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We investigate three issues that have been discussed in the context of inflation: Fading of the importance
of quantum noncommutativity; the phenomenon of quantum squeezing; and the ability to approximate the
quantum state by a distribution function on the classical phase space. In the standard treatments, these
features arise from properties of mode functions of quantum fields in (near) de Sitter space-time. Therefore,
the three notions are often assumed to be essentially equivalent, representing different facets of the same
phenomenon. We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times, through
the lens of geometric structures on the classical phase space. The analysis shows that: (i) inflation does not
play an essential role; classical behavior can emerge much more generally; (ii) the three notions are
conceptually distinct; classicality can emerge in one sense but not in another; and, (iii) the third notion is
realized in a surprisingly strong sense; there is exact equality between completely general n-point functions
in the classical theory and those in the quantum theory, provided the quantum operators are Weyl ordered.
These features arise already for linear cosmological perturbations by themselves: considerations such as
mode-mode coupling, decoherence, and measurement theory—although important in their own right—are
not needed for emergence of classical behavior in any of the three senses discussed. Generality of the
results stems from the fact that they can be traced back to geometrical structures on the classical phase
space, available in a wide class of systems. Therefore, this approach may also be useful in other contexts.
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I. INTRODUCTION

Current cosmological theories provide a striking picture
of cosmogenesis. The very early universe is extremely well
approximated by a spatially homogeneous and isotropic
Friedmann, Lemaitre, Robertson, Walker (FLRW) space-
time, together with cosmological perturbations, represented
by quantum fields. Furthermore, the Heisenberg state of
these fields is a spatially homogeneous and isotropic
“vacuum.” However, unlike their classical counterparts,
quantum fields are subject to uncertainty relations that lead
to inevitable quantum fluctuations. As the universe expands,
these fluctuations are stretched and lead to the anisotropies
seen in the cosmic microwave background (CMB), which in
turn serve as seeds for formation of the large scale structure.
Thus, the origin of the large scale structure of the universe is
traced back to quintessential quantum fluctuations that
cannot be switched off even in principle.

For concreteness, let us consider the inflationary
scenario. Then the quantum fields are assumed to be in
the Bunch-Davies vacuum, tailored to the near de Sitter
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symmetry during (the relevant phase of the) slow roll. But
in actual calculations, at the end of inflation one replaces
the Bunch-Davies vacuum with a distribution function on
the classical phase space and describes the subsequent
evolution in classical terms. Therefore a number of natural
questions arise. Why is this procedure justified, given that
the quantum nature of fluctuations was essential to begin
with? Can one justify this approximation from first prin-
ciples? In other words, in what precise sense does the
classical behavior emerge even though the starting point is
quintessentially quantum? Is inflation essential for this
emergence of classicality? Or, is it a general feature of
quantum field theory in expanding cosmologies? Is it
essential to make a division of quantum perturbations into
the “system” and “environment” and use the ideas of
decoherence? Is it essential to consider nonlinear mode-
mode couplings, or, can classical behavior emerge in a
precise sense even in the linear approximation for quantum
perturbations? Is one forced to bring in considerations from
measurement theory and use models of wave function
collapse a la, say, [1-8] or, alternatively, the de Broglie-
Bohm version of quantum theory, a la, say [9] in which
there is no collapse? Because these issues are conceptually
important, there is a large body of literature that addresses
them from a variety of perspectives (see, e.g., [10-33]). Our
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emphasis will be on isolating the simplest mechanisms that
can lead to classical behavior in the early universe.

More precisely, the goal of this paper is three-fold. First,
we will show that three of the commonly used notions
of emergence of classical behavior are not equivalent;
a quantum system can exhibit classical behavior in one
sense but not in another. In particular, classical behavior
emerges also in a wide class of noninflationary back-
grounds, including radiation and dust filled universes in
two of the three senses, but not in the third.! Our discussion
will emphasize novel features that emerge as the system
evolves, illuminate the underlying mechanisms, and, in
some cases, correct inaccuracies in the literature. Second,
the discussion will also show that classical behavior already
appears in the mathematical theory of linear perturbations.
Considerations such as decoherence and measurement
theory in quantum mechanics are, of course, important
and are likely to play important roles in a complete
understanding of dynamics. But classical behavior emerges
without them in the early universe. Third, we will highlight
certain geometrical structures on the classical phase space
that play an important role in sharpening the sense in which
classical behavior emerges. In particular, we will show that
the origin of quantum squeezing can be traced back to these
geometrical structures. They also provide a natural avenue
to associate with the quantum vacuum a distribution
function on the classical phase space that, in turn, leads
to a stronger result on the relation between quantum and
classical n-point functions, including those that feature
both field operators and their conjugate momenta.

The paper is organized as follows. In Sec. II, we collect a
few facts about quantum fields in FLRW space-times,
emphasizing the key mathematical input that is needed in
the passage from the classical to the quantum theory—
introduction of a Kihler structure on the phase space,
compatible with the symplectic structure thereon. Basic
concepts and the notation introduced in this discussion will
be used throughout the rest of the paper. The next three
sections are devoted to the three different notions of
emergence of classical behavior.

One of the first arguments for this emergence in the
context of inflation was that quantum “noncommutativity
becomes negligible because one can ignore the decaying
mode” (see, e.g., [13,15,16]). In Sec. Il we reexamine
this idea in light of the fact that the commutator between
the field and its canonically conjugate momentum is
constant throughout the evolution and thus cannot become

'While this general feature is significant purely from a
conceptual viewpoint, this fact is also physically quite interesting
because, in the standard inflationary scenario the universe
undergoes even more e-folds in its expansion during the radiation
and dust dominated eras than during the relevant slow roll phase
of inflation, i.e., the epoch between the time when the mode with
the largest observable wavelength exits the Hubble horizon till the
end of inflation when the slow roll parameter ¢ becomes 1.

negligible under time evolution. We will show that there is
indeed a precise sense in which noncommutativity “fades”
during inflation, but it is more subtle. The Appendix
revisits the issue of fading of noncommutativity discussed
in Sec. III, but now for the commutators between field
operators at different times.

In Sec. IV we discuss quantum squeezing, which is often
taken to be another hallmark of the emergence of classical
behavior (see, e.g., [10-16,29]). We show that the origin of
this phenomenon can be directly traced back to the Kihler
metric on the phase space. It appears that this “geometrical
underpinning” of squeezing has not been noticed before, at
least in the cosmological context. It serves to bring out the
fact that although squeezing is discussed almost entirely in
the context of inflation in the cosmology literature, it occurs
much more generally during the cosmic expansion, in
particular in radiation and dust filled universes where
squeezing is in fact more extreme in a precise sense.
Interestingly, in this case, classical behavior does not
emerge in the sense of Sec. III; thus the notions are
inequivalent.

In Sec. V we show that the Kéhler geometry consid-
erations of Sec. IV also provide a natural avenue to
associate a phase space distribution function p, with every
spatially homogeneous, isotropic quantum vacuum ¥, of
the field, on any FLRW background. We then show that the
evolution of the expectation values in the state ¥, of any
finite product of field operators and their conjugate
momenta is exactly reproduced in the expectation values
in p, of the product of the corresponding (commuting)
classical observables, provided one uses the Weyl (i.e.,
totally symmetric) ordering of quantum operators. Thus,
the difference between classical and quantum evolutions
arises only if we have an operator product that has both
field operators and their momenta, and the product is not
Weyl ordered. This statement provides a complete charac-
terization of the precise difference between classical
and quantum predictions (to the extent that both theories
are determined by the expectation values of all these n-
point functions). Results of Sec. V admit a direct gener-
alization to linear quantum fields in any globally hyperbolic
space-time.

In Sec. VI we summarize the main results emphasizing
new elements. As is clear from the above discussion, our
focus is on clarifying the sense in which the dynamics
of quantum fields representing cosmological perturba-
tions can exhibit behavior that we normally associate with
classical systems. In this discussion, then, there is no
“quantum to classical transition.” Hence we will not need
to enter a discussion of issues that arise when the focus is on
this “transition”: decoherence, quantum measurement
theory, collapse of the wave function, or reformulations
of quantum mechanics, e.g., a la de Broglie and Bohm in
which there is no collapse. Rather, our emphasis is on
the “emergence” of classical behavior in the early

023512-2



EMERGENCE OF CLASSICAL BEHAVIOR IN THE EARLY ...

PHYS. REV. D 102, 023512 (2020)

universe in the mathematical description of cosmological
perturbations.

It is then natural to ask: Can the emergence of classical
behavior be discussed without entering into details of
quantum measurement theory? To conclude this section,
we will make a brief detour into imperfect measurements to
illustrate why this is possible already for familiar macro-
scopic systems. Consider, as a simple example, the pen-
dulum in a grandfather clock. Suppose the mass of
the pendulum is 1 kg and frequency of oscillations is
@ =1 s7!. Now suppose the pendulum is in its ground
state and we measure its position. In the Copenhagen
interpretation, a perfect measurement will collapse the
wave function drastically, giving the pendulum infinite
momentum and destroying the clock; the quantum behavior
will be very different from the classical prediction. But
this is not what one does in practice. When we observe
the pendulum, we measure the position to a very good but
finite accuracy, say of €, = 107> m. And indeed we can
make this imperfect measurement repeatedly. Each of these
measurements disturbs the pendulum. The momentum
imparted is /e, = 107> kgm/s whence the velocity is
1072° m/s. We can detect this velocity through a change in
its position. But for the displacement to be measurable, i.e.,
~107° m, we would have wait some 9.5 x 10® s, or
~3 x 10'® years, or ~2 x 10° times the age of the universe.
Thus, if one makes an imperfect measurement on a
macroscopic system—and all our measurements of the
position of the pendulum are imperfect—the system is
disturbed because of the measurement. However, even in
the standard Copenhagen interpretation—even without
other considerations such as environment, decoherence,
or the de Broglie Bohm version of quantum mechanics—
the resulting collapse of the wave function does not affect
the future evolution in any significant manner, provided the
window €, of the imperfect measurement is much larger
than the Heisenberg uncertainty Ax in position. For our

pendulum Ax = \/A/mw~7.3 x 107'® m. Thus, even
when the pendulum is in a quantum state, for all practical
purposes it behaves classically because it has a macro-
scopic mass relative to the accuracy of our imperfect
measurement.” So long as the measurements are imperfect
(i.e., €, > Ax), we can generally ignore the measurement
process in the discussion of whether the quantum dynamics
of the macroscopic system is well described by its classical
description. These simple, order of magnitude consider-
ations will be useful at several junctures. (While we
considered a pendulum to obtain explicit numbers, same

*For the Heisenberg uncertainty Ax to equal our
€, = 107 c¢cm, we would need the mass of the pendulum to be
5.3 x 1072 kg (keeping @ = 1s7!), and then, even with a single
measurement, we will detect that the pendulum is not at rest
within half a second because its position will change by e,.

considerations apply to other macroscopic systems such as
a table or the moon.)

II. PRELIMINARIES

In this section we fix our notation and introduce some
mathematical background that will be used in the rest of the
paper. In Sec. I A we recall the notion of the covariant
phase space I" for the Klein-Gordon field ¢, the symplectic
structure Q thereon, and the new geometric structure that
one needs to introduce on I' for Fock quantization of ¢.
In Sec. II B we introduce the cosmological setting, used in
the rest of the paper, and spell out how the new structure is
chosen in the most commonly used examples—
Minkowski, de Sitter, and quasi-de Sitter space-times, as
well as a class of FLRW models that includes radiation and
dust filled universes. In Sec. I C we collect the basics of
canonical quantization. Notions, structures and expressions
introduced in this section are heavily used in the rest of
the paper.

A. Geometric structures on the covariant phase space

Consider a real Klein-Gordon field ¢ on a general,
globally hyperbolic space-time (M,g,,) satisfying
[l¢p = 0. The covariant phase space T" of this field consists
of (suitably regular) solutions ¢. This space comes
equipped with a natural symplectic structure Q. Since I'
is a vector space, Q can be regarded as a skew symmetric
(weakly nondegenerate) tensor that associates to any pair
(¢1, @) of vectors in I' a number:

Q1. ds) — /E EVI (Vs = $:Vuh). (1)

where X is any spacelike Cauchy surface and n“ is the unit
normal to Z. This symplectic structure is induced on I" by a
standard procedure starting from the action for the Klein-
Gordon field (see, e.g., [34]).

The Fock quantization of the scalar field requires the
introduction of a specific new geometric structure on I': a
complex structure J that is compatible with Q. More
precisely, J is a real-linear mapping, J:I" — I', with the
following properties: J?> = —1,Q(¢y, Jh) = Q(¢h>, Jp,)
and Q(¢,J¢) >0 (and it is equal to O if and only if
¢ = 0). When these conditions are satisfied, we can define
a positive definite metric g on I':

9( b1, ) = Q1. I ).

Thus (I',Q,J, g) is a Kéhler space. As we shall see, this
extension from a symplectic to a Kéahler space succinctly
captures the passage from the classical to the quantum
theory. In particular, J and g have a well defined and precise
physical meaning in the quantum theory.

Let us start by considering the complex structure J. It
provides a splitting of the space of solutions I into positive

(2.2)
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and negative frequency solutions: Given any real solution
field ¢, we can define its positive and negative frequency
parts as:

P %(1 T i) (2.3)

with the property that,

Jbt =2+ i) = i%(l Til)p = tigt.  (2.4)

N =

That is, a positive frequency solution ¢ is an eigenvector
of J with eigenvalue equal to i (and, correspondingly, ¢~
with —i). Even though ¢ and ¢~ are both complex, ¢ is
real since ¢y~ = ¢™. Thus J is the new geometrical structure
on the real phase space I” that captures the notion of positive
and negative frequency decomposition. Often this decom-
position is accomplished by introducing an appropriately

normalized basis (e, (17)e™*7, in the cosmological context
discussed below) of solutions to the Klein-Gordon equa-
tion, but the Fock representation of the field algebra
depends only on the complex structure J they define;
change of the basis leads to the same Fock representation if
and only if the change leaves J unchanged.

The second geometrical structure on I" is the positive
definite metric g that naturally emerges from the newly
introduced complex structure:

9(P1. h2) = Q(p1,J ). (2.5)

Together with the symplectic structure Q, the metric g
enables us to define an inner product on I'™:

| .
(r.42) = 35 91, 82) + 5, Q1) (26)

which is Hermitian if one regards (I',J) as a complex
vector space. Cauchy completion of (I',J,(.,.)) is the
1-particle Hilbert space H of quantum field theory. (See,
e.g., [35,36]).

There is an equivalent description for the I-particle
Hilbert H space that is more commonly used. Instead of
real solutions ¢, consider their complex-valued positive
frequency parts ¢ which are in 1-1 correspondence with
¢. On the space of positive frequency solutions the
Hermitian inner product takes the form

l — l
(@1 ¢;) = 7 b)) 5 e $y).  (27)
The Hilbert space H is then the Cauchy completion of the
complex vector space spanned by (suitably regular) pos-
itive frequency solutions with respect to this inner product.
The total Hilbert space of the theory is the symmetric Fock
space generated by H. The Fock vacuum is a quasi-free

state; its n-point functions are determined by the 2-point
function.

Thus, the new element required for quantization is a
complex structure J that is compatible with the symplectic
structure Q on I, such that (Q, J, g) equips I" with a Kdhler
structure. This geometrical setting for quantization of a
scalar field holds on any globally hyperbolic space-time,
not just the FLRW space-times of direct interest to our
discussion.’

B. FLRW space-times

Let us now restrict ourselves to the FLRW space-times,

8apdx?dx? = a*(n)@,,dx*dx? = a*(n)(—dn® + dx?),
(2.8)

so that 7 is the conformal time coordinate, related to proper
time ¢ via a(n)dn = dr. To avoid infrared technical com-
plications that are not relevant to our considerations, we
will take the spatial topology to be a 3-Torus T* of (spatial)

volume V, with respect to the fiducial flat metric g,

(and ignore the k=0 mode). Dynamics of ¢ is directly
relevant to that of cosmological perturbations in the infla-
tionary scenario, especially for tensor modes. On this
background space-time, the Klein Gordon equation takes
the simple form

W-b%+2%ﬁ:o (2.9)

where prime refers to derivative with respect to conformal

time #, and D is the spatial Laplacian defined by g,,. As is
common in the cosmology literature, we will carry out a
Fourier decomposition

WED) =5 e (@10
k

Because ¢(X, ) is real, the Fourier transforms are subject to
the “reality condition” ¢7(n) = ¢_;(n). It is customary to
introduce a suitably normalized basis e () satisfying the

equation of motion

da(n)
a(n)

and normalization conditions

em) + 25 et ) + Ky =0, (2.11)

It also admits a simple generalization to spin 1 and spin 2
fields. For fermions, the role of Q and g are reversed: classical
theory provides us with g and the complex structure then provides
us €Q; again it is the Kéhler structure that defines the Fock
quantization (see, e.g., [37]).
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, 1

ex(mey(n) — e (ne(n) = 200

(2.12)

and expand ¢;(n) in this basis to obtain
1 -
xX,n) =—— zze +z e etk 2.13
P(x.n) \/V_oz,;( rex(n) +Z_gex(n)) (2.13)

Here the z; are arbitrary complex-valued constants (subject
only to standard fall-off conditions for large k to ensure
convergence of the sum in (2.13)). In particular, in contrast
to ¢z, there is no relation between z; and z_;. The z; serve
as complex (Bargmann) coordinates on the covariant phase
space I' [38,39]. Note also that the factor of 1/+/V|, has
been absorbed in the constants z; for later convenience.

The normalization condition (2.12) ensures that if one
defines a complex structure J on I" via

) = %V_Oguqek(n) — 7z ) (2.14)
k

then this J is compatible with the symplectic structure €.

The set of solutions {e;e’**} provides an orthonormal
positive frequency basis in the 1-particle Hilbert space H.
We can define a new positive frequency basis by replacing
€y with Ek = Zk’ Ck’k/ek (Wlth Zk’ |Ck,k’|2 = l), the com-
plex structure defined by &, is again J. Thus, the invariant
content in the choice of a positive frequency basis is
captured by the complex structure. It is easy to show for this
complex structure, J, the Hermitian inner product takes
the form,

B i) = S (@15)
k

Thus, the components {z;} of ¢(¥,#) in the orthonormal
basis e;(17) provide a convenient coordinate system for I.
Equations (2.7) and (2.15) imply that these coordinates are
well-adapted to the symplectic structure: their Poisson
brackets have the form

{Z,;,Zly} = _iél?,l? and {ZE’ZE’} =0. (2.16)

In the commonly used space-times, the basis e, () of

solutions is chosen as follows.

(1) Minkowski space-time. This is of course the
simplest homogeneous and isotropic cosmological
model, in the sense that it is also stationary. In this
case, we have

e—ikn

ex(n) = (2.17)

S

023512-5
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where the time dependence is only through the phase
factor. These solutions constitute the standard pos-
itive frequency basis.

Remark: To introduce the mode functions e ()
in FLRW space-times, it is convenient to make a
mathematical detour. Recall that in any FLRW
model, the equations of motion (2.11) satisfied by
the mode functions e, (1) imply that y;(n) = a(n)e;
satisfy

"

o+ (-5 )um =0 @1s)

which are generally easier to solve. In various
models of physical interest, one often solves for
xx(n) and then introduces e (n) = yi(n)/a(n) as
discussed below.

de Sitter space-time. Here one restricts oneself
to the future Poincaré patch, with conformal
time 7 <0, such that a(n) = —H%? = M, where
H is the constant Hubble parameter and ¢ proper
time. In this case the standard basis functions
chosen by appealing to de Sitter isometries take
the form,

Caln) 1 eth iHa(n)
ek(”aw)a(nm—k(l k ) (2.19)

Quasi-de Sitter space-times. For a single field
inflation, consider the dynamical phase in which
the Hubble parameter H := &/a is not a constant but
changes slowly in the sense that the slow-roll
parameters ¢ := —H /H? and 6 := H/(HH) are small
compared to 1. (Here the “dot” denotes derivatives
with respect to proper time.) It is customary to ignore
second and higher order terms in € and 6. In this
approximation, using dynamical equations, the slow
roll parameters can be expressed in terms of the
inflationary potential V:

1 V2 1 v
EREy: (—) and o=y =

V162G \ V 872G V
(2.20)

where the “prime” now denotes derivative with
respect to the (background) inflaton field. The basis
adapted to this slow roll phase of dynamics is given
by (see, e.g., [40])

A
_ _ i+)% /= H(l) _
ek(n) 61(77) 2 e 24/ —NHy ( k’/l)?

(2.21)
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“

with v = % + 3ey — Oy and H, ,Sl) the Hankel function
of the first kind. In the limit 3¢y — oy — 0 one
obtains the de Sitter basis functions.

A class of FLRW models interpolating between
radiation and dust domination. Let us begin with
a radiation-filled FLRW universe. In this case,
a(n) = agn, where qay is a constant. Therefore, a” =
0 and hence y;(n) satisfies the same evolution
equation in 5 as the mode functions (2.17) in
Minkowski space-time. Thus, it is now natural to
choose as “positive frequency” basis functions

xi(n) _ Le_ik"
a(n) a2k

In a dust-filled FLRW universe, we have a(y) =
a;n* for some constant ;. Interestingly, in this
case yi(n) :==a(n)ei(n) satisfies the same differ-
ential equation in # as in de Sitter space-time,
2+ (k= n%);(k = 0. Therefore, a natural choice

ex(n) = (2.22)

of modes y,(n) is obtained by multiplying (2.19)
by the de Sitter scale factor a(y7) = —1/Hpn. Then,
for the dust-filled universe the mode functions e ()
are given by

) L e
() = a(n) — ayr* 2k <1 kﬂ)' (223)

Finally, let us consider FLRW universes that
“interpolate” between the radiation and dust filled
cases in the sense that the scale factor has the
behavior a(n) = an'"*® with a € [0, 1]. Then the
equation of motion (2.18) of () reduces to

o+ (k- %)}(k = 0. Requiring that for large

k, the positive frequency modes should have the #-
dependence ~e~**, and noting that  is now positive
(in contrast to the de Sitter and near-de Sitter space-
times), we are led to the mode functions:

:)(k(ﬂ>
a(n)

1 2
(1) = Ao g VEnH) (k). (2.24)

7
where Hfr)a(k;y) is the Hankel function of second
2

kind of order % + a, and the normalization constants
Ao are determined using (2.12). For a =0 the
mode functions (2.24) reduce to (2.22) with

Ao = —(i/2ay)\/n/k, and for a =1 they reduce
to (2.23) with A = —(1/2a,)\/7/k.

This class of models does not feature in most of
the discussion of emergence of classicality. Its
inclusion will enable us to bring out two interesting
features: (i) Inflation is not essential for emergence
of semiclassicality in the sense of Secs. IV and V;

and (ii) Contrary to a common belief, the three
widely used notions of this emergence are not
equivalent. (See also footnote 1.)

Remark: Since one generally first solves (2.18) for
x«(n), one might imagine forgoing the introduction
of basis functions e, (7) altogether and work with the
field y;(n) = > z(zpre(n) +Z_gxe(n)) in place of
bp(n) = X p(zper(n) + 2_zex(n)). However, itis ¢y
that is directly used in physical applications. In
particular, the primordial TT-power spectrum is the
2-point function of q%, not of 7. Similarly it is the
observable (}k that is squeezed during inflation; in
fact the uncertainty in 7 increases exponentially in
the number of e-folds during inflation. Therefore,
physical considerations involving emergence of
classical behavior refer to the field (}5];.

C. Canonical commutation relations

Let us now introduce the canonical variables that will
play an important role in the following sections. In the Fock
representation defined by the complex structure J associ-
ated with a basis ey, the final result amounts to replacing the

coefficients z; in Eq. (2.13) with A;. Thus, we have:

T

B = =D (el + @A e, (225)
k

where the creation and annihilation operators are subject to
the commutation relations

A A

[ApAL] = hogp and (A

T A ]=0  (2.26)

that mirror the Poisson brackets (2.16) between z; and Z;.

The Fock vacuum |0) is defined by A|0) = 0. For any
choice of basis e, satisfying the equations of motion (2.9)
and the normalization condition (2.12) the vacuum is
invariant under spatial translations and rotations of the
FLRW space-time. These vacua are all quasi-free states and
hence determined by their 2-point functions. The invariance
of the vacuum under these isometries is therefore equivalent
to that of the 2-point function

h -

(PG m)p(Fam)) = V—OZek(m)ék(ﬂz)@i(f‘_fz}‘k
k

(2.27)

which is manifest, by inspection, for any choice of basis
functions.

Fix an instant 5, of time. Then the canonically conjugate
pair of operators at 7, is given by

P(F) = d(Eon,) and 2(F) = ()¢ (3.n,).  (2.28)
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where, as before, prime refers to the derivative with respect
to 5. Thus, we have expansions:

(2.29)
and
A (7 )702<W)Z(/()A4+—/( )AT ik-%
z(X,n =, ]; e, (mA; +e.(n —1?)6
k

so that 601% =¢_jand ir;% = 7_;. The commutation relations

between A,—{» and A; then imply the canonical commutation

relations:

]‘(‘/.
(2.31)

[P(%), #(F)] = ih6(F®) and  [pg. 2p] = S, _

III. QUANTUM NONCOMMUTATIVITY
AND INFLATION

In this section we address the following questions: Is
there a precise sense in which noncommutativity “fades”
during inflation? And, if so, is such fading a good criterion
for emergence of classical behavior?

A. Strategy

Let us begin by spelling out the general context. As in
Sec. II, consider a general FLRW background and use
suitable mode functions ey(n) to define the complex
structure, and consider the resulting Fock representation
of the operator algebra. Then, the Fourier transforms of the
canonically conjugate pair of operators are given by

#ip(n) = @ (n) (e (A + 2, (AT ) (3.1)

at any conformal time 7, and they satisfy the canonical
commutation relations

[@3(n), 7 (n)] = ihdy . (3.2)

This noncommutativity is of course a key hallmark of
quantum mechanics. Therefore, if it were to become
negligible in an appropriate sense during dynamics, one

could say that the system exhibits classical behavior in that
phase of evolution.

Now, as we saw in Sec. II, in de Sitter space-time the
“positive frequency” basis functions are given by:

1 H\e'M
ex(n) (“(’1) +i k) T (3.3)
It is sometimes argued that, since a(y) becomes very large
at late times, the “decaying mode” would become negli-
gible and then the canonically conjugate operators would
“approximately commute at late times.”* As it stands, this
reasoning is incorrect because, as Eq. (3.2) shows, the
commutator between (;(17) and 7 (17) is time independent,
whence it is the same at late times as it was at early times.
Nonetheless, one can ask whether properties of the basis
functions e, (n) can lead to “fading of noncommutativity”
in some well-defined sense.

In this section we will answer this question affirmatively
in the inflationary context. To do so let us first note that,
since operators involved are all unbounded, it is not
meaningful to say that one part of the operator becomes
negligible; one can always find states on which it is far from
being so. Second, the commutator is dimensionful, whence
it can be compared to—and then regarded as negligible—
only with respect to a quantity that has the same physical
dimensions. A natural strategy is to compare the expect-
ation value of the commutator between @y (17) and &y (1)
with that of the anticommutator between the same oper-
ators. One would then compare numbers—rather than
operators—both of which have the same physical dimen-
sion. The question would be whether the expectation value
of the commutator becomes small compared to that of the
anticommutator under time evolution.

This strategy can be motivated by two considerations.
The first comes from results presented in Sec. V which
imply that the expectation value of the anticommutator
equals a classical quantity involving the two observables.
On the other hand the expectation value of the commutator
is a quintessentially quantum quantity. Therefore, the ratio
of the two expectation values can be taken to be a measure
of the “importance of the quantum aspects of the system
relative to its classical aspects.” A second and independent
motivation comes from the structure of the algebra of
observables in classical and quantum mechanics [41]. For
quantum mechanical systems whose configuration space C

4Using the same logic, it is argued that the field operators
g?ﬁ;(m) and (,?)17 (n,) also “approximately commute at different
times” provided #; and 7, are taken to be sufficiently late (see,
e.g., [16]). This issue is discussed in Appendix. We will see that
while this expectation is not borne out as stated, it does hold in the
sense spelled out in this subsection. The strategy introduced in
this subsection also brings out some interesting features in the
way in which the noncommutativity of (}5;(111) and (25,; (7o) fades
that, to our knowledge, have not been noticed before.
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is a manifold, it is natural to associate configuration
observables with functions on C and momentum observ-
ables with vector fields on C. These two sets of observables
are subject to certain algebraic relations. It turns out that the
classical and quantum algebras share the same anticom-
mutation relations. But the commutation relations are of
course different: Classical observables commute, while the
quantum observables do not. This structure also suggests
that the ratio we consider is a measure of the quintessen-
tially quantum behavior.

We will find that, with this specific formulation not only
does the question become well-defined but the intuitive
idea of fading of noncommutativity is realized as inflation
unfolds. However, we will also find that this criterion of
classical behavior has important limitations, illustrated by
the explicit example of quantum fields propagating on a
radiation-filled FLRW space-time. The criteria discussed in
Secs. IV and especially V are better suited to capture the
idea of emergence of classical behavior in more general
circumstances.

B. The canonically conjugate operators
at any given time 7

Let us begin with a general FLRW space-time and work
with the Fock representation defined by a given set {e,(17) }
of (“positive frequency”) basis functions. As is common in
cosmology, we will work in the Heisenberg picture and use
as our state the vacuum that is annihilated by the operators
AI—{» of Eq. (3.1). Then a straightforward calculation shows
that, at any time 7, the vacuum expectation values of the
commutators and anticommutators of the pair (¢, 7;) of
operators are given by

([9p(n), 2 (n)]) = Ay
([@r(n), 27 (n)],) = —2ha*(n)Re(ex(n)2}) 57 -

Therefore the absolute value |R,,| of the ratio of
the expectation value of the commutator to that of the

(3.4)

anticommutator is of interest only if k = —k and is then
given by

([@e(n). 2_z()]) | 1

(3.5)

Let us now specialize to (the future Poincaré patch of) de
Sitter space-time and use for e, (#) the basis functions (3.3).
Then |R,, | simplifies:

k1 kyny(n)
R B 3.6
Ry = gy =% (36)
where kpy, is the physical wave number. Let us denote

by #; the time when the mode exits the Hubble horizon,

" [2d*(n)Re(ex(n)e)(n))]

i.e., when k,
we have:

ny = H, and 75 the time N e-folds later. Then

Rp()| =1 and |R, ()] =e. — (3.7)
Thus, neither the commutator nor the ratio is negligible at
the horizon crossing time #;. But while the commutator is
independent of #, the ratio decreases exponentially with the
number N of e-folds as inflation proceeds. The smallest
wavelength mode observed by the Planck satellite exits the
Hubble horizon ~8 e-folds after the longest wavelength
mode, and there are ~55 e-folds in the relevant phase of the
slow roll (see footnote 1). Therefore, N =8 and N = 55
are useful numbers to keep in mind. Already 8 e-folds after
Mg the ratio |R,, | is reduced by a factor of ~3.3 x 1074,
and for 55 e-folds by ~1.3 x 10724; this can be taken as a
precise sense in which the noncommutativity between the
field operator and its conjugate momentum diminishes after
horizon crossing.

To summarize, the commutator [(; (), 73 (n7)]-and its
expectation value in any state—is time independent; it does
not decay. However, the ratio of the expectation values of
the commutator and the anticommutator in the Bunch-
Davies vacuum decays exponentially with the number of e-
folds to the future of horizon-crossing, providing us with a
precise sense in which the significance of noncommuta-
tivity fades. This occurs because the expectation value of
the anticommutator is proportional to the scale factor in de
Sitter space-time. Remarks:

(1) The situation in quasi-de Sitter space-times is similar

because the mode functions approximate those in de
Sitter space-time quite well. More precisely, in
comparison with the de Sitter space-time, there
are only two notable modifications: (i) H := a/a
is no longer a constant, but varies slowly, whence the

= (—Iiln)‘('“” for

some constant IEI ; and, (ii) at late times the mode
functions e, (1) have an additional time dependence
of (—n)%~2¢v (see, e.g., [42]). Since &y and e, are
small during slow roll, the denominator in the
ratio |R,, ,(17;)| continues to grow as in de Sitter
space-time and so noncommutativity again fades.
(Incidentally, note that 6, = 2¢y for the quadratic
potential, whence the extra time dependence dis-
appears there.)

(2) In the above analysis we focused our attention on
just two modes k and —k. However, the reasoning
can be extended to the full Klein-Gordon field
®(X,n) and its conjugate momentum #(X,n) if
one phrases the question of fading of noncommu-
tativity appropriately. One would now tailor the
question to a subset of configuration and momentum
observables: ($(f))(n) and (#(g))(n), obtained by
smearing @(X,n) and #(X,n) with suitable test

scale factor now has a form a(n)
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functions f(X) and g(X). If these test functions are
chosen so that their Fourier transforms have support
only on a finite but arbitrarily large band of modes, it
again follows that the ratio of the expectation values
of commutators and anticommutators of the result-
ing set of observables decays exponentially with the
number of e-folds after the mode with the largest
value of k in the band exits the Hubble horizon.
However, for the full algebra of observables gen-
erated by all permissible test fields, we do not have a
simple statement of fading.

(3) Although the importance of noncommutativity does
fade during inflation in a well-defined sense, exami-
nation in more general contexts beyond inflation
shows that this fading is not a robust criterion for the
emergence of classical behavior, because there are
situations in which the expectation value of the
anticommutator may become very small—making
the ratio large. This occurs in the radiation or dust
filled universes as well as the 1-parameter family of
cases labeled by a € [0, 1] that interpolate between
the two in the sense of Sec. II B. Properties of the

Hankel functions H l(i)a in the basis functions e, (1) of
2

(2.24) immediately imply that a*(n)Re(e,(1)e,(n))
decays as 7 increases. Therefore the ratio R grows as
the universe expands, whence the noncommutativity
does not fade. However, in Sec. IV we will find that
not only is there squeezing in @y in these space-times,
butin a precise sense it is even more pronounced than
the one resulting from inflation. Similarly, in this
case, classical behavior does emerge in the sense of
Sec. V. Thus, in cosmological contexts beyond
inflation, the three notions of emergence of classical
behavior are distinct.

Indeed, even in a dynamical phase where the system
behaves classically in an “obvious” physical sense,
noncommutativity need not fade. Let us consider the
simple example of the grandfather clock from Sec. L
Suppose it is well isolated so the effect of environment
is completely negligible and we do not bring in
decoherence. Still, as we argued, this macroscopic
system exhibits classical behavior if the pendulum is
in its ground state, as can be checked by carrying out
(imperfect) measurements of its position repeatedly.
Does the quantum mechanical noncommutativity fade
in this case? Again, the canonical commutation relations
are time independent; they do not fade. What about the
ratio of expectation values of the commutator and the
anticommutator? Can it be used as a pointer that
anticipates classical behavior? Unfortunately, the ratio
is infinite because the expectation value of the commu-
tator is just iz while that of the anticommutator is zero.
This system does not exhibit classical behavior in the
sense of squeezing of Sec. IV either, although it does
satisfy the classicality criterion of Sec. V.

IV. PHASE SPACE, QUANTIZATION AND
GEOMETRY OF SQUEEZING

The phenomenon of quantum squeezing is often used to
argue that classical behavior naturally emerges during
inflation because the uncertainty in the field configuration
¢y, is highly squeezed and remains squeezed at late times. In
Sec. IVA we set the stage by briefly recalling this well-
known phenomenon in the context of de Sitter space-time
(see, e.g., [11-16,29]). In Sec. IV B we trace back the
origin of quantum squeezing to geometrical structures on
the classical phase space, introduced in Sec. [T A. As a
result, we will find that the phenomenon is rather general
and inflation is not essential for its occurrence.

A. Squeezing during inflation

Consider the operators @;(17) and 7;(17) of Egs. (2.29)
and (2.30). Their expectation value in the vacuum state
selected by the basis functions e (17) vanishes, (@;(n)) =
(7(n)) = 0, so the uncertainties are given by the 2-point
functions,

(4.1)
and
(4.2)

These uncertainties can be computed using the expansion
(2.29) and (2.30) of @;(n) and 7;(n7) in terms of creation
and annihilation operators:

(@Hmdr(m) = hey(m)ex(n). (4.3)

and,
(4.4)

Let us evaluate these expressions in de Sitter space-

time. Recall that the basis functions are given by
ek(n):%ﬁ(l—kmim)). Therefore in the Bunch-Davies
vacuum the uncertainties are given by:

h H? h 1 H?
Ap-MP=— |HP+— | =— [ ——+—
|Adr(n)] 2k< n”+ k2> % (a2<ﬂ)+ kz)

(4.5)

and

k1 k

<;f';('7);f;(ﬂ)> = 2HYP = hia(’?)z- (4.6)
Let us track how these uncertainties change in time. We are

interested in modes that are deep inside the Hubble horizon
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at early times, i.e., satisfy k,,, = k/a(n) > H then. Let us
fix the convention that at an early proper (or cosmic) time
t = 0, the scale factor is given by a = 1. Then modes of
interest satisfy k > H and we have

n( HN\ h k
P (i)~ AR )P = .
2k< +k2> 2 AR =hy

(4.7)

These are precisely the uncertainties associated with the
vacuum state in Minkowski space-time. In particular, their
product is (nearly) saturated and uncertainties are “as
equally distributed” as dimensional considerations allow.

Let us now examine what happens to the modes under
consideration at late times—several e-folds after the mode
has crossed the Hubble horizon so ky (7) = k/a(n7) < H.
Then (4.5) simplifies and we have:

h H?
R, 4.8

2k K (48)
which approaches a constant. On the other hand, the
uncertainty (4.6) in the canonically conjugate momentum
takes the form

(4.9)

that grows unboundedly. Thus, now the product of uncer-
tainties is far from being saturated and grows exponentially
with the number of e-folds. However, at late times the
uncertainty in ¢; is very small compared to that in
Minkowski space-time because k > H. This is the mani-
festation of quantum squeezing during inflation.

B. Geometry of squeezing

The phenomenon of squeezing in the early universe is
quintessentially quantum since it refers to the evolution of
uncertainties in canonically conjugate observables in a
given vacuum. Now, we saw in Sec. II that the passage from
classical to quantum theory of linear fields can be system-
atically streamlined: The symplectic geometry on the
classical phase space I' has to be extended to a Kihler
geometry by introducing a complex structure J—or equiv-
alently a positive definite Riemannian metric g—on I', that is
compatible with the symplectic structure € thereon.
Therefore, one might expect that the phenomenon of
squeezing can be traced back to the classical phase space
I" once it is equipped with an appropriate metric g. We will
now show that this expectation is indeed correct. The
analysis will bring out an interesting and rather unforeseen
interplay between the symplectic and Riemannian geom-
etries on I'. It will also serve to bring out the fact that
inflation is not essential for this phenomenon to occur.

Recall from Secs. II and III that the phase space I" admits
two sets of convenient (complex-valued) canonically con-
jugate coordinates. The first—Bargmann variables—are
given by z; and Zp, where z; are freely specifiable (apart
from appropriate fall-off conditions for large k = |l;|) The
second set is provided by the pair (@;(17), 7;(n)) for any
fixed time #, and subject to the reality conditions ¢;(n) =
@_;(n) and 7z () = 7_;(n). Recall that these pairs have the

Poisson bracket relations:

{zp.7p) = —i6;p and  {z. 277} =0, (4.10)
for the Bargmann variables and
{oz(n). mz(n)} = 6; ;. and
{oz). 0p ()} =0 Amg(n), zp(n)} =0, (4.11)

for the canonically conjugate pairs at any fixed time 7.
Recall that every function f on I" defines a Hamiltonian
vector field (HVF)’ X via

df =Q(-,Xy), or, equivalently X¢=Q%9,f (4.12)

where a, ... are abstract indices (4 la Penrose) that refer
to the tangent and cotangent space of I' [43,44]. Of
special interest are the HVFs associated with phase space
coordinates—such as the pairs (z;,Zz;) and (@g. 77)—
because they provide a convenient basis in the tangent
space of I'. In particular, the vector fields

o _
X, =i— or, X? =iZ% and
k 5Z]_c. k k
.6 .
X, = —l&]z or, Xg =—iZf; (4.13)

span the (complexified) tangent space of I' and their
symplectic inner products

Q(Xz;’xz;.,) = i6;; and Q(Xz;,Xz;,,) =0 (4.14)
simply reflect the Poisson bracket relations (4.10)
because {z7.Zp} = QX . Xz, ).

Recall from Sec. I A that the passage to the quantum
theory requires the introduction of a new structure on I,
namely a complex structure J; that is compatible with the
symplectic structure €2, and that the Bargmann coordinates
zz provide such a J%. Its action on the Bargmann HVF is
given by

’Note that in the mathematical terminology a ‘“Hamiltonian
vector field” is associated with every phase space function f; not
just with the physical Hamiltonian of the system.
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Ja ,z/’ iz J“,,Zg = —iZt. (4.15)
The second structure is a metric g4 := Q,,J75 on T" that
allows us to define (Riemannian) inner products between
tangent vectors. For the Bargmann vector fields we obtain

9(Xz. X)) =6 (4.16)

pp and g(X . X )=0.
Thus, the HVFs associated with Bargmann coordinates
provide us with a (null) complex-valued orthogonal
basis on I

Remark: We can also introduce real canonically con-
jugate coordinates (g, p;) via \/Ez; = q; + ipg, so that
{4z Py} = 0 - The corresponding real Hamiltonian vec-

tor fields X, and X, then satisfy:
Q(Xq,,Xp;,) =65 and
Q(X, qk,) =0; Q(Xp;,Xp;,) =0 (4.17)
and,
g(quzvqu,) :61}',_% g(XP;’XP;f/) :6]'{"];/’
g(Xq;,Xp;,) =0. (4.18)

Thus, the HVFs defined by (g;, p;) provide us with a real
orthonormal basis on the phase space that can be used in
place of the one provided by (z;, Zp).

Let us now consider the one parameter family
(@;(n),m_z(n) = 7;(n)) of phase space functions para-
metrized by conformal time # that have the direct inter-
pretation as the field and its canonically conjugate
momentum at time ;7.6 Let us now find expressions for
the Hamiltonian vector fields of these coordinate functions
on I'. Since

or(n) = ex(m)zg + ec(n)z_g (4.19)
and
ap(n) = a(n)(eL )z + ei(mz_g).  (4.20)
it follows that
X = X, + 2 ()X . (4.21)

and

®Recall that if ¢(x,n) represents scalar/tensor cosmological
perturbations, the power spectrum is given by the 2-point
function, and the bispectrum is related to the 3-point function,
both constructed from @;.

= a*(n)(@ (X + e (X, ). (4.22)

Again, the symplectic inner products between these HVFs,

Q(Xv);(n)’xir;,(r;)) = —0:5; and

QX w) = 0; Xay) =0, (4.23)

o) fﬂkf

simply reflect the Poisson bracket relations (4.11) between
@i (n) and 7 (n).

With these preliminaries out of the way, we can
now use these vector fields to explore the physical
information contained in the Riemannian metric g—the
new geometric structure on I' that is necessary for
passage to the quantum theory. From a geometric
perspective, the role of a Riemannian metric is to define
inner products between vectors, and in particular their
norms. We have a set of natural vector fields, namely
the HVF associated to field and momenta coordinates
evaluated at any instant of time 7. Let us compute
their norms:

9 Xty X)) = 2ex(m)e(n), (4.24)

and
9Kz Xay() = 2a* (n)er(mey(n).  (4.25)
and examine how they evolve as 7 changes. These

expressions have two interesting features.

(1) While @;(n), #;(n) depend explicitly on the
conformal time #, the symplectic inner product
(4.23) between their Hamiltonian vector fields
is n-independent, reflecting the fact that the
dynamical flow that evolves this canonically
conjugate pair preserves the symplectic structure.
However, it does not preserve the complex
structure, nor the metric. Consequently, the norms
of these Hamiltonian vector fields are explicitly
time dependent on general cosmological back-
grounds.

(2) Furthermore, the time dependence is such that the
norm of X, (1) is precisely the 2-point function
calculated i 1n (4 3), while the norm of X, -(n) is given
by the 2-point function (4.4), both up to a factor of
n/2 (that arises for dimensional reasons and con-
ventions):

h _
|Apgl = 59X g0 Xy

hoo_

As a consequence, the origin of the quantum
phenomenon of squeezing can be directly traced
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back to the fact that the Riemannian metric ¢
on I fails to be preserved by the dynamical ﬂow.7
To make these considerations explicit, let us consider
three examples that illustrate key aspects of this
phenomenon.
(1) Minkowski space-time. This is the simplest example.
In this case, the basis functions satisfy

e ikn , k.
ex(n) = NeTh ep(n) = —iy/ze™™, (4.27)
whence (4.24) and (4.25) imply

and
g(Xﬂ‘(ﬂ)’Xﬂ‘("])> =k. (429)

Thus, in this case the norms of the two Hamiltonian
vector fields are time independent, reflecting the fact
that the dynamical flow now preserves the metric
¢ in addition to the symplectic structure Q; there is
no squeezing. Indeed, a necessary and sufficient
condition for the absence of time dependence in
quantum uncertainties is that the dynamical vector
field be a Killing field of the metric g. In Minkowski
space (and more generally in stationary space-times)
it is a Killing vector. But in dynamical cosmological
space-times, it is not. Finally, note that the factors of
k appear in Egs. (4.28) and (4.29) only for dimen-
sional reasons, and the product of the norms
[ Xy, 11Xz || is equal to 1 at all times.

(2) de Sitter space-time. Next, let us consider de Sitter
space-time. In this case we have

1 iHa(n)\ e~ ,
et = (1475 ) G e
R I
ek(n)———a(n) ¢ (4.30)

"There is an alternative description of this geometric origin of
squeezing. Consider the canonical phase space I',,, consisting of
fields (¢(¥X),z(X)) on R3. Using Fourier transforms, it can be
coordinatized by the pairs (¢, ;) satisfying the reality con-
ditions @; = ¢_; and 7; = z_; (since (@(X),n(X)) are real).
There is a 1-parameter family of maps 7, from the covariant
phase space I 10 Tt Z,,(h(1.3)) = (90, ). (0. ))=
(@z(no). @(no)), that serves as a symplectomorphism between
I' and 'y, (see, e.g., [45]). The metric g on the covariant phase
space can be pushed forward by these isomorphisms Z,,  to obtain
a l-parameter family of metrics g (779) on T'y,, and now
squeezing occurs because the norms that the metrics gea, (770)
assign to the fixed Hamiltonian vector fields X, and X change

in time 7.
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Again, it is the Hamiltonian vector fields generated
by @;(17) and ¢p(n) that are of direct physical
interest. Their norms are now given by

- 1 (H? 1
I Xz X)) = 7 (ﬁ + az—(”)> (4.31)
and

g(Xﬂ,;(n)’an-((n)) = kaz(n) (432)

Thus, not only do norms now change in time, but the
effect is rather dramatic in proper time ¢, since
a(n) = e". Let us now examine the evolution of
these norms systematically.

Again, the modes of interest are those that are well
within the Hubble horizon at early times 5, so that
kony = k/a(n) > H. As before, let us suppose that
t=0orn=ny=—(1/H) is an early time instant.
Since a(ny) = 1, modes of interest satisfy k > H. At
time 7, the norms of the corresponding HVFs are
given by,

1
||X¢E('70)||2 %; and ||X”;}(’70)||2 = k, (433)
as in Minkowski space-time.
Let us next consider time 7, at which the mode k
exits the Hubble horizon; so k= Ha(n;) =—(1/n,).
Then,

12H? i3
o IP =37 and X I = -
(4.34)

Since by assumption k > H we see that the norm
of the HVF associated to the field has decreased
while that of the canonically conjugate momentum
has increased, both by a large factor: [|X,, ([ <

||X¢,;(,70)|| and ||X,,;(m)|| > ||X,,;(,70)||. However, the
product of the norms—{| X, (, [/ X, (;,) [|—and thus

the product of quantum uncertainties, has only
increased by a factor of 2.

Finally, let us consider a time 7,, N e-folds after
the mode exits the Hubble horizon, so 1, = e"n,.
Then, for N > 1 we have,

2 3

k
>||2% )HZ :ﬁeZN. (435)

HX(/);(r/z F; ”Xﬂ;(ﬂz 2

Thus, at a late time, the norm [|X,,.(,,) || shrinks only
by a factor of 2 relative to that at horizon crossing,
while that of X, ) has grown exponentially in the
number of e-folds.

Let us summarize the situation for de Sitter space-
time. There is enormous squeezing of the norm of
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the HVF X q,,E(W)—mirrored in the uncertainty in
¢7(n)—between the initial time 7y, when the norm
is essentially the same as in Minkowski space-time,
and the time #, at which the mode exits the Hubble
horizon. Surprisingly, there is very little additional
squeezing after = 5; even if one waits for infinite
proper time, the norm approaches a finite value and
would have been squeezed only by a factor of 2. On
the other hand, for the momentum 7;(») the stretch-
ing of the norm of X,,N)—and hence the uncertainty
in 77(n)—is quite different. While there is signifi-
cant stretching between the initial time 7, and the
horizon crossing time 7, the stretching continues to
grow exponentially with the number of e-folds after
n =mn,. The product of the norms—and hence of
quantum uncertainties—grows unboundedly to the
future.

The situation in the quasi-de Sitter case is very
similar, except that, as we noted in Sec. III B, now

the scale factor has the form a(n) = (—12117)‘“*5”

for some constant I-OI and, at late times the mode
functions have an additional time dependence
through a multiplicative factor of (—#)%~2¢v. At
early times, the norms of the HVFs generated by ¢;
and m; are again essentially the same as in Min-
kowski space-time. However, at late times the
leading order terms in these norms are modified.
The norm |[X,, (, >—and hence the details of the

time dependence of squeezing—change in a manner
that depends on the sign of dy — 2¢y, although the
squeezing is not affected in any major way. The
norm || X, | continues to grow exponentially in

the number of e-folds; only the pre-factor 2 in the
exponent is slightly altered. [Here ¢ and dy are the
slow-roll parameters of Eq. (2.20).]

Radiation filled universe. Let us consider the radi-
ation filled universe which has special features.
From (2.22) we know that the basis functions are
now given by:

1 e—ikq , __L 1 . e—ikn
)=z 4= () G
(4.36)

Using these expressions, we can find the norms of
the Hamiltonian vector fields:

1
a*(n)

X 1> = @* ()

and

<k2 + 4;;%}7)). (4.37)

1 X |I> =

N

Now, in the radiation filled universe, the 4 dimen-
sional scalar curvature vanishes, which means the
radius of curvature is infinite, whence none of the
modes cross the curvature radius.® Hence there is no
natural analog of time 7, in de Sitter space-time.

For the initial time, let us again choose 7, such
that a(ng) = 1, s0ny = (2/a3) and 1y = 1/(a3). We
then obtain,

» | »_ 1[5 dg
Hti,;(r/O)H _% and ”Xﬂ;(qo)” _% k +Z .

(4.38)

The norm [|X,, || is the same as in Minkowski

space-time, while for modes that are of high fre-

quency in the sense k > a3, the norm [ X (o) || 18

well-approximated by that in Minkowski space-
time. Let us now choose a “late time” 7, such that

a(ny)/a(ny) = €. Then, at this late time, the norms
satisfy,

2N

e _ ~
oy = S = e X,

2. (4.39)

o

and

2 4
Xz 1?2 = = (2 + -2 ) m V1%, )
7 (n2) 4€2N ~ mi(no) 11

(4.40)

where the last approximate equality refers to the
high frequency modes with k > a%. Thus, between
the initial and final time, the norm of er;(n) 1s

now squeezed exponentially with the number N of
e-folds between 7y and 7,, while that of X,

stretches exponentially. While in both de Sitter

and the radiation dominated universes there is

significant squeezing, there are two important
differences:

(a) Whereas at late times in de Sitter space-time
1X . [I> = (H?/k*)—which is a k-dependent
nonzero number—it goes to zero, exponentially
in N for any k in the radiation filled universe.
Thus, in contrast to de Sitter space-time, the
longer one waits in a radiation-filled universe,

¥Here, by curvature radius we mean R, = 1/v/R where R is
the space-time scalar curvature. The dynamical equation of mode
functions ¢y (17)—and hence of e, (17)—is governed by R,,. Modes
with kpyyReury > 1 have oscillatory behavior as in Minkowski
space-time, while those with kyp Ry < 1 are ‘frozen’. In de
Sitter space-time R, coincides with the Hubble radius (1/H)
but more generally the two are quite different from each other.
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more peaked the quantum state becomes; there is
no saturation.

(b) The product of norms—and hence the quantum
uncertainties—grows exponentially with the
number of e-foldings in de Sitter, while it rapidly
tends to the Minkowski value in the radiation
filled universe. Note that || X, | grows expo-
nentially with the number of e-foldings in both
cases. However, as we noted above, there is a
striking difference in the squeezing of the norm
”Xfﬂ;('?) I

Squeezing is stronger than inflation in the sense
of (a) above also in dust filled universes, as well as
the 1-parameter family of FLRW space-times,
parametrized by « € [0, 1], that interpolate be-
tween the radiation and dust filled cases (see
Sec. II B). This is because (e, (17)e;(n)) falls off
as e >V for mode functions ey () of (2.24) for any
choice of a. These examples explicitly show that
inflation is not essential for extreme squeezing.
We only need an expanding epoch that lasts for
many e-folds in any of these universes. Interest-
ingly, in the mainstream scenarios the number of e-
folds in the radiation + dust epoch is typically
larger than the (observationally relevant) e-folds
during inflation (see footnote 1).

Let us summarize the main messages of this section.
Squeezing is usually discussed in terms of the time evolution
of 2-point functions <¢£(11)¢,;(11)> and (ﬁ%(n)fz,—;(n)) that
encode quantum uncertainties. We saw that this phenome-
non can be traced back to the classical phase-space: it is
entirely captured in the time evolution of norms of the vector
fields X,/,Z(,n and X’_T;:(ﬂ) on I'. The norms themselves are
calculated using the metric g —the new geometrical structure
on the phase space needed in the passage to quantum theory.
Thus, the origin of the squeezing phenomenon can be
directly traced back to geometrical structures on the phase
space. Since this characterization naturally extends to fields
¢ on all FLRW backgrounds, the phenomenon is not tied to
inflation. The description in terms of the evolution of norms
also served to bring out conceptually important subtleties—
e.g., most of the squeezing occurs before the mode exits the
horizon in de Sitter space-time, and there are interesting
differences between squeezing in de Sitter and radiation or
dust filled space-times.

We will conclude this discussion with a few remarks.

(1) Note that the phenomenon of squeezing is tied to the

choice of canonically conjugate pair of observables:

Given a quantum state and dynamics, one can have

squeezing with respect to one set of such observ-

ables and no squeezing with respect to another.

For example, the canonically conjugate pairs g;

and pp of Eq. (4.18) undergo no squeezing. But

because these observables are (y-dependent) linear
combinations of ¢;(n) and 7;(n), they are difficult

to measure and are not of directly physical interest.
What one measures in the CMB is [Ady ()]
through the power spectrum at the time 7, corre-
sponding to the surface of last scattering. (One does
not directly measure |A7; ()| either).

(2) In ordinary quantum mechanical systems, if |Ap| is
large at an instant 7 of time, then typically this
uncertainty spreads to g soon there after. We saw that
during inflation as well as radiation dominated era,
the uncertainty |A7;(n)| increases exponentially
with the number of e-folds, while the uncertainty
|Adj;(n)] either tends to a constant (de Sitter) or even
decreases exponentially (radiation or dust-filled
universe). So there seems to be an apparent paradox.
To see why there is no contradiction, let us recall our
discussion of the grandfather clock in Sec. I (or
consider any macroscopic system with a large mass
M). In that case, the uncertainty |Ap| in momentum
translates into an uncertainty (|Ap|/M) in velocity
that then descends to the uncertainty |A%| in position
later on. As explicit numbers showed in Sec. I, |A%|
can remain small for a very long time if the mass M
is sufficiently large. Similarly, since a(n) is so large
at late times and ¢’(y) = mp(n)/a*(n), |AQ;| con-
tinues to remain small in the distant future.

(3) Asin Sec. III, we focused our attention on just two
modes, k and —k, also in the discussion of squeez-
ing. However, again the reasoning can be extended
to the full Klein-Gordon field ¢(X,#) and its con-
jugate momentum #(X,#) by restricting oneself to
suitable subset of configuration and momentum
observables (@(f))(n) and (#(g))(n), obtained by
smearing @(X,#n) and #(X,n) with appropriate test
functions f(X) and g(X). If these test functions are
chosen so that their Fourier transforms have support
only on a finite but arbitrarily large band of modes,
then the norms of the Hamiltonian vector fields of
the phase space functions (¢(f))() and (z(g))(n)
exhibit the same squeezing and stretching behavior.
And again this behavior translates directly to quan-
tum uncertainties in |Ag(f)| and |Az(g)|. Finally,
while we used specific vacua in the illustrative
space-times considered, the entire discussion goes
through for any homogeneous isotropic quasi-free
quantum state in any FLRW space-time: Each of
these states arises from a Kéhler structure on I', and
its 2-point function is determined by the correspond-
ing positive definite metric g.

V. APPROXIMATING THE QUANTUM STATE
BY A PHASE SPACE PROBABILITY
DISTRIBUTION FUNCTION

Recall that in postinflationary dynamics, the quantum
state of cosmological perturbations is generally replaced by
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an appropriate mixed classical state—i.e., a distribution
function on the classical phase space. All subsequent
analysis is then classical. Can this procedure be justified
from first principles? Since quantum theory has a much
richer content than classical, does this procedure not throw
out, by fiat, some essential aspect of quantum noncommu-
tativity and quantum dynamics that may be observationally
relevant? In this section we will systematically analyze
this issue.

The analysis becomes most transparent in the Bargmann
representation [38,39] because quantum states are now
represented as (holomorphic) functions on the phase space:
the relation between quantum and classical structures is
brought to the forefront, enabling us to obtain a sharp result
that, to our knowledge, has not been discussed in the
literature. Generally calculations have been carried out in
the configuration representation in which states are func-
tions only of the configuration variables—and sometimes
in the momentum representation, where states are functions
only of momenta—rather than on the full phase space.

Let us consider any FLRW background. Given a
classical observable O constructed from arbitrary sums
of products of the canonically conjugate pairs ¢;(#) and

7 (n), let Oy be the corresponding Weyl-ordered quantum
operator.9 Consider the Fock representation selected by a
basis e, () (that defines a complex structure J compatible
with the symplectic structure €2). The Bargmann represen-
tation naturally associates with the Fock vacuum ¥, a
probability distribution function p, on the phase space I,
using the metric g thereon [defined by J and Q; see
Eq. (2.5)]. We will show that the quantum expectation

value (@W>0 of Oy in the state ¥, exactly equals the
classical expectation value (O), for all O. This seems
surprising at first since the family of these O is so large as
to contain every observable that is generally considered.
Where does the richer information in the quantum theory
then reside? It resides in the expectation values of sums of
products of quantum operators that are not Weyl ordered.

More precisely, any operator O can be brought to its Weyl
ordered form by performing permutations. But because of
the quantum noncommutativity, these permutations gen-
erate additional terms that vanish in the 72 — 0 limit. The
richer information that eludes the classical theory is
succinctly captured in the expectation values of these
additional terms that have to be included for operators
that are not Weyl ordered.

The streamlined procedure provided by the Bargmann
representation and the final result are quite general. In the
particular application to cosmological perturbations, it
provides a clearcut justification for the procedure used in

%Oy is the totally symmetric self-adjoint operator correspond-
ing to the classical observable O. Explicit definition is given
below in Eq. (5.10).

the early universe literature (see also, e.g., [13-16,29] for
other lines of reasoning). We will divide our discussion into
two steps because one encounters certain technical com-
plications in the application to cosmological perturbations.
While these complications are not significant conceptually,
their presence can obscure the underlying ideas. Therefore,
in Sec. V A we will present the crux of the reasoning using a
simple quantum mechanical system and then apply the
ideas to the cosmological setting in Sec. V B.

A. Bargmann representation: Relation between
quantum and classical structures

Let us begin with the simplest context: quantum
mechanics of a particle in 1 spatial dimension. As is common
in textbooks, let us remove the inessential numerical and
dimensional factors and consider operators X and p satisfy-
ing the commutation relations [%, p] = i. Consider the usual
annihilation and creation operators a=(%+ip)/+/2, and
a'=(%—ip)/V2 satisfying [a,a']=1. In the Bargmann
representation [38] the abstract algebra generated by X, p
is represented by concrete operators on a Hilbert space of
functions on the phase space T'. Let us set

| 1 .
{=x+ip, and dug=—e"dy =—edxdp, (5.1)
z n

where dug and dy; are, respectively, the Bargmann and
Liouville measures on the phase space. While the Liouville
volume of phase space is infinite, the Bargmann measure is
normalized: fr dug = 1. In terms of geometric structures
introduced in Sec. II and used in the discussion of squeezing
in Sec. IV, the exponent in the Bargmann measure is just the
norm ¢(,¢) of the complex vector ¢ in ', defined by the
metric g that dictates squeezing.

Quantum states are entire holomorphic functions ¥({)
on I' equipped with the inner product

(@) = / B(0)()dus. (5.2)

Note that while each ¥({) diverges at infinity, the norm is
still finite for any polynomial ¥(¢) = >-N_ W, (" because

of the exponential damping ¢~ in the Bargmann measure.
Also because of this factor, and because @ is antiholo-
morphic in £, we can represent @ and a' as

d¥

and a¥(¢) = ©);

aW(E) = CP(Q) -

(5.3)

these concrete operators satisfy the desired commuta-
tion relations. It follows from the action (5.3) of creation
and annihilation operators that this representation of the
canonical commutation relation is irreducible and hence
unitarily equivalent to the more familiar position (or
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momentum) representation in which quantum states arise as
square-integrable functions only of x (or, p).

Let us note a few features of the Bargmann representa-
tion that will be directly useful in what follows. First, it
follows from the definition (5.3) of the annihilation
operator a that W :=e%¢ is a normalizable eigenstate
of a with the followmg properties:

a¥e, =%y, = V2,

(5.4)

whence (¥ . (% +ip)¥.)

so that ¥, is a coherent state peaked at the phase space

point ¢ = v/2¢,, and,

(A3, = (AP, =» (5.5)
whence the uncertainty in X and p are equally distributed
and the product of these uncertainties is saturated. In
particular, ¥,({) =1 is the coherent state peaked at
x=0, p=20; this is the (normalized) vacuum state.
Finally, note that the monomials:

é‘ n
Vn!

provide an orthonormal basis in the Bargmann Hilbert
space. These correspond to the nth excited states of a
harmonic oscillator, although the Bargmann representation
by itself is only a kinematical construct that does not refer
to any specific Hamiltonian. (We note in passing that the
squeezed states considered in Sec. IV also have a simple

¥, (0) = (5.6)

representation: W({) = ¢’ where 8 is a complex constant
that characterizes squeezing in X and p.)
Of particular interest is the 2-parameter family of Weyl
operators,'’
W(ﬂ, p) = el Tup) = p— 300 p=ad" yad (5.7)
where A, y are real and @ = (u + iA)/+/2. In the Bargmann
representation their action is given by:

W u)¥() = e 2@~ P (¢ + q). (5.8)

'“The Weyl operators are of special interest to Fock quantiza-
tion. It is easy to verify that they satisfy: W (A, u;)W(do, ) =
e\ ir=ht )W () + Jo, uy + p). Therefore, the vector space
generated by linear combinations of the W(A, u) is closed under
products; it is an algebra. This is the Weyl algebra 28 that has the
full information-content of the standard Heisenberg algebra
generated by the canonically conjugate operators. The Fock
representation is completely characterized by the vacuum expect-
ation value (W(4,u)), of Weyl operators; as noted below, all n-
point functions can be obtained by taking derivatives of this
vacuum expectation value with respect to A and u.

To bring out the relation between expectation values of
quantum and classical observables, let us begin by con-
sidering the vacuum expectation values (VEVs) of Weyl
operators:

(WL R), o= (%, 0HPW,) = (9, o'y,

— o %a()<\_Po’ e—&&’(ea&LP0> — o iF ) (5.9)
where, in the last step we used the fact that ¥, is an
eigenstate of ¢® with eigenvalue 1 since the vacuum is
represented by the Bargmann state ¥, () = 1. It is clear
from the very definition of W (4, u) that successive deriv-
atives of (5.9) with respect to 4 and u provide VEVs of
products of X and p. More precisely, it is straightforward to
verify that

1 o o

m+n 81” 8,u (510)

<VAV(/1 )>0\/1:0,,4:0 = <(5C"13m)w>07

where the Weyl order product (2"p™),, is the sum of
all (m + n)!/(m!n!) permutations of the product %" p"—
each of which contains n operators X and m operators p—
divided by the number of terms. (Thus, for example,
(XP)w=3(RDp+pR): (Fp)y =3 (P + X pR+p3?); etc)

Let us now turn to the question of finding a classical
mixed state that is to correspond to the quantum vacuum
¥,. Since ¥,({) =1, the probability distribution p, it
defines on I" (with respect to the Liouville measure dy; ) is
given by

e~ tP)  with / poduy = 1. (5.11)
r

So it is natural to consider p,, as the distribution function on
I" that corresponds to the quantum vacuum ¥,. Next, as we
saw, the family of Weyl operators provides a convenient
tool to compute expectation values of polynomials in the
basic canonical variables. Let us then consider the classical
analogs

W (A, p) = e!Pxtur) (5.12)

of Weyl operators and calculate their expectation values in
the distribution function p,. We have:

:l / 0 mp) =29 dxd
r

(4. 1))o-

Thus, the quantum and classical expectation values of all
Weyl observables are equal. This exact equality is striking,
especially because the quantum vacuum is completely

= =) = (W (5.13)
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determined by the VEVs of the Weyl operators (e.g.,
through the Gel’fand-Naimark-Segal construction [46,47];
see also footnote 10). In particular, we can take repeated
derivatives of (W(4,u)), with respect to 4 and y and
evaluate the result at 4 = 0, ¢ = 0 to obtain the expectation
values of arbitrary polynomials in x and p:

1 o o
Wﬁaﬂ—m<w(ﬂ’ﬂ)>po

A=0u=0 — <('%n(ﬁ)m)>po (514)

Therefore the equality (W(4, 1))y = (W (4, p)) ,, implies:

(R p")wlo = (&"p™),,» (5.15)
for all m, n. Thus the expectation value of an arbitrary
monomial in x and p in the classical state p, is exactly
equal to the expectation value in the quantum state ¥, of
the Weyl ordered version of that monomial in X and p. Put
differently, consider any polynomial F(x, p) in x and p on
the classical phase space. Then there is an explicit factor
ordering procedure that yields a quantum operator F such
that the expectation value of that ¥ in the quantum state ¥,
is the same as the expectation value of F in the classical
state p,. The correspondence F <> F is both unique and
explicit. Again, this equality is striking because of the
underlying universality: it holds for any F(x, p).

Next, recall that ¥, is a coherent state peaked at x = 0,
p = 0. It is therefore natural to ask if the correspondence
Y, < p, in the strong sense of Eq. (5.15) extends to all
coherent states. The answer is in the affirmative. Recall that
in the Bargmann representation a general normalized
coherent state peaked at the phase space point { = x +
ip =/2¢, is represented by the holomorphic function
Y, =e” %olo¢fol on I. Therefore, the same reasoning that
led us to Eq. (5.11) now suggests that we set the
correspondence

‘PC, — e_ %Eugueguc <> pé, — le_(g_C(ﬁ)<E_E(1).
o T

0

(5.16)

Then one can verify that the direct analog of (5.15)

(@D, = (D™, (5.17)
holds, again establishing the emergence of classical behav-
ior for a general coherent state W . It is natural to ask
whether this result can be extended to superpositions of
coherent states. More precisely, let ¥, and ¥, be two
(normalized) coherent states and p,, and p;, the correspond-
ing classical distribution functions. Consider the normalized
superposition ¥ = ¢;¥;, + ¢, ¥, with [c;]* + [cy]* = 1.
Would the equality (5.17) continue to hold if we replace
W: on the left side with ¥ and p, on the right side
with the normalized probability distribution function

p = lc11?p¢, + |ea|?pe,? The answer is in the negative
because the left side in Eq. (5.17) is quadratic in the state,
whence it would now include “cross-terms” which do not
vanish because coherent states are not orthogonal to
each other.

Finally, let us note the generality of all these consid-
erations. Suppose we make a linear canonical transforma-
tion on the phase space to pass to new canonical
coordinates (x’, p’). Then we can define ¢’ via ' = x' +
ip’ and construct the Bargmann representation using ¢’
(which is unitarily equivalent to the original unprimed
representation). We can again associate with the new
quantum vacuum ¥/ a classical distribution function p/,
and show that the primed analog of (5.15) holds. Now, in
the original unprimed representation, the state W/ is
represented by a squeezed state in which it is the uncer-
tainties in " and p’ that are equally distributed (and their
product is again minimized). Thus, the equality of expect-
ation values is not limited to coherent states. Given any
squeezed state W), in the original Bargmann representation,
we can also find a distribution function p!, on the classical
phase space I" such that there is an exact equality between
the expectation values of polynomial classical observables
in the classical state p/, and those of specific quantum lifts
of these observables in the quantum state ¥/,.

This rich interplay between quantum and classical
states is brought to the forefront in a streamlined fashion
in the Bargmann representation because now quantum
states are represented as functions on the full phase space;
one does not break the symmetry between configuration
and momentum variables by going to the x or the p
representation.

Remarks:

(1) For simplicity of presentation we worked with
dimensionless variables x, p, A, u. To restore the
correct physical dimensions, one can introduce a
length scale d and define tilde variables ¥ = xd,

p=nhp/d, 2=d ji=(d/h)u (keeping a= a,
c=2¢, dii;, = dyy, djig = dug). Then the Bargmann
representation and Weyl operators remain un-
changed and we can simply recast the final result

(5.15) in terms of physical canonical variables ¥, p:

(FP"who = (@™, (5.18)
A small subtlety is that, when expressed in
terms of physical variables X, p, the distribution
function on the classical phase space becomes
p, = exp—((%/d)> + (pd/n)?); it knows about 7.
This is inevitable because the VEV on the left side of
(5.18) knows about 7, while the term X" p™ on the
right side does not.

(2) In the cosmology literature, main emphasis has been
on the configuration representation, where quantum
states are square-integrable functions of x. In this
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representation, it is very easy to establish the
correspondence between quantum and classical ex-
pectation values of observables f(x) that depend
only on position; and indeed one can do that for any
normalized quantum state y(x): associate with y(x)
the distribution function p = |y (x)]*e(p), where
o(p) is any normalized positive function of p, to
trivially obtain ((f(%)), = (f(x)),. But in contrast
to the Bargmann representation, that treats x and p
on equal footing, it is cumbersome to treat general
polynomials F(x, p) that depend both on position
and momenta.

(3) For simplicity, in this subsection we did not
explicitly consider time evolution. If the equations
of motion are linear, then the time dependence
in x(7), p(r) naturally lifts to the quantum theory
and provides us with %(7), p(¢). One can work
with time dependent Weyl operators (W(4, 4)(t)) =
!B (0+1p (1) and their classical counterparts. Because
the evolution preserves the symplectic structure, the
entire discussion goes through and we obtain the
equality ((X"(2)p" (1)) w)o = <x”(t)pm(t)>p” forall 7.
This time dependence is included explicitly in the
application of the Bargmann representation to cos-
mology that follows.

B. Application to cosmology

Let us now return to quantum fields (2)(55, 1) on a general
FLRW space-time. We will now show that one can again
construct the Bargmann representation and arrive at the
analog of the exact equality (5.15), thereby establishing
the desired emergence of classical behavior. However, there
are three technical points we have to take into account in
order to repeat the procedure used in the last subsection:

(i) unlike the canonical variables (x, p) of Sec. VA,

now the basic canonically conjugate variables
(@7, 7_;) are complex-valued;

(ii) they are not independent, since ¢;(17) = ¢_;(n) and
az(n) = n_z(n); and,

(iii) the momentum conjugate to ¢; is z_; rather than
mz. While these technicalities make intermediate
expressions more complicated, they do not affect
the conceptual reasoning nor the underlying math-
ematical structure.

Because of point (iii) above, now we are forced to
consider two degrees of freedom—modes k and —k—
whence the phase space of interest will be 4 (real) dimen-
sional. Let us simplify the notation by setting:

1) = ;ﬁ@(n), () = \%ff:(n),
oa() =\/L560_1;(71), () = \/lﬁﬁg(ﬂ) (5.19)

so that [@;(n), #;(n)] = i6;;, where I, J =1, 2, and also
define

a

1 .

so that [a;,a}] = &,;. Next, setting e(17) = e,(i7) we now
have

P1(n)=em)a, +emas  #=a*(n) @ (naj+e'(n)a)
Pr(n)=e(may+ema) w=a*(n)(@ (n)ay+e (n)ay).
(5.21)

Given any complex numbers A, u, the combinations
1 (n) + A@, and fi,(n) + uit,(n) are both self-adjoint
since {0; = (¢, and fr{ = 7,. Therefore, we can now define
the Weyl operators:

WA, 1) (n) = e (0)+4p2(n) i (n)-pits (1)

— ezlal(n>al_al(’7)&‘1y (5.22)
where we have set
ai(n) = i(de(n) +pa*(n)e'(n)) and
ay(n) = i(Ze(n) + pa*(n)e' (n)). (5.23)

Next, as a prelude to the Bargmann representation, let us
introduce the complex coordinates {; on phase space
simply by rescaling, for later convenience, the coordinates
zz introduced in Eq. (2.13):

(l :\/2/h Zz and 62:\/2/h Z_l'(’.

Since there are no relations between z; and z_j, {; are
independent and coordinatize the 4-dimensional phase
space; they are the analogs of (the dimensionless) { =
x + ip used in Sec. VA. (See also the remark on real phase
space coordinates gz, py in Sec. IV B.)

Quantum states in the Bargmann representation are then
phase space functions W({) that are holomorphic in ¢,
endowed with the inner product

(5.24)

(D, W) = / OPdyp = / dWe2libidy . (5.25)

where dy; is again the Liouville measure. The creation and
annihilation operators are represented by

o¥

ajP(¢) =¥ and Q) =520 (5:26)

and the vacuum state ¥, (¢), annihilated by the two a;, is
again given by ¥, ({) = 1. Therefore, in view of (5.22), the
VEV of the Weyl operators is given by
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<VAV(/1’ #) (7]»0 = <1P0, ezl”’1('7)&1_‘7‘1(’7)&1+ \P0>
= o 32 )
X <LP()’ e Zl a/(ﬂ)&; 621 al(’/)&l\lju>

— e > aman) (5.27)
where, in the last step, we have used the fact that e#1%¥,, =
Y, for arbitrary complex numbers f;.

Let us now turn to the classical theory. Considerations
of Sec. VA suggest that the quantum vacuum ¥,

should be matched with the distribution function p, =

I%e_ 2440 on the classical phase space. Therefore,

the classical expectation values of the Weyl functions are
given by

(W(du)(n)),,

1)
_ / i <stn) i ms () L o= 37, it g
JT

eﬁz,ﬁléleﬁzj a8y dug
~—

I
—

i<L>m+ni 2 ay o} /(51)'" 9k du
= V2 = = Vm!n! Vm! V/n! s
— A wa) (5.28)

Il
[]s

3
i
=}

where in the third step we just expanded out the exponen-
tials, and in the last step used the fact that the functions

¢t/ v/n! constitute an orthonormal basis with respect to the
Bargmann measure dug [see Eq. (5.6)].

Thus, we again have the equality between the expect-
ation values of the Weyl operators in the state ¥, and those
of their classical analogs in the state p,:

(W) )y = (WA 1) (n)),, (5.29)

for all complex parameters A, u, and for all times n. By
taking successive derivatives of this equality with respect to
A, A, u, ji we obtain the equality of the VEVs of the Weyl
ordered products of operators ¢;(n) and #;(n) with the
expectation values of their classical counterparts:

(F(orn), 2;m)w)o = (Fl@i(n), 7;(n))), — (5.30)

0

for all polynomial classical observables F(¢;, ;).
This result provides a strong justification for replacing
the quantum state ¥, with the classical state p,. Note, in
particular, that the anticommutator [(;(17), Z (17)] . we used
in Sec. Il is already Weyl ordered, whence its VEV can be
regarded as a classical quantity. This consideration
provided a motivation for regarding the ratio of the VEV
of the commutator with that of the anticommutator as a

measure of “quantumness” of the dynamical phase under
consideration.

We will conclude with a number of remarks clarifying

the implications and limitations of this result.

Remarks:

(1) Let us begin with a mathematical detour. In the
above analysis, for simplicity we restricted ourselves
just to 2 modes k and —k. However, the Bargmann
representation exists rigorously also for the full
quantum field with its infinite number of degrees
of freedom [39] (see also [37,48]). In particular, the
measure dup is rigorously defined, (although it can

be split into a Gaussian pre-factor e~ PIRA and a
Liouville measure dy; only if the number of degrees
of freedom is finite). The vacuum state is again fully
characterized by the VEVs of Weyl operators, and
defines a classical mixed state canonically which,
however, has to be taken to be the Bargmann
measure dug itself; there is neither a distribution
function nor the Liouville measure. Therefore, in
contrast to Secs. III and IV, the classical behavior
emerges in the sense of this section for the full
quantum field; one does not have to restrict oneself
to a finite number of modes.

(2) Let us then consider an arbitrary number of modes

-

1?1, ...k, .... Now, if the phase space function F
contains only the configuration variables ¢y (or only
the momentum variables 77) then the Weyl ordering
trivializes because all operators in the argument of F
commute. Therefore from (5.29) we conclude

((F(or,(n). -z (). --)))o

= ((F(oz,(n). .0z ()....))),,-  (5.31)
(Similarly for a function only of the momentum
variables fr,—(»l, fr; ....) Thus, for any n-point
function that involves only the configuration (or
only the momentum) observables, we have an exact
equality between the classical and the quantum
theory. For these observables, we do not lose any
information at all if we use the phase space dis-
tribution function p, in place of the quantum state
¥Y,. As noted in Sec. VA, mathematically this
equality is rather trivial. However, it is of interest
because currently one measures only these n-point
functions of field operators.

(3) When would this procedure be inadequate? Let us
set aside practical difficulties and assume for a
moment that we would be able to measure arbitrary
n-point functions involving both @; and 7; some-
time in the distant future. If we were interested only
in the Weyl ordered quantum operators, then no
matter how large an n we choose, the quantum
prediction will again agree exactly with the classical.
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So, the difference will be significant only if we were
interested in measuring an n-point function that
involves both the field operators and their conjugate
momenta and we have to perform a large number of
permutations on these operators to bring the result to
the Weyl-ordered form. This is a complete charac-
terization of the limitation of the replacement of ¥,
with p,.

(4) Furthermore, these considerations are not tied to
inflation. Indeed in this section we worked on an
arbitrary FLRW space-time. In fact, the results are
vastly more general. We can consider quantum fields
on any globally hyperbolic space-time. Given a
complex structure J (that is compatible with the
symplectic structure Q) on the covariant phase space
I', we can again construct the Bargmann represen-
tation. Given any foliation of the space-time by
constant-time ¢ = const hypersurfaces, we can in-
troduce configuration and momentum operators
@(f)(r) and 7#(g)(r), smeared with test functions
f(X) and g¢(X), and work with the algebra they
generate. In the Bargmann representation, the vac-
uum (defined by J) is again represented by ¥, = 1
and the Bargmann measure (constructed from the
Riemannian metric g on I' defined by J) again
provides us with a mixed state, now represented as
the Bargmann measure dug on I'. And again one can
show that the VEVs of any Weyl ordered poly-
nomials of @(f) and 7#(g) is exactly equal to the
expectation values of their classical analogs on this
(mixed) state.

(5) Returning to cosmology, our results in Secs. [II-V
are directly applicable to tensor modes, and also to
scalar modes in the inflationary scenario. Therefore
each provides a precise sense in which classical
behavior emerges in the early universe, bringing
out a few subtleties. The generality of the main
results of Sec. V, discussed above, may seem surpris-
ing at first. However, one should bear in mind the key
assumption on which they rest: dynamics of pertur-
bations is assumed to be linear. Therefore in the
structure formation epoch where nonlinearities play a
dominant role, our considerations do not apply
directly, (although they can serve as a starting point
in approaches that incorporate the effect of non-
linearities perturbatively). On the one hand, this is a
clear limitation of our approach. On the other hand, it
shows that nonlinear effects such as mode-mode
coupling and decoherence—although important for
independent reasons—are not essential for the emer-
gence of classical behavior in the early universe.

VI. DISCUSSION

As summarized in Sec. I, the issue of emergence of
classical behavior has drawn a great deal of attention in the

cosmology literature from different perspectives because
of its conceptual as well as practical importance (see, in
particular, [9-33]). In most of the leading scenarios, the
origin of the observed anisotropies in the CMB is traced
back to vacuum fluctuations of quantum fields in the very
early Universe. At the same time, there is a general expect-
ation that the universe can be described using classical terms
even in its early history. Indeed, in detailed treatments, one
replaces the quantum vacuum by a distribution function on
the classical phase space early on—say, at the end of
inflation—and then describes the subsequent evolution
entirely in classical terms. Therefore several questions
naturally arise: Is there something specific about the
dynamics of cosmological perturbations, and/or the quan-
tum state they are in, that naturally leads to the emergence of
classical behavior a little later? Can we sharpen the sense in
which this emergence occurs? Is it tied with inflation or is the
phenomenon much more general? We addressed these issues
in Secs. [II-V. Each of these sections focused on a specific
mechanism that has been used to argue why and how
classical behavior can emerge in the early universe.

Perhaps the most striking feature that distinguishes
quantum mechanics from classical physics is the non-
commutativity of observables. Therefore, if the quantum
evolution of a system admits a phase in which “the
importance of noncommutativity were to diminish,” one
could say that the system behaves classically in that phase.
It has been argued that classicality does emerge in this
sense during inflation (see, e.g., [13,15,16] and references
therein). However, as we discussed in Sec. III (and the
Appendix), the specific reasoning used to arrive at this
conclusion is often flawed. Specifically, the statement that
the commutator between @z (17) and 7y (1) becomes neg-
ligible as a result of inflation is incorrect because, as is well
known, the canonical commutation relations are preserved
by quantum dynamics. Similarly, in the Appendix we show
that the commutator of field operators ((},—g(m) and (}]? (72))
at different times also does not become negligible.
Nonetheless, noncommutativity does fade during inflation
in a certain precise sense: While neither the commutators
nor their VEVs become negligible we showed that, as
inflation unfolds, the VEV of the commutator becomes
negligible relative to the VEV of the anticommutator (both,
for the canonically conjugate operators, and for field
operators at different times). For the canonically conjugate
operators, the ratio of the VEVs of the commutator and the
anticommutator decreases exponentially with the number
of e-folds. For field operators at two different times, we
found that the behavior of the ratio is much more subtle. In
particular, the ratio at a later time #, is suppressed relative
to that at an earlier time #; only if #7; is taken to be a few e-
folds after the mode exits the Hubble horizon.

In Sec. IV we discussed another notion that has been
taken to be a hallmark of the emergence of classical
behavior: the phenomenon associated with quantum
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squeezing (see, e.g., [11-16,29]). Again, most of the
cosmological discussion we are aware of is in the context
of inflation, where at late times the uncertainty in the field
variable @;(17) continues to be squeezed (approaching half
its value in the vacuum state of the field in Minkowski
space-time). The uncertainty in 7#;(n) keeps growing
exponentially in the number of e-folds as time evolves,
but this growth does not contaminate the sharply peaked
nature of the state in the variable ¢;(n) as time passes. We
provided a simple physical explanation for this phenome-
non using intuition from quantum mechanics of macro-
scopic systems (such as a grandfather clock).

More importantly, we traced the phenomenon of squeez-
ing back to the classical evolution on the phase space T'.
This was possible because one can succinctly isolate the
new mathematical structure that is needed in the passage
from the classical to the quantum theory of fields under
consideration: One has to supplement the classically
available symplectic structure Q with a Riemannian metric
g on T (such that the pair (g, Q) equips I with a Kihler
structure [35,37]). While the symplectic inner-product
between canonically conjugate vectors associated with
(fﬂ,z’”/:) is preserved under time-evolution, their metric
inner product is not. As time evolves, the norm of one of
these vectors is squeezed while that of the other is stretched.
And this behavior is faithfully mirrored in the squeezing
and stretching of quantum uncertainties. This classical
characterization of squeezing illuminates some of the finer
aspects of the phenomenon. For example, one finds that
during inflation almost all of the squeezing occurs before

the mode X exits the Hubble horizon; after the exit there is
only a factor of 2 decrease in the norm of the Hamiltonian
vector field even if one waits forever. Furthermore, one
finds that inflation plays no essential role in this discussion.
In the radiation or dust dominated universe, for example,
not only does this classical squeezing occur but is even
more pronounced because the norm of the Hamiltonian
vector field generated by ¢; continues to decrease forever;
in de Sitter, it reaches a nonzero asymptotic limit.

In calculations that bridge the quantum field theory of
cosmological perturbations with observations, one replaces
the quantum state ¥, of the field by a mixed classical state
on the phase space I', and the quantum evolution by the
classical Hamiltonian flow on I'. Off hand, the procedure
may seem ad hoc. But if the answers provided by the full
quantum theory are well approximated, not only would the
procedure be justified but it would also provide a clear-cut
demonstration of the emergence of classical behavior. In
Sec. V we analyzed this issue using the geometrical
structures on I' introduced in Sec. II. These structures
naturally lead one to the Bargmann representation of the
quantum algebra in which states ¥ are represented by
(holomorphic) functions on the phase space I'. Thus, unlike
in most discussions of this issue, quantum states are not
represented by functions just of ¢; or just of x;; the phase

space symmetry between ¢; and z; is not broken, making it
much easier to locate the desired correspondence between
quantum and classical behavior. In particular, the classical
mixed state defined by the quantum vacuum W, is just the
Bargmann measure dug on the infinite dimensional phase
space I'. Furthermore, this correspondence leads to a simple
and remarkably general relation between quantum and
classical n-point functions:

((F(og, (n)s g (), - Big () (1)) w)o
= ((Fog, ), --oop (), oo () oo (1)) )
(6.1)

for any polynomial F and any time #, where the suffix W
stands for “Weyl ordering.” Thus, (essentially) every classical

observable O admits an explicit quantum analog @w whose
VEVexactly equals the expectation value of O in the classical
probability distribution measure dug for all times n. This
equality brings out the precise—and surprisingly strong—
sense in which ¥, and quantum dynamics can be replaced by
P, and classical dynamics. Currently, one observes only the 2-
(and 3-) point functions involving just the field variable
@7(n). For these observables, the Weyl ordering trivializes
since ¢7(n) and @y (17) commute and one recovers the result
that has been obtained by other methods [13-16,29].

Thus the three sections explored three different senses in
which classical behavior can emerge in the early universe.
All three are realized in inflationary scenarios. Since most
discussions of the issue of emergence of classicality have
been in the context of inflation, there appears to be a general
impression that these are different facets of the same
underlying notion. However, we saw that this is not the
case: Emergence in one sense does not imply emergence in
another. In the radiation or dust filled universes—or those that
interpolate between the two in the sense of Sec. Il B—
classicality does emerge in the sense of Secs. IV and V but
not in the sense of Sec. III or the Appendix. Similarly, there
are systems (such as the grandfather clock) which clearly
behave classically in the intuitive physical sense but in
which only the criterion of Sec. V is met. We also saw that at
a conceptual level inflation is not essential for semiclassi-
cality to arise in the early universe in the sense of Secs. [V
and V. However, because there is a large number of e-folds in
avery small interval of proper time, squeezing, for example,
occurs extremely fast in proper time during inflation.

Finally, the last notion of classical behavior discussed in
Sec. V is very general. In particular, one does not have to
restrict oneself to a finite number of modes, the Bargmann
representation exists rigorously for the full field with its
infinite number of degrees of freedom [39,48] and the
correspondence (6.1) between the quantum vacuum and the
classical mixed state holds for all quasi-free vacua (as well
as for all coherent states in the Fock spaces defined by these
states). To our knowledge, this exact correspondence has

023512-21



ASHTEKAR, CORICHI, and KESAVAN

PHYS. REV. D 102, 023512 (2020)

. . . . 11
not been discussed in the early universe literature.  In

particular, as far as we are aware of, in the Wigner function
approach to the relation between quantum and classical
predictions all discussions are restricted to finite dimen-
sional phase spaces since the underlying Liouville measure
dy; does not admit an extension to infinite dimensions.
Therefore, in the cosmological context, discussions based
on the Wigner functions are restricted to a finite number of
modes. (In the literature, one often considers just two,

labeled by k and —I:). By contrast in our approach, as we
just saw, the classical (mixed) state corresponding to any
quasi-free vacuum is the Bargrmann measure dug—on the
infinite dimensional phase space. It is only if one restricts
oneself to a finite number of modes that the measure can be
split as dug = p,dp;, and one can represent the classical
state as a distribution function p, as in the Wigner
approach. Another important aspect of generality is that
the discussion is not tied to the cosmological setting but can
be extended to quantum fields on any globally hyperbolic
space-time, so long as they satisfy a linear field equation.

Our goal was to analyze conceptual issues related to
emergence of classicality in the early universe from the
perspective of mathematical physics. Therefore we focused
on the simplest context in which these questions can be
answered and details of why and how classical behavior
emerges can be worked out. This is why we emphasized
“emergence” rather than “quantum to classical transition,”
and also why we stayed away from nonlinearities in
dynamics, the issue of mode-couplings, environment degrees
of freedom and decoherence, the quantum discord and the
quantum measurement theory. These issues are clearly
important and have to be addressed in more complete
descriptions. But, as many in the community have argued,
the issues of interest here can be addressed without having to
include these additional considerations. Our discussion
brought out the precise sense in which classical behavior
emerges in the early universe already in the simplest
context—that of the quantum theory of linear cosmological
perturbations.'*

”See, for example, Ref. [29] in the cosmological literature
where it is shown that the equality between quantum and classical
expectation values holds, but only “as far as two-point correlators
are concerned” (discussion between Eq. (104) and the end of
Sec. V in the version arXiv:1510.04038v7). But after our pre-
print appeared in the arXiv, Lajos Didsi informed us that the
analog of (6.1) does appear in (Eq. (17) of) Ref. [49]. However,
since that article is on weak measurements in nonrelativistic
quantum mechanics, it does not discuss quantum field theoretic
issues associated with an infinite number of degrees of freedom,
cosmological perturbations, and the Bargmann representation.

If we were to use an analogy with the physics of the
hydrogen atom, our focus would be analogous to calculating
the energy levels, degeneracies, and understanding the origin of
degeneracies in spectral lines, rather than on how the hydrogen
atom makes a transition from one level to another, the mechanism
by which a photon is emitted, and whether the wave function
collapses during this measurement process.
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APPENDIX: FADING OF NONCOMMUTATIVITY
BETWEEN ¢:(11;) AND ¢ (11,)

Since the field operators (;5;(77) and (},;« (n) at the same
time # commute, we need to consider the commutator and
the anticommutator between field operators evaluated at
two different times #; and 7,. Now, it is often said that “for
modes which presently appear on large cosmological
scales, the ratio of growing mode to the decaying
mode is o 1079 and consequently, “one also has
[&5;(;11),&5/?(;72)] ~(0” (using our notation for field oper-
ators). As a result, “if a measurement puts the system
into an eigenstate of éﬁ;(m), all future measurements

would give the corresponding eigenstates of g?ﬁ%(nz) for
n, > n;, corresponding to the classical evolution of
the system” (see, e.g., [16]). In this Appendix we
sharpen the sense in which these considerations hold.
As in Sec. III, in the main discussion we will use ratios
of the expectation values of commutators and anticom-
mutators, and then comment on the commutators
themselves.

Let us first calculate the vacuum expectation value of the
product (25];(111 )&5,—{»(;72), where 7, is to the future of 7;. Using
the explicit form (3.1) of field operators and (3.3) of basis
functions, we obtain:

(Br(n)dp (n2)) = hey(m)ew(n2)d; oo (A1)
Therefore the absolute value of the ratio of the expectation
value of the commutator to that of the anticommutator is of

interest only if k = —k and is then given by
Sme(111)ec (1)
R 5 =l A2
Risurtn) | Fecsim| 42

Using the expression (3.3) of e, () in de Sitter space-time,
one obtains

ex(m)ex(m) = (ﬁ-ﬁ- z%) (@— z%) @.
(A3)

Since the significance of noncommutativity is expected to
fade after the mode exits the Hubble horizon, let us
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. Ny is the number of e-folds between the horizon crossing time #, of the mode and 7, while

N is the number of e-folds between 7, and #,. Left panel: 7, is chosen to be the horizon exit time for the mode, so Ny = 0, while N
varies. The asymptotic value (N — o) of the ratio is approached rapidly. Already at N = 2, the ratio differs from its asymptotic value by
only 8.56 x 10™* or by 0.4%. Middle panel: #; is now chosen to be 2 e-folds to the future of #;, so Ny = 2 and N is again allowed to
vary. Now the asymptotic value is reached even more rapidly. For N = 2, now the difference from the asymptotic value is reduced to
0.25%. Right panel: Now N is kept fixed and N, varies. The plots for N = 8 and N = oo are indistinguishable at this resolution.

introduce three instants of conformal time: 7, = —1/k, the
mode exit time; and 7, 775, such that 7, is to the future of 1,
which is to the future of #;. Let us suppose there are N e-
folds between #;, and #; and N e-folds between #, and 7,,
so that

(1 + e=2No=N) sin[e=No(1

and aln) _ N,

a(n) (A4)

Then, using (A3) and the fact that a(n;) = 4, one obtains:

—e™)] -

e No(1 —e™)cos[e™Mo(1 —e™V)]

IR ) o) =

(Note that if N =0, i.e., 7; = 15, the ratio vanishes as it
must since the field operators commute in this case.)
Equation (A5) has three interesting implications:

(@)

(i)

We are interested in the case in which 7, is
sufficiently to the future of 5, so that e™ < 1.

The limiting behavior of the ratio is given by
) sin e™No — ¢™No cos eNo
lim |R; =

N—oo

No

(A6)

;(m)«/tz(n:)' cose ™Mo 4+ e Nogine™

Because of the ¢Mo factors, this limit is reached
extremely rapidly. For Ny =0, i.e., when #; is
chosen to coincide with the horizon exit time for
the mode, the ratio differs from its asymptotic value
N — oo just by 0.4% already when 75, is just 2 e-
folds after ;. (See the left panel of Fig. 1.) For
Ny =2, i.e., if n; is chosen to be 2 e-folds after
horizon crossing, then the approach to the asymp-
totic value N — oo is even faster. The difference is
only 0.25%, again if 7, is chosen to be 2 e-folds after
7. (See the middle panel of Fig. 1.)

However, Eq. (A6) also brings out a striking feature
of dynamics: If Ny = 0, i.e., 1; is chosen to be the
horizon crossing time 7, for the mode, then the ratio

(1 + e 2No=N) cos[e™o(1 — e™™)] + e (1 — e7™N) sin[e™Mo (1 — e7V)]”

(AS)

(iif)
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(and hence the commutator) does not vanish no
matter how long we wait:

sinl —cos 1

lim |R; ~0.218.

S (R 05 )] (A7)

~sinl 4cos 1

Thus, the commutator of the field operator at time 7,
and at any later time 77, remains O(1), no matter how
many e-folds N one waits. From a general con-
ceptual viewpoint, this limit is interesting because it
makes no reference to the mode, or indeed to H, i.e.,
the value of the cosmological constant of the
(Poincaré patch of the) de Sitter background. For
any mode k, the value of the ratio between the time
(n = —(1/k)) that mode exits the Hubble horizon
and asymptotic future (7 = 0) is a fixed number
given by the right side of (A7). This number is thus
an interesting invariant of the quantum field theory
under consideration.

Now, if we set Ny = 2, i.e., if #; is taken to be just 2
e-folds after the mode exits the Hubble horizon,
we find

: N . ~ —4
Jim Ry 6 | %817 x 10 (A8)
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and this number further decreases very rapidly as N,
increases, i.e., if we choose 7, to be a few more e-
folds after the horizon crossing time #,. Again, the
asymptotic value is reached very quickly for any
choice of N (i.e., for any #; to the future of ;). The
right panel of Fig. 1 shows that the value of the ratio
for N =8 is already essentially indistinguishable
from the asymptotic value N = oo for any N|,.

Let us summarize. The vacuum expectation value of the
commutator of the field operator at two different times can
be obtained from the imaginary part of Eq. (A3),

(lPz(m). d_z(m2)]) = 2ih Sm(ep(ni)er(n2)),  (A9)
for any #;, #,. However, since this quantity is dimensionful,
a priori we cannot say if it is small or large. If one works

with the ratio |R&$;(m)«7)_;<nz)| we obtain a dimensionless

quantity and we can therefore ask if it is negligible
compared to 1. It is, provided we choose 7, to be a few
e-folds (as few as 2) after the horizon exit time, and 7, to be
say 8 or more e-folds after #;. Thus, even with ratios, the
sense in which the importance of noncommutativity
between unequal time field operators diminishes is more
subtle than that for the equal time canonically conjugate
operators discussed in Sec. IIT A.

Remarks:

(1) Let us return to the commutator itself. The expres-
sion (2.25) of the field operator implies that the
commutator is given by the imaginary part of
Eq. (A3),

[‘2’;;(’71),&’_1;(’72)] = 2ihSm(ex(n)e, ()L (A10)

for any #,, 1,. Since the right side is a multiple of
identity, its expectation value independent of the
state, and since -unlike in the canonical commuta-
tion relations considered in Sec. III—it is time
dependent, we can analyze whether it fades in time
by comparing its values for different pairs of times.

A natural strategy is to fix 77, and #, (which is to the
future of #,) and ask if the dimensionless ratio

(Al1)

goes to zero as we move 7, to the future of #, for any
given k.

Since the general expectation is that the commu-
tator would become negligible if 7, is chosen to be in
the future of the horizon crossing time, let us set

2

1 = 1 (so Ny = 0), and 7, to be in the asymptotic
future (so N — o), then

2ihSm (e, (i) ()i
2 2

H
— i(sin1 —cosl)ﬁhz0.30i? (A12)

which is nonzero, whence the dimensionless ratio
(A11) does not go to zero irrespective of how we

choose 1. In fact if we were to choose 7, to be a few

e-folds N after 17, such that e™ < 1, then the ratio
(A11) is approximately 1. Thus although, in contrast
to the canonical commutation relations we examined
in Sec. III, the unequal time commutators are time
dependent, we do not see a precise sense in which
noncommutativity fades as inflation proceeds.

By contrast, the strategy of using ratios of expect-
ation values of commutators and anticommutators
does provide a sense in which the significance of
noncommutativity fades during inflation. The sense
is direct for canonical commutation relations of
Sec. III and more subtle for unequal time commu-
tators discussed above. However, as we remarked at
the end of Sec. III, examination of this strategy in
more general contexts beyond inflation shows that
this is not a robust signal of emergence of classical
behavior. Consider for definiteness a radiation-filled
FLRW universe. In this case, as we noted in Sec. II,
one can exploit the fact that the scalar curvature
vanishes and introduce a natural vacuum state.
Equation (A2) implies that the ratio of expectation
values in this vacuum is given by

sink(17, — 1)
cos(17 — 1)

IRt xtm)| = . (A13)

for any 7, and #7,. Thus, if we keep #, fixed and
increase #,, the ratio simply oscillates between 0 and
oo (exactly as in Minkowski space-time). On the
other hand, as discussed in Sec. I'V that in this case,
expectation values of the canonically conjugate
operators do exhibit squeezing behavior—the un-
certainty in the field ¢;(17) decreases and that in
77 (n7) decreases as the universe expands. So classical
behavior does emerge in the sense that the state
remains sharply peaked on the field variable as time
evolves, even though the noncommutativity does
not fade.
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