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The paper studies a new type of dark energy, a scalar field with positive or negative kinetic energy,
generically coupled to a term which is composed by specific contractions of the Riemann tensor. After
presenting the resulting field equations, we have analyzed the physical characteristics of the corresponding
model by implementing the linear stability theory. In the case of an exponential coupling function and
exponential potential energy, we have deduced the phase space characteristics, analyzing the critical points
obtained which can represent specific eras in the evolution of the Universe. The analytical study is showing
that this model can represent a feasible cosmological setup, having various epochs which correspond to
stiff-fluid, matter domination, and dark energy eras, pointing toward the emergence of the accelerated
expansion as a geometrical effect.

DOI: 10.1103/PhysRevD.102.023517

I. INTRODUCTION

The dynamics of the Universe at the large scale organi-
zation have always been a captivating area of study for
physicists in modern times. The evolution at the large scale
structure is mainly described by the general relativity
theory, a theoretical framework capable of characterizing
the gravitational interaction. Although the general relativity
represents a solid element in the foundation of modern
physics, it suffers from a series of inconsistencies and
limitations concerning the juxtaposition with observations
acquired by different astrophysical studies [1–4]. One of
the key issues is related to the existence of the dark energy
problem, a new phenomenon discovered almost 20 years
ago which still possesses an enigmatic question [5–12].
This phenomenon is related to the accelerated expansion of
the Universe and represents an open problem in the modern
cosmology [13]. The most simple theoretical setup which
can explain the accelerated expansion of the Universe is
described by the ΛCDM model [14], a theory which
includes the addition of a cosmological constant to the
Einstein-Hilbert component. In this case, the gravitational
theory has a reduced complexity and cannot explain various
evolutionary aspects [15–17] related to the behavior of the
Universe at large scale, describing inconsistently the dark
sector. It can be considered only as an effective theory
acting more as an approximate framework which needs to
be further revised in order to explain the astrophysical
observations at large and small scales. In the recent years,

many observational studies have shown the inconsistencies
and limitations of the ΛCDM model [18–20].
Another key issue for the ΛCDM model is related to the

cosmic coincidence problem, a specific issue which char-
acterizes the late time evolution of the Universe [19,21–25].
From a theoretical perspective, these issues present serious
inconsistencies of the ΛCDM cosmological model which
needs to be addressed in order to build a more fundamental
theory for the gravitational interaction at large scales.
Moreover, various studies have added new problems and
limitations for the ΛCDM model at small scales [16,18],
opening new viable theoretical directions. In scalar tensor
theories, a possible extension of the Einstein-Hilbert action
includes the addition of one or more scalar fields, mini-
mally or nonminimally coupled to various geometrical
invariants [26]. The viability of the scalar fields in the form
of quintessence [27,28] or phantom dark energy models
[29] has been analyzed, addressing many theoretical and
observational directions in scalar tensor theories of gravi-
tation [30–32].
In the scalar tensor cosmological models of gravity, the

Einsteinian cubic gravity can be regarded as a notable
extension of the general relativity proposed recently by
Bueno and Cano [33]. This theory involves the addition of a
component which includes particular contractions of the
Riemann tensor in the cubic order. The physical properties
of the Einsteinian cubic gravity have been analyzed in the
recent years in various directions of study [34–38]. The
extension of the Einsteinian cubic gravity toward a generic
theory which depends of the specific cubic term has
appeared in Ref. [39], showing the late time evolution of
the equation of state closer to the observational interval.*mihai.marciu@drd.unibuc.ro
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The cosmological solutions based on different black hole
types in the case of Einsteinian cubic gravity and particular
generalizations have been analyzed in [40–48]. On the
other hand, the wormhole solutions for the cubic gravity
case have been analyzed from a theoretical point of view
[49]. Using the same considerations, the relation of the
cubic gravity with the inflationary dynamics has been
addressed in Refs. [50–53]. Then, from a dynamical
perspective, the viability of the generalized cubic gravity
has been studied also by considering the linear stability
theory for exponential and power law types [54]. The case
where a cosmological constant is added to the Einsteinian
cubic gravity has been investigated using the dynamical
system analysis, revealing the phase space properties and
various fundamental aspects [55].
In this paper, we shall investigate the case of scalar fields

with both positive and negative kinetic terms endowed with
potential energy, nonminimally coupled in a generic
manner with a term which contains specific contractions
of the Riemann tensor in the third order [33,39]. The
physical consequences of the nonminimal coupling with
specific cubic contractions of the Riemann tensor will be
discussed by adopting the linear stability theory [26] in the
case where both the coupling function and the potential
energy have an exponential behavior. The main aim of the
investigation is related to the analysis of the phase space
structure and the theoretical viability of such a cosmologi-
cal model in an attempt of explaining the late time
evolution of the Universe at the level of background
dynamics, offering a possible solution to the existence of
the matter epoch and the accelerated expansion era near the
de Sitter regime without fine-tuning.
The plan of the paper is as follows: in Sec. II, we present

the action corresponding to our model and the resulting field
equations, the Klein-Gordon and the modified Friedmann
relations. Then, in Sec. III, we analyze the physical character-
istics of our model by using the linear stabilitymethod, in the
case of an exponential coupling function and potential
energy, discussing theviability of the proposed cosmological
model. Last, we present the summary of our study and the
final concluding remarks in Sec. IV.

II. THE MODEL

In this section, we shall discuss the action and the resulting
field equations for the cosmological model. Before proceed-
ing to the presentation of the action for the cosmological
model, we specify the convention of the Robertson-Walker
metric associated to the FRW background,

ds2 ¼ −dt2 þ a2ðtÞδjudxjdxu: ð1Þ

In this background, we denote with aðtÞ the time-
dependent cosmic scale factor which describes a homo-
geneous and isotropic Universe and the Hubble parameter
H ¼ _a=a. We shall extend the Einstein-Hilbert action by

adding a scalar field which can be canonical ðϵ ¼ þ1Þ or
noncanonical ðϵ ¼ −1Þ, having a positive or negative
kinetic energy, with the associated sign embedded into
the value of the ϵ parameter. The choice of a negative sign
for the kinetic energy is motivated by the viability of the
phantom origin for the dark energy component from an
observational point of view [56]. In the present cosmo-
logical model, the scalar field is endowed with a potential
energy term, having a nonminimal coupling with a term
which contains specific contractions of the Riemann tensor
up to the cubic order. The resulting action which can
describe such a cosmological scenario has the following
form [39]:

S¼ Smþ
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
ϵ

2
gμν∂μϕ∂νϕ−VðϕÞþfðϕÞP

�
;

ð2Þ

where [33]

P ¼ β1Rμ
ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ β2R

ρσ
μνR

γδ
ρσR

μν
γδ

þ β3RσγRμνρσRμνρ
γ þ β4RRμνρσRμνρσ þ β5RμνρσRμρRνσ

þ β6Rν
μR

ρ
νR

μ
ρ þ β7RμνRμνRþ β8R3: ð3Þ

Next, consider the following interrelations between various
parameters associated to the cubic term [33,39]:

β7 ¼
1

12
½3β1 − 24β2 − 16β3 − 48β4 − 5β5 − 9β6�; ð4Þ

β8 ¼
1

72
½−6β1 þ 36β2 þ 22β3 þ 64β4 þ 5β5 þ 9β6�; ð5Þ

β6 ¼ 4β2 þ 2β3 þ 8β4 þ β5; ð6Þ

β̄ ¼ ð−β1 þ 4β2 þ 2β3 þ 8β4Þ: ð7Þ

We can show that for the current cosmological background
the cubic component represents a second order term, with
the following expression:

P ¼ 6β̄H4ð2H2 þ 3 _HÞ: ð8Þ

For the action proposed in the relation (2), the dynamics
of the corresponding gravitational sector [39] are described
by the following modified Friedmann relations:

3H2 ¼ ρm þ ρϕ; ð9Þ

3H2 þ 2 _H ¼ −pm − pϕ; ð10Þ

where
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ρϕ ¼ 1

2
ϵ _ϕ2 þ VðϕÞ þ 6βfðϕÞH6 − 18βH5

dfðϕÞ
dϕ

_ϕ; ð11Þ

pϕ ¼ 1

2
ϵ _ϕ2 − VðϕÞ − 6βfðϕÞH6 − 12βfðϕÞH4 _H

þ 12βH5
dfðϕÞ
dϕ

_ϕþ 24βH3
dfðϕÞ
dϕ

_H _ϕ

þ 6βH4 _ϕ2 d
2fðϕÞ
dϕ2

þ 6βH4
dfðϕÞ
dϕ

ϕ̈: ð12Þ

We can further define the equation of state for the scalar
field

wϕ ¼ pϕ

ρϕ
; ð13Þ

and the effective equation of state for the scalar field model
nonminimally coupled to the specific cubic contractions of
the Riemann tensor

weff ¼
pm þ pϕ

ρm þ ρϕ
¼ −1 −

2

3

_H
H2

: ð14Þ

In this case, the Klein-Gordon relation can be written as

ϵðϕ̈þ3H _ϕÞþdVðϕÞ
dϕ

−6βH4ð2H2þ3 _HÞdfðϕÞ
dϕ

¼ 0: ð15Þ

Due to the fact that the action does not contain any terms
where the geometry is coupled with the energy momentum
tensor, we can show that the dark energy component is
characterized by a standard continuity equation of the
following type:

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ 0: ð16Þ

For the matter component described by the Sm term in
the total action (2), we assume the case of a perfect fluid
described by a barotropic equation of state (pm ¼ wmρm),
leading to the continuity equation

_ρm þ 3Hðρm þ pmÞ ¼ 0: ð17Þ
To summarize, the basic equations of motion which are

important for the present cosmological setup are the
following: the Klein-Gordon equation (15) and the modi-
fied Friedmann relations (9) and (10) with the energy
density and pressure presented in (11) and (12).
Last, we can define in the usual manner the density

parameters for the two constituents, the matter component

Ωm ¼ ρm
3H2

; ð18Þ

and the dark energy sector as the scalar field nonminimally
coupled to cubic contractions of the Riemann tensor

Ωϕ ¼ ρϕ
3H2

; ð19Þ

obtaining the ordinary constraint

Ωm þΩϕ ¼ 1: ð20Þ

III. THE PHASE SPACE AND THE
CORRESPONDING PHYSICAL ASPECTS

In this section, we start with the transformation of the
equations corresponding to the cosmological model from
the cosmic time t to N ¼ logðaÞ, linearizing the dynamical
equations. In what follows, we introduce the specific
variables

x ¼
_ϕffiffiffi
3

p
H
; ð21Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

; ð22Þ

z ¼ 2βfðϕÞH4; ð23Þ

s ¼ Ωm ¼ ρm
3H2

; ð24Þ

rewriting the first Friedmann equation into the following
relation:

1 ¼ sþ 1

2
ϵx2 þ y2 þ z − 3

ffiffiffi
3

p
αzx: ð25Þ

The choice of the auxiliary variables has been done in the
usual manner [26], by analyzing and recasting the first
Friedmann equation as an autonomous constraint relation.
For the Klein-Gordon equation, we can write

ϵϕ̈þ ϵ3
ffiffiffi
3

p
H2x − λ3H2y2 − 6H2αz − 9 _Hαz ¼ 0: ð26Þ

In what follows, we shall consider the case of an
exponential coupling and potential energy, described by

VðϕÞ ¼ V0e−λϕ; ð27Þ

fðϕÞ ¼ f0eαϕ; ð28Þ

with V0, f0, α, λ constant parameters, compatible to a
specific autonomous system of ordinary differential equa-
tions. The preference of the coupling function and potential
energy represents an important aspect in scalar tensor
theories since the obtained results are sensitive to the
choice of the corresponding dependencies. We note that
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in principle one can choose a different coupling function
and potential energy, leading to specific results.
The second Friedmann relation that characterizes the

dynamical acceleration of the model has the following
formula:

−3H2 − 2 _H ¼ swm3H2 þ 1

2
ϵx2H23 − 3H2y2 − 3H2z

− 6z _H þ 12

2
αzxH2

ffiffiffi
3

p
þ 12αzx

ffiffiffi
3

p
_H

þ 9x2H2α2zþ 3αzϕ̈: ð29Þ

Then, we can write the explicit dynamical system where
we denote with 0 the differentiation with respect to N,
considering N ¼ logðaÞ,

x0 ¼ dx
dN

¼ 1ffiffiffi
3

p ϕ̈

H2
− x

_H
H2

; ð30Þ

y0 ¼ dy
dN

¼ −
ffiffiffi
3

p

2
λyx − y

_H
H2

; ð31Þ

z0 ¼ dz
dN

¼ αzx
ffiffiffi
3

p
þ 4z

_H
H2

: ð32Þ

At this point, we can note that the dynamical system
associated to the present cosmological model is completely
autonomous and can be characterized by the specific
method which uses the linear stability theory. Notice also
that in our case the system becomes a three-dimensional
one by using the Friedmann constraint expressed in
Eq. (25). With all of these considerations, our dynamical
system reduces in the final form to

x0 ¼ 1

12zϵð2 ffiffiffi
3

p
αx − 1Þ þ 54α2z2 þ 4ϵ

· ð−3x3ϵ2wm þ 27
ffiffiffi
3

p
αx2zϵwm − 6xy2ϵwm − 162α2xz2wm − 6xzϵwm þ 6xϵwm

þ 18
ffiffiffi
3

p
αy2zwm þ 18

ffiffiffi
3

p
αz2wm − 18

ffiffiffi
3

p
αzwm þ 18α2x3zϵþ 3x3ϵ2 − 54

ffiffiffi
3

p
α3x2z2 − 87

ffiffiffi
3

p
αx2zϵþ 90αλxy2z

− 6xy2ϵþ 72α2xz2 þ 30xzϵ − 6xϵþ 4
ffiffiffi
3

p
λy2 þ 18

ffiffiffi
3

p
αy2z − 12

ffiffiffi
3

p
λy2z − 6

ffiffiffi
3

p
αz2 − 10

ffiffiffi
3

p
αzÞ; ð33Þ

y0 ¼ 1

12zϵð2 ffiffiffi
3

p
αx − 1Þ þ 54α2z2 þ 4ϵ

· ð−3x2yϵ2wm þ 18
ffiffiffi
3

p
αxyzϵwm − 6y3ϵwm − 6yzϵwm þ 6yϵwm þ 18α2x2yzϵ

− 36αλx2yzϵþ 3x2yϵ2 − 27
ffiffiffi
3

p
α2λxyz2 − 6

ffiffiffi
3

p
αxyzϵþ 6

ffiffiffi
3

p
λxyzϵ − 2

ffiffiffi
3

p
λxyϵþ 18αλy3z − 6y3ϵþ 36α2yz2

− 6yzϵþ 6yϵÞ; ð34Þ

z0 ¼ 1

6zϵð2 ffiffiffi
3

p
αx − 1Þ þ 27α2z2 þ 2ϵ

· ð6x2zϵ2wm − 36
ffiffiffi
3

p
αxz2ϵwm þ 12y2zϵwm þ 12z2ϵwm − 12zϵwm − 6x2zϵ2

þ 27
ffiffiffi
3

p
α3xz3 þ 6

ffiffiffi
3

p
αxz2ϵþ 2

ffiffiffi
3

p
αxzϵ − 36αλy2z2 þ 12y2zϵ − 72α2z3 þ 12z2ϵ − 12zϵÞ: ð35Þ

Next, we also add the relation for the effective equation of state,

weff ¼
x2ϵð−ϵwm þ 6α2zþ ϵÞ þ 2

ffiffiffi
3

p
αxzϵð3wm − 7Þ − 2y2ðϵwm − 3αλzþ ϵÞ − 2zϵwm þ 2ϵwm − 15α2z2 þ 4zϵ

6zϵð2 ffiffiffi
3

p
αx − 1Þ þ 27α2z2 þ 2ϵ

: ð36Þ

In Table I, we show the critical points attached to the
present cosmological scenario which includes the addition
to the Einstein Hilbert action of a scalar field (with positive
or negative kinetic energy), nonminimally coupled to a
specific invariant which is embedding various cubic con-
tractions of the Riemann tensor. Notice that the exact
relations for the eigenvalues in the case of complex
cosmological solutions are presented as a discussion in
the text. In the next paragraphs, we shall describe each
critical point in detail, analyzing the possible viability of
the corresponding cosmological solutions from a physical
and dynamical point of view.

The first critical point P1 represents the origin of the
phase space, a matter dominated epoch (Ωm ¼ 1), without
any influence from any kinetic/potential features of the
scalar field, or nonminimal coupling effects. At this point,
the effective equation of state describes a matter content
(weff ¼ wm). If we take into account a dust scenario where
the matter component act as a cold gas without pressure
(wm ¼ 0), then the solution is always saddle from a
dynamical point of view.
The second critical point P2 represents a cosmological

solution characterized by physical effects from the potential
energy and the nonminimal coupling component. The

MIHAI MARCIU PHYS. REV. D 102, 023517 (2020)

023517-4



location in the phase space structure is influenced by the α
and λ parameters, embedding viable effects from the
strength of the cubic coupling and the potential energy.
For this solution, the scalar field mimics a de Sitter regime,
behaving as a cosmological constant. From a dynamical
perspective, the explicit form of the resulting eigenvalues is
too cumbersome to be written in the paper, the analysis
continuing with the presentation of some figures in some
specific cases. At this point, we also have to take into
account the existence conditions related to a nonzero
denominator and the fact that the potential energy has to
be positive, requiring y ∈ R≥0. For the P2 cosmological
solution, we have presented in Figs. 1 and 2 some possible
intervals for the variation of λ and α parameters which
correspond to a stable scenario in the case of quintessence
and phantom instances. The numerical evolution near the
P2 cosmological solution is represented in Figs. 3 and 4 in
the stable scenario for specific initial conditions and values
of the corresponding parameters.

The next critical point, the P3 solution represents a
scaling solution where the kinetic energy and the cubic
coupling are affecting the physical features, the location in
the phase space structure and the dynamical features. In the
case where the matter component is a dust (wm ¼ 0), the
resulting eigenvalues have a simple expression as follows:

�
−

75α3ϵ

100α3ϵ− 2016αϵ2
þ 1512αϵ2

100α3ϵ− 2016αϵ2

−
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10625α6ϵ2 − 490800α4ϵ3þ 5576256α2ϵ4

p

100α3ϵ− 2016αϵ2
;

−
75α3ϵ

100α3ϵ− 2016αϵ2
þ 1512αϵ2

100α3ϵ− 2016αϵ2

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10625α6ϵ2 − 490800α4ϵ3þ 5576256α2ϵ4

p

100α3ϵ− 2016αϵ2
;
3

2
−
3λ

α

�
:

ð37Þ

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

FIG. 1. The figure describes a possible interval for the P2

critical point where the cosmological solution is physically viable
and stable (ϵ ¼ þ1, wm ¼ 0, quintessence case).

TABLE I. The critical points in the phase space and some of the physical characteristics.

Critical point x y z Ωm weff Eigenvalues

P1 0 0 0 1 wm ½3
2
ðwm − 1Þ;−6ðwm þ 1Þ; 3

2
ðwm þ 1Þ�

P2 0
ffiffi
2

p ffiffi
α

pffiffiffiffiffiffiffiffi
2α−λ

p λ
λ−2α 0 −1 See discussion

P3 2
ffiffi
3

p ðwmþ1Þ
α

0 6ϵðw2
m−1Þ

α2ð9wmþ5Þ
6ϵð9w3

m−6w2
m−37wm−22Þ

α2ð9wmþ5Þ þ 1 wm See discussion

P4 −
ffiffi
2

pffiffi
ϵ

p 0 0 0 1 ½−
ffiffi
6

p
αffiffi
ϵ

p − 12; 3 − 3wm;
ffiffi
3
2

p
λffiffi
ϵ

p þ 3�
P5

ffiffi
2

pffiffi
ϵ

p 0 0 0 1 ½
ffiffi
6

p
αffiffi
ϵ

p − 12; 3 − 3wm; 3 −
ffiffi
3
2

p
λffiffi
ϵ

p �
P6

ffiffi
3

p ðwmþ1Þ
λ −

ffiffi
3
2

p ffiffiffiffiffiffiffiffiffiffi
ϵ−ϵw2

m

p
λ

0 1 − 3ðwmþ1Þϵ
λ2

wm See discussion

P7

ffiffi
3

p ðwmþ1Þ
λ

ffiffi
3
2

p ffiffiffiffiffiffiffiffiffiffi
ϵ−ϵw2

m

p
λ

0 1 − 3ϵðwmþ1Þ
λ2

wm See discussion

P8
λffiffi
3

p
ϵ

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6ϵ

q
0 0 λ2

3ϵ − 1 ½αλϵ − 2λ2

ϵ ; λ
2

2ϵ − 3;−3wm þ λ2

ϵ − 3�

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

FIG. 2. The figure displays a region for the P2 critical point
where the cosmological solution is physically viable and stable
(ϵ ¼ −1, wm ¼ 0, phantom case).
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If we further consider the dust type for the matter
component (wm ¼ 0) and the quintessence case (ϵ ¼ þ1),
then the matter density parameter is equal to

Ωm ¼ 1 −
132

5α2
; ð38Þ

respecting the viability conditions, i.e., 0≤Ωm¼1−Ωϕ≤1.
For the P3 critical point, we have represented in Fig. 5
possible intervals for the λ and α parameters where the
solution is physically viable, describing a saddle scenario
from a dynamical perspective.
Further, if we take into account the dust type for the

matter component (wm¼0) and the phantom case (ϵ¼−1),
then the matter density parameter is equal to

Ωm ¼ 132

5α2
þ 1; ð39Þ

describing a solution which is not physically viable, not
meeting the viability conditions presented above.
Next, the P4 and P5 critical points are kinetic solutions

which are describing an era dominated by the kinetic
energy of the scalar field, simulating a stiff-fluid scenario.
This solution is physically viable only in the quintessence
case, where ϵ ¼ þ1. We should note that in the dust case
(wm ¼ 0) one of the eigenvalues is always positive. Hence,
from a dynamical point of view, this cosmological solution
can be either saddle or unstable, depending on the sign and
values of the λ and α parameters, representing a particular
epoch which has a limited interest in the analysis due to the
non-negativity of the total effective equation of state.
The P6 and P7 critical points are characterized by the

scalar field’s kinetic and potential energy terms, simulating
a matter dominated epoch as a background physical effect.
The location in the phase space structure is affected by the

0.25 0.20 0.15 0.10 0.05 0.00
z

0.9

1.0

1.1

1.2

1.3

y

FIG. 4. The numerical evolution toward the P2 solution
(ϵ ¼ þ1, quintessence case, α ¼ −1.5, wm ¼ 0, λ ¼ −0.5).

0.05 0.05 0.10
x

1.05

1.10

1.15

1.20

y

FIG. 3. The figure shows a numerical evolution toward
the P2 critical point (ϵ ¼ þ1, quintessence case, α ¼ −1.5,
λ ¼ −0.5, wm ¼ 0).

5.140 5.135 5.130 5.125 5.120
10

5

0

5

10

5.120 5.125 5.130 5.135 5.140
10

5

0

5

10

FIG. 5. The figure is showing specific intervals for the P3 critical point where the cosmological solution is physically viable and saddle
(ϵ ¼ þ1, quintessence case).
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sign of the kinetic energy, the strength of the potential,
and the barotropic parameter wm which encodes effects
from the pressure of the matter component. As can be
noted, the P6 solution is physically viable if we take into

consideration that the λ parameter is negative, while for
the P7 the λ constant has to be positive. For the P6

and P7 cosmological solutions, we obtained the following
eigenvalues:

�
3ðα − 2λÞðwm þ 1Þ

λ
;
3

4
ðwm − 1Þ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ10ð−ϵ2Þðwm − 1Þð24ϵðwm þ 1Þ2 − λ2ð9wm þ 7ÞÞ

p
4λ6ϵ

;

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ10ð−ϵ2Þðwm − 1Þð24ϵðwm þ 1Þ2 − λ2ð9wm þ 7ÞÞ

p
4λ6ϵ

þ 3

4
ðwm − 1Þ

�
: ð40Þ

In what follows, we shall present the physical and
dynamical analysis for the P7 solution which implies a
positive sign for the λ parameter. If we set the cold scenario
(wm ¼ 0), then the y part of the solution depends on the
square root of the ϵ parameters, viable fromaphysical point of
view only in the quintessence case (ϵ ¼ þ1). In this case, the
expressions for the eigenvalues acquire a more simpler form,

�
3α

λ
−6;−

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ10−7λ12

p

4λ6
−
3

4
;
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ10−7λ12

p

4λ6
−
3

4

�
; ð41Þ

with the matter density parameter

s ¼ 1 −
3

λ2
: ð42Þ

A possible interval for the variation of the α and λ where
this solution is viable and stable spiral (with imaginary
parts in the eigenvalues) is presented in Fig. 6. If we take
into account a particular case where the P7 critical point is
purely stable (all the eigenvalues are real and negative),
then we obtain the following conditions for the λ and α
parameters:

�
α ≤ 2

ffiffiffi
3

p ∧ ffiffiffi
3

p
< λ ≤ 2

ffiffiffi
6

7

r �

∨
�
2

ffiffiffi
3

p
< α < 4

ffiffiffi
6

7

r
∧ α

2
< λ ≤ 2

ffiffiffi
6

7

r �
: ð43Þ

The last critical point, denoted as P8, represents a scalar
field dominated solution described by the kinetic and
potential energies of the scalar field. The location in the
phase space structure is affected mainly by the sign of the
kinetic energy and the λ parameter. In this case, for a
canonical scalar field (ϵ ¼ þ1), the effective equation of
state can correspond to a quintessence regime. However,
for negative ϵ, the effective equation of state becomes
superaccelerated, associated to a phantom regime. For this
solution, the expressions of the corresponding eigenvalues
are simple as presented in Table I. We have displayed in
Fig. 7 a three-dimensional region plot where the solution is
viable and stable, describing an accelerated expansion era.

40 20 0 20 40
20

10

0

10

20

FIG. 6. The figure is showing specific intervals for the P7

critical point where the cosmological solution is physically viable
and stable spiral (ϵ ¼ þ1, quintessence case, wm ¼ 0).

FIG. 7. The figure is showing specific intervals for the P8

critical point where the cosmological solution is physically viable
and stable, describing an accelerated epoch (ϵ ¼ þ1, quintes-
sence case).
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Last, we note that the last three cosmological solutions P6,
P7, P8 are not affected by the specific cubic couplings and
might appear [26] in the phase space structure also in the
minimal coupling case.

IV. CONCLUSIONS

In this paper, we have further extended the Einstein-
Hilbert action by adding a scalar field nonminimally
coupled in a generic manner to specific contractions of
the Riemann tensor up to the cubic order. Taking into
account specific interrelations between various constants
for the cubic term, the resulting modified Friedmann
relations associated to the gravitational sector become
second order equations. The analysis presented here have
taken into account the case of a positive and negative
kinetic term, a scalar field model endowed with a potential
energy of the exponential type. After deducing the Klein-
Gordon equations and the modified Friedmann relations in
the case of the Robertson-Walker metric, the analysis
continues with the usage of linear stability theory in the
case of an exponential coupling function associated to the
term which contains the cubic contractions of the Riemann
tensor. In this case, we have introduced the phase space
variables, approximating the dynamics for the cosmologi-
cal model as an autonomous system of differential equa-
tions. Further, we have determined the associated critical
points which can represent different stages in the evolution
of the Universe, linearizing the equations for the dynamical
system around the cosmological solutions.
In the case of scalar fields (quintessence and phantom,

respectively), nonminimally coupled to a component based
on specific contractions of the Riemann tensor up to the
cubic order, we have observed that the phase space
structure is rich in dynamical features, containing eight
critical points which are physically viable. The analysis
showed the existence of four classes of critical points,
offering possible trajectories associated to the evolution of
the Universe as it is considered in the modern cosmological
theories from an observational point of view.
The first class of critical points represents a dynamical

solution where the effective equation of state mimics a stiff-
fluid scenario, an epoch which is not of great interest in the
modern cosmology since it cannot explain the matter
dominated epoch and the accelerated expansion near the
de Sitter regime at late times without fine-tuning the initial
conditions in the complexity of the phase space structure.
For this solution, we note the domination of the dark energy
component, en epoch characterized and driven mainly by
the kinetic term, viable only for the canonical case. From a
dynamical point of view, this solution cannot be stable, it
exists only in the quintessence scenario, denoting a saddle
or unstable behavior.
The second class of cosmological solutions is repre-

sented by different critical points which can explain the
matter dominated epoch in the history of our Universe.

In the analysis, the origin of the phase space represents a
matter dominated epoch characterized by the domination of
the matter component, an era which is always saddle if we
take into account that the pressure of the matter is absent.
For this critical point, we note that the scalar field is not
driven the dynamics, having no manifestation from the
kinetic and potential energy, or the coupling term. In our
analysis, we have observed that the structure of the phase
space consists of three more cosmological solutions where
the effective equation of state mimics a matter dominated
epoch, critical points which are driven by various compo-
nents of the scalar field nonminimally coupled to specific
contractions of the Riemann tensor up to third order. For
these critical points, we note that the scalar field is driven
the dynamical features through the kinetic and the potential
energy terms, or the exponential coupling component,
mimicking a matter dominated epoch which can be stable
in certain scenarios. In these cases, we have identified
possible constraints for different specific parameters of our
model from a dynamical point of view, leading to stable
trajectories in the phase space.
A third class of cosmological solutions is represented by

the de Sitter epoch where the effective equation of state
corresponds to the cosmological constant, explaining the
late time evolution of our Universe near the phantom divide
line boundary. This cosmological scenario is affected
mainly by the potential energy and the exponential cou-
pling function, without any influence from the kinetic
energy term, an era where the scalar field can be regarded as
frozen. In this case, the dark energy component dominates
in terms of density parameters and can lead to a stable or
saddle comportment in various specific cases which have
been analyzed in the attached figures. We note that the sign
of the kinetic term associated to the scalar field is affecting
mainly the form of the specific eigenvalues and the
corresponding dynamics.
The last class of critical points is represented by a

cosmological solution where we have obtained the accel-
erated expansion as a possible physical effect. The analysis
showed the existence of one critical point which belongs to
this class, a solution characterized by the kinetic and
potential energy terms, without any influence from the
coupling function in the location of the phase space
structure. In the case of a negative kinetic energy, the
effective equation of state corresponds to a phantom origin,
while for the canonical case it can correspond to a
quintessence regime. For this solution, we have identified
proper regions associated to various parameters of our
model which can lead to a stable regime capable of
explaining the evolution toward the accelerated expansion
as a main physical effect, confirming the viability of the
present cosmological scenario.
The critical points which are particular for the present

cosmological setup which takes into account possible
couplings between the specific cubic contractions of the
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Riemann tensor and the scalar field are the P2 and P3

cosmological solutions. The P2 cosmological solution is
describing a viable de Siter epoch which can be dynami-
cally stable, depending on the sign of the kinetic energy for
the scalar field. For this solution, we have also presented
possible trajectories in the phase space structure, confirm-
ing the analytical results. The second critical point, the P3

solution presents a scaling behavior where the scalar field
mimics a matter epoch, appearing as a saddle epoch from a
dynamical point of view.

The richness of the phase space structure in terms of
physical features unfolded within this study is asserting the
viability of this cosmological scenario which can explain
the accelerated expansion and the existence of the matter
dominated epoch, a feasible model from a dynamical point
of view.
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