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4Département de Physique Théorique, Center for Astroparticle Physics,
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By using the first-principles approach, we derive a system of three quantum kinetic equations governing
the production and evolution of charged scalar particles by an electric field in an expanding universe.
Analyzing the ultraviolet asymptotic behavior of the kinetic functions, we found the divergent parts of the
electric current and the energy-momentum tensor of the produced particles and determined the
corresponding counterterms. The renormalized system of equations is used to study the generation of
electromagnetic fields during and after inflation in the kinetic coupling model LEM ¼ −ð1=4Þf2ðϕÞFμνFμν

with the Ratra coupling function f ¼ expðβϕ=MpÞ. It is found that the electric current of created particles
is retarded with respect to the electric field. This leads to an oscillatory behavior of both quantities in
agreement with the results obtained previously in phenomenological kinetic and hydrodynamical
approaches.
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I. INTRODUCTION

Observations of the gamma rays from distant blazars
demonstrate the presence of magnetic fields in cosmic
voids [1–7]. Although a number of generation mechanisms
has been proposed in the literature (see Refs. [8–14] for
review), an extremely large coherence length of these fields
strongly favors the inflationary magnetogenesis [15–18] as
their most natural origin. During inflation the coupling of
an electromagnetic field to an evolving inflaton field or
curvature scalar breaks the conformal invariance of the
Maxwell action and generates magnetic as well as electric
fields. Since the produced electric fields are typically larger
or at least of the same magnitude as the magnetic ones, the
role and impact of these fields on the inflationary magneto-
genesis is very important.
The first immediate consequence of the existence of strong

electric fields is the formation of plasma of charged particles
and antiparticles due to the Schwinger effect [19–21].
Indeed, it is well known that vacuum becomes unstable with
respect to the creation of pairs of charged particles in a strong
electric field E with the production rate in flat spacetime
∝ E2 expð−πm2c3=jeEjℏÞ [22,23]. Obviously, the pair pro-
duction is exponentially suppressed unless the electric field

exceeds the critical value, which is Ecr ¼ m2
ec3=ðeℏÞ ≃

1.3 × 1016 V=cm for the lightest charged particle in the
StandardModel, which is the electron. Since the critical field
value is extremely large, the Schwinger pair production was
never observed experimentally.
Created particles are rapidly accelerated by the electric

field and screen it. Therefore, when the Schwinger process
becomes efficient, the backreaction of created particles on
the electric field cannot be neglected. This means that a
usual study of the Schwinger effect in adiabatically
(compared to the Universe expansion rate) evolving and
homogeneous electric field in de Sitter spacetime [24–39]
is not sufficient. Nevertheless, such a study admits an exact
analytic solution which was used to constrain different
models of magnetogenesis [24,37–45], to describe reheat-
ing [46] or to quantify a qualitative impact of the Schwinger
effect on primordial spectra [47] (see also Ref. [48] for the
case of a complex inflaton field).
In our recent work [49], we attempted a phenomeno-

logical approach to the kinetic analysis of the Schwinger
effect in an expanding universe and used a model expression
for the crucially important Schwinger source term in the
Boltzmann equation which describes the production of
charged particles. Such a source term was previously
utilized in the description of the Schwinger effect in
heavy-ion collisions and laser beams [50–60]. It reproduces*oleksandr.sobol@epfl.ch
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the correct pair creation rate per unit time and takes into
account the stimulated pair production for bosons and the
Pauli blocking for fermions. In our study [49], we found that
due to the inertia of charge carriers the electric current
remains nonzero even when the electric field crosses zero
and changes the sign. This means that the current is retarded
with respect to the field and cannot be expressed in the
Ohmic form j ¼ σE which is local in time. As a result, both
quantities oscillate in time with the characteristic frequency
comparable or even larger than the expansion rate.
The strongest drawback of our analysis in Ref. [49] was

the use of a phenomenological Schwinger source term
adapted from the studies in flat spacetime [50–53]. In this
paper, we go beyond this approximation and apply the first-
principles quantum kinetic approach [54–60] in order to
calculate the Schwinger source for a time-dependent
electric field in an expanding universe. This provides the
main motivation for the present study. Our quantum kinetic
calculations encounter the usual ultraviolet (UV) divergen-
ces in the electric current and the energy-momentum tensor.
Performing the renormalization procedure, we obtain a
coupled system of equations governing the joint evolution
of the inflaton, electromagnetic field, and produced charged
particles. This is the central result of our study.
As a test bed for our approach, we consider a simple

model of the kinetic coupling of the electromagnetic field to
the inflaton field via the term −ð1=4Þf2ðϕÞFμνFμν intro-
duced by Ratra [16] and revisited many times in the
literature [61–70]. The coupling function is taken in the
Ratra form f ¼ expðβϕ=MpÞ which is a decreasing func-
tion of time during inflation. It does not cause a strong-
coupling problem [65] and leads to the production of strong
electric fields [42,63–65], much stronger than the magnetic
ones. In order to obtain specific results, the numerical
analysis is performed in the Starobinsky model of inflation
[71]. It belongs to the class of plateau models strongly
favored by the cosmic microwave background (CMB)
observations [72]. The kinetic approach and the results
obtained in this paper can be easily generalized to other
inflationary models.
This paper is organized as follows. A system of quantum

Vlasov equations describing the Schwinger pair production
of scalar particles is derived in Sec. II. The UV asymptotic
behavior of the kinetic functions is studied and counter-
terms are determined in Sec. III. The application of the
renormalized system of equations to the generation of
electromagnetic fields during and after inflation is consid-
ered in Sec. IV. Our numerical results are presented in
Sec. V and conclusions are given in Sec. VI. The UV
asymptotics of the kinetic functions are calculated in
Appendix A. The dimensional regularization and subtrac-
tion scheme are discussed in Appendix B. Some details of
the calculation of the energy-momentum tensor for scalar
charged particles are given in Appendix C. Throughout the
work we use the natural units and set ℏ ¼ c ¼ 1.

II. QUANTUM KINETIC DESCRIPTION OF
SCHWINGER PAIR PRODUCTION

The Schwinger pair production in the early universe can
occur if the two main ingredients are present: (i) a strong
electric field and (ii) at least one quantum charged field. In
our work we will focus on the case where the electric field
is produced in an inflationary magnetogenesis scenario and
the charged field is a scalar field nonminimally coupled to
gravity (the extension to the case of a charged fermion field
or multiple scalar and fermion fields is rather straightfor-
ward and will be considered elsewhere). The corresponding
action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

p

2
Rþ Linf þ LEM þ Lch

�
; ð1Þ

where g ¼ detðgμνÞ, gμν ¼ diagf1;−a2;−a2;−a2g is the
metric of a spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) universe in the cosmic time, a ¼ aðtÞ is
the scale factor, Mp ¼ ð8πGÞ−1=2 ¼ 2.43 × 1018 GeV is
the reduced Planck mass, and R is the curvature scalar. The
inflationary part consists of a single scalar inflaton field
with potential VðϕÞ,

Linf ¼
1

2
gμν∂μϕ∂νϕ − VðϕÞ: ð2Þ

The electromagnetic sector

LEM ¼ −
1

4
FμνFμν þ LintðAμ;ϕÞ ð3Þ

contains the Maxwell term as well as the term Lint
describing the interaction of the electromagnetic field with
the inflaton leading to the generation of electromagnetic
fields (in our numerical analysis, we use the kinetic
coupling model presented in Sec. IV). Finally, the charged
scalar field is described by the Lagrangian density

Lch ¼ gμνðDμχÞ†ðDνχÞ − ðm2 − ξRÞjχj2; ð4Þ

where Dμ ¼ ∂μ − ieAμ is the covariant derivative acting on
the scalar field with charge e and mass m. Coupling
constant ξ quantifies the nonminimal coupling of the scalar
field χ to gravity, and jχj2 ¼ χ†χ.
In this and the next sections, we derive a system of

quantum Vlasov equations governing the production and
evolution of charged scalar particles by an electric field in
an expanding universe without specification of a model of
magnetogenesis. Since the charged scalar field interacts
only with the electromagnetic field and the curvature scalar,
it suffices for our aims to assume that the time evolution of
both of them is given. Then varying action (1) with respect
to χ†, we obtain the equation of motion for the scalar field
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1ffiffiffiffiffiffi−gp Dμ½
ffiffiffiffiffiffi
−g

p
gμνDνχ� þ ðm2 − ξRÞχ ¼ 0 ð5Þ

or in more explicit form

χ̈ þ 3H _χ þ ½m2 þ 6ξð _H þ 2H2Þ�χ − 1

a2
DiDiχ ¼ 0; ð6Þ

where we took into account that the curvature scalar equals
R ¼ −6ð _H þ 2H2Þ for the FLRW metric and H ¼ _a=a is
the Hubble parameter. As usual, an overdot denotes a
derivative with respect to the cosmic time t and we used the
Coulomb gauge for the electromagnetic field, i.e., Aμ ¼
ð0;AÞ and divA ¼ 0. We assume that only a spatially
uniform electric field is present and the magnetic field is
absent, so that A ¼ AðtÞ. This approximation is valid, e.g.,
in the kinetic coupling model with a monotonically
decreasing in time coupling function [42,64].
As usual, the charged scalar field operator can be

expanded over the set of creation and annihilation operators

χðt;xÞ ¼
Z

d3k

ð2πaÞ3=2 ½âkχkðtÞe
ik·x þ b̂†kχ

�
−kðtÞe−ik·x�; ð7Þ

where the creation (â†k, b̂†k) and annihilation (âk, b̂k)
operators satisfy the canonical commutation relations

½âk; â†p� ¼ ½b̂k; b̂†p� ¼ δ3ðk − pÞ; ð8Þ

while all other commutators vanish. Substituting decom-
position (7) into Eq. (6), we obtain the equation for the
mode function

χ̈kðtÞ þΩ2
kðtÞχkðtÞ ¼ 0: ð9Þ

Clearly, this is the equation of motion of a harmonic
oscillator with time varying frequency

Ω2
kðtÞ ¼ m2 þ 1

a2
ðk − eAÞ2 þ

�
12ξ −

9

4

�
H2

þ
�
6ξ −

3

2

�
_H: ð10Þ

In what follows we will consider only modes for which the
square of frequency is positive. More precisely, we are
interested in modes which are inside the Hubble horizon
with physical momentum pph ≡ jk − eAj=a≳H. If
5=48 < ξ < 1=4, expression (10) is positively defined
for all subhorizon modes and for any expansion rate of
the universe. (Note, that _H < 0 for any matter content of
the universe satisfying the null-energy condition ρþ
P ≥ 0, where ρ is the energy density and P is pressure.)
To avoid unnecessary complications, we assume that ξ lies
in the specified range.

As usual, we assume that the electric field was absent
before the initial moment of time t0 and the scalar field was
in the Bunch-Davies vacuum state [73]

χkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2k=a

p e−ikηðtÞ; jkηðtÞj ≫ 1; ð11Þ

where η is the conformal time, dη ¼ dt=aðtÞ. In terms of
the latter, Eq. (9) takes the form

�
χkffiffiffi
a

p
�00

þ Ω̃2ðηÞ χkffiffiffi
a

p ¼ 0;

Ω̃2ðηÞ ¼ ðk − eAÞ2 þ a2m2 þ ð6ξ − 1Þa00=a; ð12Þ

where prime denotes a derivative with respect to the
conformal time. For A ¼ 0, a sufficiently light field
m≲H, and jkηj ≈ k=ðaHÞ ≫ 1, Eq. (11) is a solution
to Eq. (12).
In a nonzero electric field, one cannot separate the

positive- and negative-frequency solutions of Eq. (9),
i.e., the mode function contains, in general, both compo-
nents and their relative contributions can be characterized
by the Bogolyubov coefficients αk and βk as follows:

χkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðtÞ
p ½αkðtÞe−iΘkðtÞ þ βkðtÞeiΘkðtÞ�; ð13Þ

where ΘkðtÞ ¼
R
t
t0
Ωkðt0Þdt0 and the coefficients satisfy the

relation

jαkðtÞj2 − jβkðtÞj2 ¼ 1: ð14Þ

Initially, αkðt0Þ ¼ 1, βkðt0Þ ¼ 0.
It is straightforward to check that Eq. (9) is identically

satisfied if the Bogolyubov coefficients evolve according to
the following system of equations:

8<
:

_αk ¼ _Ωk
2Ωk

e2iΘkβk;

_βk ¼ _Ωk
2Ωk

e−2iΘkαk:
ð15Þ

Moreover, these equations ensure that the normalization
condition (14) is satisfied at any time as soon as it is true at
the initial moment.
In view of Eq. (14), there are only three real degrees

of freedom which are conveniently parametrized as
follows [55]:

FkðtÞ ¼ jβkj2; ð16Þ

GkðtÞ ¼ ℜeðαkβ�ke−2iΘkÞ; ð17Þ

HkðtÞ ¼ ℑmðαkβ�ke−2iΘkÞ: ð18Þ
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Equations (15) imply the following equations of motion:

_Fk ¼
_Ωk

Ωk
Gk; ð19Þ

_Gk ¼
_Ωk

2Ωk
ð1þ 2FkÞ þ 2ΩkHk; ð20Þ

_Hk ¼ −2ΩkGk: ð21Þ

It is convenient to change the variable from the canonical
momentum k to the physical one p ¼ ðk − eAÞ=aðtÞ. Then

Ωk⇒ωðt;pÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2þ

�
12ξ−

9

4

�
H2þ

�
6ξ−

3

2

�
_H

s
;

ð22Þ
_Ωk

Ωk
⇒Qðt;pÞ¼eE ·p−Hp2þð12ξ− 9

4
ÞH _Hþð3ξ− 3

4
ÞḦ

ω2ðt;pÞ ;

ð23Þ

where the electric field measured by a comoving observer is
defined as E ¼ − _A=a, Ei ¼ aF0i.
Finally, we rewrite Eqs. (19)–(21) in terms of the new

variable. Introducing F̃ ðt;pÞ¼ F̃ ðt;ðk−eAÞ=aÞ≡FkðtÞ
(and proceeding similarly for G and H), we obtain for the
time derivative

_Fk ¼ ∂F̃ ðt;pÞ
∂t þ ∂F̃ ðt;pÞ

∂p
∂
∂t

�
k − eA

a

�

¼
� ∂
∂tþ ðeE −HpÞ ∂

∂p
�
F̃ ðt;pÞ: ð24Þ

In what follows, we omit the tilde and, for the sake of
brevity, introduce the quantity E ¼ eE.
Finally, the system of equations takes the form� ∂

∂tþ ðE −HpÞ ∂
∂p

�
F ðt;pÞ ¼ Qðt;pÞGðt;pÞ; ð25Þ

� ∂
∂tþ ðE −HpÞ ∂

∂p
�
Gðt;pÞ

¼ 1

2
Qðt;pÞ½1þ 2F ðt;pÞ� þ 2ωðt;pÞHðt;pÞ; ð26Þ

� ∂
∂tþ ðE −HpÞ ∂

∂p
�
Hðt;pÞ ¼ −2ωðt;pÞGðt;pÞ: ð27Þ

These quantum Vlasov equations describe the creation of
charged scalar particles by time-dependent electric and
gravitational fields. The electric current, energy density,
and pressure of produced particles can be expressed in
terms of the kinetic functions F , G, and H. However, as
usual in relativistic quantum field systems, it turns out that
there are UV divergences. In the next section, we study the

UV asymptotics of the kinetic functions and apply the
renormalization procedure in order to render physical
observables finite.

III. RENORMALIZATION

Since UV divergences of the electric current jμ and
energy-momentum tensor Tμν are connected with the
behavior of the corresponding integrands at large momen-
tum, our approach to divergences and the subsequent
renormalization procedure is standard. First we determine
the UV behavior of the kinetic functions F ðt;pÞ, Gðt;pÞ,
and Hðt;pÞ at jpj → ∞ as a series in inverse powers
of ϵp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
(an expansion in inverse powers of jpj

is inconvenient because the integration over momentum
will lead to infrared divergences). Since jμ and Tμν are
expressed via integrals of the kinetic functions, the found
expansions allow us to find the divergent terms of the
electric current and energy-momentum tensor. Finally, we
determine counterterms which cancel the divergences.

A. Asymptotic behavior of kinetic functions

In order to find the asymptotic UV behavior of the
kinetic functions which satisfy the system of equa-
tions (25)–(27), we represent them as a series in inverse
powers of ϵp at large momentum. We assume that each of
these series starts with a certain negative power, i.e.,
F ∼ ϵn1p , G ∼ ϵn2p , and H ∼ ϵn3p with negative integers n1,
n2, and n3. Then Eq. (25) implies n1 ¼ n2, while Eq. (27)
gives n3 ¼ n2 þ 1. Finally, Eq. (26) produces n3 ¼ −1.
Substituting expansions (A8)–(A10) in Eqs. (25)–(27) and
collecting terms with the same power of jpj, we obtain the
system of Eqs. (A11)–(A19) which determines the leading
terms in the UV power expansions of F , G, and H.
Using the results obtained in Appendix A, we find the

following asymptotic expansions for the kinetic functions:

F ðt;pÞ¼ H2

16ϵ2p
−
Hv ·E
8ϵ3p

þðv ·EÞ2
16ϵ4p

þð1−6ξÞHḦþ7H2 _Hþ6H4

16ϵ4p

þ
_H2þ2H2 _Hþ 3

4
H4−8m2H2

64ϵ4p
þOðϵ−5p Þ; ð28Þ

Gðt;pÞ ¼ −
_H þH2

8ϵ2p
þ v · ð _E þ 3HEÞ

8ϵ3p
þ E2 − 3ðv · EÞ2

8ϵ4p

− ð1 − 6ξÞH
��� þ 8 _H2 þ 10HḦ þ 42H2 _H þ 20H4

16ϵ4p

−
2 _H2 þ 3H2 _H þH4 − 32m2H2 − 8m2 _H

64ϵ4p

þOðϵ−5p Þ; ð29Þ
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Hðt;pÞ ¼ H
4ϵp

−
v · E
4ϵ2p

þ ð1 − 6ξÞðḦ þ 7H _H þ 6H3Þ − 2m2H
8ϵ3p

þOðϵ−4p Þ; ð30Þ

where v ¼ p=ϵp is the particle’s velocity.

B. Electric current

The electric current is defined as the vacuum expectation
value of the corresponding electric current operator

jν ≡
�∂Lch

∂Aν

�
¼ iehχ†D

↔ν
χi; ð31Þ

where D
↔

μ ¼ D⃗μ − D⃖�
μ and arrows indicate the position

where (to the left or to the right) the covariant derivative
acts. Then it is straightforward to derive from Eqs. (3)
and (4) the equation describing the evolution of electric
field [49]

_E þ 2HE ¼ e
a
jþ ðsourceÞ; ð32Þ

where the last term corresponds to a source of electric field
which is due to the term Lint in Eq. (3). Because of the
space homogeneity, the charge density vanishes (scalar
particles are produced in pairs together with their anti-
particles everywhere in space). Using the definition of
electric current

j ¼ iehχ†∇χ − χ∇χ† − 2ieAχ†χi; ð33Þ

decomposition (7), and the properties of the creation and
annihilation operators, it is straightforward to derive

j ¼ −
2e
a3

Z
d3k
ð2πÞ3 ðk − eAÞjχkj2: ð34Þ

Using Eqs. (13) and (16)–(17), we obtain

j ¼ −ae
Z

d3k
ð2πaÞ3

ðk − eAÞ
aΩk

½1þ 2Fk þ 2Gk�

¼ −2ae
Z

d3p
ð2πÞ3 p

F ðt;pÞ þ Gðt;pÞ
ωðt;pÞ : ð35Þ

Since the kinetic functions decrease only as ∼p−2 for
p → ∞, current (35) is divergent in the UV region and has
to be renormalized. Terms of order p−3 also lead to diver-
gences. Collecting the appropriate terms in Eqs. (28) and
(29), we derive

F ðt;pÞ þ Gðt;pÞ
ωðt;pÞ ¼ −

2 _HþH2

16ϵ3p
þ v · ð _Eþ 2HEÞ

8ϵ4p
þOðϵ−5p Þ:

ð36Þ

The first term corresponds to the particle production due to
the universe expansion and could lead to a severe (linear)
UV divergence of the current. However, its contribution
vanishes because it is an even function of momentum and
its integral with p over momentum vanishes. This result is a
consequence of the fact that the gravitational particle
production is not sensitive to their charge. In contrast to
that, the second term is an odd function of momentum. It
behaves as ∼p−4 at infinity and leads to a logarithmic UV
divergence of the electric current. All other terms are at
least ∼p−5 and, therefore, produce a regular contribution
jreg. Since the dimensional regularization preserves the
gauge invariance and the covariance with respect to differ-
entiable coordinate transformations, we find it very con-
venient. Using Eq. (B11), we obtain the divergent part of
the current

ejdiv ¼ −
ae2

48π2
ð _E þ 2HEÞ

�
Δε þ ln

μ2r
m2

�
; ð37Þ

where Δε is the divergent contribution extracted in the MS
scheme, see Eq. (B13), and μr is an arbitrary energy scale
arising in the course of regularization, see Appendix B. The
regular part of the electric current reads

ejreg¼−2ae2
Z

d3p
ð2πÞ3p

�
F ðt;pÞþGðt;pÞ

ωðt;pÞ −
p ·ð _Eþ2HEÞ
8ðp2þm2Þ5=2

�
;

ð38Þ

where we subtracted from the integrand the terms which
lead to UV divergences.

C. Energy-momentum tensor of produced particles

The expansion of the FLRW universe is described by the
Friedmann equations

H2 ¼ 1

3M2
p
ρðtotÞ; _H ¼ −

1

2M2
p
ðρðtotÞ þ PðtotÞÞ; ð39Þ

sourced by the total energy density ρðtotÞ and pressure PðtotÞ
of the matter fields filling the universe. They can be
determined from the corresponding energy-momentum
tensor. By definition,

Tμν
mat ¼ −

2ffiffiffiffiffiffi−gp
�
δSmat

δgμν

�
¼ Tμν

inf þ Tμν
EM þ Tμν

χ ; ð40Þ

where the first term describes the contribution of the
inflaton field driving inflation, the second corresponds to
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the contribution of the electromagnetic field, and the last
term quantifies the contribution of the charged scalar field
whose explicit expression is given by Eq. (C1).
The 00 component of the energy-momentum tensor

determines the energy density of the matter fields while
pressure can be expressed through trace T ¼ Tμ

μ as
P ¼ ðρ − TÞ=3. Then the contributions of the charged
scalar field to ρ and T are

ρχ ¼ hjD0χj2 þ
1

a2
jDiχj2 þ ðm2 þ 6H2ξÞjχj2

þ 6Hξ∂0jχj2 −
2ξ

a2
∂2
i jχj2i: ð41Þ

Tχ ¼h2ð6ξ−1Þ½ðDλχÞ†ðDλχÞþξRjχj2�þ4ð1−3ξÞm2jχj2i:
ð42Þ

In the derivation of Tχ the Klein-Gordon-Fock equation (6)
was used. It is remarkable that the trace Tχ vanishes in the
massless case m ¼ 0 and for ξ ¼ 1=6. This result is due to
the conformal symmetry of the classical action. Therefore,
ξ ¼ 1=6 is known as the conformal coupling.
Using Eq. (7), the vacuum expectation values (41) and

(42) are calculated in Appendix C. Expressing them in
terms of the kinetic functions, we obtain

ρχ ¼
Z

d3p
ð2πÞ3

	
ωðt;pÞ½2F ðt;pÞþ1�−3Hð1−4ξÞHðt;pÞþð9−48ξÞH2þð3−12ξÞ _H

2ωðt;pÞ
�
F ðt;pÞþGðt;pÞþ1

2

�

: ð43Þ

Tχ ¼
Z

d3p
ð2πÞ3

	
−2ð6ξ − 1Þ½2ωðt;pÞGðt;pÞ þ 3HHðt;pÞ� þ 2m2 − 3ð6ξ − 1Þ _H

ωðt;pÞ
�
F ðt;pÞ þ Gðt;pÞ þ 1

2

�

: ð44Þ

These expressions contain divergent contributions which are defined by Eqs. (C4) and (C5). Using the dimensional
regularization in the MS scheme, we obtain

ρχ ¼ ρdivχ þ ρregχ ; Tχ ¼ Tdiv
χ þ Treg

χ ; ð45Þ

where the divergent parts read as

ρdivχ ¼
	
−

m4

32π2
þm2H2

16π2
ð1 − 6ξÞ − 2HḦ − _H2 þ 6H2 _H

32π2
ð1 − 6ξÞ2 þ E2

96π2


�
Δε þ ln

μ2r
m2

�
; ð46Þ

Tdiv
χ ¼

	
−
m4

8π2
þm2ð _H þ 2H2Þ

8π2
ð1 − 6ξÞ −H

… þ 4 _H2 þ 7HḦ þ 12H2 _H
16π2

ð1 − 6ξÞ2

�

Δε þ ln
μ2r
m2

�
; ð47Þ

while the regular parts are given by

ρregχ ¼ −
3m4

64π2
−
m2H2

16π2
ð1 − 6ξÞ þ

Z
d3p
ð2πÞ3

	
2ωðt;pÞ½F ðt;pÞ þ 1=2� − 3Hð1 − 4ξÞHðt;pÞ

þ ð9 − 48ξÞH2 þ ð3 − 12ξÞ _H
2ωðt;pÞ ½F ðt;pÞ þ Gðt;pÞ þ 1=2� − ϵp −

H2

2ϵp
ð1 − 6ξÞ

−
ðv · EÞ2
8ϵ3p

−
H2m2

2ϵ3p
ð1 − 6ξÞ þ 2HḦ − _H2 þ 6H2 _H

8ϵ3p
ð1 − 6ξÞ2



; ð48Þ

Treg
χ ¼ −

m4

8π2
−
m2ð _H þH2Þ

8π2
ð1 − 6ξÞ þ

Z
d3p
ð2πÞ3

	
2ð1 − 6ξÞ½2ωðt;pÞGðt;pÞ þ 3HHðt;pÞ�

þ ½2m2 þ 3ð1 − 6ξÞ _H� 1

ωðt;pÞ ½F ðt;pÞ þ Gðt;pÞ þ 1=2� −m2

ϵp
−

_H þH2

ϵp
ð1 − 6ξÞ

−
m2ð2 _H þ 3H2Þ

2ϵ3p
ð1 − 6ξÞ þH

��� þ 4 _H2 þ 7HḦ þ 12H2 _H
4ϵ3p

ð1 − 6ξÞ2


: ð49Þ
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We would like to emphasize once again that the use of
the dimensional regularization allowed us to extract the
divergent contributions preserving the gauge invariance as
well as the general covariance. Therefore, these contribu-
tions can be canceled by covariant counterterms in the
action. These counterterms will be determined in the next
subsection. It is important to note that not every regulari-
zation scheme leads to a covariant form of the counterterms
(e.g., a simple momentum cutoff does not). A relevant
instructive example in the Minkowski spacetime was
considered in Ref. [74].

D. Counterterms

In the previous subsections we extracted the UV diver-
gent parts of such physical observables as the electric
current, energy density, and pressure. Here we look for the
appropriate counterterms to cancel these divergences and
render the corresponding physical quantities finite.
The divergent parts (37), (46), and (47) depend on the

renormalization scale μr. In an inflating universe, a natural
choice would be μr ¼ He, where He is the Hubble
parameter at the end of inflation when the Schwinger pair
production takes place. However, the choice μr ¼ m is
more convenient because it allows us to use the values of
the electric charge e and other coupling constants deter-
mined experimentally. In such a case, their running to the
actual energy scale during inflation is automatically
encoded in the electric current and energy-momentum
tensor.
Let us first deal with the divergence in the electric current

(37). Since its dependence on the electric field is the same
as in the left-hand side of the Maxwell equation (32), the
counterterm has the usual form

SZ3
¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p Z3 − 1

4
FμνFμν: ð50Þ

It is easy to show that the choice

Z3 ¼ 1 −
e2

48π2
Δε ð51Þ

cancels the divergent contribution in the Maxwell equation.
HereΔε is defined in Eq. (B13). Indeed, instead of Eq. (32),
we obtain the following equation for the electric field:

½1þ ðZ3 − 1Þ�ð _E þ 2HEÞ ¼ e
a
ðjdiv þ jregÞ þ ðsourceÞ:

ð52Þ

Since the counterterm contribution on the left-hand side is
exactly the same as the divergent part of current (37) on the
right-hand side, the resulting equation contains only finite
quantities. The same result was obtained in Ref. [37] in the
case of a constant electric field in de Sitter spacetime and

coincides with the standard textbook expression for the
electromagnetic field renormalization constant in scalar
electrodynamics [75].
Thus, a system of equations describing the production of

charged scalar particles and their backreaction on the
electric field evolution consists of the three coupled kinetic
equations (25)–(27) and the Maxwell equation with renor-
malized current

_E þ 2HE ¼ −2e2
Z

d3p
ð2πÞ3 p

�
F ðt;pÞ þ Gðt;pÞ

ωðt;pÞ

−
p · ð _E þ 2HEÞ
8ðp2 þm2Þ5=2

�
þ ðsourceÞ: ð53Þ

The backreaction of the electromagnetic field and
charged particles on the universe expansion should be
taken into account too. For this, we should renormalize the
energy density and the pressure of produced scalar particles
obtained in Sec. III C. Let us start with the energy density
(46). Clearly, there is only one term which depends on the
electric field and which is exactly canceled by the Z3 term
coming from the electromagnetic energy density

δρZ3

EM ¼ ðZ3 − 1ÞE
2

2
¼ −

E2

96π2
Δε; ð54Þ

which is the 00 component of the effective energy
momentum tensor (C6). All remaining divergent terms
can be removed by additional counterterms in the
Lagrangian. Let us seek them in the following simple form:

Sct ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½a1 þ a2Rþ a3R2�; ð55Þ

where a1, a2, and a3 have to be determined by requiring the
cancellation of all divergent terms in the energy density of
the scalar field. While the first term corresponds to a
renormalization of the cosmological constant, the second
defines a correction to the Planck mass. The third term is
absent in the original gravitational action and its emergence
demonstrates the nonrenormalizability of the Einstein
gravity. Its appearance in typical matter loop radiative
corrections is one of the main reasons why Starobinsky
introduced his well-known R2-term in the action [71].
Varying action (55) with respect to the metric, we obtain

the following energy-momentum tensor:

Tμν
ct ¼ −

2ffiffiffiffiffiffi−gp δSct
δgμν

¼ −a1gμν þ a2ð2Rμν −RgμνÞ

þ 4a3

�
RRμν −

1

4
R2gμν − ð∇μ∇ν − gμν∇λ∇λÞR

�
ð56Þ

whose 00 component defines the energy density.
Calculating it for a spatially flat FLRW metric, we find
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ρct ¼ −a1 þ 6H2a2 − 36a3ð2HḦ − _H2 þ 6H2 _HÞ; ð57Þ

which has exactly the same functional dependence on H
and its derivatives as the divergent terms in the energy
density of the scalar field (46). Then the condition
ρdivχ þ ρct ¼ 0 determines the following renormalization
constants:

a1 ¼ −
m4

32π2
Δε; ð58Þ

a2 ¼
�
ξ −

1

6

�
m2

16π2
Δε; ð59Þ

a3 ¼ −
�
ξ −

1

6

�
2 1

32π2
Δε: ð60Þ

These expressions are the same as in the usual 1-loop
renormalization in the Green’s functions formalism (see,
e.g., Refs. [76,77]). In addition, there is also a counterterm
proportional to CμναβCμναβ, where Cμναβ is the Weyl tensor.
However, for the FLRW metric, which is conformally flat,
this tensor identically vanishes. This is why such a
counterterm is not needed in our case.
Finally, we check that counterterms (55) cancel also

the divergence in the trace of the energy momentum
tensor (47). The trace of the effective energy-momentum
tensor of counterterms (56) equals

Tct ¼ gμνT
μν
ct ¼ −4a1 − 2Ra2 þ 12a3∇λ∇λR: ð61Þ

Taking into account that R ¼ −6ð _H þ 2H2Þ, ∇λ∇λR ¼
R̈þ 3H _R ¼ −6ðH��� þ 4 _H2 þ 7HḦ þ 12H2 _HÞ, and using
Eqs. (58)–(60), we find

Tct ¼
	
m4

8π2
− ð1 − 6ξÞm

2ð _H þ 2H2Þ
8π2

þ ð1 − 6ξÞ2H
��� þ 4 _H2 þ 7HḦ þ 12H2 _H

16π2



Δε: ð62Þ

Comparing this expression with Eq. (47), we conclude
that the sum Tdiv

χ þ Tct identically vanishes. Thus, all
divergences are canceled and no new counterterms are
needed.

IV. KINETIC COUPLING MODEL

Having determined in the previous subsection the
renormalized equations for the electric current and
energy-momentum tensor, we could apply them to the
study of inflationary magnetogenesis. In this section, we
consider a specific model which generates strong electric
fields during inflation. In this model, the electromagnetic

field is coupled to the inflaton field through a modified
kinetic term

LEM ¼ −
1

4
f2ðϕÞFμνFμν ð63Þ

with coupling function fðϕÞ monotonously decreasing in
time. It has to be always larger than unity in order to avoid
the strong coupling regime [65] and tend to the value f ¼ 1
at the end of preheating (when the inflaton stops in the
minimum of its potential). We would like to mention that
the Lagrangian (63) cannot be represented in the form (3);
however, the corresponding Maxwell equation for E has
exactly form (32) with the redefinition e → eeff ¼ e=f
[49]. Here eeff is the effective charge of scalar particles in
the kinetic coupling model, the corresponding effective
electric field is Eeff ¼ fE, while the quantity E ¼ eE ¼
eeffEeff is the same as in the absence of the kinetic coupling
with the inflaton field when f ¼ 1.
The full action is given by Eq. (1) with counterterms (50)

and (55). For simplicity, we consider the conformal
coupling ξ ¼ 1=6 in this and the next sections. As was
shown in Ref. [42], the equation for the electric energy
density has to be supplied with a boundary term which
describes the quantum-to-classical transition of the electro-
magnetic modes crossing the Hubble horizon during
inflation. Let us assume that in some large space region
an almost uniform electric field is being generated during
inflation. Projecting Eq. (53) on the direction of this field,
we finally get [49]

_E þ 2HE þ 2
_f
f
E ¼ eeff

a
jk þ

e2effH
3

4π2E
½H2 þ ð _f=fÞ2�: ð64Þ

Here, the last term on the left-hand side is the source of the
electric field which was not specified in Eqs. (32) and (53)
while the last term on the right-hand side is the above-
mentioned boundary term. It is worth noting that the latter
term is essential for the generation of the electric field
during inflation but has to be excluded from Eq. (64) after
the end of inflation when no new modes cross the Hubble
horizon.
The longitudinal component of the electric current with

subtracted UV divergence equals

jk ¼−2aeeff
Z

d3p
ð2πÞ3pk

�
F ðt;pÞþGðt;pÞ

ωðt;pÞ −
pkð _Eþ2HEÞ
8ðp2þm2Þ5=2

�
:

ð65Þ

The transverse component of the electric current identically
vanishes because the kinetic functions F and G as well as
the counterterm are even functions of transverse momen-
tum and their integrals with factor p⊥ vanish.
The evolution of the inflaton field is defined by the

equation
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ϕ̈þ 3H _ϕþ dV
dϕ

¼ fðϕÞf0ðϕÞ
e2

E2: ð66Þ

The universe expansion is governed by the Friedmann
equations

H2 ¼ 1

3M2
p
ρðtotÞ ¼ 1

3M2
p

�
1

2
_ϕ2 þ VðϕÞ þ f2

2e2
E2 þ ρregχ

�
;

ð67Þ

_H ¼ −
1

2M2
p
ðρðtotÞ þ PðtotÞÞ

¼ −
1

2M2
p

�
_ϕ2 þ 2f2

3e2
E2 þ 4ρregχ − Treg

χ

3

�
; ð68Þ

where ρregχ and Treg
χ are the regular parts of the energy

density and the trace of the energy-momentum tensor of
charged scalar particles. In the case of conformal coupling
ξ ¼ 1=6, expressions (48)–(49) are significantly simplified
and take the form

ρreg;ξ¼1=6
χ ¼ −

3m4

64π2
þ
Z

d3p
ð2πÞ3

	
2ωðt;pÞ½F ðt;pÞ

þ 1=2� −HHðt;pÞ þ H2 þ _H
2ωðt;pÞ ½F ðt;pÞ

þ Gðt;pÞ þ 1=2� − ϵp −
ðp · EÞ2
8ϵ5p



; ð69Þ

Treg;ξ¼1=6
χ ¼ −

m4

8π2
þm2

Z
d3p
ð2πÞ3

	
2

ωðt;pÞ ½F ðt;pÞ

þ Gðt;pÞ þ 1=2� − 1

ϵp



: ð70Þ

In order to specify the inflaton dynamics, we consider
the Starobinsky model of inflation [71] with potential

VðϕÞ ¼ 3μ2M2
p

4

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

Mp

��2
; ð71Þ

where μ ≈ 1.3 × 10−5Mp. It belongs to the class of plateau
models favored by the Planck Collaboration observations
[72]. It is worth noting that we do not consider the
emergence of potential (71) from the R2 model and use
it solely for illustrative purposes. Any other flat potential
would apply.
The simplest choice for the coupling function fðϕÞ is

that of the Ratra model [16]

fðϕÞ ¼ exp

�
β

ϕ

Mp

�
; ð72Þ

where β is a free dimensionless coupling parameter which
takes values in the range 5≲ β ≲ 15.
The initial value of the inflaton field has to be chosen so

that to provide at least 50–60 e-foldings of inflation. For the
Starobinsky model, the corresponding value is

ϕ0 ≈
ffiffiffi
3

2

r
Mp ln

4N
3

≃ ð5.1–5.4ÞMp; for N ¼ 50–60: ð73Þ

The initial value of the inflaton time derivative can be found
from the Friedmann equation (67) and the scalar field
equation (66) in the slow-roll approximation

_ϕ0 ≈ −
V 0ðϕ0ÞMpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Vðϕ0Þ
p ¼ −

ffiffiffi
2

3

r
μMp exp

�
−

ffiffiffi
2

3

r
ϕ0

Mp

�

≈ −
μMp

2N

ffiffiffi
3

2

r
: ð74Þ

Here we used the fact that the initial value of the electric
field equals zero. The kinetic functions satisfy Eqs. (25)–
(27) where

Qðt;pÞ ¼Qξ¼1=6ðt;pÞ ¼ Epk −Hp2 − 1
4
H _H − 1

4
Ḧ

m2 þ p2 − 1
4
H2 − 1

2
_H

: ð75Þ

The initial values of all kinetic functions are equal to zero.
In the next section we apply the system of equations
derived above and numerically study the Schwinger pair
creation in the kinetic coupling model.
If the generated electromagnetic field and charged

particles do not backreact on the universe expansion, the
inflaton evolution can be determined independently. This
simplified treatment is valid if the energy density of the
produced electric field and charged particles is less than
ϵVρinf [42], where ϵV ¼ ðM2

p=2ÞðV 0=VÞ2 is the slow-roll
parameter and ρinf ≃ VðϕÞ is the energy density of the
inflaton. For the Starobinsky potential (71), we get

expð2βϕ=MpÞ
2e2

E2 þ ρχ ≲ μ2M2
p exp

�
−2

ffiffiffi
2

3

r
ϕ

Mp

�
: ð76Þ

If this condition is violated, the inflaton evolution cannot be
treated separately and the backreaction has to be taken into
account.

V. NUMERICAL RESULTS

In this section, we present numerical solutions to the
system of equations derived above. First, we consider a
small value of the coupling parameter β ¼ 6 for which
condition (76) is satisfied during the whole period of
inflation and after it, i.e., the backreaction does not occur.
The time dependence of different components of the energy
density is shown in Fig. 1. The electric energy density is
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depicted by the red solid line, and the energy density of
charged scalar particles produced due to the Schwinger
effect is shown by the blue dashed line. The total energy
density of the universe is given by the green dashed-dotted
line and is, in fact, several orders of magnitude larger than
the former ones.
As usual in the Ratra model, the electric energy density

grows most intensively at the end of inflation (let us remind
the reader that there are N ¼ 60 e-foldings before the end
of inflation which ends at μte ≈ 2N ¼ 120). The effective
charge eeff ¼ e=f is suppressed by the Ratra coupling
function unless the inflaton field is close to zero. Therefore,
the Schwinger effect turns on only when inflation ends. The
energy density of charged particles quickly grows until it
reaches a value comparable to the energy density of the
electric field. Produced charged particles, accelerated by a
strong electric field, give rise to a current density (shown by
the black dotted line in Fig. 1) which affects the electric
field evolution and the latter starts to decrease. It quickly
reaches the zero value and changes direction; however,
charged particles continue to move inertially in the same
direction. Therefore, a retardation between the electric field
and current appears which is clearly seen from Fig. 1. As a
result, an oscillatory behavior of electric field emerges.
This qualitatively new result was first discovered by us
in Ref. [49].
It is interesting to compare our results with those in the

literature. First of all, it was found [24,29] that the
Schwinger current of scalar particles in a strong constant
electric field jEj ≫ H2 in de Sitter spacetime has the form

jk ¼ −aeeff
E2

12π3H
signðEÞ: ð77Þ

It is possible to assume that the same functional depend-
ence is true for a time-varying electric field and the electric
current is determined by the electric field at the same
moment of time. Obviously, the electric current in this
approach, which is widely used in the literature [24,40,42],
has a Markovian character. The electric field in this case is a
decreasing function without sign-changing oscillations.
In Ref. [49], we attempted a kinetic description of the

Schwinger effect in inflationary magnetogenesis. The
Schwinger pair production was incorporated in the kinetic
equation by means of a local in time source term. More
precisely, the right-hand side of Eq. (25) was replaced
with the following function of electric field and kinetic
function F :

SðE;F Þ ¼ ð1þ 2F Þ
ffiffiffiffiffiffi
jEj

p
exp

�
−π

m2 þ p2

jEj
�
: ð78Þ

This function was chosen requiring that it gives at F ¼ 0

the correct expression for the pair production rate Γ ¼
E2 expð−πm2=jEjÞ=ð2πÞ3 [21–23] and takes into account
the Bose enhancement through the factor ð1þ 2F Þ.
Moreover, we considered [49] also a hydrodynamical

approach based on the following system of equations
governing the evolution of the number density nχ, energy
density ρχ, and conduction current jcond of produced
particles:

dnχ
dt

þ 3Hnχ ¼ 2Γ; ð79Þ

dρχ
dt

þ 4Hρχ ¼ Eðjcond þ jpolÞ; ð80Þ

djcond
dt

þ 3Hjcond ¼ E
n2χ − j2cond

ρχ
: ð81Þ

Here the currents are normalized in such a way that the full
current appearing on the right-hand side of Eq. (64) is
expressed as jk ¼ −aeeffðjcond þ jpolÞ. The polarization
current jpol is caused by virtual particles and antiparticles
in the process of their creation from vacuum. It can be
estimated as jpol ≃ signðEÞΓ= ffiffiffiffiffiffijEjp

with a numerical pre-
factor of order unity which depends on the specific form of
the source function SðE;F Þ. The hydrodynamical
approach describes the retardation of the current with
respect to the electric field; however, it does not take into
account the effects of quantum statistics (i.e., the induced
pair production for bosons and the Pauli blocking for
fermions).
We compare the time evolution of the electric energy

density calculated in all above-mentioned approaches with
that in the first-principles quantum kinetic approach devel-
oped in this paper and shown by the red solid line in Fig. 2.
We compare it in panel (a) with the result of the

FIG. 1. Time dependence of the electric energy density (red
solid line), the energy density of charged scalar particles
produced due to the Schwinger effect (blue dashed line), and
the total energy density of the universe (green dashed-dotted line)
calculated in the kinetic approach for the coupling parameter
β ¼ 6. Black dotted line shows the absolute value of the electric
current (in arbitrary units).
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hydrodynamical approach (blue dashed line) and with the
case where the Schwinger current is given by Eq. (77)
(green dashed-dotted line). The time evolution in the
absence of the Schwinger effect is plotted by black dotted
line. There are several features which we would like to
point out. First of all, as we have already mentioned, the
non-Markovian dependence of an electric current on the
electric field leads to an oscillatory behavior in contrast to
the case with the Ohmic current. Second, the frequency of
oscillations of the electric energy density in the quantum
kinetic theory is somewhat higher than in the hydrody-
namical approach. This is because the effects of the
quantum statistics are not taken into account in the latter
case. In fact, the Bose enhancement of the Schwinger
source which is encoded in the factor ð1þ 2F Þ on the
right-hand side of Eq. (26) leads to a faster growth of
current and, as a result, to a more rapid change of electric
field. For the same reason, the amplitude of oscillations is
lower in the quantum kinetic theory approach. Note that the
results of both approaches are in good agreement during the
first three oscillations when the kinetic function F is small
compared to unity and the Bose enhancement is negligible.
Figure 2(b) compares the results obtained in the quantum

kinetic approach developed in this paper (red solid line) and
in the phenomenological kinetic theory [49] (blue dashed
line). Although they both predict an oscillatory behavior of
the electric energy density, the frequency and amplitude of
these oscillations drastically differ in these two cases.
During the first few oscillations they more or less agree;
however, later the phenomenological kinetic theory gives a
rapidly oscillating solution with abruptly decreasing ampli-
tude. This difference is caused by a different form of the
Schwinger source. Indeed, the source term (78) is local in
time andmomentum in the phenomenological kinetic theory
[49]. This means that the production of particles in a certain
mode p is proportional to the filling factor ð1þ 2F ðpÞÞ of

this mode. Thus, if there are many particles with a given
momentum, their production is strongly enhanced. In
particular, this leads to continuous and avalanchelike
enhancement of modes with small momenta p≲ ffiffiffiffiffiffijEjp
leading to a high and sharp peak in the particle distribution.
In contrast to this, in the quantum kinetic approach of the
present paper, we have a source term which is nonlocal both
in time and momentum. Although the Bose enhancement
factor is not present directly on the right-hand side of the
quantumVlasov equation (25), it is hidden in another kinetic
equation describing the evolution of the source term. As a
result, the particle production is determined by the distri-
bution function in all preceding moments of time and for all
possible momenta. This smooths peaks in the distribution
function and leads to slower changes of current.
We would like to remind the reader that the hydrody-

namical approach (79)–(81) was derived from the phe-
nomenological kinetic theory with the local source term
(78) adopting some additional approximations: (i) neglect-
ing the Bose enhancement and (ii) assuming that all
particles have the same momentum. Nevertheless, for small
β, we have a paradoxical situation when the result of the
phenomenological kinetic theory is in worse accordance
with the first-principles quantum kinetic theory prediction
than the result of the hydrodynamical approach. This can be
explained by the fact that, for small β, the avalanche-
like production of the particles caused by the local factor
ð1þ 2F Þ in the phenomenological kinetic theory does not
occur in the real situation. In fact, for β ¼ 6, the maximal
value of the enhancement factor is of order 10 and is
achieved only for an extremely small range of momenta.
Typically, however, ð1þ 2F Þ ¼ Oð1Þ and the hydrody-
namical description appears to be quite accurate. Naturally,
this approximation fails for larger values of β.
It is often assumed in the literature that the universe

expansion can be neglected in the description of the

(a) (b)

FIG. 2. (a) Time dependence of the electric energy density calculated in the quantum kinetic theory (red solid line), in the
hydrodynamical approach (blue dashed line), and with the Schwinger current of the Ohmic form (77) (green dashed-dotted line). Black
dotted line shows the time dependence of the electric energy density in the absence of the Schwinger effect. (b) The evolution of the
electric energy density in the quantum kinetic theory developed in this paper (red solid line) and in the phenomenological kinetic theory
of Ref. [49] (blue dashed line). In both panels, the coupling parameter equals β ¼ 6.
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Schwinger pair production process. For instance, in the
phenomenological kinetic theory of Ref. [49], the
Schwinger source term in the kinetic equation was taken
in the same form as in flat spacetime. In the quantum
kinetic theory of this work the analog of the Schwinger
source is the right-hand side of Eq. (25) which contains the
product Qðt;pÞGðt;pÞ. Neglecting the universe expansion
in this term means setting H ¼ 0 in the definition of Q-
function (75) as well as in Eqs. (26)–(27). To check the
validity of this assumption, we determined the electric
energy density and the energy density of scalar particles
produced by the Schwinger effect in the approximation
described above. These are shown by blue dashed lines in
Figs. 3(a) and 3(b), respectively, in comparison with the
case of full quantum kinetic theory in an expanding
universe (red solid lines). During the first few oscillations
(when the electric field is the strongest) the results are in

good agreement, while later the particle production is
slightly more effective in the case when the expansion is
neglected. This can be explained by the following argu-
ments. In the full quantum kinetic theory the Schwinger
source is nonlocal in time and momentum because it takes
into account that the virtual particles and antiparticles are
created at some earlier moments of time. Before becoming
real they are accelerated by the electric field and their
momenta are redshifted due to the universe expansion. If
the latter effect is neglected, the energy density of newly
produced particles is greater than in the case with expan-
sion. However, this effect is important only if the pair
creation time is sufficiently large so that this redshift is
significant, i.e. in the weak electric field. In fact, the
deviation between the dashed and solid curves in Fig. 3(b)
is significant only at late times when the electric field
is weak.

(a) (b)

FIG. 3. Time evolution of the electric energy density (a) and the energy density of scalar particles produced due to the Schwinger effect
(b) calculated in the quantum kinetic theory described in an expanding universe (red solid line) and in the case when the expansion is
neglected in the Schwinger source (blue dashed line). Black dotted line in (b) shows the scaling ∼1=a4ðtÞ in an expanding universe. The
coupling parameter equals β ¼ 6.

(a) (b)

FIG. 4. (a) Time dependence of the electric energy density (red solid line), the energy density of scalar charged particles produced due
to the Schwinger effect (blue dashed line), and the total energy density of the universe (green dashed-dotted line) calculated in the kinetic
approach. (b) Time dependence of the electric energy density calculated in the quantum kinetic method (red solid line) and the
hydrodynamical approach (blue dashed line). Black dotted line shows the time dependence of the electric energy density in the absence
of the Schwinger effect. In both panels, the coupling parameter β ¼ 10.

SOBOL, GORBAR, MOMOT, and VILCHINSKII PHYS. REV. D 102, 023506 (2020)

023506-12



Finally, let us say a few words about the backreaction.
For the coupling parameter β ¼ 10, we plot the time
dependence of the electric energy density (red solid line),
the energy density of charged particles (blue dashed line),
and the total energy density (green dashed-dotted line) in
Fig. 4(a). One can see that at μt ≈ 120 the electric energy
density becomes close to that of the inflaton and the
backreaction regime occurs. In this regime the energy
density of the universe is dominated first by electric field
and later by charged particles produced due to the
Schwinger effect realizing the Schwinger reheating sce-
nario. The electric field demonstrates an oscillatory behav-
ior, but with the frequency of oscillations much higher than
for β ¼ 6. This is because the electric field is much stronger
now and produces scalar particles much more effectively. It
was shown [49] that the period of oscillations equals
tosc ∼ ðeeffTÞ−1, where temperature T ∼ ρ1=4χ is determined
by the energy density of produced particles. Since the latter
is 4 orders of magnitude larger for β ¼ 10 than for β ¼ 6,
the oscillation frequency is almost 10 times higher in the
former case.
Figure 4(b) compares the time dependence of the electric

energy density calculated in the first-principles quantum
kinetic method (red solid line) with that in the hydrody-
namical approach (blue dashed line). As in the case β ¼ 6,
here we also observe that the frequency of oscillations in
the hydrodynamical approach are less frequent because the
Bose enhancement is not taken into account.

VI. CONCLUSION

Using the first-principles quantum kinetic method, we
studied the dynamics of the Schwinger effect for charged
scalar particles in an inflation-produced electric field.
Calculating the Bogolyubov coefficients, we derived a
set of quantum kinetic equations describing the process
of the pair creation. The quantum Vlasov equation (25) for
the momentum distribution function F acquires a source
term which is nonlocal in time and determined by
Eqs. (26)–(27). This system takes into account the universe
expansion and the effects of quantum statistics (Bose
enhancement).
We investigated the asymptotic behavior of the kinetic

functions at large momentum and determined UV diver-
gences in the electric current and the energy-momentum
tensor. Using the dimensional regularization, we found
counterterms ensuring the finiteness of the physical quan-
tities which enter the Maxwell and Friedmann equations.
The latter together with the three kinetic equations describe
self-consistently the evolution of the electric field and
produced charged scalar particles in an expanding universe.
This system of equations is the central result of our paper.
There are several approaches to the description of the

Schwinger effect in a homogeneous electric field in
the early universe with a different amount of assumptions.
The present work finalizes their hierarchy:

(1) The most straightforward and naive approach is to
use the Schwinger current calculated in a constant
electric field in de Sitter spacetime [24,29,30]. In the
strong field regime eE ≫ H2, it is given by Eq. (77).
Generalizing this dependence to the case of a time-
varying electric field, one gets a local in time
Schwinger current.

(2) The hydrodynamical approach, based on Eqs. (79)–
(81), was proposed in Ref. [49]. Here, the conduc-
tion current is nonlocal in time and is determined
from an ordinary differential equation coupled to the
Maxwell equation. This implies a qualitatively new
effect of retardation of the current with respect to
electric field. This approximation, however, does not
take into account the effects of quantum statistics on
the pair creation process.

(3) The phenomenological kinetic theory considered in
Ref. [49] also leads to a retarded conduction current
which is determined from the Boltzmann kinetic
equation with the source term local in time (78). The
source was constructed phenomenologically taking
into account the quantum statistics of created par-
ticles and assuming that the creation rate depends
only on the filling number of a given mode at the
same moment of time.

(4) Finally, in the present work, the source term on the
right-hand side of Eq. (25) is nonlocal in time itself
and is determined from two additional kinetic
equations (26)–(27). Being derived from the quan-
tum field theory, the Schwinger source now takes
into account the non-Markovian character of the pair
creation process. Moreover, it captures the impact of
the universe expansion even on the momenta of a
virtual particle and antiparticle being accelerated by
the electric field. Although this effect is small in the
strong electric field jeEj ≫ H2, it may significantly
decrease the energy density of charged particles
produced by a weak electric field.

As a test bed for our formalism, we used the kinetic
coupling model LEM ¼ −f2ðϕÞFμνFμν=4 of the electro-
magnetic field to the inflaton because it naturally provides a
strong long-range electric field which then drives the
Schwinger effect. In fact, due to decreasing in time
coupling function f, electric fields generated in this model
are much stronger than the magnetic ones so that the latter
can be neglected [42,64,65]. We use the one-parametric
Ratra coupling function fðϕÞ ¼ expðβϕ=MpÞ which can
produce electric fields of different strengths.
For small coupling parameter β ¼ 6, the electric energy

density does not cause the backreaction on the background
evolution. In this case, the energy density of created
charged particles is also much less than that of the inflaton
and the Schwinger effect plays a small role in the universe
reheating. In accordance with our previous study [49], we
observe an oscillatory behavior of the electric field which
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can be explained by the inertial properties of the electric
current. During these oscillations the amplitude of the
electric field slowly decreases due to the universe expan-
sion in contrast to a naive expectation that the Schwinger
effect should abruptly reduce the electric field. These are
good news from the viewpoint of magnetogenesis because
the magnetic field can in principle be enhanced by a (much
stronger) oscillating electric field [43].
For larger coupling parameter β ¼ 10, the electric field is

much stronger and affects the universe expansion slowing
down the inflaton and prolongating the inflation stage.
Moreover, charged particles produced by this strong
electric field constitute a large fraction of the energy
density of the universe. This leads to the Schwinger
reheating [42,46,49] which must be also considered as a
complementary scenario in addition to the usual ones with
the inflaton decay and parametric resonance [78,79]. The
electric field also exhibits an oscillatory behavior; however,
the frequency is much higher because of the higher particle
production rate.
In our work, we considered by using the quantum kinetic

method only the case of scalar charged particles produced
by the electric field. Needless to say, an extension to the
case of fermionic charge carriers is definitely the next
necessary step. In addition, it would be important to take
into account the thermalization of produced particles due to
collisions and the reduction of the electric current due to
annihilation processes of the charge carriers. These issues
are technically complicated and deserve a separate inves-
tigation. Another important issue is the axial coupling
model Laxial ¼ −IðϕÞFμνF̃μν, where generated magnetic
fields can be as strong as the electric ones [17,38,39,80].
Therefore, it is much desirable and would be very interest-
ing to study the impact of the magnetic field on the
Schwinger pair creation in the first-principles quantum
kinetic approach. We plan to address this issue elsewhere.
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APPENDIX A: ASYMPTOTIC UV EXPANSIONS
OF KINETIC FUNCTIONS

In this Appendix, we investigate the asymptotic UV
behavior of the kinetic functions satisfying the system of

Eqs. (25)–(27). First of all, we expand all coefficients in the
kinetic equations in inverse powers of momentum, i.e.,

ωðt;pÞ ¼ pþ ωð−1Þ þOðp−3Þ; ðA1Þ

Qðt;pÞ ¼ Qð0Þ þQð−1Þ þQð−2Þ þOðp−3Þ; ðA2Þ

where

ωð−1Þ ¼ 4m2 þ ð24ξ − 6Þ _H þ ð48ξ − 9ÞH2

8p
; ðA3Þ

Qð0Þ ¼ −H; ðA4Þ

Qð−1Þ ¼ E · p
p2

; ðA5Þ

Qð−2Þ¼4Hm2þð12ξ−3ÞḦþð72ξ−15ÞH _Hþð48ξ−9ÞH3

4p2
:

ðA6Þ

We decompose also the complete time derivative on the
left-hand side of Eqs. (25)–(27) into two differential
operators

d
dt

¼ L̂ð0Þ þ L̂ð−1Þ; L̂ð0Þ ¼ ∂
∂t−Hp

∂
∂p ; L̂ð−1Þ ¼E

∂
∂p :
ðA7Þ

Obviously, the application of the operator L̂ð0Þ does not
change the UV behavior of the corresponding functions
while the application of L̂ð−1Þ decreases the power of
momentum by unity.
In the beginning of Sec. III A, we determined the leading

terms of the power expansion of the kinetic functions. We
have

F ðt;pÞ ¼ F ð−2Þ þ F ð−3Þ þ F ð−4Þ þOðp−5Þ; ðA8Þ

Gðt;pÞ ¼ Gð−2Þ þ Gð−3Þ þ Gð−4Þ þOðp−5Þ; ðA9Þ

Hðt;pÞ ¼ Hð−1Þ þHð−2Þ þHð−3Þ þOðp−4Þ: ðA10Þ

Substituting these expansions together with Eqs. (A1)–
(A6) into the Vlasov equations (25)–(27) and separating
terms with different powers of momentum, we obtain the
following chain of equations:

2pHð−1Þ þ 1

2
Qð0Þ ¼ 0; ðA11Þ

2pHð−2Þ þ 1

2
Qð−1Þ ¼ 0; ðA12Þ
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2pHð−3Þ þ 2ωð−1ÞHð−1Þ þQð0ÞF ð−2Þ þ 1

2
Qð−2Þ

− L̂ð0ÞGð−2Þ ¼ 0; ðA13Þ

L̂ð0ÞHð−1Þ þ 2pGð−2Þ ¼ 0; ðA14Þ

L̂ð0ÞHð−2Þ þ L̂ð−1ÞHð−1Þ þ 2pGð−3Þ ¼ 0; ðA15Þ

L̂ð0ÞHð−3Þ þ L̂ð−1ÞHð−2Þ þ 2pGð−4Þ þ 2ωð−1ÞGð−2Þ ¼ 0;

ðA16Þ

L̂ð0ÞF ð−2Þ −Qð0ÞGð−2Þ ¼ 0; ðA17Þ

L̂ð0ÞF ð−3Þ þ L̂ð−1ÞF ð−2Þ −Qð0ÞGð−3Þ −Qð−1ÞGð−2Þ ¼ 0;

ðA18Þ

L̂ð0ÞF ð−4Þ þ L̂ð−1ÞF ð−3Þ −Qð0ÞGð−4Þ −Qð−1ÞGð−3Þ

−Qð−2ÞGð−2Þ ¼ 0: ðA19Þ

Equation (A11) gives

Hð−1Þ ¼ −
1

4p
Qð0Þ ¼ H

4p
: ðA20Þ

While Eq. (A12) implies

Hð−2Þ ¼ −
1

4p
Qð−1Þ ¼ −

p · E
4p3

: ðA21Þ

Equation (A14) leads to

Gð−2Þ ¼ −
1

2p
L̂ð0ÞHð−1Þ

¼ −
1

2p

� ∂
∂t −Hp

∂
∂p

�
H
4p

¼ −
_H þH2

8p2
: ðA22Þ

Equation (A15) produces

Gð−3Þ ¼ −
1

2p
½L̂ð0ÞHð−2Þ þ L̂ð−1ÞHð−1Þ�

¼ 1

2p

� ∂
∂t −Hp

∂
∂p

�
p · E
4p3

−
1

2p
E

∂
∂p

H
4p

¼ p · ð _E þ 3HEÞ
8p4

: ðA23Þ

It follows from Eq. (A17) that

L̂ð0ÞF ð−2Þ ¼ Qð0ÞGð−2Þ ¼ H
2p

L̂ð0Þ H
4p

¼ L̂ð0Þ
�
H
4p

�
2

;

⇒ F ð−2Þ ¼ H2

16p2
: ðA24Þ

Equation (A18) provides

L̂ð0ÞF ð−3Þ ¼ Qð0ÞGð−3Þ þQð−1ÞGð−2Þ − L̂ð−1ÞF ð−2Þ

¼ −
H
2p

L̂ð0Þ p · E
4p3

þ H
2p

L̂ð−1Þ H
4p

−
E · p
2p3

L̂ð0Þ H
4p

− L̂ð−1Þ
�
H
4p

�
2

¼ −2
�
H
4p

L̂ð0Þ p · E
4p3

þ p · E
4p3

L̂ð0Þ H
4p

�
¼ L̂ð0Þ −Hp · E

8p4
; ⇒ F ð−3Þ ¼ −

Hp · E
8p4

: ðA25Þ

Equation (A13) implies

Hð−3Þ ¼ 1

2p

�
L̂ð0ÞGð−2Þ −

1

2
Qð−2Þ −Qð0ÞF ð−2Þ − 2ωð−1ÞHð−1Þ

�
¼ ð1 − 6ξÞðḦ þ 7H _H þ 6H3Þ − 3m2H

8p3
: ðA26Þ

Equation (A16) leads to

Gð−4Þ ¼ −
1

2p
½L̂ð0ÞHð−3Þ þ L̂ð−1ÞHð−2Þ þ 2ωð−1ÞGð−2Þ� ¼ E2 − 3ðp · EÞ2=p2

8p4

− ð1 − 6ξÞH
��� þ 8 _H2 þ 10HḦ þ 42H2 _H þ 20H4

16p4
−
2 _H2 þ 3H2 _H þH4 − 40m2H2 − 16m2 _H

64p4
: ðA27Þ

Finally, Eq. (A19) gives
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L̂ð0ÞF ð−4Þ ¼ Qð0ÞGð−4Þ þQð−1ÞGð−3Þ þQð−2ÞGð−2Þ − L̂ð−1ÞF ð−3Þ

¼ ðp · EÞðp · _EÞ
8p6

þHðp · EÞ2
4p6

þ 4HH
��� þ 64H _H2 þ 46H2Ḧ þ 219H3 _H þ 99H5 þ 6 _H Ḧ−24m2H _H − 48m2H3

64p4

−
3ξðHH

��� þ 14H _H2 þ 11H2Ḧ þ 52H3 _H þ 24H5 þ _H ḦÞ
8p4

: ðA28Þ

We look for a solution to Eq. (A28) in the following form:

F ð−4Þ ¼ ðp · EÞ2
16p6

þ Ψ
64p4

;

Ψ ¼ c1HḦ þ c2H2 _H þ c3 _H
2 þ c4H4 − c5m2H2:

ðA29Þ

Substituting Eq. (A29) into Eq. (A28), we arrive at the
system of 8 linear equations for 5 coefficients ci

c1 ¼ 4ð1 − 6ξÞ; ðA30Þ

c1 þ 2c3 ¼ 6ð1 − 4ξÞ; ðA31Þ

2c2 þ 4c3 ¼ 16ð4 − 21ξÞ; ðA32Þ

4c1 þ c2 ¼ 2ð23 − 132ξÞ; ðA33Þ

4c2 þ 4c4 ¼ 219 − 1248ξ; ðA34Þ

4c4 ¼ 99 − 576ξ; ðA35Þ

2c5 ¼ 24; ðA36Þ

4c5 ¼ 48: ðA37Þ

Among Eqs. (A30)–(A37), only five are independent.
Hence, the following unique solution for this system exists:

c1 ¼ 4ð1 − 6ξÞ; c2 ¼ 28ð1 − 6ξÞ þ 2; c3 ¼ 1;

c4 ¼ 24ð1 − 6ξÞ þ 3

4
; c5 ¼ 12: ðA38Þ

Therefore, we obtain

F ð−4Þ ¼ ðp · EÞ2
16p6

þ ð1 − 6ξÞHḦ þ 7H2 _H þ 6H4

16p4

þ
_H2 þ 2H2 _H þ 3

4
H4 − 12m2H2

64p4
: ðA39Þ

Thus, we found a few leading terms in the asymptotic
behavior of the kinetic functions F , G, and H for p → ∞.
However, the decomposition in inverse powers of momen-
tum is not very useful for the calculation of the electric
current, energy density, and other observables because the
integration over momentum would lead to infrared diver-
gences. Therefore, we rewrite the decompositions in terms
of inverse powers of the particle’s energy ϵp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

Actually, we substitute p−n ¼ ϵ−np ½1þ n
2
m2

ϵ2p
þOðϵ−4p Þ� and

combine the terms with the same power of ϵp. Obviously,
this procedure does not change the first two leading order
coefficients in each Laurent series while the third one is
modified in an appropriate way. Finally, we get
Eqs. (28)–(30).

APPENDIX B: DIMENSIONAL
REGULARIZATION

In this Appendix, we apply the dimensional regulariza-
tion in order to extract the divergent part of the correspond-
ing integrals in momentum space. Let us consider the
following general integral:

Iα;β ¼
Z

d3p
ð2πÞ3 ðp

2Þαðp2 þm2Þβ: ðB1Þ

Generalizing it to a d-dimensional spacetime [one time
dimension and (d − 1) space dimensions], we have

IðdÞα;β¼
μ4−dr

ð2πÞd−1
Z

dΩd−1

Z
∞

0

dppd−2þ2αðp2þm2Þβ; ðB2Þ

where μr is a free parameter with the dimension of mass
introduced in order to restore the correct dimension of Iα;β
and dΩd−1 is the element of the solid angle in (d − 1)-
dimensional space. As is well known, the full solid angle
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equals Ωd−1 ¼ 2πðd−1Þ=2=Γ½ðd − 1Þ=2�, where ΓðzÞ is the
Euler’s gamma function. Performing the change of varia-
bles p2 þm2 ¼ m2=τ, we obtain

Iα;β ¼
�

m2

4πμ2r

�d−4
2 m2αþ2βþ3

8π3=2Γðd−1
2
Þ

×
Z

1

0

dτð1 − τÞd−12 þα−1τ−
d−1
2
−α−β−1

¼
�

m2

4πμ2r

�d−4
2 m2αþ2βþ3

8π3=2
Γðd−1

2
þ αÞΓð− d−1

2
− α − βÞ

Γðd−1
2
ÞΓð−βÞ ;

ðB3Þ

where we used the integral representation for the Euler’s
beta function

Bðz; wÞ ¼
Z

1

0

dττz−1ð1 − τÞw−1 ðB4Þ

and its relation to the Euler’s gamma function

Bðz; wÞ ¼ ΓðzÞΓðwÞ
Γðzþ wÞ : ðB5Þ

In the subsequent expansion, we will use the well-known
recurrence relation of the gamma function

Γðzþ 1Þ ¼ zΓðzÞ ðB6Þ

and the asymptotic behavior in the vicinity of its simple
pole at z ¼ 0

ΓðzÞ ¼ 1

z
− γE þOðzÞ; for z → 0; ðB7Þ

where γE ≈ 0.577… is the Euler-Mascheroni constant.
The main idea of the dimensional regularization is to

calculate the integral for an arbitrary d and then consider
the limit d ¼ 4 − ε, ε → 0, i.e., restore the real dimension-
ality of the spacetime. If the initial integral is UV divergent,
there will be some terms which blow up at ε → 0. This
divergent part can be easily extracted in the final expres-
sion. Let us consider a few particular cases:

Z
d3p
ð2πÞ3 ϵp → IðdÞ

0;1
2

¼ −
m4

16π2

�
m2

4πμ2r

�−ε
2 Γðε

2
Þ

ð1 − ε
2
Þð2 − ε

2
Þ ¼ −

m4

32π2

�
2

ε
− γE − ln

�
m2

4πμ2r

�
þ 3

2
þOðεÞ

�
; ðB8Þ

Z
d3p
ð2πÞ3

1

ϵp
→ IðdÞ

0;−1
2

¼ −
m2

8π2

�
m2

4πμ2r

�−ε
2 Γðε

2
Þ

ð1 − ε
2
Þ ¼ −

m2

8π2

�
2

ε
− γE − ln

�
m2

4πμ2r

�
þ 1þOðεÞ

�
; ðB9Þ

Z
d3p
ð2πÞ3

1

ϵ3p
→ IðdÞ

0;−3
2

¼ 1

4π2

�
m2

4πμ2r

�−ε
2

Γ
�
ε

2

�
¼ 1

4π2

�
2

ε
− γE − ln

�
m2

4πμ2r

�
þOðεÞ

�
; ðB10Þ

Z
d3p
ð2πÞ3

vivj
ϵ3p

→ δij
1

ðd − 1Þ I
ðdÞ
1;−5

2

¼ δij
1

3
IðdÞ
0;−3

2

¼ δij
12π2

�
2

ε
− γE − ln

�
m2

4πμ2r

�
þOðεÞ

�
; ðB11Þ

where in the last equation we used the fact that

hvivjiΩ ¼ p2

ϵ2p

δij
d − 1

: ðB12Þ

There are many ways to extract the divergent contribu-
tion. In particular, in the minimal subtraction (MS) scheme,
one subtracts only the term 2=ε which blows up for ε → 0.
However, one may also subtract any constant together with
this infinite term. We will use the modified minimal

subtraction scheme (MS scheme), where one subtracts
the quantity

Δε ¼
2

ε
− γE þ lnð4πÞ: ðB13Þ

APPENDIX C: THE CALCULATION OF
ENERGY-MOMENTUM TENSOR

The energy-momentum tensor of charged scalar particles
produced due to the Schwinger effect has the form
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Tμν
χ ¼ hðDμχÞ†ðDνχÞ þ ðDνχÞ†ðDμχÞi − gμνhðDλχÞ†ðDλχÞ −m2jχj2i

þ 2ξhjχj2i
�
Rμν −

1

2
Rgμν

�
− 2ξhð∇μ∇ν − gμν∇λ∇λÞjχj2i; ðC1Þ

where the identity δgαβ=δgμν ¼ −gμαgνβ was used. Taking the 00 component as well as the trace of this energy-momentum
tensor, we arrive at Eqs. (41)–(42). Using Eq. (7) and calculating the vacuum expectation value, we obtain the following
results in terms of the mode function χk:

ρχ ¼
Z

d3k
ð2πaÞ3

	
j_χk −

3

2
Hχkj2 þ

�
m2 − 12H2ξþ ðk − eAÞ2

a2

�
jχkj2 þ 6Hξ∂0jχkj2



; ðC2Þ

Tχ ¼
Z

d3k
ð2πaÞ3

	
12

�
ξ −

1

6

�
½ðj_χkj2 − Ω2

kjχkj2Þ − 3Hℜeðχk _χ�kÞ� þ
�
2m2 − 18

�
ξ −

1

6

�
_H

�
jχkj2



: ðC3Þ

Finally, using Eq. (13), we express the energy density in terms of the kinetic functions and obtain Eqs. (43)–(44).
Using the few first terms in the power expansion of the kinetic functions F , G, and H given by Eqs. (28)–(30), we

represent the integrands in Eqs. (43)–(44) in the following form:

ρχ ¼
Z

d3p
ð2πÞ3

	
ϵp þ

H2

2ϵp
ð1 − 6ξÞ þHðv · EÞ

2ϵ2p
ð1 − 6ξÞ

þ ðv · EÞ2
8ϵ3p

þH2m2

2ϵ3p
ð1 − 6ξÞ − 2HḦ − _H2 þ 6H2 _H

8ϵ3p
ð1 − 6ξÞ2 þOðϵ−4p Þ



; ðC4Þ

Tχ ¼
Z

d3p
ð2πÞ3

	
m2

ϵp
þ

_H þH2

ϵp
ð1 − 6ξÞ þ v · _E

2ϵ2p
ð1 − 6ξÞ þ E2 − 3ðv · EÞ2

2ϵ3p

þm2ð2 _H þ 3H2Þ
2ϵ3p

ð1 − 6ξÞ −H
��� þ 4 _H2 þ 7HḦ þ 12H2 _H

4ϵ3p
ð1 − 6ξÞ2 þOðϵ−4p Þ



: ðC5Þ

The integrals are UV divergent and we apply the dimensional regularization (see Appendix B) in order to extract
divergent terms. They are given by Eqs. (46)–(47), while the regular parts are given by Eqs. (48)–(49).
The effective energy-momentum tensor corresponding to the counterterm (50) reads as

Tμν
Z3

¼ ðZ3 − 1Þ
�
FμαgαβFβν þ 1

4
gμνFαβFαβ

�
: ðC6Þ

Its 00 component gives the energy density (54) while the trace gμνT
μν
Z3

vanishes.
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