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We use anisotropic fluid cosmology to describe the present, dark energy-dominated Universe without
assuming the presence of dark matter. The resulting anisotropic fluid spacetime naturally generates
inhomogeneities at small scales, triggered by an anisotropic stress, that could therefore be responsible
for structure formation at these scales. We show that the dynamics of the scale factor a is described by the
usual Friedmann-Lemaître-Robertson-Walker cosmology and decouples completely from that describing
inhomogeneities. Assuming that the fluid inherits the equation of state from galactic dynamics, we show
that, in the large scale regime, it can be described as a generalized Chaplygin gas. We find that our model
fits well the distance modulus experimental data of type Ia supernovae, thus correctly modeling the
observed accelerated expansion of the Universe. Conversely, in the small scale regime, we use
cosmological perturbation theory to derive the power spectrum PðkÞ for mass density distribution. At
short wavelengths, we find a 1=k4 behavior, in good accordance with the observed correlation function for
matter distribution at small scales.
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I. INTRODUCTION

Our present understanding of cosmology, large scale
structure of our Universe and galactic dynamics is based
on the ΛCDM model [1]. The model is based on the
cosmological principle, which states that at sufficiently
large scales, our Universe appears to be homogeneous and
isotropic. The ΛCDM model shows good agreement with
observational data; however, it is not completely satisfac-
tory from a conceptual point of view. It postulates that
about 95% of the matter contained in our Universe is of an
exotic nature. At the galactic level, it fails to explain the
Tully-Fisher (TF) relation. Moreover, there is also some
tension between the ΛCDM model and observations at the
level of galaxies, galaxy clusters [2], and the determination
of the Hubble parameter [3,4].
Although the Universe is homogeneous and isotropic at

large scales, the existence of structures such as galaxies,
stars, or planets implies that it is inhomogeneous and
anisotropic on smaller scales. For what concerns inhomo-
geneity, the transition scale is about R ¼ 100–300 Mpc=h
[5–8], where h parametrizes the Hubble constant, i.e.,
H0 ¼ 100h km s−1 Mpc.
Thus, if one focuses only on the present, dark-energy

dominated era, the simplest description of our Universe
should be that of an inhomogeneous cosmological model,

in which inhomogeneities disappear when averaged at
scales larger than R. In the ΛCDM framework, inhomo-
geneities are explained in terms of the gravitational growth
due to dark matter of a primeval scale invariant and
Gaussian perturbations generated during inflation [9,10].
The early Universe is homogeneous and isotropic, the
departures from homogeneity at high redshift are well
described by perturbation theory, which results in a scale-
invariant power spectrum PðkÞ for the mass distribution at
long wavelengths [11,12],

PðkÞ ∼ k; ð1Þ
where k represents the wave number. At small scales, a
method to describe the statistical distribution of cosmic
structures is given by the two-point correlation function,
ξðrÞ, which is the Fourier transform of PðkÞ. Observations
show that, at physical scales ranging from 100 kpc=h to
10 Mpc=h, ξðrÞ is well-described by a simple power law
[13–16],

ξðrÞ ¼
�
r
r0

�−γ
; ð2Þ

where r0 ∼ 5 Mpc=h is the so-called “correlation length”
and γ is experimentally determined. Observations suggest
that γ ∈ ½1.8; 2� [13–16]. Using Eq. (2) with γ ¼ 2, we get,
computing the Fourier transform,

PðkÞ ∼ k−4: ð3Þ
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The inhomogeneous cosmological model has been
extensively studied in cosmology; see, e.g., [17–24].
However, it is not easy to consider them as a full alternative
to the ΛCDM model. They cannot be proposed as a model
describing the full history of our Universe due to the
gravitational instability of mass distributions in the
early Universe in Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology.
On the other hand, an inhomogeneous cosmological

model can be used as an effective description of the present,
dark energy-dominated era of our Universe, i.e., for redshift
z≲ 1 [1]. In particular, we expect this inhomogeneous
model to determine the short wavelength behavior (3) since
the latter is valid on scales which are smaller than the
homogeneity transition scale mentioned at the beginning of
this section.
At galactic scales, gravity sourced by an anisotropic fluid

can give an effective description of the additional force
commonly attributed to dark matter [25]. Thus, it is also the
most natural candidate for the source in our inhomo-
geneous cosmology model. Indeed, motivated mainly by
the conceptual difficulties at the level of galactic dynamics,
recently, several alternative proposals have been put for-
ward to explain the galactic phenomenology commonly
attributed to dark matter [25–29]. Typically, these alter-
native approaches use infrared modifications of general
relativity (GR), where the additional force at the galactic
level is generated by the interaction between baryonic
matter and dark energy (DE). A common feature of these
attempts is the fact that, in the weak field regime, they
all reproduce Milgrom’s modified Newtonian dynamics
(MOND) [30,31], which gives a simple explanation of the
Tully-Fisher relation.
So far, the previously mentioned attempts have been

mainly confined to galactic dynamics. However, there are
several reasons that strongly motivate their extension to
cosmology. Firstly, dark matter plays a crucial role not only
in galactic dynamics, but also in structure formation [9].
Any alternative to dark matter should therefore not only
explain anomalous galactic rotation curves but also struc-
ture formation. Secondly, the threshold acceleration param-
eter a0, appearing in the TF relation, has the same order of
magnitude of the Hubble constant H0, indicating the
existence of a deep connection between galactic dynamics
and cosmology. Last but not least, in the emergent gravity
scenario, the additional force beyond the Newtonian one is
a “dark force” that originated from the response of dark
energy to the presence of baryonic matter, linking again the
physics at galactic scales to cosmology.
It is therefore tempting to look for a unified description

encompassing different regimes of gravity: Newtonian,
galactic, cosmological. This paper is devoted to the attempt
of building such a cosmological model, motivated by the
emergent gravity description of galactic dynamics, without
assuming the presence of dark matter. It is known that, at

the galactic level, dark force effects allow for an effective
description in terms of GR sourced by an anisotropic fluid
[25]. We will therefore use anisotropic fluid cosmology as
an effective description of the cosmological effects of DE-
baryonic matter interaction in a dark energy-dominated
Universe.
The structure of this paper is as follows. In Sec. II, we

discuss how an anisotropic fluid spacetime can be used to
describe cosmic structures at small scales. We set up our
cosmological model sourced by an anisotropic fluid and
solve the resulting cosmological equations. The equation of
state (EoS) for our anisotropic fluid is described in Sec. III.
In Sec. IV, we investigate the large scale regime of our
cosmological model, show that the predictions of our
model fits very well the distance modulus data of type
Ia supernovae, and discuss its relationship in terms of a
generalized Chapligyn gas. In Sec. V, we discuss cosmo-
logical perturbations. We first consider isotropic perturba-
tions, which describe the behavior of the power spectrum
PðkÞ for a mass density distribution at large wavelengths.
Thereafter, we consider perturbations described by an
anisotropic stress tensor. This allows us to find PðkÞ∼
1=k4, within a good accordance with the observed corre-
lation function for matter distribution at small scales.
Finally, in Sec. VI, we present our conclusions.

II. ANISOTROPIC FLUID
COSMOLOGICAL MODEL

An anisotropic fluid can be used as a description of a
two-fluid model [32]. Moreover, as elucidated in the
previous section, it is a promising candidate for describing
an universe made of baryonic matter and dark energy (and
their interaction), and the transition from an inhomo-
geneous universe at short scales to a homogeneous one
at large scales, during the dark energy-dominated epoch.
We set up a cosmological model in which the various

forms of matter, sourcing cosmological evolution and
structure formation, are described by an anisotropic fluid
with an energy-momentum tensor given by [33,34]

Tμν ¼ TðpfÞ
μν þ πμν; ð4Þ

where TðpfÞ is the stress-energy tensor of the perfect fluid.
The anisotropic stress tensor πμν is1

πμν ¼
ffiffiffi
3

p
S
�
wμwν −

1

3
ðuμuν þ gμνÞ

�
; ð5Þ

where the fluid velocity uμ and the spacelike vector wν

satisfy uνuν ¼ −1, wνwν ¼ 1, and uμwμ ¼ 0. The energy
density is given by ρ and the pressure components p⊥; pk
are perpendicular and parallel to the spacelike vector wν,

1Throughout this paper, we will use natural units c ¼ ℏ ¼ 1.
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respectively. The quantity S quantifies the degree of
anisotropy, S ¼ 3−1=2ðpk − p⊥Þ.
One can easily check that πμν satisfies the usual relations

for a gauge-invariant anisotropic stress tensor, πμνuν ¼
πμμ ¼ 0 and π00 ¼ π0i ¼ 0.2

In the comoving frame, the only nonvanishing compo-
nents of πμνuν are the spatial ones which can be identified
with the radial and transverse components of the aniso-
tropic fluid pressure,

T1
1¼pk ¼Pþ 2Sffiffiffi

3
p ; T2

2¼T3
3¼p⊥¼P− Sffiffiffi

3
p : ð6Þ

When S ¼ 0, we have pk ¼ p⊥ ¼ P; the fluid is perfect,
homogeneous, and isotropic. Conversely, S ≠ 0 implies
pk ≠ p⊥, signalizing anisotropic departure from a perfect
fluid.
If we take p⊥ ¼ pk and assume a spatially homogeneous

and isotropic universe, we get the usual FLRW cosmo-
logical model with p, ρ, and the scale factor of the metric
depending on the cosmological time T only.
The simplest way to achieve p⊥ ≠ pk is to allow for a

dependence of p⊥; pk, and ρ from the radial coordinate r.
The spacetime is not homogenous anymore, but remains
isotropic, the only manifestation of anisotropy being
p⊥ ≠ pk, which therefore becomes the source of the
inhomogeneities. This is consistent with the cosmological
principle only if at large scales, i.e., r → ∞, p⊥ − pk → 0,
reinstating the homogeneity and isotropy of the solution.
A convenient parametrization of the spacetime metric is

ds2 ¼ a2ðtÞ
�
−fðrÞeγðrÞdt2 þ dr2

fðrÞ þ r2dΩ2

�
;

dΩ2 ¼ dθ2 þ sin2θdϕ2; ð7Þ

where t is the conformal time, a the scale factor, and f, γ
are metric functions. Choosing an appropriate frame, the
fluid velocity vectors are given by uν ¼ ða−1f−1=2e−γ=2;
0; 0; 0Þ, wν ¼ ð0; a−1f1=2; 0; 0; Þ. Einstein’s equations
Rμν − 1

2
gμνR ¼ Gμν ¼ 8πGTμν give three independent

equations,

3

�
_a
a

�
2

−
eγf
r2

ð−1þ f þ rf0Þ ¼ 8πGa2ρfeγ;

_a
af

ðf0 þ fγ0Þ ¼ 0; ð8Þ

e−γ

r2a2f2
½r2 _a2 þ eγa2fð−1þ f þ rf0 þ rfγ0Þ − 2r2aä�

¼ 8πGpk
a2

f
; ð9Þ

where the dot and the prime denote derivatives with respect
to t and r, respectively. Covariant conservation of the
stress-energy tensor gives two more equations,

_ρþ _a
a
ð3ρþ pk þ 2p⊥Þ ¼ 0;

p0
k þ

2

r
ðpk − p⊥Þ þ

1

2
ðρþ pkÞ

�
γ0 þ f0

f

�
¼ 0: ð10Þ

The form of the spacetime metric (7), together with Eq. (4),
describes, as particular cases, the various regimes of gravity
sourced by an (an)isotropic fluid: Newtonian, galactic,
cosmological. When _a ¼ 0 (we set a ¼ 1), our model
reproduces a static, spherically symmetric, anisotropic fluid
space-time, which has been used for several applications
[33–37]. In particular, it has been used to explain galactic
dynamics without assuming the presence of dark matter
[25]. In this latter case, the radial pressure pk gives an
additional component to the acceleration (dark force) at
galactic scales. This is what we call the MOND regime of
gravity, because it reproduces the MOND theory in the
weak-field approximation. If, in addition to _a ¼ 0, we also
impose pk ¼ p⊥, we obtain GR sourced by a static,
spherically symmetric perfect fluid (the Newtonian regime
of gravity). On the other hand, if _a ≠ 0, our model
describes a nonhomogeneous cosmological model, which
interpolates between the MOND regime at galactic scales
and the usual FLRW cosmology at r → ∞.

A. Decoupling of cosmological degrees of freedom
from inhomogeneities

When _a ≠ 0, the second equation in (8) and the second
equation in (10) can be solved, respectively, for γ and p⊥,

e−γ ¼ f; p⊥ ¼ pk þ
r
2
p0
k: ð11Þ

The remaining equations give then,

3

�
_a
a

�
2

þ 1 − f − rf0

r2
¼ 8πGa2ρ;

�
_a
a

�
2

− 2
ä
a
þ f − 1

r2
¼ 8πGa2pk;

_ρþ _a
a
ð3ρþ 3pk þ rp0

kÞ ¼ 0: ð12Þ

As usual in cosmology, the system has to be closed,
imposing an equation of state for the fluid, pk ¼ pkðρÞ.2Latin indices indicate the spatial component of the tensor.
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Using the first two equations, the third equation in (12)
can be easily integrated to give

a2ρðr;tÞ¼a2ðtÞρ̂ðtÞþEðrÞ; a2ρ̂ðtÞ¼ 3

8πG
H2; ð13Þ

where H≡ _a=a is the conformal Hubble parameter and
EðrÞ is an integration function, which depends on the radial
coordinate r only. Physically, it represents the inhomoge-
neities in the baryonic matter density distribution and
should therefore be negligible at scales larger than R as
mentioned in the Introduction. We can now separate the
r-dependent and the t-dependent parts in the first equa-
tion (12). The former determines the metric function f,

f ¼ 1 −
2GmBðrÞ

r
−
2GM
r

; mBðrÞ ¼ 4π

Z
drr2EðrÞ;

ð14Þ

where mBðrÞ is the Misner-Sharp mass associated with the
inhomogeneities in the baryonic matter and M is an
integration constant with the dimensions of a mass.
Using Eq. (14) into the second equation (12), we get

a2pkðr; tÞ ¼ a2ðtÞp̂ðtÞ þ PðrÞ;

a2p̂ðtÞ ¼ 1

8πG

��
_a
a

�
2

− 2
ä
a

�
;

PðrÞ ¼ −
mBðrÞ þM

4πr3
: ð15Þ

Equations (13) and (15) clearly show that the contributions
of inhomogeneities (r-dependent terms) to matter density
and pressure can be separated from the homogeneous
(t-dependent) cosmological contributions. This, in turn,
allows us to separate the dynamics of cosmological
evolution, which determines a; ρ̂; p̂, from the effect of
inhomogeneities. In fact, Eq. (12) are completely equiv-
alent to the FLRW equations for a; ρ̂; p̂,

a2ρ̂ ¼ 3

8πG

�
_a
a

�
2

; a2p̂ ¼ 1

8πG

��
_a
a

�
2

− 2
ä
a

�
;

_̂ρþ _a
a
ð3ρ̂þ 3p̂Þ ¼ 0; ð16Þ

together with PðrÞ of Eq. (15), which determines the
pressure from mBðrÞ given by Eq. (14). The perpendicular
component of the pressure p⊥ is then determined from pk
using Eq. (11).
This is a quite interesting result: cosmological degrees of

freedom decouple from inhomegenities. This implies that
the scale factor a is completely determined by the homo-
geneous and isotropic component of density and pressure
ρ̂; p̂ through the usual FLRW equations (16), whereas the
only effect of inhomogeneities is to produce a nonvanish-
ing, r-dependent, pressure PðrÞ.

Also taking into account Eq. (14), the physical inter-
pretation of the latter is quite simple. The term proportional
to M gives a Schwarzschild-like contribution, i.e., an
inhomogeneity generated by a pointlike source located at
r ¼ 0. Its presence is not compatible with observations; we
have therefore to set the integration constant M ¼ 0.
The term proportional to mBðrÞ gives instead the con-

tribution of spherically symmetric inhomogeneities distrib-
uted with density EðrÞ. Since we want to recover usual
FLRW cosmology at a large distance (r → ∞), we have to
assume mBðrÞ ∼ − 1

2GKr3 þ c1
r with K ¼ 0;�1. As we

shall see in detail in the next section, the first term gives
the spatial curvature of the spacetime, whereas the second
one gives a contribution to f and pkðr; tÞ that vanishes in
the r → ∞ limit. The physical effect of the PðrÞ term in
Eq. (15) can be explained as a Newtonian contribution to
the pressure, PN ¼ 1

4π
mB
r3 , which produces the radial accele-

ration ar ¼ 4πGrPN [25].

B. FLRW cosmology

Usual FLRW cosmology can be obtained as a limiting
case of our anisotropic fluid cosmology in two different,
albeit related, ways. In the first way, standard cosmology is
obtained in the large scale limit r → ∞. In fact, in this limit,
both PðrÞ and EðrÞ go to zero, pk ¼ p⊥ ¼ p̂, ρ ¼ ρ̂, and
Eq. (16) become the FLRWequations written in terms of pk
and ρ. The same equations can be obtained by setting the
integration function EðrÞ identically to zero, so that we
identically get pk ¼ p⊥ ¼ p̂ and ρ ¼ ρ̂.
It is quite interesting to notice that the derivation of

the FLRW equations as a limiting case of anisotropic fluid
cosmology allows us to generate the constant spatial
curvature term in those equations from a constant contri-
bution to the density function EðrÞ. In fact, setting
EðrÞ ¼ − 3

8πGK, we get mB ¼ − K
2
r3, f ¼ 1þKr2, and

Eq. (16) become

3

�
_a
a

�
2

− 3K ¼ 8πGa2ρ

�
_a
a

�
2

; −2
ä
a
þK ¼ 8πGa2p;

_ρþ _a
a
ð3ρþ 3pÞ ¼ 0; ð17Þ

where, for notation simplicity, we set pk ¼ p.
Although our model works also for a 3D space with

constant positive, negative or zero curvature, in the follow-
ing we will consider, consistently with observations, only
FLRW cosmologies with K ¼ 0.
In this paper, we use the simplest description of dark

energy, i.e., that of a cosmological constant Λ, which
corresponds to constant energy density ρ ¼ Λ=8πG and
equation of state p ¼ −ρ. As it is well-known, in this case,
Eq. (17) (with K ¼ 0) give as a solution the dS spacetime,
i.e., a ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

t−1.
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III. THE EQUATION OF STATE

A crucial issue of our cosmological model is the
determination of the EoS for the anisotropic fluid in the
large scale regime we are considering in this paper.
The equation of state is not only important to determine
the background solution but also to describe the latter
density perturbations around it. In our approach, the
anisotropic fluid is meant to give an effective description
of dark energy, baryonic matter, and their interaction.
Although we know very well the EoS for (perfect) fluids
describing pure, noninteracting DE3 or pure, noninteract-
ing, stiff baryonic matter (with p ¼ 0), presently, we do not
have a direct way to derive the EoS for the anisotropic fluid
describing the interacting case. One possibility is to use
hints coming from the anisotropic fluid description at
galactic scales to infer information about the EoS of the
fluid at a cosmological level [25,27,28].
At galactic scales, the interaction between dark energy

and baryonic matter is described by a dark force, which
manifests itself through the radial component of the
pressure of the anisotropic fluid [25],

pk ¼ p ¼ 1

4πr2

ffiffiffiffiffiffiffiffiffiffiffiffi
mBðrÞ
GL

r
; ð18Þ

where mBðrÞ is the baryonic matter distribution in the
Galaxy and L ∼H−1

0 is the size of the cosmological horizon.
Although this equation does not represent a barotropic
equation of state for the fluid, i.e., a relation between the
pressure and the density of the fluid, it can be used as a hint
to infer the EoS for our anisotropic fluid in the large scale
cosmological regime. That Eq. (18) cannot be directly used
in the context of a DE-dominated universe is also evident
from another simple argument. In this cosmological regime,
we expect the contribution of baryonic matter to be
completely negligible. The mass appearing under the square
root has to be therefore considered as the total effective mass
mEðrÞ, which is the sum of the baryonic mass, mBðrÞ, the
DE contribution mΛðrÞ, and an interaction term mIðrÞ:
mEðrÞ ¼ mBðrÞ þmΛðrÞ þmIðrÞ. At galactic scales, mΛ
and mI can be neglected, we have mEðrÞ ∼mBðrÞ, and we
get Eq. (18). Conversely, in the limit r ∼ L, both baryonic
matter and its interaction with DE can be neglected. From
ρΛ ∼ 1

GL2 we get mΛ ∼ L
G, so that Eq. (18) gives p ∼ −ρΛ,

where we have taken into account that the pressure in
Eq. (18) is negative. Wewill therefore promote Eq. (18) to an
effective equation relating the radial pressure of our aniso-
tropic fluid with the effective matter density ρE generating
the effective mass mE,

pk ¼
1ffiffiffiffiffiffi
4π

p
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d3xρEðrÞ
GL

r
: ð19Þ

Notice that in our description the effective matter density ρE
is expected to mimic the effects of both dark and baryonic
matter in the ΛCDM model.
Equation (19) still does not have the form of an equation of

state. In order to bring it into this form, we consider
the large scale regime of our cosmological model, when
the interaction between DE and baryonic matter cannot be
neglected; hence, the EoS is expected to deviate from the
simple form p ∼ −ρ. In the large scale limit r → ∞, the
contribution of inhomogeneities to the density ρ and to
pressure pk dies out. Cosmological evolution is therefore
described by the FLRW equations (17) with K ¼ 0. On
the other hand, although the Universe is dominated by
dark energy, the interaction of the latter with baryonic matter
cannot be completely neglected. BeingmEðrÞ ¼ 4πa3

3
ρEðtÞr3

and taking into account that, at large distances,wehave r ∼ L,
Eq. (18) takes the form of an effective equation of state,

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
L

ffiffiffi
ρ

p
a3=2: ð20Þ

In Sec. V B, we will consider inhomogeneities as density
perturbations of the dS background that describe the short
wavelength behavior of the power spectrum (3). In order to do
this, we will consider in Eq. (19) both p and ρE as small
perturbations of the (constant) pressure and energy density
sourcing the dS spacetime.

IV. LARGE SCALE COSMOLOGICAL REGIME
AND GENERALIZED CHAPLYGIN GAS MODEL

We consider the large scale regime of our cosmological
model. We have seen in the previous section that, in the
large scale limit r → ∞, cosmological evolution is
described by the FLRW equations (16) with an effective
EoS given by (20). Thus, the cosmological equations (16)
can be written as

_a2 − 2äa ¼
ffiffiffi
2

p

L
_aa7=2; ð21Þ

which can be easily integrated by defining the new variable
K ¼ _affiffi

a
p and the new time τ ¼ R

a5=2dt. The solution of

Eq. (21) can be written in an implicit form in terms of the
conformal time t as

tðaÞ¼−
ffiffiffi
2

p
c51

H0

�
ln

�
1−c1

ffiffiffi
a

p
1þc1

ffiffiffi
a

p
�
þ1

2
ln

�
1−c1

ffiffiffi
a

p þc21a
1þc1

ffiffiffi
a

p þc21a

�

þ
ffiffiffi
3

p �
arctg

�
1−2c1

ffiffiffi
a

p
ffiffiffi
3

p
�
−arctg

�
1þ2c1

ffiffiffi
a

p
ffiffiffi
3

p
���

;

ð22Þ

where c1 is an integration constant.
3The reader should remember that we are modeling DE as a

cosmological constant with p ¼ −ρ.
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From the metric in Eq. (7), one can easily derive the
conformal time t in terms of the cosmological time T and
the luminous distance DL,

t ¼
Z

dT
a

; DL ¼ 1

a

Z
T0

T

dT
a

¼ 1

a
tðaÞ

				
a¼1

a
; ð23Þ

respectively, where T0 is the present cosmological time and
the scale factor at present cosmological time is normalized
to 1, aðT0Þ ¼ 1.
DL can be calculated using Eq. (22) and substituted into

the distance modulus,

m −M ¼ 25þ 5log10

�
DL

Mpc

�
; ð24Þ

where m and M are the apparent and absolute magnitude,
respectively.
We can now compare the theoretical prediction for the

distance modulus of our cosmological model with EoS
(20), as function of the redshift z, with the observational
data for the type Ia supernovae, taken from the Supernova
Cosmology Project (SCP) Union 2.1 Compilation [38]. The
scale factor (22) contains an integration constant c1, which
enters in the relationship between conformal time t and
cosmological time T. It can be fixed by fitting the
prediction of our model with the observational data. The
fit gives the result c1 ¼ 0.769.
In Fig. 1, we show the comparison between the

theoretical prediction of our model for the distance modu-
lus with the observations of [38], finding a good agreement.
Notice that, in Fig. 1, we have only considered observa-
tional data with z≲ 0.6. This corresponds to the range of

validity of our cosmological model, which is meant to
describe our late-time, dark energy-dominated Universe.

A. Connection with generalized
Chaplygin gas model

It is interesting to notice that our cosmological model
based on the EoS (20) belongs to a class of models known
as “new generalized Chaplygin gas” (NGCG) [39–41]. This
does not come as a surprise, because these models are
meant to give a unified description of dark energy and dark
matter. This is alike to what we have achieved by means of
our anisotropic fluid cosmology, but with an important
difference: in our description, there is no dark matter but
only dark energy, baryonic matter, and their interaction,
whose effect at galactic scales and in cosmology should
replace that of DM.
The EoS for NGCG has the general form pNGCG ¼

AðaÞρ−ζNGCG. More precisely, it can be written as

pNGCG ¼ ζAa−3ð1þζÞð1þηÞ

ρζNGCG
; ð25Þ

where ζ, η are some parameters and A is a positive constant.
Comparing Eq. (25) with our EoS (20), we can deter-

mine the parameters ζ, η, A,

ζ ¼ −1=2; η ¼ −2; A ¼ 1

3L

ffiffiffiffiffiffiffi
3

πG

r
¼ H0

3

ffiffiffiffiffiffiffi
3

πG

r
:

ð26Þ

FIG. 1. Theoretical prediction of our cosmological model for the distance modulus as a function of the redshift (red line) vs SNIa
observational data, taken from Ref. [38]. For the Hubble constant, we adopt the valueH0 ¼ 67.6 km s−1 Mpc−1, obtained combining the
Planck and BAO data [1].
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V. COSMOLOGICAL PERTURBATIONS

One of the main goals of our anisotropic fluid cosmology
is to describe structures at small scales and to derive the
matter power spectrum (3). There are two different
approaches for doing that. The first one is phenomeno-
logical: one just assumes the validity of our model and then
finds the inhomogeneity function EðrÞ by fitting observa-
tional data about the mass density distribution. Obviously,
this approach has very low predictive power.
Alternatively, one can consider EðrÞ as a small pertur-

bation of a FLRW universe dominated by dark energy.
Using the simplest description for dark energy, that of a
cosmological constant, we need to consider perturbations
near the dS cosmological solution generated by an aniso-
tropic fluid. We will first consider generic perturbations

around a given cosmological background gð0Þμν given by
Eq. (7) (we set γ ¼ 0 and f ¼ 1; i.e., we consider a
spatially flat universe) in the linear regime. We will then
specialize our calculations to the dS background.
We start from the usual form for the perturbed metric,

gμνðt; xÞ ¼ gð0Þμν ðtÞ þ hμνðt; xÞ; ð27Þ

where the background metric depends only on the con-
formal time t, whereas hμνðt; xÞ depends both on t and on
the spatial coordinates xi.
It is well-known that, for cosmological perturbations, the

split (27) depends on the choice of coordinates, i.e., on the
gauge choice. We have two possible choices: either we fix
the gauge, or we can choose to work with manifest gauge
invariant quantities, like, e.g., the Bardeen potentials. In
this paper, we choose the first approach and use the
Newtonian conformal gauge,

ds2 ¼ a2½−ð1þ 2ϕÞdη2 þ ð1þ 2ψÞδijdxidxj�: ð28Þ

We are assuming that our cosmological background is
sourced by a perfect fluid of density ρ and pressure P. We
can therefore treat the anisotropic stress πμν as a perturba-
tion of the stress-energy tensor. Consistently, we will also
treat S ¼ 3−1=2ðpk − p⊥Þ as a small perturbation; i.e., we
will take jðpk − p⊥Þ=Pj ≪ 1 and consider only terms of
order 1 in the perturbative expansion.
The background components for the stress-energy tensor

are those pertaining to a perfect fluid: T0
0 ¼ −ρ; T0

i ¼
Ti
0 ¼ 0; Ti

j ¼ Pδij. For the perturbations, we have instead

δT0
0¼−δρ; δT0

i ¼−δTi
0¼viðρþPÞ; δTi

j¼δPδijþπij;

ð29Þ

where vi ¼ aδui parametrize fluid velocity perturbations.
The perturbed Einstein equations δGμ

ν ¼ 8πGδTμ
ν there-

fore are

3HðHϕ − _ψÞ þ∇2ψ ¼ −4πGa2δρ;

∂ið _ψ −HϕÞ ¼ 4πGa2ðρþ PÞvi; ð30aÞ

∂i∂jðψ þ ϕÞ ¼ −8πGa2πij;

ðH2 þ 2 _HÞϕþH _ϕ − ψ̈ − 2H _ψ þ 1

3
∇2ðψ þ ϕÞ

¼ 4πGa2δP: ð30bÞ

The covariant conservation equation for the stress-
energy tensor ∇μδT

μ
ν ¼ 0 gives two more equations,

_δρþ 3Hðδρþ δPÞ þ ðρþ PÞð∂ivi þ 3 _ψÞ ¼ 0; ð31aÞ

ðρþPÞð4Hviþ _viþ∂iϕÞþvið _ρþ _PÞþ∂iδPþ∂jπ
j
i ¼0:

ð31bÞ

A. dS background: Isotropic perturbations

Let us now consider cosmological perturbations of the
dS background solution, i.e., a background whose EoS is
P ¼ −ρ. We first consider the case of isotropic perturba-
tions; i.e., we set the anisotropic stress-tensor πij ¼ 0

(equivalently, S ¼ 0).
Using polar coordinates for the 3D spatial sections of the

4D metric and passing to the corresponding Fourier space,
labeled by wave vector modulus k, Eqs. (30) and (31) give

3HðHϕk − _ψkÞ − k2ψk ¼ −4πGa2δρk;

ikið _ψk −HϕkÞ ¼ 0;

−kikjðψk þ ϕkÞ ¼ 0; ð32aÞ

ðH2 þ 2 _HÞϕk þH _ϕk − ψ̈k − 2H _ψk −
1

3
k2ðψk þ ϕkÞ

¼ 4πGa2δPk; ð32bÞ

_δρk þ 3Hðδρk þ δPkÞ ¼ 0; ikiδPk ¼ 0; ð32cÞ

where quantities with a lower index k, ϕk ¼ ϕkðk; tÞ,
ψk ¼ ψkðk; tÞ, δρk ¼ δρkðk; tÞ, δPk ¼ δPkðk; tÞ represent
the 3D Fourier transform of the corresponding quantities.
Because Fourier modes evolve independently, in the
following, for the sake of simplicity, we will drop the
lower index k in the Fourier transforms.
The previous equations can be easily solved to give

δP¼0; δρ¼F ðkÞa−3; ϕ¼−ψ ¼BðkÞa−1; ð33Þ

where F ðkÞ and BðkÞ are arbitrary functions of k, with

jF ðkÞj ¼ k2jBðkÞj
4πG

: ð34Þ
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This is the well-known relation between the matter density
and gravitational potential power spectra,

hjF ðkÞj2i ∝ k4hjBðkÞj2i: ð35Þ

Our solution depends on an arbitrary function F ðkÞ of the
wave vector k; therefore, it determines only the relation
between the matter density and the gravitational potential.
This result does not come unexpected. In fact, Eq. (32c)
implies that isotropic perturbations behave as incoherent,
stiff, matter: δP ¼ 0. Therefore, the dynamics of the
perturbations fixes the EoS, preventing the possibility to
impose it from outside. Thus, in the large-scale regime of a
DE-dominated universe we are considering, the mass
distribution at long wavelengths (1), cannot be determined
by the dynamics of perturbations. Physically, this expresses
the fact that the large-scale distribution of matter cannot be
determined by the interaction between dark energy and
baryonic matter, the latter being relevant for the distribution
at small scales only. Thus, in our approach, the observed
long-wavelength power spectrum (1) has to be used to
determine the arbitrary function F ðkÞ. Assuming the
validity of Eq. (1), we get hjBðkÞj2i ∼ k−3.

B. dS background: Anisotropic perturbations

Let us now pass to consider anisotropic perturbations of
the dS background, i.e., the case πij ≠ 0. Taking into account
the considerations of Sec. II and those at the beginning of the
present one, this boils down to the consideration of pertur-
bations generated by an anisotropic fluid with pk ≠ p⊥. We
are now dealing with the small-scale regime of our cosmo-
logical model, for which we expect the spatial distribution of
inhomogeneities to be determined by the dynamics of
perturbations. Thus, the distribution of small-scale structures
in our Universe is determined by our effective anisotropic
fluid, which encodes the interaction between dark energy
and baryonic matter.
Equations (30) and (31) now give

3HðHϕ − _ψÞ þ∇2ψ ¼ −4πGa2δρ; ∂ið _ψ −HϕÞ ¼ 0;

∂i∂jðψ þ ϕÞ ¼ −8πGa2πij; ð36aÞ

ðH2þ2 _HÞϕþH _ϕ− ψ̈ −2H _ψþ1

3
∇2ðψþϕÞ¼4πGa2δP;

ð36bÞ

_δρþ 3Hðδρþ δPÞ ¼ 0; ∂iδPþ ∂jπ
j
i ¼ 0: ð36cÞ

We consider anisotropic perturbations that can be
derived by a scalar potential Π. Being πij traceless, we
can write

πij ≡ ∂i∂jΠ −
1

3
δij∇2Π: ð37Þ

This allows us to simplify drastically our system of
equations. Passing to Fourier space and dropping the lower
index in the Fourier transforms in order to simplify the
notation, from Eqs. (36a), (36b), and (36c), we get four
independent equations,

ϕþ ψ ¼ −8πGa2Π; k2ψ ¼ 4πGa2δρ;

_δρþ 3Hðδρþ δPÞ ¼ 0; δP ¼ 2

3
k2Π: ð38Þ

The last equation above is fully consistent with the fact
that the anisotropy in the perturbation is linked directly to
δP ≠ 0, as we have seen at the beginning of this section. As
usual, we need an equation of state for the perturbations in
order to close the system. As discussed in Sec. III, this
information is encoded in Eq. (19), which is inherited from
the galactic dynamics.
Since we are considering small perturbations of the dS

spacetime due to an anisotropic fluid, the pressure pertur-
bation δP in Eq. (38) can be identified with the dark
force (19), i.e., δP ¼ pk. This identification is evident
from Eq. (6), which allows us to write pk as a background
pressure plus the anisotropic stress contribution.
Furthermore, in Eq. (19), the effective matter density ρE
is the source of the dark force. We can therefore set δρ ¼ ρE
in Eq. (38). Equation (19) determines only the spatial
profile of δP once δρ is known, whereas it is insensitive to
their dependence on the conformal time. This is consistent
with the fact that Eq. (19) originated in galactic dynamics.
In order to solve the system, we therefore need a

factorization of δP and δρ in space—and time—profiles,
and we also need an EoS consistent with this factorization,

δP¼wδρ; δρðr;tÞ¼δρ̂ðtÞδρðrÞ; δPðr;tÞ¼δP̂ðtÞδPðrÞ;
ð39Þ

with w constant. Notice that we are using a perfect fluid
equation of state for the perturbation. Since Eq. (19) is
written in terms of the radial coordinate r, we will also
solve the third equation in (38) in coordinate space.
Differentiating (19) with respect to r and using Eq. (39),

we get

δ _̂ρþ 3Hð1þ wÞδρ̂ ¼ 0;
d
dr

½r2δρ� ¼ H0

16πGw2
: ð40Þ

It is quite interesting to notice that our ansatz (39) allows us
to perform, at the perturbative level, the same decoupling of
cosmological degrees of freedom from inhomogeneities
that we have described in Sec. II A in our anisotropic
fluid cosmology. The EoS, δP ¼ wδρ, determines, through
the first equation in (40), the time dependence of the
homogenous part of the matter density, whereas Eq. (19)
determines the inhomogeneity profile trough the second
equation in (40).
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The general solution of the second equation in (40)
contains a term proportional to 1=r and a term β=r2, with
the β integration constant. Equation (19) requires β ¼ 0 so
that the solution of (40) is

δρ̂ðtÞ ∼ a−3ð1þwÞ; δρðrÞ ¼ H0

16πGw2

1

r
: ð41Þ

The cosmological evolution of the homogeneous part of the
perturbation is that pertaining to a perfect fluid, whereas
the profile for inhomogeneities is given by an harmonic
function in 3D.
The Fourier transform of the spatial profile of ρ gives

δρk ∼
H0

16πGw2
1
k2, and the power spectrum is

PðkÞ ∝ hδρ2ki ¼
R
d3kδρ2kR
d3k

∼
�

H0

16πGw2

�
2 1

k4
: ð42Þ

This is the result of our cosmological model for the power
spectrum of mass distribution at short wavelengths. It gives
a theoretical determination of Eq. (3).
Since our model deals with the late-time cosmology,

describing the phenomenology of dark energy, baryonic
matter, and their interaction, it does not come as a surprise
we are only able to reproduce the power spectrum (3),
predicted by the galaxy two-point correlation function. On
the other hand, it fails to reproduce the power spectrum at
the equivalence epoch PðkÞ ∼ k−3, which depends on the
physics governing matter radiation at the equivalence
epoch [42–44].

VI. CONCLUSIONS

In this paper, we have proposed an anisotropic fluid
cosmological model for describing our present, dark
energy-dominated Universe. The model does not assume
the presence of dark matter. Dark energy, baryonic matter,
and their possible effective interaction are codified in a
peculiar EoS for the anisotropic fluid. This EoS is inherited
from the relation between pressure and mass used to
explain galactic dynamics without assuming the presence
of dark matter [25].
The strength of our model, as compared with the usual

ΛCDM scenario, is that it allows us to generate inhomo-
geneities at small scales in a natural way, through
anisotropy in the fluid pressure, described by an anisotropic
stress tensor. It can be therefore used to explain mass
distribution, i.e., the matter density power spectrum, at
short wavelengths. Cosmological dynamics, i.e., time
evolution of the scale factor and the homogeneous com-
ponent of matter density, completely decouples from
inhomogeneities. The former is ruled by usual FLRW

cosmology, whereas the latter are determined by the
relation between pressure and density of the anisotropic
fluid. Using perturbation theory, we have been able to
derive the power spectrum PðkÞ for the mass density
distribution at short wavelengths. We have found that
PðkÞ behaves as 1=k4, in good accordance with the
observed 2-point galaxy correlation function for the matter
distribution at small scales.
We have also found that the predictions of our model

concerning the accelerated expansion of the Universe and
mass distribution at small scales are in accordance with
observations. In the large distances regime, our model is
well-described by a generalized Chaplygin gas and fits
observational data from type IA supernovae (for observa-
tional data with z≲ 0.6), used to probe the present
accelerated expansion of our Universe.
Let us conclude with the drawbacks of our approach. In

the present form, our anisotropic fluid cosmological model
can be only used to describe a dark energy-dominated
universe but not to describe the early-time cosmology and
the radiation/baryonic matter dominated eras. This is
because any mass distribution is intrinsically unstable in
FLRW cosmology. Therefore, any inhomogeneous, FLRW-
based cosmological model can only be used to describe
late-time cosmology and cosmic structures at small scales
but not the evolution of perturbations from early-time
cosmology. Thus, large scale structures can only be
explained in the framework of usual FLRW cosmology,
in terms of the growing of small perturbations of the early
Universe described by linear perturbation theory.
This is fully consistent with the results of our paper.

We have seen in Sec. VA that the behavior of the power
spectrum PðkÞ for the mass density distribution, at large
wavelengths, is not determined by perturbations in the
present dark energy-dominated Universe. The observed
linear scaling PðkÞ ∼ k has to be explained in terms of small
fluctuations in the early Universe. Conversely, small scale
structures find a natural explanation in our model as
inhomogeneities triggered by an anisotropic stress tensor.
This is in turn consistent with the fact that the presence of
dark matter is crucial for structure formation in the ΛCDM
model. As expected, in our cosmological model, the
anisotropic stress tensor, generated by the assumed dark
energy/baryonic matter interaction, plays the same role that
dark matter plays in the ΛCDM model for small scale
structure formations.
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