require a local increase of H0 by about 9% compared to its
mean value in the Universe, i.e. a much deeper under-
density than the one implied by SnIa data.
If the later case is realized in Nature, the evolution of the

absolute magnitudeM of SnIa (or equivalently the absolute
luminosity L ∼ 10−2M=5) could be used as a probe of the
evolution of fundamental constants like the fine structure α
or the Newton’s constant Geff . In the physical context of an
evolving Geff , previous studies [82,83] assumed that the
amount of 56Ni that is produced in a SnIa and determines
the absolute luminosity L, is proportional to the
Chandrasekhar mass mch ∼G−3=2

eff which implies that L
will increase as Geff decreases. In contrast, other more
recent studies [84] using a semianalytical model to obtain
SnIa light curves in the context of modified gravity, have
indicated that L will increase as Geff increases. Assuming a
power law dependence LðzÞ ∼GeffðzÞb and fixing the value
of b, any detected redshift dependence of SnIa absolute
luminosity (or equivalently absolute magnitude) can be
translated into a redshift dependence of Geff .
Therefore, a possible detection of redshift dependence of

the parameter M could imply either a local underdensity
and spatially varying H0 or a redshift dependent M and

thus, possibly, an evolving Geff . Since M and H0 are
degenerate parameters within M in Eq. (1.5), the two
scenarios can not be distinguished using only the redshift
dependence of the SnIa apparent magnitudes. However, the
local matter underdensity scenario with an off-center
observer generically predicts a level of anisotropy in the
best fit value of the parameterM which would emerge due
to the anisotropy of H0 which is expected for an off center
observer in a region of matter underdensity. Such an
anisotropy could also manifest itself as an anisotropy of
cosmological parameters entering HðzÞ like the matter
density parameter Ω0m. Despite intense efforts to identify
such anisotropy in the latest SnIa data (the Pantheon
compilation [85–89] and the joint light-curve analysis of
the SDSS-II and SNLS supernova samples data (JLA) [90–
92]) no such anisotropy has been identified at a statistically
significant level [85–92]. However, we stress that none of
these analyses has attempted to identify anisotropy signals
using the parameter M (or equivalently the parameters H0

and/or M). In the present analysis we aim to fill this gap in
the literature.1

The main questions addressed in the present analysis
include the following:

(i) What is the level of statistical significance for an
evolving with redshift parameterM in the context of
the Pantheon SnIa dataset?

(ii) Are there any hints for anisotropy for the parameter
M (or equivalently the parameters M and/or H0) in
the context of the Pantheon SnIa dataset? Such an
anisotropy would favor the scenario of a local matter
underdensity rather than evolving absolute magni-
tude M. What is the optimal method for detecting
such a possible anisotropy?

(iii) If any hint for evolvingM is interpreted as a hint for
evolving M and evolving Newton constant what is
the best fit of the evolving μðzÞ≡GeffðzÞ=GN
(where GN is the value of Newton’s constant
measured on solar system scales) and does it
correspond to weakening gravity at low z as the
growth and weak lensing cosmological data seem to
indicate?

The structure of this paper is the following: In the next
section we use various subsets of the Pantheon dataset, to
obtain the possible redshift dependence of the best fit
parametersM andΩ0m in the context of ΛCDM. In Sec. III
we use the hemisphere comparison (HC) method and the
dipole fiting (DF) method to search for possible statistically
significant directional dependence of the best fit parameter
M (or equivalently the parameter H0 with fixed M). Such
an anisotropy would be generically anticipated in the
context of a cosmological off-center observer in a local
matter underdensity. In Sec. IV we make the assumption

1Notice however that in the case of the DF method, the
parameter M was taken into account in Refs. [88,89].
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that any variation of the parameter M is due to a variation
of M induced by a varying μðzÞ and in the context of a
physically motivated single parameter parametrization of
μðzÞ we identify the best fit parameter value and corre-
sponding strength of gravity at low z (z≲ 0.2) compared to
the corresponding value at higher z. Finally, in Sec. V,
we summarize, discuss the possible physical implications
of our results and identify the possible extensions of this
work.

II. SEARCHING FOR A REDSHIFT
DEPENDENCE OF M

The Pantheon dataset [8] is the largest compilation to
date that incorporates data from six different probes giving
a total of 1048 SnIa datapoints covering the redshift range
0.01 < z < 2.3. The publicly available data include the
name of each SnIa, the redshifts in the CMB and helio-
centric frames as well as the observed corrected apparent
magnitude mobs along with the corresponding error σmobs

.
The mobs of each SnIa is reported after applying color and
stretch corrections as well as corrections due to biases from
simulations of the SnIa. In the context of a maximum
likelihood analysis [93] Eqs. (1.1), (1.2) and (1.5) are used
to construct the appropriate χ2 function as

χ2ðM;Ω0mÞ ¼ Vi
PanthC

−1
ij V

j
Panth ð2:1Þ

where Vi
Panth ≡mobsðziÞ −mthðzÞ and Cij is the covariance

matrix which is given as Cij ¼ D̄ij þ C̄sys, where D̄ij is the
diagonal matrix

D̄ij ¼

0
B@

σ2mobs;1
0 0 � � �

0 σ2mobs;2
0 � � �

0 0 � � � σ2mobs;N

1
CA ð2:2Þ

and C̄sys is a nondiagonal matrix associated with the
systematic uncertainties that emerge from the bias correc-
tions method (see Ref. [8] for more details). In what follows
we consider statistical uncertainties only. This approach
makes the analysis much simpler due to the diagonal nature
of the covariance matrix but leads to somewhat lower
uncertainties of the derived best fit parameters. In
Appendix we have included a short analysis which takes
into account systematic uncertainties. This analysis indi-
cates that systematic effects tend to somewhat increase the
uncertainties of the best fit parameter values. The main
features and conclusions, however, of the analysis pre-
sented below remain valid.
As discussed in the Introduction there is a power law

dependence of the absolute luminosity L on Geff leading to
a simple power law relation between M and Geff . For
L ∼ Gb

eff this equation is of the form

M −M0 ¼ −
5b
2
log10ðμÞ ð2:3Þ

where M0 corresponds to a reference local value of the
absolute magnitude. Then, Eq. (1.1) takes the following
form

mthðzÞ ¼ Mþ 5 log10 ½DLðzÞ� −
5b
2
log10ðμÞ ð2:4Þ

where M is given in Eq. (1.5) with M replaced by M0.
Most previous studies used b ¼ −3=2 [82,83] based on

the assumption that L ∼mch ∼G−3=2
eff . However, as men-

tioned in the Introduction, a more detailed analysis has
been performed in [84], where the authors studied the
effects of modified theories of gravity to the absolute
magnitude M of the SnIa. In particular, in the semianalytic
model that was used, extra parameters such as the initial
nickel mass in the ejecta, the initial radius of shock
breakout, the scale velocity, the effective opacity as well
as total ejecta mass were included. Then, the generated light
curves were standardized by rescaling the shape to match a
template width and the numerical dependence of the
standardized intrinsic absolute luminosity L on Geff was
identified. Using this semianalytical method a new power
law relation between L and Geff was derived with b > 0
(see the left panel of Fig. 7 of [84]).
A marginalization is usually implemented over M in

most analyses of the SnIa data (e.g. [74]). This approach
however, may lead to loss of useful information regarding
possible redshift dependence of H0 and/or M and Geff .
Thus, we choose to keep this parameter and fit it along with
the cosmological parameter Ω0m. Fixing the background to
that of a ΛCDM, we implement the maximum likelihood
method [93] to obtain the best fit values for Ω0m and M as
M ¼ 23.803� 0.007 and Ω0m ¼ 0.285� 0.012 for the
full Pantheon dataset in agreement with previous studies
[8,88].
In the context of a redshift independentM and a ΛCDM

background, any subset of the Pantheon dataset should
provide best fit parameter values forΩ0m andM consistent
with the corresponding best fit values of the full dataset. In
order to test this conjecture, we fix Ω0m to its best fit value
indicated by the full dataset and consider subsets of the full
dataset in redshift ranges z ∈ ½zmin; zmax� where zmin ¼ 0.02
(fixed) and zmax ≥ 0.03 (increasing for each point in steps
of Δzmax ¼ 0.01Þ is a cutoff redshift chosen so that the
subsamples have acceptable statistics (the first and smallest
subsample with zmax ¼ 0.03 has 46 datapoints). Using each
subsample, we implement the maximum likelihood method
to find the best fit M values along with their 1σ errors
shown in Fig. 1 (left panel). For the best fit values of M of
each subsample (Fig. 1 middle panel) we fix h ¼ 0.74, i.e.
to the value specified in [41], while for the best fit values of
h (right panel of Fig. 1) we fixM using the best fit value of
M indicated by the full dataset and h ¼ 0.74.
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Clearly, at low redshifts and in particular in the redshift
range zmax ∈ ½0.02; 0.15� there is a tension of about 2σ or
more between the best fit value of M of each subsample
and the best fit value indicated by the full dataset. This
difference may imply a lower value of M (middle panel of
Fig. 1) or equivalently a higher value of h (right panel of
Fig. 1) in the same redshift range. For zmax > 0.15 the best
fit values in each subsample are consistent with the values
indicated by the full dataset (dashed lines in Fig. 1) within
1σ level.
A similar behavior is detected, if we rank the SnIa data

from lowest to highest redshifts. At first we select the first
100 datapoints and fixing the background to the best fit
ΛCDM HðzÞ, [Eq. (1.4) with Ω0m ¼ 0.285], we find the
best fit value of M along with its 1σ error for the lowest
redshift subsample. Then, we shift the 100 points sub-
sample by one datapoint toward higher redshifts to produce
the next point and continue until we cover the entire
redshift range of the Pantheon dataset (Fig. 2—left panel).
The redshift zmean shown in the horizontal axis, corresponds
to the mean redshift value of each of the 100 point
subsamples.
From Fig. 2 we observe that for zmean < 0.3, the best fit

value of M oscillates around the best fit value of the full
dataset at a level of about 1 − 2σ which may indicate a
similar oscillating behavior for M (middle panel) and/or h
(right panel) in the same redshift range. In this case, the
redshift range of the oscillation is larger than the redshift
variation detected in Fig. 1, because as the cutoff redshift

increases, so does the size of the corresponding subsample,
leading to a cancellation of the oscillating effect in Fig. 1.
In order to improve the statistics of the low z subsamples

and further investigate the observed tension at low z, we
sort the Pantheon data from lowest to highest redshift and
divide them in four equal uncorrelated bins consisting of
262 datapoints. Then, we apply the maximum likelihood
method in each bin separately, considering a ΛCDM
background and leaving the parameters M and Ω0m to
vary simultaneously. Minimizing Eq. (2.1), we derive the
best fit values of Ω0m and M as well as the corresponding
1σ error for each bin as it is shown in Fig. 3.
Clearly a similar oscillating behavior for M is apparent

as in Fig. 2. Furthermore, the best fit values of Ω0m andM
derived from the lowest z bin ð0.01 < z < 0.13Þ are more
than 2σ lower than the best fit values indicated by the full
dataset, in agreement with Figs. 1 and 2. This is also
evident in Fig. 4, where the 1σ − 3σ contours of the four
bins are constructed in the parametric space ðΩ0m −MÞ.
From Fig. 3 we find the difference of M to be

ΔM≡Mbf −Mbin1 ≈ 23.80 − 23.76 ≈ 0.04� 0.02

ð2:5Þ

whereMbf corresponds to the best fit value ofM indicated
by the full dataset and Mbin1 corresponds to the best fit
value ofM derived from the lowest z bin. In the context of
a local matter underdensity, Mbf is the true global value of

FIG. 2. The evolution of the best fit values (blue dots) of M (left panel), M (middle panel) and h (right panel) along with its 1σ error
for 100 point subsamples vs the mean redshift zmean. The dashed lines correspond to the best fit values indicated by the full dataset.

FIG. 1. The evolution of the best fit values (blue dots) of M (left panel), M (middle panel) and h (right panel) along with its 1σ error
for various cutoff values zmax. The dashed lines correspond to the best fit values indicated by the full dataset.
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M, while Mbin1 corresponds to the value of M that is
measured in the interior of the local underdensity. This
difference can be associated with a variation of the local
expansion rate δH0=H0 through

�
δH0

H0

�
≈ 0.2 lnð10ÞΔM ¼ 0.019� 0.007 ð2:6Þ

We can also estimate the probability that such low values
of M and Ω0m would occur in the context of the ΛCDM
standard model, using Monte Carlo simulations of
Pantheon-like datasets under the assumption of an under-
lying ΛCDM model withM and Ω0m corresponding to the
values indicated by the full dataset. In particular, we
construct 500 simulated datasets with redshifts correspond-
ing to the redshifts of the first bin and substitute the
apparent magnitude of the real data [mobsðziÞ] with simu-
lated datapoints msimðziÞ obtained from a random normal
distribution with a mean value obtained from the best fit
ΛCDM value of the apparent magnitude mth [setting M ¼
23.803 and Ω0m ¼ 0.285 in Eq. (1.1)]. The standard
deviation of the normal distribution is obtained from the

σmobs
of each datapoint respectively [94]. Then, we apply

the maximum likelihood method and count how many
of the simulated data give lower values forM andΩ0m than
the best fit values indicated by the real data of the first bin
(red dashed lines). The results are plotted in Fig. 5. Clearly,
less than 1% (0.2% for either Ω0m or M) of the
Monte Carlo data give smaller best fit values for M or
Ω0m than the actual best fit values of the first bin. Therefore,
we confirm that this reduced value of M is a highly
unlikely event in the context of an underlying physical
ΛCDM model.
The 2 − 3σ effect regarding the parameters Ω0m and M

observed at low z have been also discussed in previous
studies [77,95]. In particular, for Ω0m a similar behavior
was presented in [95], where the best fit values of Ω0m and
H0 were studied, for various redshift cutoffs. Similar results
for M were also presented in [77], where the authors
divided the Pantheon dataset in three bins and calculated
the best fit value of M − 25 in the context of a LTB model
with a cosmological constant, in an attempt to identify hints
of a local underdensity using the Pantheon dataset.
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FIG. 4. The 1σ − 3σ confidence contours in the parametric space ðΩ0m −MÞ. The blue contours correspond to the 1σ − 3σ full
Pantheon dataset best fit, while the red contours describe the 1σ − 3σ confidence contours of the four bins (from left to right). The black
points represent the best fit of each bin, while the green dot represents the best fit value indicated by the full Pantheon dataset
(Ω0m ¼ 0.285 and M ¼ 23.803).

FIG. 3. The best fit values of M (left panel) and Ω0m (right panel) as well as the 1σ errors for the four bins. The horizontal axis
corresponds to the redshift range of each bin. The dashed line describes the best fit value of the full dataset while the dot dashed lines its
1σ error. The corresponding plot, taking into account the systematic uncertainties is shown in the Appendix and shows a similar
oscillating behavior of the parameters with increased uncertainties (specifically for the lowest z bin).
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This variation of M at low redshifts could be due to
following:

(i) Statistical and or systematic fluctuations of the data
around the true ΛCDM model. The probability of
this case can be estimated by constructing a large
number of simulated Pantheon datasets under the
assumption of a ΛCDM underlying model corre-
sponding to the best fit with a multivariate Gaussian
distribution taking into account the full covariance
matrix including both statistical and systematic
errors. Our preliminary analysis along these lines
(Fig. 5) taking into account only statistical errors has
indicated that this case is very unlikely (has a
probability less than 1%). However, this probability
is expected to increase if the simulated data are
constructed taking into account also systematic
errors and if the “look elsewhere effect” is taken
into account. Such an extension of our analysis is
currently in progress.

(ii) A local underdensity dubbed “local void” that fades
away at large scales. SinceM is lower than the best
fit value indicated by the full dataset at low z, h
would be larger than the best fit value of the full
dataset in the same redshift range. A generic way to
explain this increase of h would be if our neighbor-
hood is more underdense compared to the mean
density of the Universe and as a result the measured
value of h is also affected at local scales. In the
context of a “local void” model, the value of h
increases by 2–3% (see Fig. 2—right panel). Such a
scenario would also predict an anisotropy for the
best fit value of M in the sky.

(iii) A modified theory of gravity. Another possible
explanation for the observed variation of M at
low redshifts is a redshift dependence of M which
could be due to a time variation of Newton’s
constant in the context of a modified theory of
gravity.

These two possibilities will be discussed in the next two
sections.

III. LOCAL VOID SCENARIO

The idea that we live in an underdense region that fades
away at large scales is not new. In fact, it has been
proposed as an alternative theory to explain the accel-
erated expansion of the Universe without the presence of a
cosmological constant (see e.g. Refs. [96–100]). It has
been shown however, the Gpc scale and depth of the
uderdensity required to explain the observed accelerating
expansion is inconsistent with current observations [101].
Nevertheless, over the past twenty years, some works
using various galaxy survey catalogues (e.g., the 2MASS
survey [102,103], the UKIDSS-Large Area Survey [104]
as well as galaxies samples constructed from the 6dFGS,
SDSS and GAMA surveys [105,106]) have found
some evidence for the existence of a local underdensity
that extends on scales 150–400 h−1Mpc with depth
−0.4 < δρ0=ρ0 < −0.05. Other works considering the
Pantheon dataset [77] or a sample of 1653 x-ray galaxy
clusters [81] also stressed that a local underdensity on
scales of ≈100 h−1Mpc or ≈140 h−1Mpc with δρ0=ρ0 ≈
−0.11 or δρ0=ρ0 ≈ −0.20 respectively, remains a viable
possibility and cannot be excluded by the data.
If this scenario is realized in Nature and we truly live in

an underdense region, then the measured H0 value at local
scales would be larger than the true global value of H0.
This could lead to a lower value of M [Eq. (1.5)] at local
scales, explaining the results of the previous section.
However, a slightly off-center observer in this underdense
region would experience a preferred cosmological direction
and an overall anisotropy. Therefore, in what follows we
search for possible anisotropies regarding M using two
differentmethods that arewidely used in the literature. These
are the hemisphere comparison (HC) [87,94,107–109] and
the dipole fitting (DF) [87,90,109,110] method.

FIG. 5. The distributions of Ω0m (left panel) and M (right panel) using 500 Monte Carlo simulations of Pantheon-like datasets under
the assumption of an underlying ΛCDMmodel, in the redshift region 0.01 < z < 0.13 (first bin). The red dashed lines correspond to the
best fit values of the first bin.
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A. Hemisphere comparison (HC) method

The HC method was first proposed in Ref. [107] and
implemented in the context of the Union2 dataset [111] in
Ref. [94]. The basic steps of this method are the following:

(i) Consider a random direction of the following form

r̂rndm ¼
�
cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos2 θ

p
;sinϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos2 θ

p
;cosθ

�

ð3:1Þ

where ϕ ∈ ½0; 2π� and cos θ ∈ ½−1; 1�. These varia-
bles are randomly selected in these intervals with a
uniform probability distribution.

(ii) Define two different hemispheres dubbed “up hemi-
sphere” and “down hemisphere” and append the data
of the dataset into the hemisperes. The appended
data of the “up hemisphere” correspond to the subset
where the product r̂rndm · r̂data is positive, while the
appended data of the “down hemisphere” corre-
spond to the subset where the product r̂rndm · r̂data is
negative. The unit vector r̂data describes the direction
of each SnIa in galactic coordinates.

(iii) Find the best fit value of M in the up (Mup) and
down hemispheres (Mdown) applying the maximum
likelihood method for Ω0m ¼ 0.285, i.e. setting Ω0m
to the best fit value indicated by the full dataset.
Using the obtained best fit values of M, define the
anisotropy level (AL) as [94]

ΔM=M≡ 2
Mup −Mdown

Mup þMdown
ð3:2Þ

as well as the corresponding 1σ error [94]

σΔM=M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Mup

þ σ2Mdown

q
Mup þMdown

ð3:3Þ

(iv) Repeat this procedure for N random directions r̂rndm
and find the maximum AL and the related direction.
The number of random directions needs to be well
above the number of datapoints in each hemisphere
[94], so for the Pantheon data we set N ¼ 3000.

Implementing the HC method in the Pantheon dataset as
described above, we construct the AL color map ofM as it
is demonstrated in Fig. 6. The magnitude of the maximum
AL that is detected for the Pantheon data is

ðΔM=MÞmax ¼ 0.0018� 0.0002 ð3:4Þ

and the direction of the maximum anisotropy is in ðl; bÞ ¼
ð286.93°� 18.52°; 27.02°� 6.50°Þ.
In order to check the consistency of the Pantheon SnIa

data with statistical isotropy we compare the above extrema
of AL of the real data with the corresponding extrema
of AL derived in the context of simulated Pantheon data.
The simulated Pantheon data are constructed under the
assumption of statistical isotropy with a ΛCDM back-
ground by keeping fixed the direction of each datapoint in
the sky while randomly selecting the Pantheon apparent
magnitudes from a Gaussian distribution with the best fit
ΛCDM mean and standard deviation equal to the corre-
sponding Pantheon datapoint 1σ error. We thus construct
30 isotropic simulated “Pantheon” datasets and for each
dataset we use 3000 random directions to split it in two

FIG. 6. The AL color map constructed with the HC method producing 3000 random directions. The red dots correspond to the pair of
coordinates where the ratio ΔM=M is maximum while the purple dots correspond to the pair of coordinates where ΔM=M is
minimum. The black ellipses denote the 1σ error region.
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hemispheres and identify the corresponding extrema of AL
using ΔM=M. These 30 axes of extrema of AL are shown
in Fig. 7 using galactic coordinates and showing two
opposite points for each maximum AL direction (left
panel) along with the corresponding real Pantheon data
sky directions. The maximum AL of ΔM=M magnitude
of 16 (red dots in the left panel of Fig. 7) out of the 30
simulated datasets was larger than the corresponding
magnitude of the real Pantheon data. This indicates that
there is no statistically significant ΔM=M AL in the
Pantheon data.
Notice however, that the 30 extrema AL directions of the

isotropic Pantheon simulated data are not distributed uni-
formly. This is due to the fact that the Pantheon SnIa are not
isotropically distributed in the sky. As shown in Fig. 7 (right
panel) the southern (lower) right quadrisphere is almost
empty of SnIa datapoints while most of the Pantheon SnIa
directions are concentrated in the southern left quadrisphere.
This strongly anisotropic distribution of datapoints forces
most of the extrema AL directions to concentrate in
the southern left—northern right quadrisphere. A possible
solution to this problem could the smoothed residual method
[112–115] that seems to be advantageous in some cases with
anisotropically distributed data. This method attempts to
ameliorate any anisotropy of the data using a 2D smoothing
interpolation of the data on the surface of a unit sphere.
An alternative method to this smoothing approach is to

select a more isotropic subset of the full dataset which
will be less biased in the selection of the maximum AL
direction. Thus, we randomly select a subsample of the
Pantheon dataset consisting of 375 SnIa distributed more
isotropically in the four quadrispheres (100 in the first three
and 75 in the down right quadrisphere) and generate a new
reduced dataset (right panel of Fig. 8). Using this reduced
dataset, which is significantly more homogeneous than the
full dataset, we produce 100 simulated Pantheon isotropic
subsamples using 1500 random directions to split it in two

hemispheres and identify the corresponding maximum
ΔM=M AL magnitudes.2 This is illustrated in the left
panel of Fig. 8 where we show two opposite points for each
maximum AL direction. Clearly, the preferred range of
directions disappears completely for the more isotropic
subset of the full dataset. However, even in this case where
the data are more uniformly distributed, no signal of
anisotropy is found, since 33 (red dots in the left panel
of Fig. 8) out of the 100 simulated datasets have larger
maximum AL magnitudes of ΔM=M than the corre-
sponding magnitude of the real Pantheon data.
The lack of anisotropy signal persists also if we divide

the Pantheon data in four redshift bins. Using the same
method as described above we construct for each bin 30
isotropic simulated “Pantheon” datasets and for each
dataset we use 1000 random directions to split the sky
in two hemispheres and identify the corresponding maxi-
mum ΔM=M magnitudes. Then we compare the maxi-
mum magnitudes ΔM=M of the simulated “Pantheon”
datasets with the corresponding maximum magnitude
ΔM=M of the real data for each bin. The results for each
bin are presented in the following Table I.
Interestingly, the strongest evidence for anisotropy is not

found in the lowest z bin but in the highest z bin
ð0.42 < z < 2.3Þ, where only three out of the thirty
simulated datasets have larger ΔM=M magnitudes than
the corresponding magnitude of the real data. However, this
mild effect is not statistically significant, since it remains
below the 2σ level.
Even though we have found no evidence for anisotropy

of ΔM=M in the Pantheon data, the local underdensity
scenario as an explanation for the reduced by about 4% low

FIG. 7. Left panel: The 30 axes of extrema of AL constructed from the isotropic simulated Pantheon datasets axes using 3000 random
hemisphere directions in each dataset. Notice that only two of the thirty maxima AL directions are in the lower left quadrisphere
(southern hemisphere in the longitude range of [0°, 180°]), inducing an artificial region of preferred directions in the observed anisotropy
in the lower left/upper right quadrisphere. The green dot corresponds to the maximum anisotropy of the real data, while the blue (red)
dots describe the simulated datasets which have smaller (larger) magnitudes of ΔM=M than the real data. Right panel: The distribution
of the full Pantheon data in galactic coordinates. Notice that the data are not uniformly distributed with strong preference of datapoint
locations in the southern hemisphere in the longitude range [0°, 180°] (lower left hemisphere).

2The number of the random directions considered for the
identification of the direction of the maximum AL is smaller in
this case, since the new dataset is significantly smaller than the
original.
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z value of M pointed out in the previous section, remains
viable especially if we are located close to the center of the
underdensity. Using Eq. (2.6), we can also constrain the
density contrast δρ0=ρ0 as well as the dimensionless mater
density contrast δΩ0=Ω0, through the following coupled
system of equations applicable in the context of a LTB
model with a cosmological constant assuming a top hat
density profile for the void (see Appendix of Ref. [77])

δH0

H0

¼δρ0
ρ0

½−0.171−0.322ðΩ0m−0.3Þþ0.249ðΩ0m−0.3Þ2�

þ
�
δρ0
ρ0

�
2

½0.031þ0.063ðΩ0m−0.3Þ�−0.022

�
δρ0
ρ0

�
3

ð3:5Þ

δΩ0

Ω0

¼ δρ0
ρ0

½1.342þ0.643ðΩ0m−0.3Þ−0.499ðΩ0m−0.3Þ2�

þ
�
δρ0
ρ0

�
2

½0.367þ0.847ðΩ0m−0.3Þ�þ0.056

�
δρ0
ρ0

�
3

ð3:6Þ

where in this case we set Ω0m ¼ 0.3153, i.e., the CMB
value indicated by the Planck mission [6]. Substituting
δH0=H0 ≈ 0.02 [as indicated from Eq. (2.6)] in Eq. (3.5),
we calculate δρ0=ρ0 ¼ −0.10� 0.04 and using this value
to Eq. (3.6) we derive δΩ0=Ω0 ¼ −0.12� 0.02, in agree-
ment with previous studies [77].

B. Dipole fitting (DF) method

In most physical mechanisms the predicted cosmological
anisotropy can be described by a dipole proportional to
cos θ. In this case the dipole fitting (DF) method
[87,90,109,110] is expected to be more sensitive for the
detection of the cosmic anisotropy. In this context we
define the deviation of the apparent magnitude from its best
fit ΛCDM values m̄ðzÞ as

�
ΔmðzÞ
m̄ðzÞ

�
obs

≡ m̄ðzÞ −mðzÞ
m̄ðzÞ : ð3:7Þ

The basic steps of the DF method are the following [110]
(i) Convert the coordinates of the SnIa to galactic

coordinates ðl; bÞ (they are provided in equatorial
coordinates) and define the unit vector n̂i as

n̂i ¼ cosðbiÞ cosðliÞx̂þ cosðbiÞ sinðliÞŷþ sinðbiÞẑ
ð3:8Þ

(ii) Define the dipole axis D⃗ in terms of the parameters
c1, c2 and c3 in Cartesian coordinates as

D⃗ ¼ c1x̂þ c2ŷþ c3ẑ ð3:9Þ
and define

�
Δm
m

�
th
¼ A cos θ þ B ð3:10Þ

where A and B correspond to the dipole and
monopole terms of the parametrized anisotropy.
The angle θ is the angle between the datapoint
direction of the SnIa with the vector D⃗ which obeys
the relation

n̂iD⃗ ¼ A cos θi ð3:11Þ
(iii) Using the maximum likelihood method construct

χ2 as

TABLE I. The results of the HC method for each bin.

Bin Redshift range

Number of simulated datasets with
j ΔM
M̄

j
sim

> j ΔM
M̄

j
real

1st 0.01 < z < 0.13 21=30
2nd0.13 < z < 0.25 8=30
3rd 0.25 < z < 0.42 14=30
4th 0.42 < z < 2.26 3=30

FIG. 8. Left panel: The 100 axes of extrema of AL using 1500 random directions for each isotropically distributed Pantheon
subsample. The preferred direction disappears completely for the more isotropic distributed subset. The green dot corresponds to the
maximum anisotropy of the real data, while the blue (red) dots describe the simulated datasets which have smaller (larger) magnitudes of
ΔM=M than the real data. Right panel: The distribution of the reduced isotropic subset in galactic coordinates.
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χ2 ¼
X1048
i¼1

ViC−1
ij V

j ð3:12Þ

where Vi ≡ ðΔm=mÞobs − ðΔm=mÞth ¼ ½m̄ðziÞ−
mðziÞ�=m̄ðziÞ − A cos θi − B and Cij is the covari-
ance matrix. From the minimization of χ2, find the
best fit values as well as the 1σ errors of the ci, the
monopole term B and thus the dipole term that is

derived as A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

3
j¼1 c

2
j

q
.

We present the results of the application of the DF method
for the Pantheon dataset in the following Table II.
The monopole A and dipole B terms are consistent with

zero at the 1σ level. Using the best fit values of the
parameters A and B, we find the anisotropy direction
to be ðl; bÞ ¼ ð210.254°� 136.564; 72.852°� 60.631°Þ.
Clearly, the errors of the ðl; bÞ coordinates are quite large,
covering almost the entire sky area (a result that is in
agreement with previous studies [87–89] usingΩ0m instead
of M).
The consistency of the derived dipole and monopole

terms with statistical isotropy may be investigated using
isotropic simulated Pantheon datasets as we did in the
context of the HC method. We construct 30 simulated
Pantheon datasets as described in the previous subsection,
we identify the corresponding dipole anisotropy directions
and the best fit values of the parameters A and B as shown
in Fig. 9.
From Fig. 9, it is clear that no preferred direction is

identified since 19 (red points in Fig. 9) of the 30 isotropic
simulated Pantheon datasets have larger dipole magnitudes
than the real data. Therefore, we conclude that no sta-
tistically significant anisotropy is found using the DF
method, in agreement with the corresponding result of the
HC method.

C. Comparison of the two methods

From the implementation of the two methods the
following useful conclusions, can be extracted

(i) The HC method is more general, since it can detect
any kind of anisotropy. On the contrary, the DF
method is sensitive only to an anisotropy of the form

of Eq. (3.10), i.e. an anisotropy that has a dipole
form.

(ii) The 1σ errors of the anisotropy direction coordinates
obtained in the context of the DF method are quite
large and cover the entire sky area. Thus, a dipole
anisotropy seems to be significantly disfavored by
the Pantheon dataset indicating that no dipole signal
exists in the data. On the contrary, the HC method
gives significantly smaller 1σ errors as it is tuned
for the detection of a much broader range of signals.
Therefore, the HC method seems to be more
appropriate in order to identify a preferred direction
as well as any general anisotropies hidden in the
Pantheon data, unless these anisotropies are of the
particular dipole form.

In conclusion, we have found no evidence of anisotropy in
the Pantheon data, a result consistent with previous studies
[85–89,116]. We have shown however, that the HC method
is more appropriate in detecting a general form of
anisotropy hidden in the data. We have also demonstrated
that the anisotropic distribution of the Pantheon SnIa data
leads to a preferred range of anisotropy directions which are
detected by the HC method in the context of isotropic
simulated Pantheon datasets. This lack of anisotropy does
not favor (but also does not exclude) the local underdensity
scenario as a possible explanation of the observed reduced
value ofM at low z indicated in Sec. II. We thus proceed to
examine the alternative mechanism that could lead to a
reduced value of M at low z: the evolving μ scenario.

IV. MODIFIED THEORY
OF GRAVITY SCENARIO

In order to identify the possible evolution of μ we
consider Eq. (2.4) and use the 100 point moving subsample
method described in Sec. II (Fig. 2). In particular, we find
the best fit value of M, fixing M0 to the best fit value of

FIG. 9. The different maximum AL directions corresponding to
the 30 random simulated datasets. The green dot corresponds to
dipole of the real data, while the blue (red) dots describe the
dipole direction of simulated datasets which have smaller (larger)
magnitudes of A than the real data. The 1σ errors of the ðl; bÞ
galactic coordinates are quite large covering almost the entire sky
area.

TABLE II. The best fit values with the 1σ error of the ci’s, A
and B parameters.

Quantity Best fit value �1σ error

c1 ð−1.41� 3.76Þ × 10−4

c2 ð−0.82� 4.54Þ × 10−4

c3 ð5.28� 7.14Þ × 10−4

A ð5.53� 6.04Þ × 10−4

B ð−0.59� 3.01Þ × 10−4

l 210.254°� 136.564
b 72.852°� 60.631°
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the absolute magnitudeM indicated by the full dataset with
h ¼ 0.74. Then, for b ¼ −3=2, we use the best fit values of
M and find the corresponding best fit values of μ, thus
assigning any redshift dependence of M into a redshift
dependence of μ. The resulting best fit values of μ for each
subsample along with the 1σ errors are shown in Fig. 10.
Clearly the oscillating behavior of M at low z shown in

Fig. 2 middle panel, is reflected on a corresponding
oscillating behavior for μ at low z with μ < 1 at z ¼ 0.
We now consider a μ parametrization which interpolates

GR at early and late times and takes into consideration the
solar system and nucleosynthesis constraints. This para-
metrization is the following [62,63]

μðz; gaÞ ¼ 1þ ga

�
z

1þ z

�
2

− ga

�
z

1þ z

�
4

ð4:1Þ

where ga is an extra parameter and z is the redshift. Using
the modified apparent magnitude (2.4) along with the
parametrizaion (4.1) we construct the corresponding χ2

function and applying the maximum likelihood method, we
obtain the best fit values for the parametersM;Ω0m; ga and
b. In this case, χ2 depends on the same parameters as before
ðM;Ω0mÞ as well as the extra parameters ga and b. During
the minimization we allow b to take various values in the
range −2 < b < 2 and interpolate the best fits of the extra
parameter ga as a function of b. This is demonstrated
in Fig. 11.
For negative values of b we obtain negative best fit

values for ga indicating that μ < 1, i.e., a growth rate that is
weaker than expected in the context of ΛCDM. This result
is in agreement with other studies [62–64,66] which fit
weak lensing and growth data allowing for an evolving μ
and favor an evolving μ with ga < 0.
Setting b ¼ −3=2 as indicated by most relevant studies

[82,83] it is straightforward to construct the likelihood

FIG. 10. The evolution of μ along with its 1σ error vs the mean
redshift zmean of each 100 datapoints subsample. In the context a
modified theory, we detect a 2%–3% deviation from the GR
predicted value μ ¼ 1 (dashed line) at a level up to about 2σ.

FIG. 11. The extra parameter ga as a function of b. For b > 0
we obtain ga > 0 while for b < 0 we find a best fit ga < 0.

FIG. 12. The 2D projections of the 1σ − 4σ contours in the parametric space ðM;Ω0m; gaÞ. The projections go through the best fit
point (green point) in the 3D parameter space. Notice that the GR point corresponding to ga ¼ 0 appears to be more than 4σ away from
the best fit which corresponds to weaker gravity ðga < 0Þ. However, this is a projection effect since in the context of the full 3D
parameter space we have ga ¼ −0.47� 0.36.
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parameter contours in the 3Dparametric space ðM;Ω0m; gaÞ
whereM is given by Eq. (1.5). The best fit parameter values
thus obtained are M ¼ 23.793� 0.009, Ω0m ¼ 0.179�
0.078 and ga ¼ −0.47� 0.36. In Fig. 12 we show the 2D
projections of the 1σ − 4σ contours in the parametric space
ðM;Ω0m; gaÞ. The projections go through the best fit point in
the 3D parameter space. Notice that the GR point corre-
sponding to ga ¼ 0 appears to bemore than4σ away from the
best fit which corresponds to weaker gravity ðga < 0Þ in
accordancewith weak lensing and growth cosmological data
[51–54,62–64,66]. However, this is a projection effect since
in the context of the full 3D parameter space we have
ga ¼ −0.47� 0.36, a value that is approximately 1.5σ away
from the GR predicted one.

V. CONCLUSION-DISCUSSION-OUTLOOK

We have performed a redshift tomographic analysis of
the latest SnIa (Pantheon) data in the context of a ΛCDM
model fitting simultaneously the matter density parameter
Ω0m and the parameter M which depends on both the
calibrated absolute magnitudeM and the Hubble parameter
H0. Including only statistical uncertainties of the Pantheon
data, we have found a mild tension ð2 − 3σÞ between the
best fit value of M obtained from low z SnIa ðz ∈
½0.01; 0.2�Þ and the corresponding value obtained from
the full Pantheon dataset. This deviation drops to slightly
more than1σwhen the systematic uncertainties are taken into
account (see the Appendix). If this mild tension is not a
statistical fluctuation it could be either explained as a locally
higher value of H0 corresponding to a local underdensity
with ðδρ0ρ0

; δΩ0

Ω0
Þ ≃ ð−0.10� 0.04;−0.12� 0.02Þ or as a

modified gravity effect leading to a time variation of
Newton’s constant.
In the context of the local underdensity scenario, a

degree of anisotropy is anticipated for M, unless the
observer is located at the center of this underdensity.
Thus we used two methods to search for statistically
significant anisotropy in the Pantheon SnIa data: The
hemisphere comparison (HC) method and the dipole fit
(DF) method. Even though we found no statistically
significant evidence for cosmological anisotropy our analy-
sis revealed the following interesting facts:

(i) Using simulated Pantheon-like data constructed
under the assumption of an underlying ΛCDM
model, we showed that the anisotropic distribution
of the SnIa datapoints in the sky generically favors
the range anisotropy of directions consistent with
the dataset in b ∈ ½−15°;−45°�, l ∈ ½60°; 150°�
(or in the opposite direction b ∈ ½15°; 45°�, l ∈
½240°; 330°�). We constructed a more isotropically
distributed subset of the Pantheon data that appears
to be free of this limitation but less powerful in
detecting overall anisotropy due to reduced number
of datapoints.

(ii) The HC method appears to be more powerful in
detecting a general anisotropy signal than the DF
method since the statistical uncertainties for both the
magnitude and direction of anisotropy appear to be
smaller in the context of this method.

The lack of evidence for statistical anisotropy in the
SnIa data does not favor the local underdensity scenario
as a possible explanation for the reduced value of M
at low z as such anisotropy would be expected in the
context of a nonspherical anisotropy and/or an off-center
observer.
The abnormal variation of M can also be explained in

the context of a modified theory of gravity with an evolving
Newton’s constant at low redshifts. In this context, allowing
for an evolving normalized Newton’s constant μðzÞ, we
found a 2σ deviation of ∼2–3% from the GR predicted
value at low redshifts. Moreover, considering a physically
motivated parametrization for the evolving Newton’s con-
stant that interpolates GR at early and late times [Eq. (4.1)],
we derived the best fit value of the extra parameter ga as
ga ¼ −0.47� 0.36. This value is approximately 1.5σ away
from the GR predicted value (ga ¼ 0), favoring a reduced
Newton’s constant compared to GR. This weak hint is
consistent with the results at low z of other studies that
mildly favor weakening gravity using growth [62,63,65,66]
and weak lensing data [51–54].
Interesting extensions of the present analysis include the

following:
(i) Use of an extended up to date SnIa dataset with more

uniform distribution in the sky to investigate and
further constrain the possible evolution of the
parameter M with redshift and its connection with
a possible cosmic anisotropy.

(ii) Further investigate the connection between an evolv-
ing M and an evolving Newton’s constant in the
context of various models for the mechanism of SnIa
explosion. In particular a reliable estimate of the sign
and value of the power index b that connects the
evolving absolute magnitude M with the effective
Newton’s constant is important for imposing reliable
constraints on modified gravity models from the
possible evolution of SnIa absolute luminosity.

(iii) The use of alternative standard candle probes (e.g., γ
ray bursts) to search for possible similar hints of
variation of H0 and/or Geff.

(iv) The identification of new statistical tests probing for
cosmological anisotropies of SnIa data and the
comparison of their efficiency with the standard
methods used in the present analysis (HC and DF).

(v) The consideration of alternative background expan-
sion cosmologies. It may be possible to absorb the
variation of M at low z in the context of a varying
dark energy equation of state parameter w at low z.
In this context, a varying M at low z may be a hint
for a variation of w. Such variation may also play a
role in resolving the H0 problem [117–119].
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Numerical Analysis Files.—The numerical files for the
reproduction of the figures can be found in [120].
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APPENDIX: CORRECTION WITH SYSTEMATIC UNCERTAINTIES

Including the systematic uncertainties, the best fit parameters indicated by the full dataset areM ¼ 23.809� 0.011 and
Ω0m ¼ 0.299� 0.022. Clearly, the inclusion of systematic uncertainties increases the best fit parameters as well as the 1σ
errors of the parameters [8]. Thus, we construct Fig. 13 which corresponds to Fig. 3 and takes into account the systematic
uncertainties.
Clearly, the oscillating trend that was present in Fig. 3 remains. In the context of a constant underlying M and Ω0m this

large amplitude oscillating behavior remains a highly unlikely event since all three lowest z bins differ by more than 1σ from
their expected values for both M and Ω0m.
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