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The baryon acoustic oscillation (BAO) scale acts as a standard ruler for measuring cosmological
distances and has therefore emerged as a leading probe of cosmic expansion history. However, any physical
effect that alters the length of the ruler can lead to a bias in our determination of distance and expansion rate.
One of these physical effects is the streaming velocity, the relative velocity between baryons and dark
matter in the early Universe, which couples to the BAO scale due to their common origin in acoustic waves
at recombination. In this work, we investigate the impact of streaming velocity on the BAO feature of
the Lyman-α forest auto-power spectrum, one of the main tracers being used by the recently commissioned
Dark Energy Spectroscopic Instrument (DESI). To do this, we develop a perturbative model for Lyman-α
flux fluctuations which is complete to second order for a certain set of fields, and applicable to any redshift-
space tracer of structure since it is based only on symmetry considerations. We find that there are 8 biasing
coefficients through second order. We find streaming velocity-induced shifts in the BAO scale of
0.081%–0.149% (transverse direction) and 0.053%–0.058% (radial direction), depending on the model for
the biasing coefficients used. These are smaller than, but not negligible compared to, the DESI Lyman-α
BAO error budget, which is 0.46% on the overall scale. The sensitivity of these results to our choice of bias
parameters underscores the need for future work to measure the higher-order biasing coefficients from
simulations, especially for future experiments beyond DESI.
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I. INTRODUCTION

The standard ΛCDM model of cosmology presents a
dynamical picture of the Universe dominated by two myster-
ious components: cold dark matter and dark energy. Cold
dark matter (hereafter dark matter) forms the building blocks
of large-scale structure and comprises 84% of the total matter
content [1]; its dynamics occur atop an expanding spacetime
background. Just before the turn of the millennium, two
independent research groups [2,3] discovered that spacetime
expansion has accelerated over the last few billion years.
This acceleration has been attributed to dark energy, a
constant energy density component of the Universe fre-
quently referred to as the cosmological constant Λ.
Baryon acoustic oscillations (BAOs) are one probe for

determining the expansion history of the Universe (see [4]
for a review of this and other probes). During matter-
radiation equality the Universe existed as an ionized plasma
of cosmic microwave background photons, baryons, and

electrons coupled via Thomson scattering and Coulomb
interactions, with primordial dark matter inhomogeneities
seeded throughout. These dark matter perturbations had an
energy density roughly three times that of the photon-
baryon fluid and thus governed its gravitational dynamics
[5]. Gravity caused the fluid to infall toward dark matter
overdensities until a critical point was reached and
increased pressure pushed the fluid outward. Cycles of
compression and rarefaction generating standing sound
waves called BAOs continued as the Universe expanded.
These could travel a comoving distance of rd ¼ 147.09�
0.26 Mpc before decoupling [1], carrying along an excess
of baryons and depositing them in a spherical shell of
radius rd around the overdensities. Consequently all tracers
of the matter density field show a distinct signature in their
correlation functions and power spectra at a scale set by rd.
The BAO feature thus acts as a standard ruler we can use at
a variety of known redshifts to determine the angular
diameter distance DAðzÞ and Hubble parameter HðzÞ.
A preponderance of the literature (both theoretical and

observational in nature) which focused on using BAOs to*givans.2@osu.edu
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investigate dark energy addressed its applicability to
galaxies [6–18]. To search for the BAO signature at higher
redshifts a different tracer is required. In the post-reioniza-
tion Universe at redshifts z≲ 6, we can use fluctuations in
Lyman-α forest flux to probe the intergalactic medium
(IGM) [19–22]. Following recent detections of the BAO
feature in Lyman-α forest autocorrelations and in Lyman-α
forest-quasar cross-correlations [23–28], as measured by
the Baryon Oscillation Spectroscopic Survey (BOSS) and
extended BOSS (eBOSS), the Lyman-α forest now stands
alongside other tools of precision cosmology [29]. The
Dark Energy Spectroscopic Instrument (DESI) will allow
us to determine shifts in the BAO peak position down to
0.46% precision when data from all redshift bins are
combined [30]. With such a fine measurement expected,
even small systematics which can alter the BAO scale
should be properly understood.
Oscillations in the early Universe which lead to the BAO

feature also give baryons a root-mean-square velocity of
33 km=s, coherent over the Silk damping scale [31] of
several comoving Mpc, relative to dark matter at decou-
pling. This “streaming velocity” turns out to be supersonic
since the sound speed in neutral hydrogen at decoupling is
6 km=s [32]. Streaming velocity directly affects small-scale
structure ð≲few × 106 M⊙Þ [33] by setting the scale on
which baryons become trapped in dark matter potential
wells and changing the abundance of (and gas fraction
within) early minihalos [34], but feedback processes during
reionization could impact subsequent evolution of more
massive galaxies [35]. If streaming velocity effects on early
baryonic structure can leave an imprint on low-redshift
tracers of the matter density field, then the BAO scale
measured at low redshifts could be shifted [29]. Previous
works based on perturbation theory found that the BAO
peak shifts to smaller (larger) physical scales when the
streaming velocity bias bv > 0 (bv < 0) [33,36–38].
The purpose of this work is to quantify the streaming

velocity-induced BAO peak shift measured in the Lyman-α
forest auto-power spectrum. This is the follow-up inves-
tigation to [29] in which the author used a base power
spectrum model from [39] but included only the dominant
term arising from streaming velocity bias, namely, the
advection term. Our paper presents and accounts for many
additional streaming velocity contributions, up to one-loop
in perturbation theory, to the Lyman-α forest auto-power
spectrum in redshift space. We accomplish this by intro-
ducing a density contrast expansion applicable to any
redshift-space tracer, including all nonstreaming velocity
terms with total matter density, tidal fields, and total
velocity divergence fields to second order [see Eqs. (B2)
and (B3)].
This paper is organized as follows: Section II reviews the

basics of cosmological perturbation theory, and then
presents bias models used for galaxies and the Lyman-α
forest. In Sec. III, we work through the more familiar case

of calculating the galaxy power spectrum in redshift space,
presenting terms arising from streaming velocity that were
shown previously in [40].1 In Sec. IV, we calculate the
Lyman-α forest power spectrum, including streaming
velocity contributions not previously noted in the literature.
In Sec. V, we demonstrate how to rewrite the galaxy density
contrast in a form that matches the generalized tracer
density contrast. Here we also provide the corresponding
mapping from generalized bias coefficients to those for
galaxies. Section VI is where we outline our BAO model-
fitting procedure and calculate the peak shift caused by a
nonzero streaming velocity bias. In Sec. VII we summarize
our findings and discuss their relevancy to current and
future BAO surveys.

II. PRINCIPLES AND FORMALISM

We begin by introducing the general principles behind
cosmological perturbation theory in Sec. II A. This pro-
vides the basis for our galaxy and Lyman-α forest biasing
models in Sec. II B and Sec. II C, respectively.

A. Perturbation theory basics

The underpinnings of cosmological perturbation theory
lie in the physics of the matter field. We assume this field
consists exclusively of collisionless cold dark matter
particles with such an enormous density that it can be
treated as smooth. These particles obey the Vlasov equation
for their phase space distribution function. At sufficiently
large scales, the density contrast, peculiar velocity, and
cosmological gravitational potential are small perturbations
to the local cosmic density, particle velocity, and
Newtonian potential, respectively. We can therefore line-
arize the Poisson, continuity, and Euler equations to solve
for the evolution of the density and velocity divergence
fields [41].
Nonlinear perturbation theory is built on the assumption

that we can find higher order solutions to the density
contrast δ (i.e., the deviation of a region from the mean
density of the Universe) and peculiar velocity divergence
θ ¼ ∇ · v, by expanding δ and θ about their linear solutions.
Here ∇ is the comoving derivative operator. The full
velocity field is determined by θ as long as the vorticity
∇ × v remains zero, which is guaranteed for CDM with
gravitational forces only and in the perturbative limit (no
stream crossing). The full fields can be written as

δðrÞ ¼
X∞
n¼1

δðnÞðrÞ; θðrÞ ¼
X∞
n¼1

θðnÞðrÞ; ð1Þ

where δð1Þ (i.e., δlin) and θð1Þ are linear in the initial density
contrast, δð2Þ and θð2Þ are quadratic in the initial density

1Appendix A demonstrates the equality between our power
spectrum terms and theirs.
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contrast, and so on [41]. Our convention is that the absence
of a subscript implies that the matter field itself, as opposed
to a particular tracer, is being referenced.
To perform calculations in Secs. III and IV we will need

3D Fourier space representations of different configuration
space fields. Our Fourier transform convention is

f̃ðkÞ ¼
Z

d3re−ik·rfðrÞ ↔ fðrÞ ¼
Z

d3k
ð2πÞ3 e

ik·rf̃ðkÞ:

ð2Þ

Additionally we will need the convolution of two functions
fðkÞ and gðkÞ. Defining k2 ≡ k − k1 allows us to write
the convolution as

ðf � gÞðkÞ ¼
Z

d3k1

ð2πÞ3 fðk1Þgðk2Þ: ð3Þ

Expressed in Fourier space, the fields in the summations of
Eq. (1) are

δ̃ðnÞðkÞ ¼
Z

d3k1…d3kn

ð2πÞ3ðn−1Þ δð3ÞD ðk − k1…nÞ

× Fnðk1;…;knÞδ̃ð1Þðk1Þ…δ̃ð1ÞðknÞ ð4Þ

and

θ̃ðnÞðkÞ ¼ −aH
Z

d3k1…d3kn

ð2πÞ3ðn−1Þ δð3ÞD ðk − k1…nÞ

×Gnðk1;…;knÞδ̃ð1Þðk1Þ…δ̃ð1ÞðknÞ; ð5Þ

where k1…n ¼ k1 þ � � � þ kn, and Fn and Gn are kernels
built from mode coupling functions in such a way that
F1 ¼ G1 ¼ 1. Note that these equations are slightly modi-
fied from their forms in [41]. With these definitions
θð1Þ ¼ −aHδð1Þ, which differs from the more common
convention where θ and δ are constructed to be equal at
first order. The kernels we will use explicitly are

S2ðk1;k2Þ≡ μ212 −
1

3
;

F2ðk1;k2Þ ¼
5

7
þ 1

2
μ12

�
k1
k2

þ k2
k1

�
þ 2

7
μ212; and

G2ðk1;k2Þ ¼
3

7
þ 1

2
μ12

�
k1
k2

þ k2
k1

�
þ 4

7
μ212; ð6Þ

where μ12 ¼ k̂1 · k̂2. S2 is a kernel that arises when
working with tidal fields.

B. Galaxy biasing model

We cannot directly probe δ or θ since the majority of
matter responsible for the dynamics of these fields is dark

matter. To overcome this issue we use nonlinear biasing
[42] in which some luminous cosmological tracer is written
as an expansion of terms all dependent on δ, where each
term in the expansion comes with an unknown bias
coefficient.
Consider what terms can be present in the expansion of

δgðrÞ. Nonlinear galaxy biasing assumes galaxy formation
is an exclusively local phenomenon, with gravity being the
only long-range physics at play. At distances large com-
pared to galaxy formation scales, the galaxy density con-
trast should depend only on the matter density field, the
tidal field, the local streaming velocity, and their respective
histories. The traceless-symmetric tidal tensor is given by

sijðrÞ ¼
�
∇i∇j∇−2 −

1

3
δij

�
δðrÞ: ð7Þ

If galaxy formation is local and depends only on gravita-
tional clustering, then the biasing model will be based on δ,
sij, and (at higher orders) other combinations of the density
and velocity fields. If galaxy formation also remembers the
streaming velocity, we must include streaming velocity
terms. The streaming velocity vbc ≡ vb − vc is normalized
to be

vsðrÞ ¼
vbcðr; aÞ

σbc
; ð8Þ

where σbc is the root-mean-square value of vbc [33,38].
Density contrast is a scalar under rotations in real space.

This implies that the tidal tensor and streaming velocity
fields may only enter the expansion in combinations that
make each term a scalar. Our goal in later sections will be to
calculate streaming velocity corrections, ΔP, to a base
power spectrum. Streaming velocity is a second-order con-
tribution (at lowest order) to the density contrast. Our
correlations will be of two types: (i) between second-order
streaming velocity terms and second-order nonstreaming
velocity terms, and (ii) between third-order streaming
velocity terms and first-order nonstreaming velocity terms.
With these restrictions on order of perturbation, we build
the galaxy density contrast

δgðrÞ ¼ b1δðrÞ þ
b2
2
½δ2ðrÞ − hδ2i� þ bs

2
½s2ðrÞ − hs2i� þ � � �

þ bv½v2sðxÞ − 1� þ b1vδðrÞ½v2sðxÞ − 1�
þ bsvsijðrÞvs;iðxÞvs;jðxÞ þ � � � ; ð9Þ

where r is the Eulerian position and x is the Lagrangian
position. At a given conformal time η the two coordinates
are related by rðx; ηÞ ¼ xþ Ψðx; ηÞ, where the Lagrangian
displacement is Ψ ¼ −∇∇−2δlinðr; ηÞ to leading order.
Streaming velocities most naturally enter as functions of
x since they are an early Universe effect—at decoupling,
the gas is near its Lagrangian position x. (A fully Eulerian
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treatment and investigation of Eulerian vs Lagrangian
approaches can be found in Appendix C of the Supple-
mental Material of Ref. [33].) Any field φ of order N given
in Lagrangian coordinates can be mapped to order N þ 1
and expressed in Eulerian coordinates by

φðxÞ ¼ φðrÞ þ∇φðrÞ ·∇∇−2δlinðr; ηÞ þ � � � ; ð10Þ
from which it follows

v2sðxÞ ¼ v2sðrÞ þ ½∇i∇−2δlinðrÞ�½∇iv2sðrÞ�: ð11Þ
This allows us to perform our analysis using Eulerian
perturbation theory [33]. In Eq. (9) we have included terms
up to Oðδ3linÞ since leading corrections to the galaxy two-
point correlation function arise from terms of Oðδ4linÞ.
Our job is to now determine δgðrÞ as a function of

redshift-space coordinate s instead of real-space coordinate
r. The total number of galaxies in a given region is con-
served in transformations between real and redshift space.
Mathematically this is described by nsðsÞd3s ¼ nðrÞd3r,
where ns is the redshift-space number density and n is the
real-space number density. From this equation we immedi-
ately find the Jacobian J ≡ jd3r=d3sj which gives the
relationship between s and r,

s ¼ rþ vz
aH

êz; ð12Þ

where the subscript z indicates the line-of-sight direction,
a is the scale factor, and H is the Hubble parameter.
Combining the preceding equations and using the argu-
ments of [43] yields

1þ δgðsÞ ¼
1

1þ 1
aH

∂vz∂rz
½1þ δgðrÞ�: ð13Þ

The line-of-sight velocity is given in terms of the velocity
divergence by

ṽzðkÞ ¼ −
ikz
k2

θ̃ðkÞ: ð14Þ

C. Lyman-alpha forest biasing model

Neutral hydrogen (H I) gas clouds abound throughout the
IGM after reionization ends. Background quasars emit
radiation which can interact with H I in all foreground
clouds along a given line of sight. When this radiation has a
wavelength of 1216 Å in the rest frame of a hydrogen atom
it will be absorbed and prompt a Lyman-α transition. Since
several H I gas clouds lie at different redshifts along the line
of sight between us and a given quasar, we see an entire
“Lyman-α forest” of absorption features in the fraction of
transmitted flux for each quasar spectrum. This probes a 1D
skewer through the Universe and allows us to investigate its
matter distribution [44].

The relation between observed flux F and the matter
field is not as straightforward as the connection between
galaxies and the matter field. In the Lyman-α forest case,
hydrogen atoms track the underlying dark matter distribu-
tion through some nonlinear relation. Those atoms then
undergo a redshift-space distortion (RSD) transformation
akin to Eq. (13). Optical depth τ is proportional to this H I

density, but the quantity we measure is F ¼ expð−τÞ [45], a
nonlinear function of τ. In contrast, galaxies trace the dark
matter distribution and undergo an RSD transformation;
there are no further transformations required to obtain an
observable. This is why our treatment of the Lyman-α
forest must differ from that of galaxies (see Sec. 3.2 of [42]
and Sec. 9.3.2 of [46]). Note that Ref. [45] derived a set of
biasing formulas for the Lyman-α forest, but with addi-
tional physical assumptions (e.g., analytic approximations
for the peak-background split) beyond the symmetries.
Once again we consider which terms can be present in

δFðsÞ and then apply symmetry arguments to build the final
expansion. Similarly to Eq. (7) we introduce the traceless-
symmetric tensor [42]

tijðrÞ ¼
�
∇i∇j∇−2 −

1

3
δij

��
−1
aH

θðrÞ − δðrÞ
�
; ð15Þ

which is constructed to be zero at first order. With this field
and others constructed from those given in Eqs. (7)–(9), we
now have several quantities which can contribute to the
density contrast. The redshift-space transmitted flux den-
sity contrast has as a requirement rotational invariance
along the line of sight (i.e., azimuthal symmetry); each term
need not possess spherical symmetry. The complete expan-
sion in these fields is

δFðsÞ ¼ c1δðrÞ þ c2szzðrÞ þ c3δ2ðrÞ þ c4s2ðrÞ
þ c5δðrÞszzðrÞ þ c6tzzðrÞ þ c7s2zzðrÞ
þ c8½s2xzðrÞ þ s2yzðrÞ� þ c0 þ bv½v2sðxÞ − 1�
þ b1vδðrÞ½v2sðxÞ − 1� þ bsvsijðrÞvs;iðxÞvs;jðxÞ

þ bvz

�
v2s;zðxÞ −

1

3
v2sðxÞ

�
þ � � � ; ð16Þ

where c0 is a constant counterterm chosen to ensure δFðsÞ
has zero average value (see Sec. IV D). Table I gives the
correspondence between our first-order coefficients and
fields and those used in the traditional description of
Lyman-α forest perturbation theory, such as seen in
Ref. [39]. The overdensities, velocity gradients (which
are absorbed into other terms), and tidal fields are native
o real space whereas the flux fluctuation field exists only
in redshift space—the optical depth to flux transforma-
tion F ¼ expð−τÞ makes sense only in redshift space.
Equation (16) is the most general second-order expansion
possible for the fields we considered, subject to the
symmetries of the Lyman-α forest, and is applicable
to any redshift-space tracer (see Appendix B for a proof).
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We note that the first appearance of a similar expansion
without streaming velocity was given in [47]. Just as we do
here, the authors had eight terms through second order, as
shown in their Eqs. (2.6) and (2.14).
This expansion is intended to include all terms which

satisfy our criterion of contributing to the streaming
velocity correction ΔPðk; μÞ at 1-loop order. This require-
ment eliminates from our consideration all third-order
nonstreaming velocity terms. Excluded also are streaming
velocity gradients and the relative density perturbation
between baryons and dark matter. We view these as distinct
physical effects which must be handled in simulations
separately from a “simple” (constant across the box) imple-
mentation of streaming velocity. A complete treatment, to
third order in perturbation theory, of streaming velocity
effects for galaxies in real space is given in Ref. [48].
Therein, in addition to the fields we consider, the author
considers spatial derivatives of the streaming velocity, the
relative density perturbations between baryons and dark
matter, and the initial amplitude of the constant relative
density perturbation (see Sec. 8.2 of [46] for a detailed
review of these). All of these considerations are important
for the Lyman-α forest in redshift space, but they are
beyond the scope of this paper.
The above biasing analysis applies to total matter. The

difference between baryonic and dark matter perturbations
could be important in two ways. At small scales, the
baryons are smoothed by pressure effects that can be
parametrized by the filtering scale kF [49] and in redshift
space they are smeared by thermal broadening; this is very
important at k ∼ kF (in 3D; in the 1D power spectrum the
effect extends to all k because of the projection integrals,
e.g., [50]), but should have little effect on the large scale
correlation function or BAOs. The other difference is that
the BAO feature is not present with the same amplitude and
morphology in both the dark matter and baryons. This is
because the BAO feature is present in the baryons at
decoupling, and then appears in the dark matter because
there is a combined growing mode of the baryons and dark
matter. The difference in BAO feature amplitudes decays
slowly and is still significant at low z (see Fig. 1
of Ref. [51]).

III. GALAXIES ANALYSIS

Define the power spectrum by

hδ̃ðkÞδ̃�ðk0Þi ¼ ð2πÞ3PðkÞδð3ÞD ðk − k0Þ; ð17Þ

where h…i denotes an ensemble average. When necessary
we will specify whether our ensemble average is taken in
real space or redshift space with a subscript r or s, res-
pectively. The Fourier transform of Eq. (13) is, to second
order in perturbation theory,

δ̃ðsÞg ðkÞ ¼
Z

d3s

���� d
3r

d3s

����½1þ δðrÞg ðrÞ�e−ik·s −
Z

d3se−ik·s

¼
Z

d3rδðrÞg ðrÞe−ik·re−ikzvz=aH

þ
Z

d3re−ik·re−ikzvz=aH − ð2πÞ3δð3ÞD ðkÞ

¼
Z

d3rδðrÞg ðrÞ
�
1 −

ikzvz
aH

−
ðkzvzÞ2
2ðaHÞ2

�
e−ik·r

þ
Z

d3r

�
−
ikzvz
aH

−
ðkzvzÞ2
2ðaHÞ2 þ

iðkzvzÞ3
6ðaHÞ3

�
e−ik·r:

ð18Þ

Taking its autocorrelation generates power spectrum com-
ponents of Pg. In this section we list only those pieces with
a single power of bv; if bv is expected to be small then b2v
ought to be negligible. Any terms containing k ¼ 0, i.e.,

those with δð3ÞD ðkÞ, will be disregarded since those modes
feed back into the mean number density of galaxies in the
Universe; they contribute to overall shot noise [42] which
does not affect shifts in BAO peak position. As is true in
real space, correlations proportional to b1v or bsv vanish by
parity considerations in redshift space [33]. What remains
at one loop is

Pg;bvonlyðk;μÞ ¼ 2b1bv½Pδjv2ðkÞ þPadvjδðkÞ þ fμ2Pδvzjv2ðkÞ
þ fμ2Pvzv2jδðkÞ� þ 2b2bvPδ2jv2ðkÞ
þ 2bsbvPs2jv2ðkÞ þ 2fμ2bv½PadvjvzðkÞ
þ Pvzjv2ðkÞ þ fPv2z jv2ðkÞ
þ fμ2Pvzjv2vzðkÞ�: ð19Þ

Here the subscripts indicate which contributions to δg give
rise to each term in the power spectrum, and “adv” indicates
the advection term [second term of Eq. (11), see [33] for
further discussion]. As examples, we will detail how to
calculate three of the power spectra in Eq. (19) and put
them in a format consistent for use in FAST-PT, an
algorithm to calculate convolution integrals of scalar and
tensor quantities in cosmological perturbation theory

TABLE I. Comparison of first-order fields and biasing coef-
ficients in Ref. [39] to those in this work.

Quantity appearing
in Ref. [39]

Equivalent quantity
in this work

δ δ
η fðszz þ 1

3
δÞ

bFδ c1 − 1
3
c2

bFη
c2=f

bFδ
þ 1

3
fbFη

c1
βbFδ

¼ fbFη
c2
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[52,53]. These examples are chosen to illustrate the range
of mathematical techniques that are used.

A. Galaxy example term I: Pδ2jv2

We begin with the correlation function

hðṽs � ṽsÞ�ðkÞðδ̃ � δ̃Þðk0Þi: ð20Þ

Using the equation

vsðkÞ ¼ −iTvðkÞδlinðkÞk̂; ð21Þ

where Tv is the velocity transfer function, and defining
k2 ≡ k − k1 and k0

2 ≡ k0 − k0
1, we can recast Eq. (20):

hðṽs � ṽsÞ�ðkÞðδ̃ � δ̃Þðk0Þi ¼
�
−
Z

d3k1

ð2πÞ3 μ12Tvðk1ÞTvðk2Þδ̃�linðk1Þδ̃�linðk2Þ
Z

d3k0
1

ð2πÞ3 δ̃linðk
0
1Þδ̃linðk0

2Þ
�

¼ −
Z

d3k1

ð2πÞ3
Z

d3k0
1

ð2πÞ3 μ12Tvðk1ÞTvðk2Þhδ̃�linðk1Þδ̃�linðk2Þδ̃linðk0
1Þδ̃linðk0

2Þi: ð22Þ

We apply Wick’s theorem to the four-point function:

hδ̃�linðk1Þδ̃�linðk2Þδ̃linðk0
1Þδ̃linðk0

2Þi ¼ ð2πÞ6Plinðk1ÞPlinðk2Þδð3ÞD ðkÞδð3ÞD ðk0Þ
þ ð2πÞ6Plinðk1ÞPlinðk2Þδð3ÞD ðk1 − k0

1Þδð3ÞD ðk2 − k0
2Þ

þ ð2πÞ6Plinðk1ÞPlinðk2Þδð3ÞD ðk1 − k0
2Þδð3ÞD ðk2 − k0

1Þ: ð23Þ

As mentioned previously we disregard the first term on the right-hand side. The second and third terms are identical under
the exchange k0

1 ↔ k0
2 so we combine these. Equation (20) may then be written as

hðṽs � ṽsÞ�ðkÞðδ̃ � δ̃Þðk0Þi ¼ −2ð2πÞ6
Z

d3k1

ð2πÞ3
Z

d3k0
1

ð2πÞ3 μ12Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þδð3ÞD ðk1 − k0
2Þδð3ÞD ðk2 − k0

1Þ

¼ −2
Z

d3k1μ12Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þδð3ÞD ðk − k0Þ; ð24Þ

from which we read off the nonrenormalized (NR) power spectrum

Pδ2jv2;NRðkÞ ¼ −2
Z

d3k1

ð2πÞ3 μ12Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ: ð25Þ

To renormalize the power spectrum we take the k → 0 limit and subtract off that constant piece. This is sensible since
there should be no power on arbitrarily large physical scales. The constant power contribution looks like shot noise and can
be absorbed into an overall shot noise term [42]. The final answer is

Pδ2jv2ðkÞ ¼ −2
Z

d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ½μ12Tvðk2ÞPlinðk2Þ þ Tvðk1ÞPlinðk1Þ�: ð26Þ

B. Galaxy example term II: Pv2z jv2

Determining Pv2z jv2 proceeds in similar fashion. Note that vz at linear order is given by the linear term in Eq. (14):

ṽzðkÞ ¼
iaHkz
k2

δ̃ðkÞ: ð27Þ

We write the correlation function

−k02

2ðaHÞ2 hðṽs � ṽsÞ
�ðkÞðṽz � ṽzÞðk0Þi ¼ −k02

2ðaHÞ2
�
−
Z

d3k1

ð2πÞ3 μ12Tvðk1ÞTvðk2Þδ̃�linðk1Þδ̃�linðk2Þ
Z

d3k0
1

ð2πÞ3 ṽzðk
0
1Þṽzðk0

2Þ
�

ð28Þ
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and read off the power spectrum

Pv2z jv2 ¼ −k2
Z

d3k1

ð2πÞ3
μ12
k1k2

k̂1zk̂2zTvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ: ð29Þ

As written, this equation is not in the form of Eq. (1.1) in Ref. [53] since it contains specific components of wave vectors.
We will resolve this issue below.
A general symmetric tensor may be written as

AijðkÞ ¼
Z

d3k1

ð2πÞ3 k̂1ik̂2jfðk1Þfðk2Þgðk1; k2; μ12Þ ¼
Z

d3k1

ð2πÞ3
μ12
3

δijfðk1Þfðk2Þgðk1; k2; μ12Þ

þ
Z

d3k1

ð2πÞ3
�
k̂1ik̂2j −

μ12
3

δij

�
fðk1Þfðk2Þgðk1; k2; μ12Þ ð30Þ

to explicitly show its spin-0 component Að0Þ
ij and spin-2

component Að2Þ
ij , given by the first and second integral on

the right-hand side, respectively. Note that f and g depend
on the size and shape of the k1;k2;k triangle but not its 3D
orientation. In any coordinate system the spin-0 component
takes the form

Að0Þ
zz ðkÞ ¼

Z
d3k1

ð2πÞ3
μ12
3

fðk1Þfðk2Þgðk1; k2; μ12Þ: ð31Þ

We now build a new coordinate system where k lies on the

z̄-axis and consider the spin-2 component. Since Að2Þ
ij is

traceless by construction and there is rotational symmetry

of the integral around the z̄ axis, it follows that Að2Þ
xx ¼

Að2Þ
yy ¼ − 1

2
Að2Þ
zz and Að2Þ

ij
¼ 0 for ī ≠ j̄. With these condi-

tions we find

Að2Þ
zz ðkÞ ¼

X
īj

RīzRj̄zA
ð2Þ
ij
ðkÞ

¼ Að2Þ
zz ðkÞ

�
−
1

2
R2
x̄z −

1

2
R2
ȳz þ R2

z̄z

�

¼ Að2Þ
zz ðkÞ

�
−
1

2
þ 3

2
R2
z̄z

�

¼ Að2Þ
zz ðkÞP2ðμÞ; ð32Þ

where Rij is the rotation matrix between axes i and j, Pn is
the Legendre polynomial of order n, and μ is the cosine
of the angle between the wave vector k and the line of
sight êz. In going from the second to third line we used
the relation R2

x̄z þ R2
ȳz þ R2

z̄z ¼ 1 and in going from the
third to fourth line we identified Rz̄z ¼ μ. Then Eq. (29)
simplifies to

Pv2z jv2 ¼ −k2
�Z

d3k1

ð2πÞ3
μ212

3k1k2
Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ

þ P2ðμÞ
Z

d3k1

ð2πÞ3
�
μ1μ2 −

μ12
3

�
μ12
k1k2

Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ
�
; ð33Þ

where μ1 ¼ k̂1 · k̂ and μ2 ¼ k̂2 · k̂.
C. Galaxy example term III: Padvjδ

An advection term arises from the real-space correlation

hδj∇i½vs;jvs;j�½∇i∇−2δ�i ¼ 2hδjvs;jð∇ivs;jÞ∇i∇−2δi: ð34Þ

Using the definition k3 ≡ k − k1 − k2 and Fourier transforming the above equation gives

hδ̃�ðk0ÞjadvðkÞi ¼ 2

�Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3 δ̃
�
linðk0Þvs;jðk1Þik2;ivs;jðk2Þ

ik3;i
−k23

δ̃linðk3Þ
�

¼ −2
Z

d3k1

ð2πÞ3
d3k2

ð2πÞ3 ðk̂1 · k̂2Þ
k2 · k3

k23
Tvðk1ÞTvðk2Þhδ̃�linðk0Þδ̃linðk1Þδ̃linðk2Þδ̃linðk3Þi: ð35Þ
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The four-point function can be simplified using Wick’s theorem:

hδ̃�ðk0Þδ̃linðk1Þδ̃linðk2Þδ̃linðk3Þi ¼ ð2πÞ6Plinðk0ÞPlinðk3Þδð3ÞD ðk0 − k1Þδð3ÞD ðk2 þ k3Þ
þ ð2πÞ6Plinðk0ÞPlinðk3Þδð3ÞD ðk0 − k2Þδð3ÞD ðk1 þ k3Þ
þ ð2πÞ6Plinðk0ÞPlinðk1Þδð3ÞD ðk0 − k3Þδð3ÞD ðk1 þ k2Þ: ð36Þ

Substituting these results into Eq. (35) and integrating gives

hδ̃�ðk0ÞjadvðkÞi ¼ −2
Z

d3k3ðk̂ · k̂3ÞTvðkÞTvðk3ÞPlinðkÞPlinðk3Þδð3ÞD ðk − k0Þ

þ 2

Z
d3k1ðk̂1 · k̂Þ

k · k1

k21
Tvðk1ÞTvðkÞPlinðk1ÞPlinðkÞδð3ÞD ðk − k0Þ

− 2

Z
d3k1

k1 · k
k2

Tvðk1Þ2PlinðkÞPlinðk1Þδð3ÞD ðk − k0Þ: ð37Þ

To proceed we will simplify the integrals above. Each
integral is a 3D volume integral over either k3 (or k1),
which depends on both the magnitude and direction (on S2)
of that wave vector. Because the dependence on the
direction is simple (involving only dot products), we can
simplify by taking an angular average; the integral of the
angular average is equal to the integral of the original
function:

R
d3k3fðk3Þ ¼

R
d3k3hfðk3ÞiS2 . We denote the

average over direction k̂3 (or k̂1) using the symbol hiS2 ,
where S2 is the unit sphere. Letting k̂ · k̂3 ¼ μ3, the dot
product in the first term on the right-hand-side of Eq. (37)
simplifies to

hμ3iS2 ¼
1

4π

Z
2π

0

dζ
Z

1

−1
μ3dμ3 ¼ 0; ð38Þ

where ζ is the angular rotation variable in the plane
perpendicular to k. The same is true for μ1 appearing in
the third term. From the second term we get

�
ðk̂1 · k̂Þ

k · k1

k21

�
S2
¼

�
k
k1

μ21

�
S2

¼ k
4πk1

Z
2π

0

dζ
Z

1

−1
μ21dμ1 ¼

k
3k1

:

ð39Þ

The power spectrum can now be read from Eq. (37) as

PadvjδðkÞ ¼
2

3
kTvðkÞPðkÞ

Z
d3k1

ð2πÞ3
Tvðk1Þ
k1

Pðk1Þ: ð40Þ

D. Remaining terms

Each remaining power spectrum in Eq. (19) may be
computed similarly. We find:

Pδjv2ðkÞ ¼ −2
Z

d3k1

ð2πÞ3 μ12F2ðk1;k2ÞTvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ;

Ps2jv2ðkÞ ¼ −2
Z

d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ
�
μ12S2ðk1;k2ÞTvðk2ÞPlinðk2Þ þ

2

3
Tvðk1ÞPlinðk1Þ

�
;

Pδvzjv2ðkÞ ¼ −2k
Z

d3k1

ð2πÞ3
μ12μ2
k2

Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ;

Pvzjv2ðkÞ ¼ −2
Z

d3k1

ð2πÞ3 μ12G2ðk1;k2ÞTvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ;

PadvjvzðkÞ ¼ PadvjδðkÞ; and

Pvzv2jδðkÞ ¼ Pvzv2jvzðkÞ ¼ −PadvjδðkÞ:
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IV. LYMAN-α FOREST ANALYSIS

We now turn our attention to the Lyman-α forest. The
determination of the power spectrum proceeds similarly to
the case of galaxies, with the exception that we must do our
Fourier integrals in s-space, rather than writing the Fourier
integrals in r-space and using conversion factors of
e−ikzvz=aH. To find the flux fluctuation power spectrum
we need the Fourier transform of Eq. (16), given by

δ̃sFðkÞ ¼
Z

d3sδsFðsÞe−ik·s: ð41Þ

The right-hand-side of Eq. (16) is written in terms of r,
which we rewrite in terms of s via Eq. (12). Each field
transforms according to a Taylor series. Since we are
restricting our analysis to streaming velocity correlations

that are net fourth-order in the matter field, only the c1, c2,
and bv terms pick up an additional contribution. For all
others we may make the substitution r → s.
We now work through the detailed transformation for the

three terms specified. The c1 term is

δ

�
s −

vz
aH

êz

�
¼ δðsÞ − vz

aH
½∂zδðsÞ�: ð42Þ

Similarly the c2 term becomes

szz

�
s −

vz
aH

êz

�
¼ szzðsÞ −

vz
aH

½∂zszzðsÞ�: ð43Þ

The bv term first maps according to Eq. (11) and then can
be Taylor expanded,

v2sðxÞ ¼ v2s

�
s −

vz
aH

êz

�
þ
�
∇v2s

�
s −

vz
aH

êz

��
·
�
∇∇−2δ

�
s −

vz
aH

êz

��

¼ v2sðsÞ −
vz
aH

½∂zv2sðsÞ� þ ½∇v2sðsÞ� · ½∇∇−2δðsÞ�: ð44Þ

The full power spectrum containing a base term and pieces with a contribution from bv is

PFðk; μÞ ¼ Pbaseðk; μÞ þ 2bv

�
c1 þ c2f

�
μ2 −

1

3

��
½Pδjv2ðkÞ þ ð1þ fμ2ÞPadvjδðkÞ�

þ 2bvf

�
c1 −

1

3
c2

�
½Pv2j−vz

aH∂zδ;IðkÞ þ P2ðμÞPv2j−vz
aH∂zδ;IIðkÞ� þ 2c2bvfPv2j−vz

aH∂zszz;otherðk; μÞ

þ 2c3bvPδ2jv2ðkÞ þ 2c4bvPs2jv2ðkÞ þ 2c5bvfPδszzjv2ðk; μÞ þ 2c6bvfPtzzjv2ðk; μÞ
þ 2c7bvf2Ps2zzjv2ðk; μÞ þ 2c8bvPs2xzþs2yzjv2ðk; μÞ þ b2vPv2jv2ðkÞ; ð45Þ

where Pbase is given by Eqs. (3.3) and (3.6) in [39]. (Note that the power spectrum in Ref. [39] is based on fits to simulations
and not to perturbation theory; however it still serves the purpose of a Pbase that does not contain streaming velocity
contributions.) Subscripts I and II denote the spin-0 and spin-2 contributions, respectively, to Pv2j−vz

aH∂zδ
. The term Pv2j−vz

aH∂zszz
has three components, two of which are identical to I and II (up to a constant prefactor) and a third term which we label
“other.” Streaming velocity corrections are built from the autocorrelation of Eq. (16). In this expansion, we disregard
quadrupolar streaming velocity corrections (i.e., those containing bvz) since the simulations carried out in [29] show
bvz ¼ ð1.6� 7.5Þ × 10−5 and bv ¼ ð−3.7� 0.4Þ × 10−4 at z ¼ 2.5.

A. Lyman-α flux example term: Ps2xz + s2yzjv2

Here we will detail how to calculate the Ps2xzþs2yzjv2 term listed above. The procedure followed applies to all kernels with
directionally dependent wave vectors.
We start with the correlation functions

hðṽs � ṽsÞ�ðkÞðs̃xz � s̃xzÞðk0Þi þ hðṽs � ṽsÞ�ðkÞðs̃yz � s̃yzÞðk0Þi ð46Þ

which by the methods used in Sec. III can have its power spectrum put into the form

Pc8bvðkÞ ¼ −2
Z

d3k1

ð2πÞ3 μ12ðk̂1xk̂1zk̂2xk̂2z þ k̂1yk̂1zk̂2yk̂2zÞTvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ: ð47Þ
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As before, we want to simplify these wave vectors by taking an angular average. Unlike the case of Eq. (37), here both k1

and k2 appear nontrivially in the integrand, so a full angular average hiS2 will not result in a simplification. However, the
integrand does behave in a straightforward way if we rotate around the vector k; therefore, we consider an angular average
hiS1 over the ring swept out as we rotate the k1;k2;k triangle around k. Writing the wave vectors in terms of the spherical
harmonics yields

hk̂1xk̂1zk̂2xk̂2z þ k̂1yk̂1zk̂2yk̂2ziS1 ¼
�
8π

15

�
Y21ðk̂1Þ − Y2;−1ðk̂1Þ

2
×
Y21ðk̂2Þ − Y2;−1ðk̂2Þ

2

þ Y21ðk̂1Þ þ Y2;−1ðk̂1Þ
2i

×
Y21ðk̂2Þ þ Y2;−1ðk̂2Þ

2i

��
S1

¼ −
8π

15
Re½hY21ðk̂1ÞY2;−1ðk̂2ÞiS1 �: ð48Þ

Just as we did in Sec. III B we need to represent each unit wave vector, currently expressed in the observer’s coordinate
system, in the barred coordinate system where the z̄-axis points in the direction k̂. We do this using Eulerian angles,
following the convention outlined in Sec. 11.8 of [54]. The first rotation is done counterclockwise through an angle ϕ about
the z axis. Next, rotate counterclockwise through an angle θ about the new “y axis.” Last, rotate counterclockwise through
an angle ψ about the new “z axis.” This series of rotations from unbarred to barred coordinates is given by the rotation
matrix

REuler ¼

2
64

cosψ cosϕ − cos θ sinϕ sinψ cosψ sinϕþ cos θ cosϕ sinψ sinψ sin θ

− sinψ cosϕ − cos θ sinϕ cosψ − sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ − sin θ cosϕ cos θ

3
75: ð49Þ

Rotation of spherical harmonics from the unbarred to barred coordinate system is carried out via the relation

Ylmðk̂Þ ¼
X
m̄

D†ðlÞ
mm̄ðϕ; θ;ψÞYlm̄ð ¯̂kÞ ð50Þ

where D†ðlÞ
mm̄ is the (adjoint) Wigner D-matrix defined by

D†ðlÞ
m;−sðϕ; θ;ψÞ ¼ ð−1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
sYlmðθ;ϕÞe−isψ : ð51Þ

Here m̄ ¼ −s and sYlm are the spin-weighted spherical harmonics.2 With these relations we simplify the product of
spherical harmonics:

hY21ðk̂1ÞY2;−1ðk̂2ÞiS1 ¼
�X

m̄1;m̄2

D†ð2Þ
1;m̄1

D†ð2Þ
−1;m̄2

Y2m̄1
ð ¯̂k1ÞY2m̄2

ð ¯̂k2Þ
�

S1

¼
X
m̄1

D†ð2Þ
1;m̄1

D†ð2Þ
−1;−m̄1

Y2m̄1
ð ¯̂k1ÞY2;−m̄1

ð ¯̂k2Þ

¼ −
15

64π
ð1 − μ4Þð1 − μ21Þð1 − μ22Þ −

15

16π

k2
k1

ð3μ2 − 4μ4 − 1Þð1 − μ22Þμ1μ2

−
15

32π
μ2ð1 − μ2Þð3μ21 − 1Þð3μ22 − 1Þ: ð52Þ

In going from the first to second line we used the fact that averaging forces all terms for which m0
1 ≠ −m0

2 to equal zero.
Substituting the above equations into the kernel and renormalizing the resultant integral (i.e., subtracting the contribution at
k ¼ 0) yields the power spectrum

2We made use of the SpinWeightedSpheroidalHarmonics package, part of the Black Hole Perturbation Toolkit [55], to calculate these
functions.
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Ps2xzþs2yzjv2ðk; μÞ ¼ −
Z

d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ


μ12

�ð1 − μ4Þð1 − μ21Þð1 − μ22Þ
4

þ ð3μ2 − 4μ4 − 1Þð1 − μ22Þ
k2
k1

μ1μ2

þ μ2ð1 − μ2Þð3μ21 − 1Þð3μ22 − 1Þ
2

�
Tvðk2ÞPlinðk2Þ þ

�ð1 − μ4Þð1 − μ21Þ2
4

þ ð3μ2 − 4μ4 − 1Þð1 − μ21Þμ21 þ
μ2ð1 − μ2Þð3μ21 − 1Þ2

2

�
Tvðk1ÞPlinðk1Þ

�
: ð53Þ

B. Remaining terms

The other new contributions are

Pv2j−vz
aH∂zδ;IðkÞ ¼ 2

Z
d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ
�
k2
k1

μ212
3

Tvðk2ÞPlinðk2Þ þ
1

3
Tvðk1ÞPlinðk1Þ

�
; ð54Þ

Pv2j−vz
aH∂zδ;IIðkÞ ¼ 2

Z
d3k1

ð2πÞ3
k2
k1

μ12

�
μ1μ2 −

μ12
3

�
Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ; ð55Þ

Pv2j−vz
aH∂zszz;otherðk; μÞ ¼ −

Z
d3k1

ð2πÞ3
k2
k1

P1ðμ12Þ
�
6

35
ð1 − μ2Þð5μ2 − 1Þ k2

k1
½P2ðμ2Þ − P4ðμ2Þ�

þ 2

5
ð5μ2 − 3ÞP1ðμ1ÞP3ðμ2Þ þ

2

5

k2
k1

ð1 − μ2Þð1 − P2ðμ2ÞÞ

þ 3

10
μ2P1ðμ1ÞP1ðμ2Þ

�
Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ

−
8π

5
ð1 − μ2Þ

Z
dk1
ð2πÞ3 k

2
1T

2
vðk1ÞP2

linðk1Þ −
2π

5
μ2

Z
dk1
ð2πÞ3 k

2
1T

2
vðk1ÞP2

linðk1Þ; ð56Þ

Pδszzjv2ðk; μÞ ¼ −2
�
μ2 −

1

3

�Z
d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ½μ12P2ðμ2ÞTvðk2ÞPlinðk2Þ þ P2ðμ1ÞTvðk1ÞPlinðk1Þ�; ð57Þ

Ptzzjv2ðk; μÞ ¼ −4P2ðμÞ
Z

d3k1

ð2πÞ3 ½G2ðk1;k2Þ − F2ðk1;k2Þ�μ12Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ; ð58Þ

Pszzjv2ðk; μÞ ¼ −2
Z

d3k1

ð2πÞ3 Tvðk1ÞPlinðk1Þ

�

1

8
ð1 − μ2Þ2ð1 − μ21Þð1 − μ22Þ − 2μ2ð1 − μ2Þð1 − μ22Þμ1μ2

k2
k1

þ 4

9
P2ðμÞ2P2ðμ1ÞP2ðμ2Þ

�
μ12Tvðk2ÞPlinðk2Þ þ

�
1

8
ð1 − μ2Þ2ð1 − μ21Þ2 − 2μ2ð1 − μ2Þð1 − μ21Þμ21

þ 4

9
P2ðμÞ2P2ðμ1Þ2

�
Tvðk1ÞPlinðk1Þ

�
; and ð59Þ

Pv2jv2ðkÞ ¼ 2

Z
d3k1

ð2πÞ3 T
2
vðk1ÞPlinðk1Þ½μ212T2

vðk2ÞPlinðk2Þ − T2
vðk1ÞPlinðk1Þ�: ð60Þ

C. Bias coefficient estimation

Different methods exist for determining the bias parameters fci; bvg. The most direct way is by comparing measured
auto- and cross-correlations of appropriate tracers. This method is excellent at leading order but becomes increasingly
difficult to implement in practice as more unique cross-correlations are needed. Alternatively, given physical model
parameters and an observed flux one point distribution function, there are analytic expressions for certain coefficients [45].
Unfortunately these expressions exist in literature only for c1 and c2.
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For the analysis in Sec. VI we use smoothed particle
hydrodynamics (SPH) simulation results from [39] for c1
and c2 and from [29] for bv, both of which ran GADGET-2

code [56]. Additionally, we use the fluctuating Gunn-
Peterson approximation (FGPA) [57,58] as a guide for
determining bias coefficients. The FGPA is only a crude
approximation, but should be a useful qualitative guide to
what to expect for the second-order coefficients. Later in
Sec. VI we will show how much the choice of these
coefficients matters for determining the BAO peak shift. In
the FGPA (without thermal broadening) the optical depth in
redshift space is

τðsÞ ¼ Að1þ δÞ2−0.7ðγ−1Þ
1þ 1

aH
∂vz∂rz

; ð61Þ

where A ≈ 0.3 at z ¼ 2.4 [45], γ ≈ 1.6, and γ − 1 is the
slope of the IGM temperature-density relation. We Taylor
expand the denominator

�
1þ 1

aH
∂vz
∂rz

�
−1

¼ 1 −
1

aH
∂vz
∂rz þ

�
1

aH
∂vz
∂rz

�
2

; ð62Þ

and make use of the relation

−
1

aH
∂vz
∂rz ¼ f

�
tzz þ szz −

1

3aH
θ

�
; ð63Þ

where f is the dimensionless linear growth rate which is
approximately unity at this redshift. At first and second
order θ is not an independent variable [42]. Instead it can be
expressed as

−
1

aH
θ ¼ δþ 2

7
s2 −

4

21
δ2: ð64Þ

With the preceding results Eq. (61) can be expressed as

τðsÞ ¼ 0.32δ2 þ 0.68δszz þ 0.58δþ 0.029s2

þ 0.3ðtzz þ szz þ s2zz þ 1Þ: ð65Þ

The transmitted flux is nonlinearly related to the optical
depth via

FðsÞ ¼ exp½−τðsÞ�; ð66Þ

which we Taylor expand to second order. Ultimately the
statistical quantity we care about is transmitted flux density
contrast

δFðsÞ ¼
FðsÞ

hFðsÞis
− 1: ð67Þ

Reference [39] gives hFðsÞis ¼ 0.8185 at z ¼ 2.4; there-
fore,

δFðsÞFGPA ¼ −0.137δ2 − 0.46δszz − 0.52δ − 0.026s2

− 0.27tzz − 0.27szz − 0.23s2zz − 0.09: ð68Þ
Our plan is to use FGPA estimations for unknown bias
parameters while relying on simulation results for the
others. Simulations performed at z ¼ 2.4 using a first-
order bias expansion found c1 ¼ −0.183 and c2 ¼
−0.1714 [39]. In that work, bFδ

¼bτδ lnF̄, bFη
¼ bτη ln F̄,

and parameter values come from Table IV. Reference [29]
found bv ¼ −3.7 × 10−4 at z ¼ 2.5. More recent work
which included a single second-order term in the expansion
of δF found c3 ≃ 0.05 at z ¼ 2.3 [59]. For our purposes we
can ignore differences in the redshifts and treat them all as
occurring at z ¼ 2.4. Therefore the values we choose for
bias parameters are

2
66666666666666664

c1;sim
c2;sim
c3;sim
c4;FGPA
c5;FGPA
c6;FGPA
c7;FGPA
c8;FGPA
bv

3
77777777777777775

¼

2
66666666666666664

−0.183
−0.1714
0.05

−0.026
−0.46
−0.27
−0.23
0

−3.7 × 10−4

3
77777777777777775

: ð69Þ

D. Counterterm expression

In this section we provide an analytic expression for the
components of the counterterm c0 introduced in Eq. (16).
The key idea is that c0 is a constant that must be added to
ensure the mean tracer fluctuation (δF in the case of the
Lyman-α forest) is zero. This is a simple exercise in real
space to second order (e.g., δ2 has a counterterm −σ2, where
σ2 is the variance of the density field). In redshift space, it is
more complicated. It is generally true that

hδFðsÞis ¼
�
δFðsÞ

���� ∂s∂r
����
�

r
¼

�
δFðsÞ

�
1þ 1

aH
∂vz
∂rz

��
r
:

ð70Þ
Proceeding term-by-term in the expansion above we find the
following, keeping only second-order terms at the end:

hc1δis ¼ c1hδir − c1f

�
δ

�
szz þ

1

3
δ

��
r
¼ −

1

3
fc1σ2;

ð71Þ
hc2szzis ¼ −c2fhs2zzir; ð72Þ

hc3δ2is ¼ c3hδ2ir þ c3f

�
δ2
�
−tzz − szz þ

1

3aH
θ

��
r

¼ c3σ2; ð73Þ
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hc4s2is ¼ c4hs2ir; ð74Þ

hc5δszzis ¼ Oðδ3Þ; ð75Þ

hc6tzzis ¼ Oðδ3Þ; ð76Þ

hc7s2zzis ¼ c7hs2zzir; and ð77Þ

hc8ðs2xz þ s2yzÞis ¼ c8hðs2xz þ s2yzÞir: ð78Þ

The sumof eachof these terms equals−c0 since the streaming
velocity contributions in Eq. (16) already have zero mean.

V. BIAS COEFFICIENT MAPPING

In Sec. II C we introduced a generalized density contrast
applicable to any redshift-space tracer of the matter field.
As an example of its utility, we will show how the redshift-
space version of Eq. (9) can be made to look like Eq. (16)

given some algebraic manipulation and the correct choice
of c coefficients.
Expanding Eq. (13) gives

δgðsÞ ¼ δgðrÞ −
1

aH
∂vz
∂rz þ

�
1

aH
∂vz
∂rz

�
2

−
1

aH
∂vz
∂rz δgðrÞ þ

�
1

aH
∂vz
∂rz

�
2

δgðrÞ

¼ δgðrÞ þ f

�
tzz þ szz þ

1

3

�
δþ 2

7
s2 −

4

21
δ2
��

þ f2
�
tzz þ szz þ

1

3

�
δþ 2

7
s2 −

4

21
δ2
��

2

þ f

�
tzz þ szz þ

1

3

�
δþ 2

7
s2 −

4

21
δ2
��

δgðrÞ þ f2
�
tzz þ szz þ

1

3

�
δþ 2

7
s2 −

4

21
δ2
��

2

δgðrÞ

¼
�
b1 þ

1

3
f

�
δþ fszz þ

�
1

2
b2 −

4

63
f þ 1

9
f2 þ 1

3
b1f

�
δ2 þ

�
1

2
bs þ

2

21
f

�
s2 þ

�
2

3
f2 þ b1f

�
δszz

þ ftzz þ f2s2zz −
1

2
b2hδ2i −

1

2
bshs2i þ bv½v2sðxÞ − 1� þ b1vδðrÞ½v2sðxÞ − 1� þ bsvsijðrÞvs;iðxÞvs;jðxÞ: ð79Þ

The prefactors of each field (δ, szz, etc.) can be identified as
c1…c8. Their values, written in terms of b, are provided in
Table II.

VI. BAO PEAK SHIFT

To determine the BAO peak shift induced by streaming
velocity we fit a model power spectrum template to Eq. (45)
using χ2 minimization, following the method used in
Appendix B of [33] which draws from [37,60]. This
template is given by

PmodelðkÞ ¼
X2
j¼0

ajkjPevoðk=αÞ þ
X5
j¼0

bjkj; ð80Þ

where α sets the BAO scale and the coefficients aj and bj
are marginalized over. We account for nonlinear BAO
damping with the evolved power spectrum

PevoðkÞ ¼ ½PwwðkÞ − PnwðkÞ�e−k2Σ2=2 þ Pnw; ð81Þ

where Pww is the baryonic linear power spectrum “with
wiggles,” Pnw is the no-wiggle baryonic linear power
spectrum from [61], and Σ is a damping parameter. The
χ2 integral is

χ2 ¼ V
Z

kmax

kmin

d3k
ð2πÞ3

½PFðkÞ − PmodelðkÞ�2
2½PFðkÞ þ 1=n̄eff �2

; ð82Þ

where the effective density of quasar sight lines is
n̄eff ¼ 5.6 × 10−5 Mpc−3, quoting the value in [29] which
is based on DESI forecasts. The integration range we fit
over is 0.02 hMpc−1 < k < 0.35 hMpc−1. PFðkÞ is given
by Eq. (45) and plotted in Fig. 1. The choice of volume V is
inconsequential since it cancels out with volume in the
effective number density.
Our minimizer performs the required fits in the χ2

integral using a Nelder-Mead optimizer [62] on ½α;Σ�. It
starts by searching parameter space for ½α;Σ� and for a
given pair uses least squares fitting to find aj and bj. If the
minimizer ventures outside an acceptable region, it forces

TABLE II. Mapping between generalized coefficients and gal-
axy bias parameters. These are obtained by rewriting Eq. (13) to
match Eq. (16) and making a term-by-term comparison.

General coefficient Galaxy bias equivalent

c1 b1 þ 1
3
f

c2 f
c3 1

2
b2 − 4

63
f þ 1

9
f2 þ 1

3
b1f

c4 1
2
bs þ 2

21
f

c5 2
3
f2 þ b1f

c6 f
c7 f2

c8 0

REDSHIFT-SPACE STREAMING VELOCITY EFFECTS ON THE … PHYS. REV. D 102, 023515 (2020)

023515-13



the integral to return a divergent answer. This kicks the
minimizer back to an allowed region of parameter space.
We ran this fit for different values of μ to account for
anisotropic damping. The difference in α calculated when

bv ¼ 0 and bv ¼ −3.7 × 10−4 defines the shift in BAO
peak position; see Fig. 2 for additional details.
Table III displays the percentage shift in BAO position

for three different choices of μ. We calculated these shifts
using the bias coefficients from Eq. (69). To see how much
the choice of coefficients affects the results, we also tested
two cases where only simulational values were used and all
unknown coefficients were set to zero. Our results show a
noticeable dependence of BAO peak shift magnitude on
choice of bias coefficients; this dependence is strongest
when the power spectrum is evaluated perpendicular to the
line of sight. This is also the case for which we see the
greatest BAO peak shift. In other words, RSD has the effect
of diminishing the BAO peak shift relative to what one
would expect in real space.
It is important to note that the FGPA overestimated, in

terms of absolute value, the bias coefficients c1 and c2
relative to simulations in [39]. These simulations included
thermal broadening—an effect which FGPA ignores—
which decreases the magnitude of leading order bias
coefficients. This gives us reason to believe that other
coefficients may be similarly overestimated, causing
greater values for Δα in the last column of Table III than
we see in the other columns.
As mentioned in Sec. I, DESI will achieve Lyman-α

forest BAO peak measurements down to a precision of
0.46% over 2 < z < 2.7, the range of redshifts used in
forecasting. Results in Table III make clear that streaming
velocity effects alone can account for anywhere from
∼11% − 32% of the total error budget allotted to this

FIG. 1. Shown here are the full power spectrum (red) of Eq. (45), the base model (blue) from [39], and the absolute value of the
difference between them (green). ΔP changed sign from positive at small k to negative at k≳ 0.04 h=Mpc. Both here and in Fig. 2 we
took c1 and c2 from [39] and the remaining c coefficients from FGPA. These were evaluated at μ ¼ 1=

ffiffiffi
3

p
.

FIG. 2. A plot of BAO scale shift as a function of bv=c1,
evaluated at μ ¼ 1=

ffiffiffi
3

p
. One finds a percentage BAO shift, Δα%,

by evaluating the function when streaming velocity is turned on
(i.e., bv=c1 ¼ 0.002), and subtracting from that the function
evaluated when streaming velocity is turned off (i.e., bv=c1 ¼ 0).
The scale shift is not zero when bv ¼ 0 due to the inclusion of P13

and P22 terms from standard perturbation theory; if the base
power spectrum were simply Plin there would be no offset.
Similar plots were used to calculate all values in Table III.
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measurement. While a < 1σ effect, future work should be
done to better quantify the BAO peak shift and account for
this effect in the DESI analysis pipeline. This will be even
more true if a more ambitious Lyman-α forest mapping
experiment takes place in the future (e.g., [65]).

VII. DISCUSSION

In the era of precision cosmology it is imperative
that researchers have a grasp of systematics that affect
our data. In this work we explored the impact of one
systematic—namely, early universe streaming velocity—
on the BAO signature in the Lyman-α forest. To do this
we introduced a completely generalized second-order
perturbative expansion for an arbitrary cosmological tracer
in redshift space. Applying this expansion to the Lyman-α
forest auto-power spectrum, we found shifts in the trans-
verse BAO scale of 0.081%–0.149% and shifts in the radial
BAO scale of 0.053%–0.058%. This can be compared with
the expected aggregate DESI precision of Lyman-α forest
(þ quasar) BAO of 0.46% [30]. The range of estimated
peak shifts in the columns of Table III demonstrates the
importance of accurately knowing bias coefficients.
In future work we will focus on determining all second-

order bias coefficients c3–c8, which will lead to a more
accurate predicted BAO scale shift. We leave as future work
an investigation into biasing terms involving the difference
δb − δm between baryonic and total matter perturbations, and
their potential impact on BAO scale measurements. We also
leave to future work the treatment of the streaming velocity
correction to cross-correlation BAO measurements, such as
Lyman-α forest × quasars, which are a significant contributor
to the BOSS and DESI constraining power at z > 2 [25,66].
A plethora of information also exists outside of the BAO
region. As a project for the more distant future, we would like
to find all bias parameters to completely model the broadband
1-loop Lyman-α forest power spectrum in the presence of
streaming velocity. This would involve using the galaxy
redshift space power spectrum model presented in [47] with
added streaming velocity contributions and fitting it to
simulations. This work should be regarded as our first step
toward this endeavor. Having this broadband model and the
bispectrum complete with all bias coefficients will allow
researchers to better extract cosmological results (e.g.,Ωm, σ8,
and Σνmν) from DESI data.
We have ignored astrophysical effects such as patchy

reionization [67] and fluctuations in the UV back-
ground which can impact the distribution of H I on scales

of Oð10 − 100Þ Mpc [68,69]. These effects are not inher-
ently coupled to BAO physics, but their impact on the
large-scale 3D power spectrum of the Lyman-α forest is
significant and may affect broadband fitting. Another
source of potential bias arises from the fact that our biasing
model applies to total matter, making no distinction
between baryonic and dark matter perturbations; this
may be important since the BAO feature is somewhat
different in total versus baryonic matter, even at low
redshift (e.g., [51]). There are additional effects included
in the streaming velocity analysis of [48] which we ignored
for reasons outlined in Sec. II C but are nonetheless
potentially significant sources of systematics.
Here we have focused our attention on using Lyman-α

absorption as a cosmological tracer; however, H I intensity
mapping offers a complementary probe of the Universe’s
matter distribution over a similar redshift range. Our
formalism applies equally well to the either case, but there
are important physical differences between them which will
give rise to differences in bias parameters. For instance, H I

used in intensity mapping studies lies primarily in damped
Lyman-α systems—dense gas clouds found inside of
galaxies [70]. The 21 cm emission may therefore be
affected by galaxy intrinsic alignments, which would add
a source of anisotropy beyond standard RSD effects to the
observed signal. In that case, the relationship between
intensity mapping biases ci and galaxy biases bi given in
Table II will differ. On the other hand, galaxies zero out
transmitted flux independent of their orientations. Thus the
Lyman-α forest bias coefficients contain no information
about galaxy intrinsic alignments. As another example,
optical depth effects are more important in the Lyman-α
forest because the Lyman-α transition has a larger cross
section than the 21 cm transition. Perhaps the most apparent
difference in bias parameters between 21 cm intensity
mapping and the Lyman-α forest lies in their respective
signs. Since galaxies are positively biased tracers of the
matter field, so is the integrated 21 cm emission signal. This
is in contrast to the Lyman-α forest flux fluctuation which is
a negatively biased tracer of the matter field.
The DESI instrument is currently being commissioned

and is planned to begin its survey this year. The statistical
power of DESI, both for BAOs and broadband applications
of the Lyman-α forest, is impressive [30], but that hinges on
us having the correct tools to analyze, and framework in
which to interpret, the data. Here we have offered a tool for
Lyman-α surveys like DESI and the 4MOST Cosmology
Redshift Survey (4MOST CRS) [71], and one which can be

TABLE III. The BAO peak shift for three different μ values and three different choices of bias coefficients.

Δα in % c1, c2, and c3 from simulations,
all others are zero

c1 and c2 from simulations,
all others are zero

c1 and c2 from simulations,
all others from FGPA

μ ¼ 0 0.081% 0.088% 0.149%
μ ¼ 1=

ffiffiffi
3

p
0.066% 0.070% 0.093%

μ ¼ 1 0.053% 0.054% 0.058%
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readily adapted to 21 cm surveys such as the Canadian
Hydrogen Intensity Mapping Experiment (CHIME) [72].
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APPENDIX A: COMPARISON OF GALAXY
POWER SPECTRA TERMS

Results we provide in Sec. II B—while in some cases
appearing different at first glance—are identical to those in
[40]. As an example case, we compare Eq. (33) presented
above to the analogous equations in [40], Eqs. (A24)–(A26).3
Recall that the full power spectrum Eq. (19) contains an

overall factor of f2μ2 in front of I1 and a factor of f2μ4 in
front of I2. This fact will be necessary for making the final
comparison. Focus now on the kernel of I1. Start with
Eq. (A25) which is the piece of Pv2z jv2 with a prefactor of μ

0.
Written in notation consistent with Fig. 3 and our con-
ventions, the integral is

I1ðkÞ ¼ −
Z

d3k1

ð2πÞ3
k2ð1 − μ1Þðk1 − kμ1Þ

k32
Tvðk1ÞTvðk2Þ

× Plinðk1ÞPlinðk2Þ: ðA1Þ
Under symmetrization we have

k2ð1 − μ1Þðk1 − kμ1Þ
k32

→
k2

2k32
sin2αðk1 − k cos αÞ

þ k2

2k31
sin2βðk2 − k cos βÞ ðA2Þ

which by the law of sines reduces to

1

2
sin2ðαþ βÞ

�
k1 − k cos α

k2
þ k2 − k cos β

k1

�
: ðA3Þ

Applying the law of cosines gives the kernel

−
k2

k1k2
cosðαþ βÞ sin α sin β: ðA4Þ

We follow a similar line of steps with Eq. (A26). The
integral is

I2ðkÞ ¼ −
Z

d3k1

ð2πÞ3 k
2

�
2k2μ21 − 3kk1μ31 − kk1μ1

k1k32

þ 3k21μ
2
1 − k21

k1k32

�
Tvðk1ÞTvðk2ÞPlinðk1ÞPlinðk2Þ:

ðA5Þ

Turning attention to the kernel of I2 and repeatedly
applying the law of sines gives

k2
�
2sin2ðαþ βÞcos2 α

k22 sin α sin β
−
3 sinðαþ βÞcos3 α

k22 sin α

−
sinðαþ βÞ cos α − 3cos2 α sin β þ sin β

k22 sin α

�

¼ k2
�
2sin2ðαþ βÞcos2 αþ sin2βð3cos2 α − 1Þ

k1k2sin2 α

−
cos α sin β sinðαþ βÞð3cos2 αþ 1Þ

k1k2sin2 α

�

¼ k2
�
cosðαþ βÞðsin α sin β þ 2 cos α cos βÞ

k1k2

�
: ðA6Þ

Now we focus on the kernel of Eq. (33). Complete with
the factor of 2 from Eq. (19), the kernel is

2k2
�
cos2ðαþ βÞ

3k1k2
þ
�
3

2
μ2 −

1

2

�
cosðαþ βÞ

k1k2

�
cos α cos β −

1

3
cosðαþ βÞ

��

¼ 2k2
cosðαþ βÞ

4k1k2
½3μ2 cosðα − βÞ þ μ2 cosðαþ βÞ − cosðα − βÞ þ cosðαþ βÞ�

¼ k2μ2

k1k2
cosðαþ βÞðsin α sin β þ 2 cos α cos βÞ − k2

k1k2
cosðαþ βÞ sin α sin β; ðA7Þ

3There is a minor discrepancy between the two works—to wit, there is an additional factor of k2 multiplying Eqs. (A25) and (A26).
We believe this to be a typo and will disregard the factor in our comparison.

JAHMOUR J. GIVANS and CHRISTOPHER M. HIRATA PHYS. REV. D 102, 023515 (2020)

023515-16



which agrees with results from Eqs. (A4) and (A6) after all
prefactors are included.

APPENDIX B: PROOF OF UNIVERSALITY
OF EQ. (16)

A perturbative expansion for δF is necessary to calculate
the streaming velocity-induced BAO scale shift. Previous
literature such as [39] provides an analytic model appli-
cable at linear order in δ but which relies on simulation and
model-fitting to obtain a functional form of the nonlinear
power spectrum. Streaming velocity terms (i.e., those with
bv, b1v, or bsv) contribute at second and third order in δ;
since we want correlations with streaming velocity terms
that go up to fourth order in δ, we need the nonstreaming
velocity terms in δF up to second order in δ.
We want to find the most general perturbative expansion

possible for δF by constraining what terms it can have. To
do this, we will write down exact and approximate
symmetries of the Lyman-α system then use these to build
a group theoretic framework. In the proceeding discussion
we assume that we are looking at a snippet of the H I region
sufficiently small such that Δλ=λ ≪ 1 (i.e., the entire
snippet is at approximately the same redshift) but large
enough that Δλ=λ ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mH

p
=c (i.e., large compared to

the thermal broadening and Jeans length so that the snippet
contains many Lyman-α clouds). Clouds in our snippet
should not evolve significantly during the time it takes light
to pass through them.
We start with an H I region oriented as in Fig. 4. It has a

transmitted flux spectrum shown in the left-hand plot of
Fig. 5 (hereafter, “5L”). We are interested in the symmetry
group under which δF at a particular point P remains fixed.
The following are all possible symmetry operations:

(i) Do nothing. This is the identity operation Ê.
(ii) Reflect the snippet across the xy plane. The resulting

flux spectrum looks like the right-hand plot of Fig. 5
(hereafter, “5R”). This is the symmetry operation σ̂h.

(iii) Reflect the snippet across any plane containing the
z axis. There are an infinite number of such planes
each making a unique angle with the x axis. This
infinite set of symmetry operations forms the con-
jugacy class ∞σ̂v. The flux spectrum we obtain is
that of Fig. 5L.

(iv) Perform (ii) and (iii) in either order. The combina-
tion of these actions makes it clear that the snippet
has a center of symmetry. This corresponds to the
symmetry operation î.

(v) Consider a parcel of gas in the snippet with position
vector r ¼ ðrx; ry; rzÞ. We can rotate this by an
angle π around the axis ðcosφ; sinφ; 0Þ, which is
in the plane of the sky at position angle φ (range:
0 ≤ φ < π). The matrix describing this rotation is

R ¼

2
64
cos 2φ sin 2φ 0

sin 2φ − cos 2φ 0

0 0 −1

3
75: ðB1Þ

The net result of all these restrictions is the trans-
formation Rð0; 0; rzÞ ¼ ð0; 0;−rzÞ, i.e., we start
with the transmitted flux in Fig. 5L and end with
Fig. 5R. There are an infinite number of position
angles φ that can be chosen. We call this collection
of symmetry operations the conjugacy class ∞Ĉ2.

(vi) Rotate the snippet about the z axis by an angle φ. We
can rotate clockwise or counterclockwise by any
infinite number of angles. These two symmetry
operations are the conjugacy class 2Ĉφ

∞.
(vii) Perform (vi) and (ii) in either order (they commute).

This is the conjugacy class 2Ŝφ∞.
We have demonstrated that the Lyman-α system possesses
the conjugacy classes of the D∞h point group. The
observable quantity in our analysis is the Lyman-α trans-
mitted flux at P, which is identical in either Fig. 5L or
Fig. 5R. This is true for F so it necessarily holds for δF.
Therefore δF must belong to the irreducible representa-
tion Σþ

g .

z

y

x

skewer

observer

quasar

HI region

z

y

x

skewer

observer

quasar

HI region

FIG. 4. Illustration showing the relative spatial orientation
between a quasar, a region of neutral hydrogen, and the observer.
The origin at point P will remain fixed for all transformations.

z

̅

FIG. 3. Diagram showing the relationship between different
wave vectors. The angles shown are related to μ0s in the following
way: μ ¼ cos θ, μ1 ¼ cos α, μ2 ¼ cos β, and μ12 ¼ cosðαþ βÞ.
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These symmetries are general properties of any of the
commonly considered tracers in redshift space, whether
they are continuous (e.g., Lyman-α forest flux and 21 cm
flux) or discrete (e.g., galaxies and voids). Herein lies the
true power of Eq. (16): given the proper choice of bias
coefficients we can find any P11- or P22-type correlation
between tracers, as well as some P13-type correlations. We
note that in principle it is possible to build a more complete
expansion that covers all P13-type correlations, but the
number of correlations becomes intractable.
How does one build the nonstreaming velocity compo-

nents of δF? We begin by considering all unique fields in
our problem, up to second order:

first order∶δ; sij ðB2Þ

and

second order∶ −
1

aH
θ − δ; tij: ðB3Þ

The local velocity field vðrÞ and local gravitational poten-
tial ϕðrÞ are not included because homogeneous changes in
them—and in the gravitational force—should not be
observable [42]. Next, decompose each field into a direct
sum of its irreducible representations. For the moment let
us focus on the two first-order fields.
Matter density ρ is a scalar so δ ¼ ρ=ρ̄ − 1must also be a

scalar; it decomposes into Σþ
g . The tidal tensor sij is

traceless and symmetric, meaning that only five of its nine
components are independent. Which five components we
choose is arbitrary—indeed one could rotate from our
choice of components to any other—but only one choice
gives a matrix representation of sij in block-diagonal form
(i.e., a matrix built from an orthogonal basis) which is the
most useful format for finding its decomposition. We
determine this basis with the aid of Table IV, the D∞h
character table. In its last column are six quadratic basis
functions (read: the basis functions for a symmetric rank-2
tensor) which give the desired result. For instance, the
appearance of x2 þ y2 in the first row implies that sxx þ syy

FIG. 5. Lyman-α transmitted flux as a function of wavelength. (a)–(d) Different spatial positions along the z axis. Left: H I region in its
default orientation. Right: same region after a given transformation occurs which sends z → −z but leaves the origin P fixed.

TABLE IV. D∞h character table. Conjugacy classes are given across the top row and irreducible representations are given down the
leftmost column. The last two columns list basis representations according to their transformation properties. Parentheses indicate that
the entries separated by a comma must be considered together. This table is adapted from those appearing in [63,64].

D∞h Ê 2Ĉφ
∞ � � � ∞σ̂v î σ̂h 2Ŝφ∞ � � � ∞Ĉ2

linear functions & rotations
quadratic functions

Σþ
g þ1 þ1 � � � þ1 þ1 þ1 þ1 � � � þ1 - x2 þ y2; z2

Σ−
g þ1 þ1 � � � −1 þ1 þ1 þ1 � � � −1 Rz -

Πg þ2 þ2 cosφ � � � 0 þ2 −2 −2 cosφ � � � 0 ðRx; RyÞ ðxz; yzÞ
Δg þ2 þ2 cos 2φ � � � 0 þ2 þ2 þ2 cos 2φ � � � 0 - ðx2 − y2; xyÞ
Φg þ2 þ2 cos 3φ � � � 0 þ2 −2 −2 cos 3φ � � � 0 - -
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - -
Eng þ2 þ2 cos nφ � � � 0 þ2 ð−1Þn2 ð−1Þn2 cos nφ � � � 0 - -
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - -
Σþ
u þ1 þ1 � � � þ1 −1 −1 −1 � � � −1 z -

Σ−
u þ1 þ1 � � � −1 −1 −1 −1 � � � þ1 - -

Πu þ2 þ2 cosφ � � � 0 −2 þ2 þ2 cosφ � � � 0 ðx; yÞ -
Δu þ2 þ2 cos 2φ � � � 0 −2 −2 −2 cos 2φ � � � 0 - -
Φu þ2 þ2 cos 3φ � � � 0 −2 þ2 þ2 cos 3φ � � � 0 - -
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - -
Enu þ2 þ2 cos nφ � � � 0 −2 ð−1Þnþ12 ð−1Þnþ12 cos nφ � � � 0 - -
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - -
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transforms under a representation of Σþ
g . From Table IV it is

clear that sij decomposes into Σþ
g ⊕ Πg ⊕ Δg.

Knowing the decomposition into irreducible representa-
tions, we now turn our attention to finding the linear combi-
nation of terms describing the first-order flux overdensity.

δð1ÞF ¼ ½ a1ja2ja3a4ja5a6 �

2
6666664

δ
szz
sxz

syz
sxx − syy

sxy

3
7777775
; ðB4Þ

where bars are used both to separate components according
to their irreducible representation and to separate the two
fields. Symmetries of the Lyman-α system are such that it
does notmatterwhetherwe first performa transformation in
(i)–(vii) on the initial fields thenactwith a coefficientmatrix
on the resultant fields, or first act with the coefficientmatrix
on the initial fields thenperforma transformation in (i)–(vii)
on the resultant fields; both cases result in δð1ÞF . Wewrite the
group theoretic version of this statement as

ΓΣþ
g
ðgÞ ¼ fΓaðgÞx ¼ ΓbðgÞfx; ðB5Þ

where ΓiðgÞ is the irreducible representation i for all group
elements g, f is a linear mapping between the vector spaces
of irreducible representations a and b, and x is any block of
the vertical vector in Eq. (B4) we are considering. Suppose
a ≠ b. Schur’s lemma applied to the second equality in

Eq. (B5) tells us that either f ¼ 0 or f is an equivalence
between a and b. However since a and b are irreducible,
there cannot be an equivalence between them, sof ¼ 0. The
first equality inEq. (B5) impliesno term is contributed to the

expansion for δð1ÞF . Alternatively, suppose a ¼ b. This
implies a ¼ Σþ

g , the representation for which all trans-
formations are given by the identity matrix. Therefore the
map f must go from one vector space to itself (i.e.,
f∶V → V). BySchur’s lemma,fmust be equal to a constant
times the identity matrix. Taken together, the preceding
results mean that a3–a6 in Eq. (B4) are all zero.
We now turn our attention to the second-order fields and

write

δð2ÞF ¼ ½ a01ja02ja03a04ja05a06 �

2
666666664

−θ=aH − δ
tzz
txz

tyz
txx − tyy

txy

3
777777775
: ðB6Þ

All arguments previously given to find the linear combi-
nation of terms that build δð1ÞF apply to building δð2ÞF as well.
Therefore a03–a

0
6 in Eq. (B6) are all zero.

Other second-order contributions are built from products
of first-order elements. Take these products and decompose
them into irreducible representations:

δ2∶Σþ
g ⊗ Σþ

g ¼ Σþ
g ; ðB7Þ

δsij∶Σþ
g ⊗ ðΣþ

g ⊕ Πg ⊕ ΔgÞ ¼ Σþ
g ⊕ Πg ⊕ Δg; ðB8Þ

and

sijskl∶ðΣþ
g ⊕ Πg ⊕ ΔgÞ ⊗ ðΣþ

g ⊕ Πg ⊕ ΔgÞ ¼ 3Σþ
g ⊕ 2½Σ−

g � ⊕ 2Πg ⊕ ½2Πg� ⊕ 2Δg ⊕ ½Δg� ⊕ Φg ⊕ ½Φg� ⊕ E4g

→ 3Σþ
g ⊕ 2Πg ⊕ 2Δg ⊕ Φg ⊕ E4g: ðB9Þ

The direct sums and products above are calculated using
the characters in Table IV. [Some representations appear
in brackets in Eq. (B9) because they arise from the
antisymmetric part of the direct product; since sij and
skl are the same tidal field, we will not have these terms.
Alternatively the symmetrical part of the product of the
dimension 5 representation Σþ

g ⊕ Πg ⊕ Δg with itself has
dimension 5 × 6=2 ¼ 15 instead of 52 ¼ 25.] As before,
Schur’s lemma tells us that only the pieces of terms in δ2,
δsij, and sijskl which transform as Σþ

g may have a nonzero
coefficient. Two of these are obvious: δ2 and δszz.
Equation (B9) shows that there are three independent
terms in the expansion of s2 which may have nonzero
coefficients. Note that s2 ¼ sijsij is a rank-4 tensor. Just as

quadratic basis functions in Table IV describe various
components of the rank-2 tensor sij, products of these
same functions should describe pieces of s2. However not
every possible product will contribute. Products of irre-
ducible representations which can be decomposed into
direct sums involving Σþ

g are Σþ
g ⊗ Σþ

g , Πg ⊗ Πg, and
Δg ⊗ Δg. These correspond to basis functions of the form
s2zz, s2xz þ s2yz, and ðsxx − syyÞ2 þ s2xy, respectively.4 The

4For simplicity we have simply added the squares of the
elements for each two-tuple in the last column of Table IV, but the
correct linear combination to build quartic basis functions is more
elaborate. Do not get perturbed when, for example, we give
different coefficients to ðsxx − syyÞ2 and s2xy in Eq. (B10).
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full expansion for s2 written in a format consistent with a quartic basis is

s2 ¼ s2xx þ s2yy þ s2zz þ 2ðs2xy þ s2xz þ s2yzÞ

¼ s2zz þ 2ðs2xz þ s2yzÞ þ
1

2
ðsxx − syyÞ2 þ

1

2
ðsxx þ syyÞ2 þ 2s2xy

¼ 3

2
s2zz þ 2ðs2xz þ s2yzÞ þ

1

2
ðsxx − syyÞ2 þ 2s2xy: ðB10Þ

Without loss of generality we choose a001s
2, 3

2
a002s

2
zz, and 2a003ðs2xz þ s2yzÞ as the three independent terms (with coefficients)

in Eq. (B10).
We make note of Eq. (64) which allows us to absorb the −θ=aH − δ contribution from Eq. (B6) into δ2 and s2

contributions. Taking the results of this appendix and redefining constants, we obtain

δF;no bvðsÞ ¼ c1δðrÞ þ c2szzðrÞ þ c3δ2ðrÞ þ c4s2ðrÞ þ c5δðrÞszzðrÞ þ c6tzzðrÞ þ c7s2zzðrÞ þ c8½s2xzðrÞ þ s2yzðrÞ�: ðB11Þ
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