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Within cosmological perturbation theory, the cosmic microwave background anisotropies are usually
computed from a Boltzmann hierarchy coupled to the perturbed Einstein equations. In this setup, one set of
multipoles describes the temperature anisotropies, while two other sets, of electric and magnetic types,
describe the polarization anisotropies. In order to reduce the number of multipoles types needed for
polarization, and thus to speed up the numerical resolution, an optimal hierarchy has been proposed in the
literature for Einstein-Boltzmann codes. However, it has been recently shown that the separability between
directional and orbital eigenfunctions employed in the optimal hierarchy is not correct in the presence of
spatial curvature. We investigate how the assumption of separability affects the optimal hierarchy and show
that it introduces relative errors of orderΩK with respect to the full hierarchy. Despite that, we show that the
optimal hierarchy still gives extremely good results for temperature and polarization angular spectra, with
relative errors that are much smaller than cosmic variance even for curvatures as large as jΩK j ¼ 0.1. Still,
we find that the polarization angular spectra from tensor perturbations are significantly altered when using
the optimal hierarchy, leading to errors that are typically of order 50jΩK j% on that component.
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I. INTRODUCTION

The radiative transfer of the cosmic microwave back-
ground (CMB) is based on the numerical resolution of a
hierarchy of equations coupling CMB multipoles, together
with Einstein equations for the dynamics of linear metric
perturbations. As the CMB is polarized, we have in general
a triple hierarchy, with temperature multipoles (related to
intensity I), and electric and magnetic type multipoles for
linear polarization (related to Q and U Stokes parameters).
In principle, a fourth hierarchy must be added for circular
polarization V, but at linear order in perturbation theory it is
not generated by Compton collisions. Hence, we have in
general as many hierarchies as Stokes parameters, which
are a total of three coupled hierarchies. An optimal
hierarchy valid for flat Friedmann-Lemaître (FL) cosmol-
ogies and with only one set of variables for linear
polarization was introduced in [1] and developed further
in [2–5]. It was extended to curved FL cosmologies in [6]
(TL13 hereafter), leading to a method that was numerically
implemented in CLASS

1 [7,8]. The full (i.e., nonoptimal)
triple hierarchy was developed for the flat case in [9] and

for the curved case in [10] and we name it the total angular
momentum (TAM) hierarchy. Finally, the 1þ 3 covariant
approach of [11–17], which is implemented in CAMB

[18,19], can be mapped to the standard cosmological
perturbation theory [20,21]. It was found to be equivalent
to the TAM approach written in the (matter comoving)
synchronous gauge.
Following [9,10], we summarize in the next section how

the triple hierarchy is obtained by expanding temperature
and polarization anisotropies into a complete set of normal
modes, valid for any spatial curvature. We then detail in
Sec. III the key steps needed to reduce it to an optimal
double hierarchy, following TL13. Such reduction is based
on a factorization of normal modes into a common orbital
function (a plane wave) and a local angular dependence
depending on the normal mode considered. However, it has
been recently shown in [22] (PP19 hereafter) that for
curved cosmologies, and contrary to what is stated in
[10], this factorization is not valid. As the optimal hierarchy
derivation relies crucially on this factorization, its imple-
mentation in the presence of spatial curvature, as described
in TL13, is compromised. Since there are hints of mild
positive curvature from CMB data [23,24], it becomes
crucial to estimate the errors introduced by the optimal
hierarchy in the curved space cases, and this is performed in
Sec. IV. We discuss why in most cases the error is very
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small. We describe the modifications implemented in
CLASS, allowing the user to choose either the TAM or
the optimal hierarchies when computing angular power
spectra. These modifications will be publicly available in a
forthcoming CLASS release.

II. TOTAL ANGULAR MOMENTUM HIERARCHY

A. Normal modes

Temperature anisotropies depend only the observer’s
position in spacetime, that is, on the conformal time η and
the position in space x, and on the direction of propagation
of the photon n, which is opposite to the direction of
observation. Polarization, which is described by the com-
binations Q� iU of Stokes parameters, has the same
spacetime dependence.
Temperature and polarization anisotropies are then

decomposed along a complete set of normal modes
sMm

j ðx; n; qÞ (with the dependence on the mode q, the
position x, and the direction of propagation n often not
written explicitly2), which are projections of tensor valued
harmonics, as

Θ ¼
X
jm

Z
d3q
ð2πÞ3Θ

m
j ðq; ηÞ0Mm

j ðx; n; qÞ ð1Þ

and

Q� iU ¼
X
jm

Z
d3q
ð2πÞ3

× ½Em
j ðq; ηÞ � iBm

j ðq; ηÞ��2M
m
j ðx;n; qÞ: ð2Þ

Here m ∈ ½−2; 2� is the mode index, standing, respectively,
for scalars (m ¼ 0), vectors (jmj ¼ 1), and tensors
(jmj ¼ 2), while j ≥ 0 is the multipole index. The normal
modes depend on curvature K of spatial sections3 and are
expressed in terms of radial functions and spin-weighted
spherical harmonics. A comprehensive set of their proper-
ties is collected in PP19.

B. Hierarchy

The evolution of anisotropies is governed by the
Boltzmann equation

ð∂η þ n · ∇þ τ0ÞΘ ¼ CΘ þ G; ð3aÞ

ð∂η þ n · ∇þ τ0ÞðQ� iUÞ ¼ CQ�iU; ð3bÞ

where τ0 is the Compton scattering rate. The function G
accounts for the gravitational effects due to metric pertur-
bations, and it is decomposed on normal modes similarly
to (1), hence defining the multipoles Gm

j . The only non-
vanishing gravitational sources satisfy j ≤ 2 (with jmj ≤ j)
and can be found in, e.g., [6,10,22].
The collision terms CΘ and CQ�iU are also expanded on

normal modes, similarly to (1) and (2), hence defining the
multipoles ΘCmj ,

ECmj , and BCmj . The only nonvanishing
contributions are also restricted to j ≤ 2 and can be found
in [10].
Using

−n · ∇ðsMm
j Þ ¼

iqms
jðjþ 1Þ sM

m
j

þ 1

2jþ 1
½−sκ

m
j sMm

j−1 þ sκ
m
jþ1sM

m
jþ1�; ð4Þ

with coupling coefficients

sκ
m
j ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2 −m2Þðj2 − s2Þ

j2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − Kj2

q
; ð5Þ

we obtain immediately the TAM hierarchy [10]

∂ηΘm
j ¼ Gm

j þ ΘCmj − τ0Θm
j

þ
�

0κ
m
j

2j − 1
Θm

j−1 −
0κ

m
jþ1

2jþ 3
Θm

jþ1

�
;

∂ηEm
j ¼ ECmj − τ0Em

j

þ
�

2κ
m
j

2j − 1
Em
j−1 −

2κ
m
jþ1

2jþ 3
Em
jþ1 −

2mq
jðjþ 1ÞB

m
j

�
;

∂ηBm
j ¼ BCmj − τ0Bm

j

þ
�

2κ
m
j

2j − 1
Bm
j−1 −

2κ
m
jþ1

2jþ 3
Bm
jþ1 þ

2mq
jðjþ 1ÞE

m
j

�
:

ð6Þ

ABoltzmann code must solve this set of equations, along
with the evolution of metric perturbations (in a given
gauge) which enter the gravitational sources, for various
values of the mode magnitude q. The temperature and
polarization angular spectra are then obtained from con-
volutions with the initial perturbations power spectra and
take simple forms for statistically isotropic initial condi-
tions; see, e.g., Sec. 2 E of [10] or Sec. 3.4 of [25]. In these
equations,m ∈ ½−j; j� can be positive or negative, but since
hierarchies with the same j and opposite m return identical
results, calculations can be performed for m ≥ 0 only.

2Our normal modes sMm
j correspond to the ones of TL13, the

sḠðjmÞ of PP19, and the sGm
j of [9,10]. The mode vector q

corresponds to ν
ffiffiffiffiffiffiffijKjp

in PP19, and its norm q is related to the k
(used to define tensor harmonics) by q2 ¼ k2 þ ð1þ jmjÞK.

3Recall that jKj ¼ l−2
c , where lc is the curvature length of

spatial sections.
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C. Integral solutions

Since the Boltzmann hierarchy is infinite in j, we must in
practice truncate at a jmax sensibly larger than the maximum
j we are interested in, so as to avoid errors introduced by
the truncation. It is in practice much faster to solve only for
a limited number of multipoles, that is to truncate at a low
jmax, and to reformulate the solutions of the Boltzmann
hierarchy as an integral on sources involving these lowest
multipoles. This line-of-sight method was first introduced
in [9,26]. It is indeed found that the solutions of the
hierarchy (6) are

Θm
j ðq; η0Þ
2jþ 1

¼
Z

η0

0

dηe−τ
X

j0¼m;…;2
0ϵ

ðj0mÞ
j ðχ; qÞ

× ½ΘCmj0 ðq; ηÞ þ Gm
j0 ðq; ηÞ�;

Em
j ðq; η0Þ
2jþ 1

¼
Z

η0

0

dηe−τ2ϵ
ð2;mÞ
j ðχ;qÞECm2 ðq; ηÞ;

Bm
j ðq; η0Þ
2jþ 1

¼
Z

η0

0

dηe−τ2β
ð2;mÞ
j ðχ; qÞECm2 ðq; ηÞ; ð7Þ

where χ ¼ η0 − η is the radial distance. The optical depth
is τ [such that dτ=dη ¼ −τ0 and with τðη0Þ ¼ 0] and

sϵ
ðjmÞ
l ðχ; qÞ and sβ

ðjmÞ
l ðχ; qÞ are the electric and magnetic

type radial functions (reported in Sec. 4 of PP19), initially
introduced in [10,27,28] for curved spaces.4 These results
follow from the structure of the Boltzmann equation (3),
once written in an integral form (e.g., for temperature,
d=dτðe−τΘÞ ¼ e−τ½CΘ þ G�), and using the Rayleigh expan-
sion [e.g., Eq. (7.39) of PP19] to express the normal modes
of gravitational and collisional sources in terms of the
normal modes evaluated at the observer (that is at χ ¼ 0);
see Sec. 7. 4 of PP19 for more details.
Finally, the unlensed angular spectra CX

l for X ∈
½TT; TE; EE; BB� are given by the integral over q of
products of Θm

j ðq; η0Þ, Em
j ðq; η0Þ, Bm

j ðq; η0Þ multiplied
by the primordial power spectra.

D. Hierarchy truncation

The radial functions involved in the integral solutions (7)
have a variety of recursive properties. In particular, setting
s ¼ l in Eq. (D. 5) of PP19 and promoting the changes
s ↔ m and j ↔ l by means of Eqs. (3.26) and (3.27) of
the same reference, we can show that (see also Sec. 5. 4. 5
of [29])

�
d
dχ

þ ðlþ 1þmÞcotKðχÞ
�

sα
ðj¼m;�mÞ
l

− sκ
m
l

ðl −mÞ sα
ðj¼m;�mÞ
l−1 � i

sν
l sα

ðj¼m;�mÞ
l ¼ 0; ð8Þ

where �sα
ðj;mÞ
l ¼ sϵ

ðj;mÞ
l � isβ

ðj;mÞ
l and cotKðχÞ correspond

to either
ffiffiffiffiffiffiffijKjp

cothðχ ffiffiffiffiffiffiffijKjp Þ, ffiffiffiffi
K

p
cotðχ ffiffiffiffi

K
p Þ, or 1=χ when

K is smaller than, greater than, or equal to zero, respec-
tively. One can deduce from (7) and (8) that
(1) if nonvanishing sources are located only very deep in

the past (at distances such that χ ¼ η0 − η ≃ η0),
(2) if we can ignore sources with j > jmj (which is in

general not the case),
then the temperature multipoles satisfy

∂ηΘm
j ≃ −ðjþ 1þmÞcotKðηÞΘm

j

þ 0κ
m
j

ðj −mÞ
2jþ 1

2j − 1
Θm

j−1: ð9Þ

Similarly, and using the fact that sα
ðj;mÞ
l ¼ mα

ðj;sÞ
l in (8), we

find under the same first assumption (but relaxing the
second one) that the polarization multipoles satisfy

∂ηEm
j ≃ −ðjþ 3ÞcotKðηÞEm

j

þ 2κ
m
j

ðj − 2Þ
2jþ 1

2j − 1
Em
j−1 þ

mq
j

Bm
j ; ð10Þ

with Bm
j satisfying the same approximate relation with

replacements Em
j → Bm

j and Bm
j → −Em

j .
Equations (9) and (10) are only approximate, but they

can be used in practice to truncate the hierarchy at a jmax, so
as to minimize spectrum reflection that a direct truncation
of (6) would induce.

III. OPTIMAL HIERARCHY

It has been conjectured in [10] and assumed in [6] that
the normal modes can be separated into the product of a
local angular structure and some eigenmode functions Δ
normalized to jΔj ¼ 1,

sMm
j ¼ ð−iÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2jþ 1

s
sYm

j ðnÞΔðx; qÞ: ð11Þ

In reality, this property is lost in the presence of spatial
curvature, as detailed in Sec. 6. 7 of PP19. In the flat case,
where the function Δ ¼ expðiq · xÞ consists of ordinary
plane waves, a series of simplifications leads to the optimal
hierarchy, which we now review.
First, for temperature, one can expand the nonscalar

perturbations (m ≠ 0) using the same normal modes as for
scalar perturbations (m ¼ 0). Then, instead of using the
Θm

j , one can use a new set of multipoles Fm
j defined by

4
0ϵ

ðjmÞ
l corresponds to ϕðjmÞ

l in [6,10], and 2ϵ
ð2;mÞ
l ; 2β

ð2;mÞ
l to

ϵðmÞ
l ; βðmÞ

l . Note also that sα
ðjmÞ
l , sϵ

ðjmÞ
l , and sβ

ðjmÞ
l correspond to

sᾱ
ðjmÞ
l , sϵ̄

ðjmÞ
l , and sβ̄

ðjmÞ
l of PP19.
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X
j

Θm
j 0M

m
j ∝ Ym

m

X
j

ð2jþ 1ÞFm
j 0M

0
j : ð12Þ

Note that the factor (2jþ 1) and the global prefactor (not
shown here) are pure conventions in the definition of Fm

j ,
and that the new multipoles are defined for j ≥ 0 (unlike
Θm

j which is defined for j ≥ jmj). If the factorization of
Eq. (11) holds, this relation is unchanged when replacing

0M
m
j → 0Y

m
j . Then, using the orthogonality relation of

spherical harmonics, one finds that Θm
j can be deduced

from Fm
j using Gaunt integrals (angular integrals over three

spin-weighted spherical harmonics). These relations are
collected in Appendix B of TL13. For scalar modes, since
Y0
0 ¼ 1=

ffiffiffiffiffiffi
4π

p
, the Gaunt integral becomes trivial, such that

the multipoles F0
j and Θ0

j are just related by numerical
factors. We see that for temperature, switching to the
optimal hierarchy amounts in expanding along the basis
of angular functions Ym

mY0
j instead of Ym

j . This explains
why the source terms remain compact: given the contrac-
tion rules of spherical harmonics, the source terms in the
two hierarchies are simply related through Clebsh-Gordan
coefficients. For instance, for the gravitational source terms
Gm
j , restricted to jmj ≤ j ≤ 2, we immediately see that Gm

m

sources Fm
0 (since they are both factors of Ym

m ∝ Ym
mY0

0), that
G0
j sources F

0
j (both factors of Y0

j ∝ Y0
0Y

0
j ), and finally that

G�1
2 sources F�1

1 (since Y�1
2 ∝ Y�1

1 Y0
1). The source coming

from Thomson scattering also remains simple because the
baryon velocity has a dipolar structure, j ¼ 1, that can only
source F�1

0 and F0
1 (following the same reasoning as

for Gm
1 ).

Second, for polarization, the problem can be simplified
by use of symmetries. The Stoke parameter combinations
Qþ iU and Q − iU both start from vanishing initial
conditions and grow according to the Boltzmann equa-
tions (3), which differ only at the level of the collision terms
CQþiU and CQ−iU. However, the Thomson scattering cross
section has a quadrupolar structure giving

CQ�iU ¼ −
ffiffiffi
6

p
τ0

X2
m¼−2

Z
d3q
ð2πÞ3 P

ðmÞ
�2M

m
2 ; ð13Þ

with PðmÞðq; ηÞ≡ ðΘm
2 −

ffiffiffi
6

p
Em
2 Þ=10. In general, these

source terms give no useful relation between Qþ iU
and Q − iU. However, if the factorization property (11)
holds, CQ�iU can be written as

CQ�iU ∝
X2
m¼−2

�Z
d3q
ð2πÞ3 P

ðmÞΔ
�
�2Y

m
2 ; ð14Þ

where the bracketed integral only depends on ðx; ηÞ and is
the same for Qþ iU and Q − iU. Thus, each mode m
sources identical contributions to Qþ iU and Q − iU up to

a ratio −2Y
m
2 =þ2Y

m
2
that only depends on the direction n.

By taking the sum and the difference of Eq. (3), one reaches
similar conclusions for Q and iU: each mode m sources
identical contributions to the Stokes parameters up to a factor

iU
Q

¼ 2Y
m
2 − −2Ym

2

2Y
m
2 þ −2Ym

2

: ð15Þ

Note that (15) also holds for scalar modes, for which

2Y
0
j ¼ −2Y

0
j and U are not sourced. When computing

CMB spectra, we consider statistically independent initial
conditions for each mode m, and thus solve the Boltzmann
equations for one modem at a time. Thus, we can solve only
for Q and assume that iU is given by Eq. (15).
In general, the sum of the two equations (2) shows thatQ

is related to polarization electric and magnetic multipoles as

Q ¼ 1

2

X
jm

Z
d3q
ð2πÞ3 ðE

m
j E

m
j þ iBm

j B
m
j Þ; ð16Þ

where we have defined the E and B type normal modes

Em
j ≡ ð2Mm

j þ −2M
m
j Þ; ð17Þ

Bm
j ≡ ð2Mm

j − −2M
m
j Þ: ð18Þ

In the optimal scheme, Q can instead be expanded in a
single hierarchy of multipoles Gm

j that involves the same
normal modes 0M

0
j as the temperature expansion,

X
j

Em
j E

m
j þ iBm

j B
m
j ∝ Ẽm

X
j

ð2jþ 1ÞGm
j 0M

0
j ; ð19Þ

where ẼmðnÞ is chosen to simplify the Boltzmann hierarchy
as much as possible. Again, if the factorization property
(11) holds, this relation can be written with �2M

m
j → �2Y

m
j ,

and if Ẽm is a spherical harmonic, we can find the relation
between Gm

j and ðEm
j ; B

m
j Þ using Gaunt integrals, as

detailed in Appendix B of TL13. According to Eq. (13),
CQðnÞ ∝ Em

2 ðnÞ. Thus, for m ≠ 0, choosing Ẽm ∝ Em
2 leads

to a simple Boltzmann hierarchy. Indeed, in the right-hand
side of Eq. (19), scattering can only source the multipoles
such that Y0

j is direction independent, that is, Gm
0 . For

m ¼ 0, in order to recover the equations reported in [4],
TL13 chose Ẽ0 to be a constant factor (instead of E0

2) such
that the multipoles G0

j relate to Q exactly as F0
j relate to Θ.

This choice comes however at the expense of an additional
source term for G0

2 in the hierarchy and of less straightfor-
ward relations between E0

j and G0
j .

Having reduced the expansion on the simpler normal
modes 0M

0
j , one gets temperature and polarization hier-

archies that are both very similar to the scalar temperature
hierarchies of the TAM method,
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∂ηFm
j ¼ 1

2jþ 1
ð0κ0jFm

j−1 − 0κ
0
jþ1F

m
jþ1Þ − τ0Fm

j þ um
j ;

ð20aÞ

∂ηGm
j ¼ 1

2jþ 1
ð0κ0jGm

j−1 − 0κ
0
jþ1G

m
jþ1Þ − τ0Gm

j þ vmj ;

ð20bÞ

with the sources um
j ; v

m
j and exact definitions for the

Fm
j ; G

m
j given in TL13. Also, since the free-streaming part

has been reduced in all cases to the same form as scalar
temperature multipoles, the hierarchies for Fm

j ; G
m
j are

truncated using (9) with m ¼ 0 in all cases, that is,
Eq. (2.34) of TL13.
Finally, the temperature and polarization spectra can be

computed using Eq. (7), with the same radial functions as in
the TAM method, but with the expression of the source
functions ΘCmj ,

ECmj , and Gm
j derived in the optimal

hierarchy.
The optimal hierarchy equations were already derived in

TL13, but the goal of this section was to show explicitly
that, at various steps in the derivation, it is necessary to
assume the factorization ansatz of Eq. (11). As found in
PP19, in the presence of spatial curvature, this factorization
does not hold, such that the optimal hierarchy should not be
used in principle.

IV. COMPARISON OF HIERARCHIES

A. Implementation in CLASS

Previous versions of the CLASS code only used the
optimal hierarchy. For the purpose of comparing the two
schemes, we implemented both of them, with a new input
parameter hierarchies=optimal, tam. Our modi-
fications will be available in the next release of the code
(v3.0). For the first three multipoles of the scalar temper-
ature hierarchy, instead of following (Θ0

0, Θ0
1, Θ0

2) or
(F0

0, F
0
1, F

0
2), the code follows three components of the

perturbed photon stress-energy tensor that match the
conventions of [4],

δγ ¼ F0
0 ¼ 4Θ0

0; ð21aÞ

θγ ¼
3k
4
F0
1 ¼ kΘ0

1; ð21bÞ

σγ ¼
1

2s2
F0
2 ¼

2

5s2
Θ0

2; ð21cÞ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − K

p
and s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3K=k2

p
. For all other

multipoles and modes, the code follows the quantities
(Fm

l , G
m
l ) in the optimal mode and (Θm

l , E
m
l , B

m
l ) in the

TAM mode.

We have discussed the two hierarchies in the context of
photon anisotropies, but the same formalism applies to
decoupled massless or massive neutrinos, or more generally
to ultrarelativistic (UR) species and noncold dark matter
(NCDM), as they are called in CLASS). The only difference
in such cases is the absence of both polarization and
collision terms.
For scalar modes, in the absence of polarization, the

TAM and optimal hierarchies are mathematically equiv-
alent, even when K ≠ 0. This can be seen in the definition
of the F0

j multipoles in Eq. (12). With m ¼ 0, given that

Y0
0 ¼ 1=

ffiffiffiffiffiffi
4π

p
, we see that the expansions in Θ0

j and in F0
j

are performed along the same normal modes 0M
0
j . Then,

even if 0M
0
j is not separable in curved space, the optimal

hierarchy can be obtained from the TAM one by replacing
Θ0

j → ð2jþ 1ÞF0
j [up to a constant factor

1
4
coming from an

arbitrary choice of normalization in (12)]. For photons,
there is still a difference in the temperature evolution,
coming from the fact that the temperature hierarchy couples
to distinct polarization hierarchy(ies). But this is not the
case for the UR and NCDM species, and thus there is no
need to implement explicitly the TAM hierarchy for them.
On the other hand, for tensor modes, we expect the

optimal hierarchy to be only approximate in the curved
case, due to the nonseparability of the normal modes 0M

2
j ,

which implies that Θ2
j and ð2jþ 1ÞF2

j are not exactly
related by Gaunt integrals. This is potentially relevant for
the calculation of the spectra of CMB anisotropies, since
photon and neutrino are coupled gravitationally through
their shear tensors.
In both CLASS and CAMB, for tensor modes, the impact of

massive neutrinos (or more generally NCDM) perturbations
on the CMB angular spectra can be accounted in two ways:
(i) either by using the full Boltzmann hierarchy of NCDM
perturbations discretized on a grid in momentum space or
(ii) by splitting NCDM at each time η in two components:
an ultrarelativistic component with density ρ ¼ 3pNCDM,
treated as an enhancement of the UR species and thus
coupled gravitationally to the photons, and a nonrelativistic
component with density ρ ¼ ρNCDM − 3pNCDM, assumed to
have a negligible shear and thus no gravitational coupling
with photon tensor perturbations. The second scheme is
faster and accurate enough (at least for neutrinos becoming
nonrelativistic after photon decoupling) for being the default
in CLASS. In that case, for tensor modes, the code follows the
UR perturbations but not the NCDM ones.
Here, we limit our analysis to the case where this

approximation is used. Thus, we coded the two hierarchies
for UR tensor perturbations, but not for the NCDM tensor
perturbations. Depending on the used scheme, the code
follows either the multipoles F2

ur;j (optimal) or Θ2
ur;j

(TAM). The gravitational wave equation is then sourced
by the shear πur ¼ 8

5
Θ2

2, replaced by Eq. (B.27) of TL13 in
the optimal case.
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For scalar modes, we implemented the TAM hierarchy in
both the synchronous and Newtonian gauge. In the next
section, we show comparison plots obtained in the syn-
chronous gauge, but we checked explicitly that the curves
are identical in the Newtonian gauge.

B. Accuracy of the hierarchies

We turn to the evaluation of the difference between both
hierarchies in the curved case. Since the optimal hierarchy
is mathematically valid only in the flat case, we expect
differences proportional to jΩKj in the angular spectra. In
principle, some cancellations could occur such that the
difference would scale with a higher power of ΩK; but we
checked explicitly that this is not the case: the differences
between the CMB spectra computed by CLASS in the two
schemes scale indeed linearly with the curvature density
fraction.
Both implementations rely on the line-of-sight integral

with identical radial functions. Since these functions account
for projection effects from q space to harmonic space, the
geometrical effects induced by curvature—that govern,
for instance, the angular scale of the acoustic peaks—are
correctly accounted for in the two approaches. Differences
can only arise from slightly different values of the source
functions that appear in Eq. (7): ΘCmj ðq; ηÞ, Gm

j ðq; ηÞ (with
j ¼ 0, 1, 2) and ECm2 ðq; ηÞ in the two schemes. Figure 1 shows
such differences at the level of the tensor polarization source
function Pð2Þ of Eq. (13), which is related to the sources of
Eq. (7) through EC22 ¼ −

ffiffiffi
6

p
τ0Pð2Þ.

In each of the two schemes, the source functions are
derived from equations that are sensitive to curvature only
through the following:
(1) Coefficients sκ

m
j in the hierarchies, that involve

factors like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nK=q2

p
for various integers n.

(2) Initial conditions.
(3) The background evolution at very small redshift.
Since the two schemes share the same initial conditions

and background evolution, and since they have a common
flat-space limit, differences can only be caused byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nK=q2

p
factors. Thus, these differences must be more

significant at largewavelengths, that is, for small multipoles.
The terms related to photon multipoles in the source

functions of Eq. (7) are all multiplied by the visibility
function −τ0e−τ, which peaks around the times of recombi-
nation and reionization. We expect the differences between
the hierarchies to manifest themselves more clearly around
the time of reionization. Indeed, on the last scattering
surface, the sources emerge from the tight-coupling regime,
while at reionization free-streaming has entirely shaped
them. Since the major difference between the hierarchies
is the treatment of free-streaming, we expect that they have
more impact on contributions from reionization. How-
ever, this contribution is subdominant in angular spectra,
excepted for polarization spectra at low l. This induces a

global suppression of differences, excepted on scales
corresponding to the reionization bump in the polarization
spectra.
Furthermore, there are several properties which conspire

to eventually reduce even more the differences in angular
spectra (see Fig. 2) which we now detail.
For scalar temperature, we have already seen that the

Boltzmann hierarchy of the two schemes is equivalent
(because all quantities are expanded along the same normal
modes 0M

0
j ), up to the term that couples the temperature

and polarization hierarchies. This term is part of ΘC0j in

Eq. (6) and proportional to Pð0Þ. Intuitively, it represents
the flow of power from temperature to polarization induced
by Thomson scattering. The CMB is known to be only
slightly polarized, precisely because this flow is very small.
Since the different polarization hierarchies only affect
the temperature hierarchy through this term, the difference
they induce on the evolution of temperature multipoles is
very small. Finally, the scalar temperature spectrum CTT

l is
inferred from the scalar temperature source function of
Eq. (7), which depends mainly on temperature multipoles,
on the baryon velocity field and on metric perturbations;
the electric quadrupole moment E0

2 brings only a very small
correction. Thus, we expect a very minor impact of
polarization errors on the scalar temperature spectrum.
This is confirmed by the blue (lower) curves in the top

panels of Fig. 2. The difference between the scalar spectra
CTT
l predicted by the two hierarchies’ peaks at small l’s

and is at most of the order of 10−5jΩKj. We checked
explicitly that most of the difference comes from the value
of the source terms (and in particular of the quadrupole E0

2)
around the time of reionization: in a cosmological model

FIG. 1. Sources for tensor modes Pð2Þ used in the line-of-sight
method. The continuous lines are computed with the optimal
hierarchy and the dashed lines with the TAM hierarchy. The
thicker lines are for the mode k ¼ 0.0005 Mpc−1, and the thinner
lines are for k ¼ 0.001 Mpc−1. We only show the case of negative
curvature with ΩK ¼ 0.1, but positive curvature sources are
extremely similar. The lower panel shows the difference between
the curves of the upper panel.
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with reionization switched off, the difference between the
spectra is orders of magnitude smaller.
For scalar polarization, we do expect a larger difference,

because the Boltzmann hierarchies of the two schemes are
not anymore exactly equivalent for ΩK ≠ 0. For m ¼ 0, in
the TAM scheme, B0

j multipoles are not sourced and remain
null. Equation (B.11) of TL13 gives an explicit relation
between E0

j and G0
j , but according to our previous

discussion, this relation would be exact only for separable
normal mode functions sM0

j , that is, for K ¼ 0. The source
function in the polarization line-of-sight integrals,
EC02 ¼ −

ffiffiffi
6

p
τ0Pð0Þ, involves the sum

Pð0Þ ¼ ðΘ0
2 −

ffiffiffi
6

p
E0
2Þ=10: ð22Þ

In flat space, using (B.11) of TL13,
ffiffiffi
6

p
E0
2 would be exactly

equal to − 5
4
ðG2

0 þ G2
2Þ. In curved space, one can explicitly

check that the term
ffiffiffi
6

p
E0
2 coming from the solution of the

E0
j hierarchy and the term − 5

4
ðG2

0 þ G2
2Þ coming from the

solution of the G2
j hierarchy differ by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nK=q2

p
-like

factors. However, in both schemes, Pð0Þ is dominated by the
contribution of the temperature quadrupole, correctly given
in the two schemes by Θ0

2 ¼ 5=4F0
2, and to which the

polarization multipoles only bring a small correction. Since
the temperature hierarchy is almost unaffected by errors in
the optimal scheme, differences in the solution of the
polarization hierarchies do not fully propagate to the
polarization spectra. This explains why the error on CEE

l ,
shown in the red (upper) curves in the top panels of Fig. 2,
is still very small, of the order of 10−2jΩKj at small l’s. It is
however ∼103 times larger than the largest difference for
the temperature. Since the difference between the two
schemes has more impact at the reionization epoch, the
residuals are the largest in the range l ≤ 20 corresponding
to the reionization bump in CEE

l .
For tensor modes, differences are expected to be even

larger, since in that case, both temperature and polarization
hierarchies are different. However, the impact of the
hierarchies is reduced again by another consideration in
the temperature case. The tensor temperature source func-
tion in Eq. (7) is given by the sum −H0 þ κ0Pð2Þ, whereH is
the gravitational wave transfer function. As already seen in

FIG. 2. Relative differences of spectra Coptimal
l =CTAM

l − 1 for TT spectra [blue (lower) lines] and EE spectra [red (upper) lines]. Left
panels are with positive curvature ΩK < 0 and the right panels with negative curvature ΩK > 0. Positive values are in continuous lines
and negative values in dashed lines. Top and bottom panels are for scalar and tensor perturbations, respectively. The cosmological
parameters are the one of the last columns in Table 2 of [23], except for the modification in ΩK which is accompanied by a modification
in ΩΛ.

OPTIMAL BOLTZMANN HIERARCHIES WITH NONVANISHING … PHYS. REV. D 102, 023511 (2020)

023511-7



Fig. 1, the term Pð2Þ is clearly sensitive to the difference
between the hierarchies, especially around the time of
reionization. However, the tensor temperature power spec-
trum is dominated by the term −H0 that represents an
integrated Sachs-Wolfe effect caused by gravitational
waves. This term is given by the same Einstein equations
in the two schemes and only depends very weakly on the
choice of hierarchy, in spite of the small backreaction of
photon and neutrino shear on H. Thus, once more, we find
a very small impact of the optimal hierarchies on the tensor
temperature spectrum, of the order of 10−3jΩKj [see the
blue (lower) curves in the bottom panels of Fig. 2].
Finally, for tensor polarization, the source term in

Eq. (7) is only given by Pð2Þ and thus by temperature
and polarization multipoles. This is the only case in which
we find that the optimal hierarchy induces a potentially
relevant error, of the order of 0.5jΩKj for CEE

l and l ≤ 10

[see the red (upper) curves in the bottom panels of Fig. 2].
The range l ≤ 10 coincides with the reionization bump in
the tensor CEE

l , which is again consistent with the fact that
the difference between hierarchies has more impact around
reionization than recombination. We find essentially iden-
tical results for the CBB

l spectrum.
Since in these sections we were interested in extremely

small differences between the angular spectra, we ran
CLASS with enhanced accuracy settings (namely, the ones
of the public precision parameter file cl ref.pre, with a
truncation at jmax ¼ 50). Note that even with such settings,
a comparison with the CAMB code suggests that both
Einstein-Boltzmann solvers are accurate at least at the
10−4 level [30]. However, the level of convergence of each
of the two codes against an increase in their own precision
parameters is much better than that. Thus, showing resid-
uals smaller than 10−4 is still meaningful when onewants to
highlight the effect of just one type of error (in our case,
the one induced by the optimal hierarchy). Even when the
residuals shown in Fig. 2 are below 10−4, they show the
specific impact of switching between hierarchies, even
in the presence of comparable or larger sources of errors
in other aspects of the code. To check this, we tried
several accuracy settings between default precision and
cl_ref.pre and found that our residuals are stable and
well converged at least for l < 200. For l > 200, this was
not always the case and we choose to limit the plots to the
first range. But given that there is a solid analytical
argument for the error to decrease with q and l, it is
sufficient to obtain converged results for small multipoles.
For scalar modes, we plotted the results obtained using the

synchronous gauge, but we found nearly identical curves
when running CLASS in the Newtonian gauge. The residuals
are nearly equal even in ranges when the error induced by the
optimal hierarchy is smaller than the one induced by the
Newtonian gauge (the two gauges agree at the level of 10−6).
This brings further confirmation that our residuals correctly
capture the error induced by the optimal hierarchy only.

C. Efficiency of the hierarchies

To compare the efficiency of the two approaches as
implemented in CLASS, we need to make several choices.
Indeed, the result of timing tests should depend on many
factors as follows:

(i) The level of precision: High precision (in particular,
a larger truncation multipole jmax) is more favorable
to the optimal hierarchy; the choice of algorithm to
solve ordinary differential equations (ODEs) is also
important.

(ii) The underlying cosmology: With more ingredients
involved, the weight of photons in the system of
perturbation equations decreases, and the difference
between hierarchies is less pronounced.

(iii) The timing method: If we compare the total execu-
tion time of the code in the two cases, the result will
depend a lot on the requested output; this is not the
case if we only compare the time ΔtODE spent by
CLASS in the loop over q modes, during which the
system of ODEs is integrated over time for either
scalar or tensor perturbations.

(iv) The chosen number of parallel threads, the compiler,
the optimization flags, etc.

Here we will focus on the ratio of ΔtODE when the two
hierarchies are used, while running CLASS with default
precision, and thus with the NDF15 ODE solver [8].
The default precision settings of the current version of
CLASS have been optimized for accurate Markov chain
Monte Carlo fits of Planck data. For the optimal hierarchy,
they give jmax ¼ 12 for scalar temperature, 10 for scalar
polarization, and 5 for tensor temperature and polarization.
In the TAM hierarchy, to be consistent, we should keep the
same truncation for scalar modes and increase jmax by two
for tensor modes.5 Thus, we set jmax ¼ 7 by default in the
TAM tensor case. By comparing with the results of the
previous sections (obtained with high precision settings and
jmax ¼ 50 in all cases), we checked that with such default
precision settings, the accuracy level is roughly the same in
the two schemes.
In these timing tests, we assumed a ΛCDM model with

massless neutrinos, spatial curvature, and tensor modes,
and we asked only for CMB output (in CLASS syntax,
output ¼ tCl, pCl, lCl). Our results are however indepen-
dent of ΩK and apply also to flat models. We quote relative
differences when the code is run sequentially, using the
compiler gcc 9.2.0 with option -O4.
We find that for scalar modes, the time interval ΔtODE

is the same in the two schemes up to negligible (percent
level) differences. This is consistent with the fact that
the two hierarchies involve roughly the same number of
photon multipoles: 13þ 11 ¼ 24 in the optimal case and

5Indeed, the functions Ym
m and ϵ̃m that appear in the relations

between the expansions inEqs. (12) and (19) have thegeometryof a
monopole for scalar modes and of a quadrupole for tensor modes.
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13þ 9 ¼ 22 in the TAM case since the scalar magnetic
multipoles B0

j vanish and do not need to be defined. For
tensor modes, we find a 13% speed-up in the optimal
scheme. In that case, the optimal hierarchy involves 12
multipoles and the TAM hierarchy 18 multipoles.
Thus, with a line-of-sight method and standard precision

requirements, the efficiency of the two schemes is very
similar. Choosing one of them is mainly a matter of taste.
Given that the optimal hierarchy is accurate enough for
most purposes, in our implementation, we kept it as the
default choice for continuity with previous CLASS versions.

V. CONCLUSION

The incorrect relation between the Stokes parameters Q
and U assumed by the optimal hierarchy leads to different
source terms in the line-of-sight integrals, especially around
the time of reionization, when the sources are shaped by the
details of the free-streaming solution. In the observable
angular spectra, differences remain very small, because the
reionization epoch accounts only for a small part of the total
spectra. They are further suppressed for scalar modes by
the dominant role of temperature multipoles, correctly
handled by both hierarchies, and for tensor temperature
by the dominant role of metric perturbations. They are thus
predominately seen in the tensor polarization spectra on the
scale of the reionization bump (l ≤ 10).
For instance, for jΩKj ¼ 0.1, the tensor polarization

spectra are affected at the 5% level for such multipoles. In

the future, if cosmological observations came to prefer a
slightly curved universe with, for instance, jΩKj ∼ 0.02,
using the TAM hierarchy instead of the optimal one would
be important for reconstructing the tensor-to-scalar ratio
from CBB

l with an accuracy of 1%. However, if the current
bound from Planckþ BAO gets confirmed, jΩKj < 0.002
(68% CL), the optimal hierarchy is sufficient to guarantee a
0.1% accuracy on the tensor polarization spectra. On the
other hand, if one is interested on the transfer of super-
Hubble or supercurvature modes, then it is crucial to rely
on the TAM hierarchy. For instance, it has been shown that
very long (i.e., maximal wavelength) modes on the top
of isotropic spacetimes are equivalent to Bianchi universes
[31,32], and in that case it is crucial to rely on the correct
TAM hierarchy to infer the observational consequences with
this approach [33].Using theTAMhierarchymight also be of
importance for checking the validity of consistency theorems
in single field inflation [34], which allows one to connect the
primordial bispectra in squeezed configurations to products
of the primordial spectra [35,36], since it involves very large-
scale modes modulating the small scale dynamics.
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