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It has been found that the primordial non-Gaussianity of the curvature perturbation in the case of
non-Bunch-Davies initial states can be enhanced compared with those in the case of the Bunch-Davies
one due to the interactions among the perturbations on subhorizon scales. The purpose of the present paper
is to investigate whether tensor non-Gaussianities can also be enhanced or not by the same mechanism.
We consider general gravity theory in the presence of an inflaton, and evaluate the tensor auto-bispectrum
and the cross-bispectrum involving one tensor and two scalar modes with the non-Bunch-Davies initial
states for tensor modes. The crucial difference from the case of the scalar auto-bispectrum is that the tensor
three-point function vanishes at the flattened momentum triangles. We point out that the cross-bispectrum
can potentially be enhanced at nontrivial triangle shapes due to the non-Bunch-Davies initial states.
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I. INTRODUCTION

The validity of inflation [1–3] is almost beyond suspi-
cion owing to both the theoretical consistency that nicely
resolves the various problems in the standard big bang
cosmology and the observational consistency with Planck
and other data [4]. Of particular interest is therefore to
know which inflation model is viable among a huge
number of possibilities proposed so far. One of the power-
ful tools for filtering inflationary models is primordial non-
Gaussianity of the curvature perturbation, which turned
out to be not quite large according to the observed CMB
fluctuations [4] and thus helped to rule out various models
predicting large non-Gaussianity. Similarly to this scalar
non-Gaussianity, the three-point functions involving tensor
modes are expected to have rich information about the
physics of the early universe and the interaction between
gravity and the inflaton.
The inflationary perturbations have been studied mainly

by assuming the Bunch-Davies initial state [5]. However, in
principle, the initial state is not necessarily given by the
Bunch-Davies one, and the validity of the assumptions on
the initial state must be tested against observations in the
end. Deviations from the Bunch-Davies state mean that the
initial state is excited, i.e., there exist particles initially. In
this case, the particles present initially can interact with
each other at early times, leading possibly to the generation
of non-Gaussianities on subhorizon scales. Therefore,
assuming non-Bunch-Davies initial states would result in

novel non-Gaussian signatures compared to the standard
case of the Bunch-Davies initial state.
The nature of primordial perturbations from non-Bunch-

Davies initial states has been explored so far in the literature
[6–32]. In particular, it has been found that the non-
Gaussianity of the curvature perturbation at the squeezed
and flattened configurations can be enhanced compared
with those in the case of the Bunch-Davies state [7–10,13,
16,17,20,25,31]. It is therefore natural to ask whether or not
the non-Gaussianities associated with the tensor modes
can be enhanced as well. There have already been several
studies regarding tensor non-Gaussianities from non-
Bunch-Davies initial states [26,32]. To address this ques-
tion in more detail, in this paper, we investigate the
auto-bispectra of tensor modes and the cross-bispectra
involving one tensor and two scalar modes in more general
gravity theory than in the previous literature.
One naively expects that higher-derivative interactions

have more impacts on non-Gaussianities due to non-
Bunch-Davies initial states. Generalizing the underlying
gravity theory yields such higher-derivative interactions.
As a framework including higher-derivative interactions,
we use an effective description of scalar-tensor gravity,
writing down the operators composed of geometrical
quantities such as extrinsic and intrinsic curvature tensors
[33,34]. Based on this effective description, in the present
paper, we will estimate the size of tensor non-Gaussianities
from non-Bunch-Davies initial states in general single-field
inflation models.
This paper is outlined as follows. In the next section, we

consider general quadratic and cubic actions for tensor
modes and introduce non-Bunch-Davies initial states from
a Bogoliubov transform of the usual Bunch-Davies modes.
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In Sec. III, we calculate the auto-bispectrum of the tensor
modes and investigate whether the enhanced non-Gaussian
amplitudes can be obtained or not. We then study in Sec. IV
the cross-bispectrum involving one tensor and two scalar
modes and discuss how it can be enhanced compared with
the case of the Bunch-Davies initial state. A summary of
the present paper is given in Sec. V.

II. TENSOR MODES

A. General quadratic and cubic interactions

In the present paper, we investigate the properties of the
tensor modes with non-Bunch-Davies initial states in order
to see whether the tensor non-Gaussianities could be
enhanced or not. Although we also study the cross-
bispectrum with the scalar modes briefly, here we only
summarize the quadratic and cubic interactions of the
tensor modes.
To derive the generic action for the tensor modes during

inflation, it is convenient to employ the Arnowitt-Deser-
Misner (ADM) decomposition with uniform inflaton
hypersurfaces as constant time hypersurfaces and write
down the possible operators composed of the extrinsic
curvature tensor Kij and the intrinsic curvature tensor Rð3Þ

ij
of the constant time hypersurfaces. First, the operators
having the dimension of mass squared are

LGR ⊃ K2
ij; K2; Rð3Þ; ð1Þ

where K is the trace of Kij. All these terms are present in
general relativity. Then, one can consider the leading-order
corrections to Eq. (1),

Lcor ⊃ K3
ij; KK2

ij; K3; KijRð3Þ
ij ; KRð3Þ: ð2Þ

One may anticipate that these corrections play a crucial role
in the generation of non-Gaussianities. Therefore, in the
present study, we consider the Lagrangian up to this order,
and evaluate the contributions on the non-Gaussian ampli-
tudes from these correction terms.
More specifically, we consider the following wide class

of the ADM action:

S ¼
Z

dtd3x
ffiffiffi
γ

p
NL; ð3Þ

where γ is the determinant of the spacial metric γij, N is the
lapse function, and

L ¼ M4
0ðt; NÞ þM3

1ðt; NÞK þM2
2ðt; NÞðK2 − K2

ijÞ
þM2

3ðt; NÞRð3Þ þM4ðt; NÞðK3 − 3KK2
ij þ 2K3

ijÞ

þM5ðt; NÞ
�
KijRð3Þ

ij −
1

2
KRð3Þ

�
; ð4Þ

with Miðt; NÞ being a function having the dimension of
mass. Here we have included the lower-order termsM4

0 and
M3

1K, though they do not contribute to the action for the
tensor modes. Equation (4) is nothing but the so-called
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) Lagrangian [33],
and it includes the Horndeski theory as a subclass. By
introducing a Stückelberg field ϕ, one can restore the full
four-dimensional covariance.
The transverse and traceless tensor perturbations hij

on top of a spatially flat Friedmann-Lemaître-Robertson-
Walker background are defined by

ds2 ¼ −N2ðtÞdt2 þ γijdxidxj; γij ¼ a2ðtÞðehÞij; ð5Þ

where

ðehÞij ≔ δij þ hij þ
1

2
hikhkj þ

1

6
hikhkl h

l
j þ � � � : ð6Þ

At the level of the background, we may always reparame-
trize the time coordinate so that we hereafter take N ¼ 1
and writeMiðt; NðtÞÞ ¼ MiðtÞ. Since ffiffiffi

γ
p

and the trace part
K do not involve hij, the terms such as M4

0;M
3
1K, and

M2
2K

2 in the Lagrangian do not contribute to the dynamics
of the tensor perturbations.
Substituting the above metric into Eq. (4), the action for

the tensor perturbations up to cubic order in hij can be
obtained as [35,36]

Sh ¼ Sð2Þh þ Sð3Þh ; ð7Þ

where

Sð2Þh ¼
Z

dtd3xa3
M2

T

c2h

�
_hij

2 −
c2h
a2

ð∂khijÞ2
�
; ð8Þ

Sð3Þh ¼
Z

dtd3xa3
�
M2

T

4a2

�
hikhjl −

1

2
hijhkl

�
∂k∂lhij

þM4

4
_hij _hjk _hki

�

≕ −
Z

dtHint; ð9Þ

with

M2
T ≔ 2M2

3 þ _M5; ð10Þ

c2h ≔ −2ðM2
2 þ 3HM4Þ=M2

T: ð11Þ

Here, a dot stands for differentiation with respect to t and
H ≔ _a=a. The interaction Hamiltonian Hint is introduced
for later convenience. We assume thatMT ∼MPl. The terms
in the first line in Eq. (9) are present in general relativity,
while the one in the second line is a new operator
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introduced as a result of the extension of general relativity
with M4ðtÞ ≠ 0. For example, this operator is obtained
from the so-called G5 term in the Horndeski theory [36].
One might think that the third line in Eq. (4) could also lead
to a new cubic operator, but it turns out that this can be
integrated by parts to yield the same terms as in the first line
in Eq. (9).

B. Non-Bunch-Davies initial states

We now move to the Fourier domain,

hijðt;xÞ ¼
Z

d3k
ð2πÞ3 h̃ijðt;kÞe

ik·x: ð12Þ

In the standard setup, one expands the quantized tensor
modes as

h̃ijðt;kÞ ¼
X
s

h
ukðtÞeðsÞij ðkÞaðsÞk þ u�kðtÞeðsÞ�ij ð−kÞaðsÞ†−k

i
;

ð13Þ
where ukðtÞ is the Bunch-Davies mode function. The
creation and annihilation operators satisfy

h
aðsÞk ; aðs

0Þ†
k0

i
¼ ð2πÞ3δss0δðk − k0Þ; ð14Þ

others ¼ 0; ð15Þ
and the subscript s denoting two helicitymodes takes s ¼ �.
The polarization tensor, eij, satisfies the transverse and

traceless conditions, δije
ðsÞ
ij ðkÞ ¼ 0 ¼ kieðsÞij ðkÞ. This also

satisfies eðsÞij ðkÞeðs
0Þ�

ij ðkÞ¼δss0 and eðsÞ�ij ðkÞ¼eð−sÞij ðkÞ¼
eðsÞij ð−kÞ.
The equation of motion for the mode function uk is

derived from Eq. (8) as

d
dt

�
a3M2

T

c2h
_uk

�
þ aM2

Tk
2uk ¼ 0: ð16Þ

We solve Eq. (16) under the assumption that M2
T; c

2
h ¼

const in the de Sitter background, H ¼ const. Then, the
Bunch-Davies mode function is obtained as

uk ¼
ffiffiffi
π

p
a

ch
MT

ffiffiffiffiffiffi
−η

p
Hð1Þ

3=2ð−chkηÞ; ð17Þ

where Hð1Þ
3=2 is the Hankel function of the first kind of order

3=2. We write the state annihilated by âðsÞk as j0ai:
âðsÞk j0ai ¼ 0.
In this paper, we instead expand h̃ij as

h̃ij ¼
X
s

h
ψ ðsÞ
k eðsÞij ðkÞbðsÞk þ ψ ðsÞ�

k eðsÞij
�ð−kÞbðsÞ†−k

i
; ð18Þ

where ψ ðsÞ
k is a Bogoliubov transform of the Bunch-Davies

modes,

ψ ðsÞ
k ¼ αðsÞk uk þ βðsÞk u�k: ð19Þ

The Bogoliubov coefficients are normalized as jαðsÞk j2 −
jβðsÞk j2 ¼ 1 and the creation and annihilation operators
satisfy

aðsÞk ¼ αðsÞk bðsÞk þ βðsÞk
�bðsÞ†−k ; ð20Þ

bðsÞk ¼ αðsÞ�k aðsÞk − βðsÞ�k aðsÞ†−k : ð21Þ

We write the state annihilated by bðsÞk as j0bi,

bðsÞk j0bi ¼ 0: ð22Þ

Nonvanishing βðsÞk coefficients indicate that the tensor modes

get excited from the Bunch-Davies vacuum, aðsÞk j0bi ≠ 0.
Let us assume that the deviations from the Bunch-

Davies initial states are characterized by some small, real
parameters as

βðsÞk ¼ δðsÞ1 ðkÞ þ iδðsÞ2 ðkÞ; ð23Þ

αðsÞk ¼ 1þ iδðsÞ3 ðkÞ; ð24Þ

where δðsÞ1 ∼ δðsÞ2 ∼ δðsÞ3 ≪ 1. This is a reasonable assumption

because themagnitude ofβðsÞk has an upper bound in order for
the inflationary background not to be spoiled by the excited

tensor modes, which is typically given by jβðsÞk j≲ 10−6 as

argued in the Appendix. The assumption on the form of αðsÞk

[Eq. (24)] follows from jαðsÞk j2 − jβðsÞk j2 ¼ 1.

C. Primordial power spectrum

The two-point correlation function is defined by

h0bjh̃ijðkÞh̃klðk0Þj0bi ¼ ð2πÞ3δð3Þðkþ k0ÞPij;kl; ð25Þ

where

Pij;kl ≔
X
s;s0

h
ψ ðsÞ
k ψ ðs0Þ�

k eðsÞij ðkÞeðs
0Þ�

kl ðkÞ
i
: ð26Þ

Using Eqs. (17)–(19), we obtain the power spectrum Ph as

Ph ≔
k3

2π2
Pij;ij ¼

1

π2
H2

M2
Tch

X
s

���αðsÞk − βðsÞk

���2; ð27Þ

evaluated at the time of horizon crossing, chk ¼ aH. Its tilt
is then derived as
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nt ≔
d lnPh

d ln k

≃ −2ϵ − sh − 2mT þ d
d ln k

X
s

���αðsÞk − βðsÞk

���2; ð28Þ

where

ϵ ≔ −
_H
H2

; sh ≔
_ch
Hch

; mh ≔
_MT

HMT
ð29Þ

are assumed to be small. To leading order in βðsÞk , we have

jαðsÞk − βðsÞk j2 ≃ 1–2Re½βðsÞk �, and so

nt ≃ −2ϵ − sh − 2mT − 2
X
s

dRe½βðsÞk �
d ln k

: ð30Þ

This is a rather straightforward generalization of previous
results, simultaneously taking into account the different
effects on the spectral tilt: the time variation of the infla-
tionary Hubble parameter, the speed of gravitational waves,
and the effective Planck mass, as well as the k dependence
of theBogoliubov coefficients. Note that in principle the sign
of each term in Eq. (30) is not constrained. In particular, a
blue tensor spectrum can be obtained as a consequence
of a time-dependent speed of gravitational waves [37–41]
and/or k-dependent βðsÞk [42] even if the null energy condition
is preserved, ϵ > 0.

III. AUTO-BISPECTRUM

Let us now calculate the tensor three-point correlation
functions with non-Bunch-Davies initial states. Since the
cubic interaction (9) is composed of the two different
contributions, i.e., the one present in general relativity and
the new one beyond general relativity, we write the
bispectrum as Bs1s2s3

ðGRÞ þ Bs1s2s3
ðnewÞ , where Bs1s2s3

ðGRÞ and Bs1s2s3
ðnewÞ

are originated from the former and the latter, respectively.
The tensor bispectrum (evaluated at t ¼ tf) is defined by

h0bjξs1ðtf;k1Þξs2ðtf;k2Þξs3ðtf;k3Þj0bi
¼ ð2πÞ3δðk1 þ k2 þ k3ÞðBs1s2s3

ðGRÞ þ Bs1s2s3
ðnewÞ Þ; ð31Þ

with ξsðt;kÞ ≔ h̃ijðt;kÞeðsÞ�ij ðkÞ, and the three-point
correlation function can be calculated using the in-in
formalism as

h0bjξs1ðtf;k1Þξs2ðtf;k2Þξs3ðtf;k3Þj0bi

¼ −i
Z

tf

ti

dt0h½ξs1ðtf;k1Þξs2ðtf;k2Þξs3ðtf;k3Þ; Hintðt0Þ�i:

ð32Þ
Here, ti is some time when the perturbation modes are deep
inside the horizon, and tf is the time at the end of inflation.

In terms of the conformal time defined by dη ≔ dt=a, we
take ηf ¼ 0. As for the initial time, we do not simply take
η0 → −∞, but we keep it finite, ηi ¼ η0ð< 0Þ, where η0 is
associated with the cutoff scale M� as M� ¼ k=aðη0Þ≃
ð−kη0ÞHinf , because the physical momentum k=a is larger
than M� for η < η0.
Before moving to an explicit calculation of the bispec-

trum (32), we comment on the crucial difference between
the calculation with the Bunch-Davies state and that with
non-Bunch-Davies initial states. This difference explains
the reason why we keep η0 finite. Formally, Eq. (32)
includes an integral of the form

Sðk̃Þ ≔
Z

0

η0

dηð−ηÞneichk̃η; ð33Þ

where n ¼ 1 for the standard cubic term with two spatial
derivatives and n ¼ 2 for the _hij _hjk _hki term.
In the case of the Bunch-Davies initial state in which

there are only the positive-frequency modes participating in
this integral, we have k̃ ¼ kt with

kt ≔ k1 þ k2 þ k3 > 0 ð34Þ
and so

Sðk̃Þ ∝ 1

ðichk̃Þnþ1
; ð35Þ

because the exponential function rapidly oscillates for
jchk̃ηj ≫ 1. In contrast to this standard case, in the case
of non-Bunch Davies states, we have both positive and
negative frequency modes in the integral, leading to
k̃ ¼ −km þ kmþ1 þ kmþ2 with m being defined modulo 3.
Note that k̃ exactly vanishes at the flattened configuration,
km ¼ kmþ1 þ kmþ2. For this configuration, the exponential
function no longer oscillates even for η ∼ η0, and thus the
integral reads

Sðk̃Þ ≃ ð−η0Þnþ1

nþ 1
; ð36Þ

which depends explicitly on η0. For other configurations,
the results of the integral are identical to Eq. (35). In this
section, we therefore need to calculate the primordial
bispectra in the two different cases separately, the non-
flattened and flattened configurations.
Let us define

k0 ≔ k1 − k2 − k3; ð37Þ
which appears frequently in the following discussion.

A. Nonflattened configurations (k0 ≠ 0)

We first focus on the nonflattened configurations,
i.e., k0 ≠ 0. Assuming the de Sitter background and
MT; ch;M4 ¼ const, the two contributions in the bispec-
trum (31), respectively, read
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Bs1s2s3
ðGRÞ ¼ Re½B̃s1s2s3

ðGRÞ �ðs1k1 þ s2k2 þ s3k3Þ2Fðsi; kiÞ; ð38Þ

Bs1s2s3
ðnewÞ ¼ Re½B̃s1s2s3

ðnewÞ �Fðsi; kiÞ; ð39Þ

where

B̃s1s2s3
ðGRÞ ¼ 2H4

c2hM
4
T

1

k31k
3
2k

3
3

h
Πi

�
αðsiÞ�ki

−βðsiÞ�ki

	i

×
n�

αðs1Þk1
αðs2Þk2

αðs3Þk3
þβðs1Þk1

βðs2Þk2
βðs3Þk3

	
I0ðk1;k2;k3Þ

þ
h�

αðs1Þk1
αðs2Þk2

βðs3Þk3
þβðs1Þk1

βðs2Þk2
αðs3Þk3

	
I1ðk1;k2;k3Þ

þðk1;s1↔k2;s2Þþðk1;s1↔k3;s3Þ
io

; ð40Þ

B̃s1s2s3
ðnewÞ ¼

192M4H5

M6
T

1

k1k2k3

h
Πi

�
αðsiÞ�ki

−βðsiÞ�ki

	i

×


�
αðs1Þk1

αðs2Þk2
αðs3Þk3

þβðs1Þk1
βðs2Þk2

βðs3Þk3

	 1

k3t

−
��

αðs1Þk1
βðs2Þk2

βðs3Þk3
þβðs1Þk1

αðs2Þk2
αðs3Þk3

	 1

ð−k1þk2þk3Þ3

þðk1;s1↔k2;s2Þþðk1;s1↔k3;s3Þ
��

ð41Þ

and

Fðsi; kiÞ ≔
1

64

kt
k21k

2
2k

2
3

ðs1k1 þ s2k2 þ s3k3Þ2

× ðk1 − k2 − k3Þðk1 þ k2 − k3Þ
× ðk1 − k2 þ k3Þ; ð42Þ

I0ðk1; k2; k3Þ ≔ −kt þ
k1k2k3
k2t

þ k1k2 þ k2k3 þ k3k1
kt

;

ð43Þ

I1ðk1; k2; k3Þ ≔ k1 þ k2 − k3 þ
k1k2k3

ðk1 þ k2 − k3Þ2

þ −k1k2 þ k2k3 þ k1k3
k1 þ k2 − k3

: ð44Þ

These expressions are a generalization of Ref. [36] and
reproduce the previous results by taking the Bunch-Davies

states (αðsÞk ¼ 1 and βðsÞk ¼ 0). Note that we have derived
the auto-bispectrum from the _hij _hjk _hki term for the first
time in the context of the non-Bunch-Davies states.
Taking into account the smallness of βðsÞk [Eqs. (23) and

(24)], the resultant bispectra to first order in βðsÞk are given by

Bs1s2s3
ðGRÞ ¼ 2H4

c2hM
4
T

1

k31k
3
2k

3
3

ðs1k1 þ s2k2 þ s3k3Þ2Fðsi; kiÞ

×


�
1 −

X
i

Re½βðsiÞki
�
�
I0ðk1; k2; k3Þ

þ ½Re½βðs3Þk3
�I1ðk1; k2; k3Þ þ � � ��

�
; ð45Þ

Bs1s2s3
ðnewÞ ¼ 192M4H5

M6
T

Fðsi; kiÞ
k1k2k3



1 −

P
iRe½βðsiÞki

�
k3t

−
�

Re½βðs1Þk1
�

ð−k1 þ k2 þ k3Þ3
þ � � �

��
; ð46Þ

where the ellipsis denotes permutations.
Let us consider the squeezed configuration with

kL ≔ k3 ≪ kS ≔ k1 ¼ k2. In the squeezed limit, the
expressions in the curly brackets in Eqs. (45) and (46)
are written, respectively, as

f� � �g ≃ −
3

2
kS

�
1 −

4

3
Re

h
βðs1ÞkS

þ βðs2ÞkS

i kS
kL

�
ð47Þ

and

f� � �g ≃ 1

8k3S

�
1 − 8Re

h
βðs1ÞkS

þ βðs2ÞkS

i k3S
k3L

�
: ð48Þ

These equations show that the effect of nonvanishing βðsÞk
could be enhanced and seen in the squeezed configuration.
In particular, the generation of squeezed non-Gaussianity
from the _hij _hjk _hki term is in contrast with the standard case
of the Bunch-Davies state in which the bispectrum has a
peak at the equilateral configuration [36].1

To see whether this enhancement effect is significant or
not, let us take kS=kL ∼ 102. The non-Bunch-Davies con-

tributions in Eqs. (47) and (48) are then ofOð102jβðsÞkS
jÞ and

Oð106jβðsÞkS
jÞ, respectively. As argued in the Appendix, the

upper bound on theBogoliubov coefficients is obtained from
the backreaction constraint, which depends on the ratio
M�=MTð∼M�=MPlÞ. If one takes M� ∼MT ∼MPl, one

has jβðsÞkS
j≲ 10−6, so that the non-Bunch-Davies contribution

inBs1s2s3
ðGRÞ is small,∼10−4, while that inBs1s2s3

ðnewÞ is ofOð1Þ. This
can be larger if one assumes smaller M�. For example, one

gets jβðsÞkS
j≲ 10−2 if M� ∼ 10−2MT ∼ 10−2MPl. In this case,

the non-Bunch-Davies contribution in Bs1s2s3
ðGRÞ is ofOð1Þ and

that in Bs1s2s3
ðnewÞ is as large as Oð104Þ. Therefore, tensor

1Squeezed tensor non-Gaussianities from the _hij _hjk _hki oper-
ator has been found also in the nonattractor inflation models [43]
and bouncing models [44].
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squeezed non-Gaussianity could be generated from the non-
Bunch-Davies initial states, depending on the parameters.

B. Flattened configuration (k0 → 0)

So far, we have assumed that k0 ¼ k1 − k2 − k3 ≠ 0. Let
us now investigate the flattened configuration, k0 ≃ 0, using
Eq. (36). In this case, B̃s1s2s3

ðGRÞ and B̃s1s2s3
ðnewÞ in Eqs. (38) and

(39) are given, respectively, by

B̃s1s2s3
ðGRÞ ≃

2H4

c2hM
4
T

1

k31k
3
2k

3
3

h
Πi

�
αðsiÞ�ki

− βðsiÞ�ki

	i

×

��
αðs1Þk1

αðs2Þk2
αðs3Þk3

þ βðs1Þk1
βðs2Þk2

βðs3Þk3

	

× I0ðk1; k2; k3Þ −
k1k2k3

2
c2hη

2
0

×
�
βðs1Þk1

αðs2Þk2
αðs3Þk3

þ αðs1Þk1
βðs2Þk2

βðs3Þk3

	�
; ð49Þ

B̃s1s2s3
ðnewÞ ≃

192M4H5

M6
T

1

k1k2k3

h
Πi

�
αðsiÞ�ki

− βðsiÞ�ki

	i

×

��
αðs1Þk1

αðs2Þk2
αðs3Þk3

þ βðs1Þk1
βðs2Þk2

βðs3Þk3

	 1

k3t

þ i
6
c3hη

3
0

�
βðs1Þk1

αðs2Þk2
αðs3Þk3

− αðs1Þk1
βðs2Þk2

βðs3Þk3

	�
; ð50Þ

where we used k0 ≪ ki; jchkiη0j ≫ 1, and jchk0η0j ≪ 1. In
Ref. [32], the flattened tensor non-Gaussianity has already
been studied, but the interactions among the different
polarization modes have not been considered.
Similarly to the nonflattened configurations, we express

the resultant bispectra to first order in OðβðsÞk Þ as

Bs1s2s3
ðGRÞ ≃

2H4

c2hM
4
T

1

k31k
3
2k

3
3

ðs1k1 þ s2k2 þ s3k3Þ2Fðsi; kiÞ

×


�
1 −

X
i

Re½βðsiÞki
�
�
I0ðk1; k2; k3Þ

−
k1k2k3

2
c2hη

2
0Re½βðs1Þk1

�
�
; ð51Þ

Bs1s2s3
ðnewÞ ≃

192M4H5

M6
T

Fðsi; kiÞ
k1k2k3

×



1 −

P
iRe½βðsiÞki

�
k3t

−
c3hη

3
0

6
Im½βðs1Þk1

�
�
: ð52Þ

Now, we see that the primordial bispectra always vanish
at the exact flattened configurations, because Fðsi; kiÞ ¼ 0
for k0 ¼ 0. This universal feature can be understood
intuitively from the viewpoint of angular momentum
conservation [45]. Although the expressions in the curly
brackets could be enhanced by powers of kiη0, it would be

difficult to obtain large flattened non-Gaussianities due to
this universal factor.2 This is in sharp contrast to the result of
the similar analysis for the curvature perturbation. However,
this is not the case for the cross-interaction, as shown in the
next section.

IV. CROSS-BISPECTRUM

In this section, we consider a scalar-scalar-tensor bis-
pectrum, rather than a tensor-tensor-tensor bispectrum, and
explore the possibility of enhancing it with nontrivial initial
states of the tensor modes. The cross-bispectrum we will
consider is defined by

h0bjζ̃ð0;k1Þζ̃ð0;k2ÞξðsÞð0;k3Þj0bi
¼ ð2πÞ3δðk1 þ k2 þ k3ÞBs

ζζh: ð53Þ
For the Lagrangian (4), the quadratic action for the

curvature perturbation in the unitary gauge, ζ, takes the
form [35]

Sð2Þζ ¼
Z

dtd3x
a3M2

S

c2s

�
_ζ2 −

c2s
a2

ð∂iζÞ2
�
; ð54Þ

where we do not need the concrete expression for MS and
cs in the present discussion. These are time-dependent
functions in general, but in the inflationary universe we
may assume that they are approximately constant. We
assume that the Fourier component of the curvature
perturbation, ζ̃ðt;kÞ, can be written as

ζ̃ ¼ ψkak þ ψ�
ka

†
−k; ð55Þ

where

ψk ¼
ffiffiffi
π

p

2
ffiffiffi
2

p
a

cs
MS

ffiffiffiffiffiffi
−η

p
Hð1Þ

3=2ð−cskηÞ ð56Þ

is the Bunch-Davies mode function and the initial state is in
a vacuum state annihilated by ak. By assuming this, we
focus on the effect of the excited tensor modes.
It has been found that the generic action [Eqs. (3) and

(4)] introduces various cubic operators that are not present
in the simple case where the inflaton is minimally coupled
to gravity [46]. Among such operators, it is sufficient to
consider one representative term that is expected to be a
dominant source of the non-Gaussianities in order to see
whether the bispectrum can be enhanced or not. Naively,
operators with many derivatives are important for the
generation of non-Gaussianities on subhorizon scales, and
thus we focus on the following interaction Hamiltonian:

Hζζh
int ¼ −

Z
d3x

M2
SΛc

ac2sH2
∂2hij∂iζ∂jζ; ð57Þ

2A different conclusion was obtained in [32] because the
overall factor Fðsi; kiÞ was overlooked.
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where we assume that Λc ¼ const. This term is indeed
present in the general Horndeski class of theories [47].
Similarly to the auto-correlation function, the cross-

correlation function includes the integral

Scðk̃cÞ ≔
Z

0

η0

dηð−ηÞ3eik̃cη; ð58Þ

where

k̃c ≔ chk3 − csðk1 þ k2Þ: ð59Þ

For the configuration satisfying k̃c ¼ 0, the cross-bispectrum
depends on η0 and is enhanced by powers of kiη0 due to the
excited tensor modes. Note that this configuration depends
on the propagation speeds. For given cs=chð< 1Þ, one has a
one-parameter family of different shapes satisfying k̃c ¼ 0
away from the flattened configuration.
In the same way as the previous calculations, we derive

the cross-bispectrum to first order in βðsÞk3
,

Bs
ζζh ¼ Bs

ζζh;ðBDÞjk̃c¼0

×



1 − Re½βðsÞk3

� þ ð2=5Þk1k2
2k21 þ 5k1k2 þ 2k22

× c4sðk1 þ k2Þ4η40Re½βðsÞk3
�
�
; ð60Þ

where Bs
ζζh is the cross-bispectrum in the case of the Bunch-

Davies initial state. This quantity is obtained in [47] as

Bs
ζζh;ðBDÞ ¼

H4Λc

M2
SM

2
Tc

4
sch

·
kt

16k31k
3
2k

3
3

×
ðk1 − k2 − k3Þðk1 þ k2 − k3Þðk1 − k2 þ k3Þ

½csðk1 þ k2Þ þ chk3�4
× fc2s ½csðk1 þ k2Þ þ 4chk3�ðk21 þ 3k1k2 þ k22Þ
þ c2hk

2
3½4csðk1 þ k2Þ þ chk3�g: ð61Þ

From the above result, we see that the non-Bunch-Davies

contribution is of OðβðsÞk c4sk4i η
4
0Þ.

In the actual observables, we anticipate that this non-
Bunch-Davies enhancement will be softened by (at least)
one power of jkη0j due to the angular averaging [7]. Let us

therefore estimate roughly how large βðsÞk ðcskiη0Þn could
be. As argued in the Appendix, the Bogoliubov coefficients
have an upper bound from the backreaction constraint,
which depends on the cutoff scale. We also have
jcskiη0j≲ csM�=Hinf . Combining these, we find

βðsÞk ðcskiη0Þn ≲ cns
c1=2h

MPlMn−2�
Hn−1

inf

: ð62Þ

Even for n ¼ 2, the upper bound is typically larger than
Oð1Þ. We thus conclude that initially excited tensor modes
can leave a potentially observable imprint in the cross-
bispectrum.3

V. SUMMARY

In the present paper, we have considered primordial
tensor perturbations with non-Bunch-Davies initial states.
Employing a general scalar-tensor theory, we have
described nonminimal couplings between gravity and the
inflaton.
First, we evaluated the size of tensor three-point functions

and showed that the squeezed non-Gaussianities in particular
from thenewly introduced operator in nonminimally coupled
theories can potentially be enhanced. In contrast to the case
of the scalar three-point functions [7], the tensor three-
point function always vanishes at the flattened momentum
triangles. This is as it should be, as can be seen from the
momentum conservation argument [45].
Next, we have studied the cross-bispectrum involving

one tensor and two scalar modes. We have found that the
enhancement due to the non-Bunch-Davies effect can be
large at nontrivial triangle shapes. It would therefore be
interesting to investigate how such non-Gaussian signature
is imprinted, e.g., on CMB bispectra [48], which we leave
for further studies.
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APPENDIX: BACKREACTION
CONSTRAINT ON βðsÞk

If a scalar field is minimally coupled to gravity, the
energy-momentum tensor of tensor perturbations is derived
by expanding the Einstein tensor to second order in hij.
Even if the scalar field is nonminimally coupled to gravity,
one may proceed essentially in the same way and expand
the field equations to second order in hij to estimate the
energy density of tensor perturbations. This is how one can
evaluate the backreaction of excited tensor modes to the
homogeneous background. The effective energy density of
subhorizon tensor perturbations is thus given by

3In the present paper, we have considered the scalar-scalar-
tensor bispectrum, but initially excited scalar modes would be
able to enhance the scalar-tensor-tensor bispectrum as well.
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ρh ∼
M2

T

a2c2h
h0ij

2 ∼M2
T

ð∂ihjkÞ2
a2

; ðA1Þ

where a dash stands for differentiation with respect to η.
The backreaction can safely be ignored if

h0bjρ̂hj0bi≲ Ē; ðA2Þ

where Ē is the homogeneous part of the field equation,
which can be estimated naively as

Ē ∼M2
PlH

2
inf ; ðA3Þ

where Hinf is the inflationary Hubble parameter and
MPl ∼MT .
The backreaction from the excited modes of tensor

perturbations can be estimated at η ¼ η0 from

h0bjρ̂hj0bi ∼
M2

T

a2c2h
h0bjĥ02ijj0bi

∼
ch

a4ðη0Þ
Z

M�aðη0Þ

0

jβðsÞk j2k3dk; ðA4Þ

where we discarded the vacuum energy. Then, by requiring
that

ch
a4ðη0Þ

Z
M�aðη0Þ

0

jβðsÞk j2k3dk≲M2
PlH

2
inf ; ðA5Þ

one can save the inflationary background from being
spoiled by the backreaction.
To derive a more explicit constraint, we need to assume

the momentum dependence of the Bogoliubov coefficients.
Here, let us suppose that βðsÞk is of the form

βðsÞk ∼ β exp

�
−

k2

M2�a2ðη0Þ
�

ðA6Þ

as a simple model, where β is a constant parameter.
Substituting this into Eq. (A5), we obtain

jβj2 ≲ 1

ch

�
MPl

M�

�
2
�
Hinf

M�

�
2

: ðA7Þ

As is explained in the main text, the deviation of the tensor
power spectrum from the standard Bunch-Davies result

is at most of OðjβðsÞk jÞ ≪ 1, and thus we may use Ph ∼
H2

inf=ðchM2
TÞ. Then, the constraint (A7) can be rewritten as

jβj2 ≲ Ph
M2

Pl

M2�

M2
T

M2�
∼ rPζ

M2
PlM

2
T

M4�

≲ 10−11
M2

PlM
2
T

M4�
: ðA8Þ

For example, if we take M� ∼MPl ∼MT , then we have
jβj≲ 10−6, while if we assume that the cutoff scale is much
smaller, say,M� ∼ 10−2MPl ∼ 10−2MT , the bound is looser,
jβj≲ 10−2.
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