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We discuss axion dark matter detection via two mechanisms: spontaneous decays and resonant
conversion in neutron star magnetospheres. For decays, we show that the brightness temperature signal,
rather than flux, is a less ambiguous measure for selecting candidate objects. This is owing principally to
the finite beam width of telescopes which prevents one from being sensitive to the total flux from the object.
With this in mind, we argue that the large surface-mass-density of the galactic center or the Virgo cluster
center offer the best chance of improving current constraints on the axion-photon coupling via spontaneous
decays. For the neutron star case, we first carry out a detailed study of mixing in magnetized plasmas. We
derive transport equations for the axion-photon system via a controlled gradient expansion, allowing us to
address inhomogeneous mass-shell constraints for arbitrary momenta. We then derive a nonperturbative
Landau-Zener formula for the conversion probability valid across the range of relativistic and non-
relativistic axions and show that the standard perturbative resonant conversion amplitude is a truncation of
this result in the nonadiabatic limit. Our treatment reveals that infalling dark matter axions typically convert
nonadiabatically in magnetospheres. We describe the limitations of one-dimensional mixing equations and
explain how three-dimensional effects activate new photon polarizations, including longitudinal modes and
illustrate these arguments with numerical simulations in higher dimensions. We find that the bandwidth of
the radio signal from neutron stars could be dominated by Doppler broadening from the oblique rotation of
the neutron star if the axion is nonrelativistic in the conversion region. Therefore, we conclude that the radio
signal from the resonant decay is weaker than previously thought, which means one relies on local density
peaks to probe weaker axion-photon couplings.
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I. INTRODUCTION

Understanding the exact nature of dark matter remains
one of the major challenges in particle physics and cos-
mology. One particularly simple solution to the dark matter
problem is offered by the Quantum Chromodynamics
(QCD) axion which results from the breaking of Peccei-
Quinn (PQ) symmetry [1], proposed as a resolution to the
strong CP problem of QCD. There are a number of specific
ways to incorporate the axion into the Standard Model of
particle physics; the most common being the KSVZ [2,3]
and the DFSZ [4,5] models. Soon after the realization that
the axion was a natural consequence of PQ symmetry, it
was pointed out that it could be produced by the nonthermal
misalignment mechanism [6–8] and that its relic abundance
and low momentum would allow it to be a Cold Dark
Matter (CDM) candidate. The axion has since been subject

of extensive theoretical work and has been proposed as a
candidate for a number of other cosmological phenomena
(see [9] for a recent review). In what follows, we will make
the assumption that axions are responsible for all the CDM
in the Universe and discuss their detection in the radio/mm-
waveband.
A recent detailed calculation [10] of the misalignment

production of axions yielded

Ωah2100 ≈ 0.54g−0.41⋆ θ2i

�
fa

1012 GeV

�
1.19

; ð1Þ

where g⋆ ≈ 10 is the number of relativistic degrees of
freedom during the realignment process, θi is the initial
angle of misalignment, h100 is defined by the Hubble
constant H0 ¼ 100h100 km sec−1Mpc−1, and fa is the
axion decay constant which is related to the axion mass,
ma, bymac2 ¼ 6 μeVðfa=1012 GeVÞ−1 (see also [9,11–13]
for other recent treatments of this issue). Recent measure-
ments of the Cosmic Microwave Background (CMB) by
the Planck satellite [14,15] yield an estimate for the CDM
density, Ωch2100 ≈ 0.12. Assuming that this is the case,
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taking into account the uncertainty in the value of g⋆ and
the standard assumption hθ2ai ¼ π2=3, we can predict a
mass range of 19 μeV ≤ mac2 ≤ 23 μeV.
This particular choice of θa is based on a scenario where

the value at each position in space is assigned randomly and
eventually homogenized by expansion. We will use it in
what follows as our baseline choice (as done by many
authors) but we note that it is not really a firm prediction at
all. In inflationary scenarios one would expect a random
value anywhere in the range 0 < θa ≤ π. One might expect
that, in order to avoid an anthropic solution to the strong
CP problem, there is a lower limit for θa and hence 10−2 <
θa < π. In this case, we come up with a wider prediction for
the range of masses from misalignment, 6 × 10−3 μeV <
mac2 < 6 × 102 μeV.
We note that there is a lower limit to the detection

approaches we are advocating due to the emission from
neutral hydrogen, which would prevent detection of the
axion signal for mac2 < 12 μeV. This happens because
there will be a degeneracy between the spectral line
associated to the axion and the HI emission line with
λ ≈ 21 cm. At higher redshifts, this value will shift to
smaller frequencies (larger wavelengths) and it will make it
more difficult to disentangle the signal due to the axion
decay. We also note that the spectral lines from organic
molecules, for example, CO, CS, HCO, HCN, H2O, and
NH3 can also be a source of degeneracy at frequencies
greater than 10 GHz, although the impact of these lines is
less clear.
PQ symmetry is a Uð1Þ symmetry and therefore one

would expect cosmic strings to form via the Kibble
Mechanism when the symmetry is broken. The expected
relic abundance from this process is expected to dominate
if the symmetry breaking transition takes place after
inflation, and comprises two contributions from long
strings and loops [16,17]

Ωah2100 ≈
�
1þ 10J

�
α

κ

��
Δ
�

fa
1012 GeV

�
1.18

; ð2Þ

where α is the loop production size relative to the horizon, κ
quantifies the rate of decay of the string loops, JðxÞ ¼
x3=2½1 − ð1þ xÞ−3=2�, and 1=3 < Δ < 3 is the theoretical
uncertainty associated with the QCD phase transition. This
estimate was recently refined [10], notably improving the
estimate of Δ and making the assumption that α=κ ¼
0.5� 0.2 to deduce 100 μeV < mac2 < 400 μeV under
the assumption that the axions are the cold dark matter.
Note that this axion mass range cannot be probed by
standard axion haloscope experiments.
The axion couples to ordinary matter very weakly,

most notably to photons and this is quantified by the
axion-photon coupling constant gaγγ for the axion decaying
spontaneously into two photons with a lifetime given
by [18]

τ2γ ¼
64πℏ

g2aγγm3
ac6

;

≈ 8 × 1035 sec

�
gaγγ

10−10 GeV−1

�
−2
�

mac2

250 μeV

�−3
;

ð3Þ

with a rest-frame emission frequency of femit ¼ mac2=ð2hÞ
which is ≈2.4 GHz for mac2 ¼ 20 μeV and ≈30 GHz for
mac2 ¼ 250 μeV, which correspond to the misalignment
(with hθ2ai ≈ 3) and string prediction ranges, respectively.
In what follows, we will use mac2 ¼ 250 μeV and mac2 ¼
20 μeV as particular fiducial values in order to calculate
specific numbers, but it is worth pointing out that we
have argued that it is possible for there to be an axion
signal anywhere in the frequency range ∼70 MHz
to ∼100 GHz.
For specific models there is a relation between gaγγ and

ma, which depends on the choice of E=N, which is the ratio
of electromagnetic and color anomalies [19]

gaγγ ¼ 5.1 × 10−14 GeV−1
�

mac2

250 μeV

����� EN − 1.92

����: ð4Þ

The KSVZ model has E=N ¼ 0, while DFSZ model has
E=N ¼ 8=3, making the latter more weakly coupled to
photons. At present, the most sensitive experimental limits
come from the ADMX haloscope collaboration which con-
strains gaγγ<10−15GeV−1 for 1.90 μeV≤mac2≤3.69 μeV,
under the assumption that the local galactic dark matter
density ρgalc2 ≈ 0.45 GeVcm−3 [20,21]. This limit was
further improved recently to rule out DFSZ axions in the
narrowmass range 2.66 μeV ≤ mac2 ≤ 2.81 μeV [22] with
a limit of gaγγ < 4 × 10−16 GeV−1. A number of experi-
ments have been proposed to speed up these searches so
that much wider ranges of mass can be probed [23–26].
Typically these approaches find it more difficult, for
practical reasons, to be sensitive to higher axion masses,
and therefore we believe that the strongest motivation
for the ideas we present in this work is to search for
axions in the multi GHz frequency range and hence we
have centered the estimates presented in subsequent sec-
tions on mac2 ¼ 250 μeV, although they apply more
widely.
There is an upper limit gaγγ < 0.66 × 10−10 GeV−1 from

the CAST solar axion experiment which applies for mac2 <
10−2 eV [27]. Given this limit, the predicted range of
axion masses and the limits on the mass from terrestrial
haloscopes, it seems sensible to search for astrophysical
signals from dark matter axions in virialized halos (for
example, galaxies and galaxy clusters) in the frequency range
fobs ≈ 1–100 GHz which might be loosely described as the
radio/mm-waveband and for decay times τ2γ ∼ 8 × 1035 sec
and higher with the aim of achieving a limit which is better
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than the limit from CAST.1 There have been a number of
recent studies [29–32] of this subject in the context of future
radio telescope, such as the Square Kilometre Array [33]
(see [34] for a recent summary of the current SKA science
case in the context of cosmology), and one aim is to clarify
and extend this work.
These studies have explored enhanced decay mecha-

nisms such as the effects of astrophysical magnetic fields
and stimulated emission due to the CMB. In [29,30] it was
suggested that magnetic fields of amplitude ∼10 μG,
already detected in galaxies and clusters, could lead to a
strong and eminently detectable signal. However, [35]
pointed out that the decay lifetime into a single photon
with femit ¼ mac2=h expected for such a process is

τB ¼ ma

2π2ℏ2cg2aγγ

μ0V

k3jB̂ðkaÞj2
; ð5Þ

where B̂ðkaÞ is the Fourier transform of the magnetic field
evaluated at a wave number corresponding to the inverse
Compton wavelength of the axion ka ¼ mac=ℏ, μ0 is the
vacuum permeability, and V is the volume over which
the conversion takes place. The coherence length of the
magnetic fields in typical halos is expected to be of the
order of the size of the halo, which is ∼100 kpc for a
galaxy. For dark matter axions, which we have already
argued will have Compton wavelengths in the cm/mm
range, and some decaying spectrum of magnetic turbulence
(for example, a Kolmogorov spectrum k3jB̂ðkÞj2 ∝ k−2=3),
one finds that τB ≫ τ2γ . In fact, [35] explained that there is
a maximum possible flux density that one might expect via
this mechanism, and it is far too weak to be detected. For
this reason we will ignore this in what follows.
The decay of axions into two photons can be enhanced in

the presence of a photon background and, by contrast to the
enhancement due to magnetic fields, this may be very
significant. References [31,32] have shown that the effec-
tive decay lifetime can be reduced to τ ¼ τ2γ=ð1þ F eff

γ Þ,
where F eff

γ is the photon occupation number associated to
the relevant sources considered. Sources of photons include
the CMB, the radio background, and galactic emission with
F eff

γ ¼ FCMB þ F radio þ F gal þ � � � For the CMB, this is
given by

FCMB ¼ 2

�
exp

�
mac2

2kBTCMB

�
− 1

�−1
; ð6Þ

where TCMB ¼ 2.725 K ¼ 235 μeV=kB which can be
approximated by FCMB ≈ 4kBTCMB=ðmac2Þ for mac2 ≪
470 μeV which can provide a potentially very significant
enhancement of the signal. The CMB and the radio
background are both isotropic sources, and so the factor
F is easily worked out to be proportional to the brightness
temperature measured by experiments [36,37].
The contribution from the radio background is very

uncertain for a number of reasons. Firstly, making absolute
measurement of the background temperature is inherently
difficult. But perhaps more important is that this measure-
ment is made from the point of view of telescopes on Earth
and it may not be the same elsewhere in the Universe and
also at higher redshifts. In principle, it would be necessary
to model the sources contributing to the radio background
and quantify the uncertainty in order set limits on gaγγ .
A dedicated study of specific sources, which might be

easier to model than the overall background, could result in
significant effective enhancement in values of F for the
axion masses between 1 and 20 μeV=c2. [32] suggested
that F source ≈ Isource=E3

ν where Eν ¼ hfobs is the energy of
the photons. We will adopt this relation for our later order-
of-magnitude estimates of the signal from the galactic
center including the enhancement due to diffuse radio
emission (eg. synchrotron emission) as well as the radio
background.
We note that there have been attempts to search for

the axion signal in the infrared waveband [38]. In parti-
cular axions with masses mac2 ≈ 1–10 eV have been
considered which could have been produced thermally—
in the absence of strong nonthermal production mecha-
nisms such as misalignment and string decay. Thermal
production predicts

Ωah2100 ≈
mac2

130 eV

�
10

g⋆

�
; ð7Þ

and the published limit is gaγγ < 10−12 GeV−1 for axions in
the mass range 4.5 eV < mac2 < 7.7 eV.2 In Sec. II we
will discuss applying exactly the same ideas in the radio/
mm waveband. We note additionally that axions with large
masses are also subject to constraints from astrophysics,
specifically due to axion cooling competing with that from
neutrinos in stars and supernovae; the most stringent limit
being from the observations of the neutrino burst from SN
1987A, which appears to preclude axions in the mass range
10−3 eV–2 eV [18]. This is based on detailed modeling of

1There has been a previous attempt to obtain limits on dark
matter axions using 6 days of integration on the dwarf galaxies
Leo 1, LGS 2 and Pegasus using the Haystack 37 m telescope
[28]. A limit of gaγγ < 10−9 GeV−1 was published for axion
masses 298 μeV ≤ mac2 ≤ 363 μeV, but given the estimates we
make for the strength of the signal in subsequent sections we
believe that there must have been an error in the analysis. We will
comment further on this at the end of Sec. II B.

2There is also a limit of mac2 < 0.529 eV [39] from Planck
temperature and polarization data. As these axions may be
produced in the early Universe also via thermal processes, they
constitute a hot dark matter component with masses strongly
degenerate with those of the active neutrinos, as their signature on
observables is identical to neutrinos. Hence, when axions are
relativistic, they contribute to the effective number of relativistic
degrees of freedom Neff .
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the interaction of axions with stellar material and the
detailed modeling of stars and hence could be considered
to be less direct and more susceptible to uncertainties than
other probes.
In the latter half of this paper, we discuss the resonant

mixing of photons and axion dark matter in pulsar
magnetospheres [40–43]. The idea is a simple one: namely
that in regions of the plasma where the photon plasma mass
and axion mass become degenerate, there is enhanced
conversion of dark matter axions to photons, just as in a
regular haloscope whose density is tuned to a particular
axion mass range. In addition, the ultrastrong magnetic
fields of neutron stars also greatly enhance the overall
magnitude of the effect. Our analysis falls into roughly two
parts. The first focuses on theoretical fundamentals of axion
electrodynamics in magnetized plasma, beginning with an
examination of one-dimensional (1D) propagation in planar
geometries (the standard approach to axion-photon mix-
ing). We clarify two important aspects, firstly how to treat
distinct and locally varying dispersion relations of the
photon, which we do via a controlled gradient expansion,
incorporating the mass-shell constraints systematically.
Next we are able to unify two apparently disparate analytic
results for the conversion amplitude. The first is the
perturbative Oðg2aγγÞ formula for the conversion process
of e.g., [41], while the second is nonperturbative and
given by the well-known Landau-Zener formula [43,44]
derived by computing the S-matrix for conversion as
dictated by the mixing equations. Our analysis unifies
these two approaches and reveals the perturbative result to
be a truncation of the full Landau-Zener formula in the
nonadiabatic limit. For a given plasma background, this
allows one to see precisely for what axion masses and
momenta the evolution becomes nonadiabatic and therefore
where a perturbative treatment is justified (see Fig. 8).
Next we question to what extent the 1Dmixing equations

(which dominate the literature on axion-photon conversion
in stellar environments) are valid, and examine how three-
dimensional (3D) effects excite a wider variety of plasma
modes and polarizations. This component of our work is
important in illustrating the need for a more systematic
analysis of 3D effects in axion electrodynamics in mag-
netized plasmas, as we show qualitatively that if one is not
in a specialized 1D geometric setup, then new polarization
modes of the photon are excited. We discuss the difficulties
in analytically solving such a system, and leave any further
investigation of what this might imply for the overall signal
for future work.
We finish our study of conversion in neutron star

magnetospheres with some observational considerations,
reviewing telescope sensitivities and Doppler broadening
of the signal from the motion of the star.
The structure of the paper is as follows. In Sec. II we

discuss axion observations in virialized structures and
outline the targets with the best prospects for axion decay

detection. We devote Sec. III to the analysis of the evolution
of the axion field in neutron star magnetospheres. After a
formulation of the problem from first principles, we first
investigate a one-dimensional setup which paves the way
for the study of the mixing in two and three dimensions. In
this way, we can highlight differences and similarities
arising from the geometrical setup of the problem. We then
proceed to estimate the single dish and interferometer
sensitivities to the axion-photon parameter space in the
context of the resonant conversion in Sec. IV. We compare
previous approaches to this work and explore the simplest
way to optimize and to determine the best candidate
neutron stars to target in an experiment. We conclude in
Sec. V. Some technical details are left in the appendixes:
in Appendix A we discuss how to evaluate the mass
contained in a beam and in Appendix B, we give a detailed
derivation of the Wentzel–Kramers–Brillouin (WKB)
expansion of axion-photon mixing, with a careful discus-
sion of dispersion relations and a derivation of the Landau-
Zener formula.
In Secs. II and IV we will include all factors due to

fundamental physics and present quantities in SI units or
other appropriately practical units, whereas in Sec. III we
will present theoretical calculations using natural units
c ¼ kB ¼ ℏ ¼ 1 with the Lorentz–Heaviside convention
ε0 ¼ μ0 ¼ 1 for the vacuum permittivity and permeability.

II. DETECTING DARK AXIONS EMITTED
BY VIRIALIZED HALOS

In this section we will derive estimates for the signal due
to the spontaneous decay, present some estimates of what
might be possible with current and planned facilities
operating in the radio/mm-waveband, concluding that
amounts of integration time required are too large to be
feasible, and discuss how one might optimize the detection
and improve current constraints on the axion-photon
parameter space. In order to present estimates of the signal
strength we will set up a straw man object which is a galaxy
with a virial mass, Mvir ¼ 1012 M⊙, virial radius Rvir ¼
100 kpc at a distance d ¼ 5 Mpc, and a velocity width of
200 km sec−1 which corresponds to an object similar to the
nearby galaxy Centaurus A [45]. We have chosen these
values to be broadly consistent with the model for the virial
radius (∝ M1=3

vir ) from a given mass that we will use later in
the subsequent discussion. As part of that discussion, we
focus on our suggestion that the basic signal strength will
be relatively independent of the object mass. Such an object
would be expected to have an average surface mass density
Σvir ≈Mvir=ðπR2

virÞ ≈ 0.07 kgm−2 over an angular diam-
eter of θvir ¼ 2Rvir=d ≈ 40 arcmin. We will see that this
value, which we will use in the subsequent signal estimates,
is probably quite conservative and that values up to a
thousand times larger than this might be accessible in some
objects, albeit over smaller areas, typically in the center of
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the object. The basic conclusion will be that it will be
difficult to imagine a telescope with a single pixel receiver
system achieving a limit on gaγγ better than that from
CAST. In order to be competitive with the CAST limit, we
find that it is easier to optimize future experiments if
one quantifies the signal in terms of the brightness temper-
ature, rather than the flux density. We show that the
brightness temperature is proportional to the surface-
mass-density Σbeam associated with the telescope beam,
which makes it clear that future experiments must target the
centers of virialized objects where this quantity is the
largest possible value. From our analysis, the main con-
clusion is that the larger surface-mass density at the galactic
center/Virgo cluster center coupled with large amounts
of radio emission at the relevant frequencies could
enhance the signal enough to probe couplings below the
CAST limit.

A. Estimates of the signal amplitude for axion
decay from virialized halos

Clearly the first and most important task in determining
whether or not dark matter axions can be detected via
spontaneous decays is to obtain a reliable estimate for the
strength of the resulting signal. Let us consider a virialized
halo of mass M and at redshift z. We further assume that
axions constitute its whole mass. The total bolometric flux
from the object is

Z
Stotdfobs ¼

Lobs

4π½rðzÞ�2 ¼
NaEobs

τobs

1

4πrðzÞ2 ; ð8Þ

where rðzÞ is the comoving distance to redshift z, Stot
the total flux density, Eobs ¼ 2hfemit=ð1þ zÞ and τobs ¼
ð1þ zÞτ2γ=ð1þ F eff

γ Þ are the emitted photon energy and
decay life-time in the observer’s frame, respectively, and
F eff

γ is the photon distribution discussed in the previous
section. The luminosity in the observer’s frame is Lobs ¼
NaEobs=τobs and Na ¼ M=ma is the number of axions in the
halo. One can obtain an estimate of the observed flux
density by assuming that all the flux is detected (the point
source approximation) and that it is equally distributed
across a bandwidth Δfobs, effectively assuming a top-hat
line profile, in the observer’s frame

Stot ¼
Mc2

4π½dLðzÞ�2τ2γΔfobs
ð1þ F eff

γ Þ; ð9Þ

where dLðzÞ ¼ ð1þ zÞrðzÞ is the luminosity distance to
redshift z. We note that this formula is equivalent to that
for the emission of neutral Hydrogen due to the spin-flip
transition under the exchange of M with the neutral
Hydrogen mass, MHI, and τ2γ with the effective lifetime
of the spin state.

Neither of the assumptions will be true in reality. The
assumption of a top-hat frequency profile should only lead
to a small correction if Δfobs is set by the velocity width of
the halo Δv=c ¼ Δfobs=fobs. From first principles, this is
set by the halo mass as Δv ∝ M1=3. In what follows, it will
be convenient to specify the measured value of Δv for a
specific object rather than calculate it self-consistently from
the halo mass. For typical values, and a halo at redshift z,
we find

Δfobs ¼
femitΔv
cð1þ zÞ ;

≈
20 MHz
1þ z

�
Δv

200 km sec−1

��
mac2

250 μeV

�
: ð10Þ

Typical receiver systems can produce spectra with the
resolution in Eq. (10) in all but the most extreme situations.
The question of whether one is sensitive to flux from the
entire halo is more complicated. Unless the telescope beam
is larger than the projected angular size of the cluster, the
total flux-density can be less than that of Eq. (9) as
illustrated in Fig. 1. Let us now estimate the importance
of finite angular resolution.
We define Rbeam as the radius corresponding to the

Full-Width Half-Maximum (FWHM) angular diameter
θFWHM ≈ λobs=D, where λobs is the observed wavelength
and D is the effective diameter of the observing telescope.
In the case of a single dish telescope this is the actual size,
whereas for an interferometer it will be given by the
longest baseline. The beam radius can be estimated by
Rbeam ¼ dAðzÞ sin ðθFWHM=2Þ, where dAðzÞ is the angular
diameter distance which can be expanded for small θFWHM
to give

Rbeam ¼ hrðzÞ
Dmac

;

≈ 0.5 kpc

�
rðzÞ

5 Mpc

��
D

100 m

�
−1
�

mac2

250 μeV

�−1
;

ð11Þ

where we have adopted a fiducial diameter of 100 m such
as for the Green Bank Telescope (GBT). If Mbeam ≤ Mvir
is the mass enclosed in the projected cylinder, then the
observed flux density will be

Sbeam ≈ 4 μJyð1þ F eff
γ Þ ×

�
τ2γ

8 × 1035 s

�
−1

×

�
Δfobs

20 MHz

�
−1
�

Mbeam

1012 M⊙

��
dLðzÞ
5 Mpc

�
−2
: ð12Þ

If we substitute (3) and (10) into (12) we find that
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Sbeam ≈ 4 μJyð1þ F eff
γ Þ

�
gaγγ

10−10 GeV−1

�
2

×

�
mac2

250 μeV

�
2
�

Mbeam

1012 M⊙

�

×

�
Δv

200 km sec−1

�
−1
�
dLðzÞ
5 Mpc

�
−2
: ð13Þ

From this we see that, if F eff
γ ¼ 0, the expected flux

density is ∝ m2
a for a fixed value ofMbeam. This reflects the

fact that the size of the object which is inside the beam is
dependent on ma via the fact that fobs ∝ θFWHM. This is an
undesirable feature of using the flux density to assess the
detectability of the axion signal, although it is possible to
take into account the dependence of Mbeam on θFWHM.
Note that there will be additional dependence on ma from
F eff

γ ; for example, there is a component from the CMB
which is ∝ m−1

a .
It is possible to express the expected signal in terms of

the intensity I, or equivalently the Rayleigh-Jeans bright-
ness temperature

I ¼ 2f2obskBTRJ

c2
; ð14Þ

and we shall see that this is a much clearer way of
quantifying the signal. For a source of axions at redshift
zwith surface mass-density Σ ¼ R

ρadl, taking into account
that the flux density is the integral of the intensity over the
solid angle subtended by the source, the integrated line
intensity is given byZ

Ibeamdfobs ¼
c2Σbeam

4πτ2γð1þ zÞ4 ð1þ F eff
γ Þ; ð15Þ

where the appropriate surface mass density is that inte-
grated over the beam profile of the telescope, Σbeam.

To obtain this expression, we used Eq. (9) and
Etherington’s reciprocity theorem dLðzÞ ¼ ð1þ zÞ2dA, as
the solid angle of the object is defined asΔΩ ¼ R2=d2A. For
the surface mass-density Σbeam ¼ Σvir ≈ 0.07 kgm−2 of our
straw man object, we can deduce an intensity

Ibeam ≈
3 mJy sr−1

ð1þ zÞ4 ð1þ F eff
γ Þ

�
τ2γ

8 × 1035 sec

�
−1

×

�
Δfobs

20 MHz

�
−1
�

Σbeam

0.07 kgm−2

�
; ð16Þ

and a brightness temperature

Tbeam
RJ ≈

100 pK
ð1þ zÞ2 ð1þ F eff

γ Þ
�

τ2γ
8 × 1035 sec

�
−1

×

�
Δfobs

20 MHz

�
−1
�

mac2

250 μeV

�−2� Σbeam

0.07 kgm−2

�
:

ð17Þ

This can be simplified by substituting in Eqs. (3) and (10)
to yield

Tbeam
RJ ≈

100 pK
1þ z

ð1þ F eff
γ Þ

�
gaγγ

10−10 GeV−1

�
2

×

�
Σbeam

0.07 kgm−2

��
Δv

200 km sec−1

�
−1
: ð18Þ

This expression does not have any explicit dependence
on ma and tells us that the key parameters dictating the
signal strength are gaγγ , Σbeam=Δv, and F eff

γ . The only
dependence on ma is via the observation frequency and
consequently the size of the area over which Σbeam is
computed. The size of the signal could be larger than this

FIG. 1. Schematic illustration of the telescope beam of width Rbeam given in Eq. (11) and virialized halo with surface density Σ and
virial radius Rvir.
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for our straw man object which is relevant to an average
over the virial radius—see subsequent discussions.
As a prelude to more detailed discussions of specific

telescopes in the next subsection, we comment that a
typical flux density of Sbeam ¼ 4 μJy might seem to be a
quite accessible number for future large radio telescopes—
many papers report detection of radio signals in the μJy
range using presently available facilities. Conversely a
brightness temperature of Tbeam

RJ ¼ 100 pK is very low and
much weaker than any value usually discussed. These
numbers can be reconciled in realizing that the flux density
is averaged over a region Ω ≈ πðRvir=dÞ2 ≈ 1.2 × 10−3 sr
and it is also worth noting that most published radio
detections are for bandwidths much larger than 20 MHz.
In the subsequent discussion wewill argue that it is easier to
understand whether the signal is detectable by considering
the intensity or brightness temperature and that this gives a
clearer picture of the potential for detection.
We can also calculate the background intensity due to all

axions in the Universe with comoving density ρa

Iback ¼
c2ρa

4π½rðzÞ�2τ2γfemit

dV
dzdΩ

; ð19Þ

where dV
dzdΩ¼crðzÞ2=HðzÞ is the comoving volume element

and HðzÞ is the Hubble parameter at redshift z. Using this
we can deduce a background brightness temperature

Tback
RJ ¼ 3h3c5

8π2kBG
H0Ωa

τ2γ

�
1

mac2

�
3 ð1þ zÞ2

EðzÞ : ð20Þ

Assuming that Ωah2100 ≈ 0.12 and h100 ¼ 0.7, we obtain

Tback
RJ ≈ 0.3 pK

ð1þ zÞ2
EðzÞ

�
mac2

250 μeV

�−3� τ2γ
8 × 1035 s

�
−1
;

≈ 0.3 pK
ð1þ zÞ2
EðzÞ

�
gaγγ

10−10 GeV−1

�
2

: ð21Þ

In making this background estimate we have ignored
possible stimulated emission which would, of course,
contribute at lower frequencies as was the case for the
signal from virialized halos. The fact that this value is
significantly lower than that for a halo means that there will
be enough contrast to detect the signal from a halo against
the background.
One can recover Eq. (21) by substituting the background

value for Σ=Δv into (18). This background value is
given by

dΣ
dv

¼ ρaðzÞ
dl
dv

¼ ð1þ zÞ3
EðzÞ

ρað0Þ
H0

; ð22Þ

so that at z ¼ 0 this is ρað0Þ=H0 ≈ 1.2 × 10−9 kgm−3 s
using Ωah100 ≈ 0.17. Note that one can make a rough

estimate for the surface mass density of the background
by multiplying the density of axions by the size of the
Universe given by the Hubble radius, that is, Σback ≈
ρac=H0 ≈ 0.36 kgm−2. This value is a factor of a few
larger than the fiducial value we used for the halo surface
mass density. To explain why this is the case, it is useful to
notice that Σhalo ≈ ρaΔvirR, where Δvir represents the virial
overdensity of the halo. This quantity can be evaluated,
given a cosmological model, using the virial theorem
(see the Appendix in [46] for details on the implementation
and [47] for a recent discussion on the topic), but here we
will consider it to be of the order of 200 (higher values are
also often used). The ratio between the two expressions,
Σback=Σhalo ≈ c=H0

ΔvirR
≫ 1 for our straw man object, but it is

of the order of a few for Δvir (a few hundred) and R
(a few Mpc).
In Fig. 2, we present estimates of the brightness tem-

perature expected from a halo with a fixed velocity width
Δv ¼ 200 km sec−1 and a range of values for Σbeam

computed using (17). We have fixed gaγγ ¼ 10−10 GeV−1

which is close to the upper limit from the CASTexperiment
(and hence the target goal) and have included the effects of
stimulated emission by the CMB which leads to an increase
∝ m−1

a for ma ≪ 470 μeV. We have chosen Σbeam ¼
0.07 kgm−2 which is Σvir for our straw man object, along
with ten, hundred, and a thousand times this value. In
subsequent sections, we will discuss that such values might
be attainable by observing more concentrated regions of the
halo close to their centers.
In addition we have also added noise curves for a total

integration time of 1 year with instantaneous sensitivities of
10 mKs1=2, 100, and 1 μKs1=2 at mac2 ¼ 250 μeV with
the scaling ∝ ðma=250 μeVÞ−1=2 so that the noise level
remains that for a fixed velocity width as ma varies. We see
that a sensitivity of ∼10 mK s1=2—which we will argue in
Sec. II B is typical of a single pixel receiver at the relevant
frequencies and bandwidths—is not sufficient to get any-
where near detecting the signal for gaγγ ¼ 10−10 GeV−1,
never mind that expected for the KSVZ and DFSZ models
for typical values of Σbeam as large as 7 kgm−2. One might
imagine that this can be reduced by having N receivers/
telescopes in which case the instantaneous sensitivity will
be ≈10 mKs1=2=

ffiffiffiffi
N

p
. Looking at Fig. 2, it appears that

N ∼ 102 would be necessary to probe signals created
by Σbeam ≈ 70 kgm−2, ∼104 to probe 7 kgm−2, ∼106 to
probe 0.7 kgm−2 and ∼108 for our straw man value of
0.07 kgm−2. Therefore, it is clear that one would need to
target sufficiently concentrated parts of haloes to probe this
decay, which might be possible in haloes with super-
massive black holes at their centers. While this enhance-
ment would not allow one to probe the benchmark QCD
models for the axion, one could at least probe the parameter
space below the well-established CAST limit [see Sec. II B
for sensitivity estimates].
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B. Sensitivity estimates for current
and planned telescopes

In this section we assess the possibility of detecting the
decay of dark matter axions emitted from virialized halos
using current and planned telescopes operating in the
radio/mm waveband. We have tabulated the numbers we
have used in the sensitivity calculations below in Table I.
Typically, previous analyses have focused on comparing
the flux density to the expected telescope noise. As we have
already alluded to and indeed we will explain below that it
is best to frame the discussion of sensitivity in terms of the
intensity, or more commonly the brightness temperature.

1. Flux Density Signal

Having discussed the signal strength associated to axion
decays in the previous subsection, we turn now to another
key parameter in determining the feasibility of detection—
the integration time. The integration time required to detect
a flux density Sσ in a bandwidthΔfobs can be deduced from
the radiometer equation

tint ¼
�
2kBTsys

AeffSσ

�
2 1

Δfobs
; ð23Þ

where Tsys is the system temperature, Sσ is the flux
density noise level, and Aeff is the effective area. For a
signal-to-noise ratio of unity, Sbeam ¼ Sσ. For a single
dish telescope with aperture efficiency η (typically
≈0.5–0.7), this is given by Aeff ¼ ηπD2=4. Using this,
we can deduce that for a 1σ detection of the flux described
by Eq. (12) for a fiducialMbeam ¼ 1012 M⊙, the integration
time is given by

tint ≈
10 days

ð1þ F eff
γ Þ2ð1þ zÞ

�
Tsys

30 K

�
2
�

Aeff

5500 m2

�
−2

×

�
Δv

200 km s−1

��
gaγγ

10−10 GeV−1

�
−4

×

�
mac2

250 μeV

�−5� Mbeam

1012 M⊙

�
−2
�
dLðzÞ
5 Mpc

�
4

; ð24Þ

where the specific choice for Tsys and Aeff have been
chosen to be indicative of what might be possible for
observations at 30 GHz with a 100 m telescope such as
the GBT which would have a resolution ≈20 arcsec
operating in a band around 30 GHz and an axion
mass mac2 ≈ 250 μeV. Despite this particular choice, the

FIG. 2. Estimates of the brightness temperature for a halo as a function of axion mass including spontaneous decay and the
enhancement due to stimulated emission from the CMB (solid lines) and the pure spontaneous decay (dashed lines). We have fixed
gaγγ ¼ 10−10 GeV−1 which is close to the CAST limit and is the goal signal level. We have also fixed Δv ¼ 200 km s−1 and used
different values for Σbeam ¼ 0.07, 0.7,7 and 70 kgm−2 which lead to brightness temperatures ≈100 pK, 1, 10, and 100 nK, respectively,
forma ≫ 470 μeV where spontaneous decay is dominant. For lower values ofma, we see the increase ∝ m−1

a due to stimulated emission
from the CMB which could be added to other sources such as the radio background and galactic emission. We have also included some
sample noise levels (dotted lines) due to 1 year of integration time with instantaneous sensitivities of 10 mK s1=2, 100, and 1 μKs1=2 at
mac2 ¼ 250 μeV with the scaling m−1=2

a necessary for a fixed velocity width. The two vertical lines represent mac2 ¼ 20 μeV and
250 μeV, respectively, which are illustrative values that we have used in the text.
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expression for tint should be applicable to the whole range
of frequencies observed by the GBT, and indeed any single
dish radio telescope, provided Mbeam is chosen appropri-
ately. We chose the GBT to illustrate this since it is the
largest telescope in the world operating at these frequencies
and possibly as high as ≲100 GHz. Setting a 95%
exclusion limit—which is the standard thing to do in
constraining dark matter—would require approximately
40 days. Detection at the 5σ level would take 25 times
longer, that is 250 days of on-source integration time.
Achieving an exclusion limit for the flux expected for
the KSVZ model in this mass range would require ruling
out τ2γ ≈ 6 × 1040 s which would take 5 × 109 times
longer, and the level expected for DFSZ will be even
lower, neither of which are practical. We note that FCMB ≈
0.5 for mac2 ¼ 250 μeV and ≈12 for mac2 ¼ 20 μeV
which will reduce the required integration times, but
probably not enough to make much difference to the
conclusions.
Despite this, one might think that integration times of a

few tens of days might allow one to impose stronger limits
than the CAST bounds. However, the numerical value in
(24) is quite misleading since such a telescope would have a
resolution of ≈20 arcsec at these frequencies and therefore
we would expect Mbeam ≪ Mvir. From Eq. (11) we have
that Rbeam ≈ 0.5 kpc when the galaxy would be expected to
have a total radius of Rvir ≈ 100 kpc, which is a factor of
200 larger.
We can obtain an estimate for the total halo mass

contained within the beam by using the canonical halo
dark matter distribution given by the Navarro-Frenk-White
(NFW) profile [48] parametrized by the concentration
parameter, ĉ, which is the ratio of the virial radius and
the scale radius of the halo. It quantifies the amount of mass
within the scale radius relative to that in the total halo, with
large values of ĉ having more mass concentrated in the
center than lower values. In Appendix Awe have calculated
for ĉRbeam=Rvir ¼ Rbeam=rs ≪ 1, that is, a beam size much
less than the characteristic scale of the NFW profile, the

following estimate for the halo mass contained within the
telescope beam:

Mbeam

Mvir
¼ R2

beam

R2
vir

·
ĉ2

2fðĉÞ log
�

2Rvir

ĉRbeam

�
; ð25Þ

where fðxÞ ¼ logð1þ xÞ − x
1þx. The behavior of the

beam mass is plotted in Fig. 3. Using this expression we
deduce that Mbeam ≈ 0.8 × 109 M⊙, 1.9 × 109 M⊙, and
6.2 × 109 M⊙ for ĉ ¼ 3, 5 and 10, respectively. As one
would expect, there is a trend for Mbeam to increase as ĉ
increases, but even for relatively large values we find that in
this case Mbeam ≪ Mvir. Clearly, this reduction in Mbeam
has a deleterious effect on the ability of a single dish
telescope to even post an upper limit on the spontaneous
decay of dark matter axions since tint ∝ M−2

beam with

TABLE I. Table of telescope parameters which we have used in Sec. II B that are indicative of what might be possible using current
and planned facilities.N is the number of dishes, Aeff the effective collecting area, Tsys the overall system temperature (in Rayleigh-Jeans
regime), θFWHM the beam size, and Rbeam the radius corresponding to the beam size assuming a distance of 5 Mpc. GBT is the Green
Bank Telescope and FAST is the Five hundred metre Aperture Spherical Telescope. They are currently operational and can cover a range
of frequencies (up to ≈100 GHz in the case of GBT and up to ≈3 GHz for FAST). For the purposes of the discussion we have chosen to
focus on one frequency for each and have chosen values of Tsys indicative of the noise levels that would be possible. We refer the reader
to their web pages https://greenbankobservatory.org and http://fast.bao.ac.cn/en/ for more detailed information about the capabilities.
The Square Kilometre Array (SKA) is currently being designed/built in two phases. Phase I is much more certain that phase II. Again we
believe that our numbers are indicative of what might ultimately transpire.

Telescope N Aeff [m2] Tsys [K] Frequency [GHz] θFWHM [arcmin] Rbeam [kpc]

GBT 1 5500 30 30 0.3 0.5
FAST 1 50000 20 2.4 1.4 2.1
SKA1:Band 5 200 120 20 4.6–13.6 5.1–14.9 7.3–21.7
SKA2:Band 5 10000 120 20 4.6–13.6 5.1–14.9 7.3–21.7

FIG. 3. Projected mass within the beam as a function of R̄ ¼
cRbeam=Rvir assuming an NFW profile. From top to bottom, we
consider three different concentration parameters, ranging from
clusters to dwarf galaxies. The solid lines represent an analytic
approximation for R̄ ≪ 1, while the dotted lines are given by full
numerical integration—see Appendix A for details.
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tint ≈ 3 × 104 years for Mbeam ¼ 109 M⊙. Therefore, one
needs to be very careful in using (24).
It is possible to think in terms of the flux density, but as

we have explained above one has to be very careful to use
the mass inside the beam radius and not the total mass
of the object since they will typically be very different.
Our view is that it is much easier to think in terms of
the brightness temperature (or equivalently the intensity,
although telescope sensitivities are more commonly
expressed in terms of a brightness temperature).

2. Brightness temperature signal

The calculation of the noise temperature is simpler. The
noise level in intensity is simply given by Iσ ¼ Sσ=Ωbeam.
Substituting for the intensity in terms of Rayleigh-Jean’s
law and setting Ωbeam ¼ λ2=D2

tel, we obtain the well-known
Radiometer equation for brightness temperature

Tσ ¼
Tsys

η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δfobstint

p ; ð26Þ

for a single telescope with system temperature Tsys and
aperture efficiency η observing in a bandwidth of Δfobs.
The instantaneous sensitivity is just given by Tsys=
ðη ffiffiffiffiffiffiffiffiffiffiffi

Δfobs
p Þ ≈ 10 mKs1=2ðTsys=30 KÞðΔfobs=20 MHzÞ−1=2

for η ¼ 0.7 and hence the integration time required to
detect a surface mass density of Σbeam, which is that
averaged over the beam radius, at 1σ is

tint ≈ 3 × 108 years
ð1þ zÞ3

ð1þ F eff
γ Þ2

�
Tsys

30 K

�
2

×

�
gaγγ

10−10 GeV−1

�
−4
�

Σbeam

0.07 kgm−2

�
−2

×
�

Δv
200 km sec−1

��
mac2

250 μeV

�−1
: ð27Þ

Note that this is independent of the telescope collecting
area, as one would expect for an unresolved detection,
and also there is no explicit dependence on the distance,
although there is a dependence on the redshift. Many of the
other dependencies, for example, on Tsys, Δv and gaγγ are
the same. Moreover, this expression makes it very obvious
that the discussion above based on (24) can be very
misleading since the number at the front of the expression
(remembering that the surface mass density of 0.07 kgm−2

was chosen to correspond to the average across an object of
mass 1012 M⊙ and radius 100 kpc) is very much larger than
in (24).
The fact that tint is dependent on Σbeam has two

advantages. The first is that it is clear that in order to
increase the size of the signal and hence reduce tint to a
practical length of time one has to increase Σbeam. From
our earlier discussion, we calculated, assuming an NFW

profile, Mbeam ∼ 109 M⊙ for our fiducial galaxy and tele-
scope configuration for which Rbeam ≈ 0.5 kpc, assuming a
sensible range of concentration parameters. In this case the
appropriate surface mass density would be3

Σbeam ≈ 7 kgm−2
�

Mbeam

2.3 × 109 M⊙

��
Rbeam

0.5 kpc

�
−2
: ð28Þ

Of course this only gives one a factor of around 200
improvement but it makes it clear in what direction one
might have to go in optimizing the signal strength. We will
return to this issue in Sec. II C.
The other advantage is that it makes clear what one

would have to do to establish an upper bound on the signal:
one would need an estimate of Σbeam over the region which
one was observing. Fortunately, the amplitude of any
gravitational lensing signal that one might measure is
directly related to the surface mass density. The measure-
ment of the amplification and shear can be related to the
surface mass density of the lenses. One of the largest
surface mass densities measured from strong lensing on the
scale of a few kiloparsecs (which corresponds to the typical
beam sizes) is 50 kgm−2 [49]. Such values are typically
found towards the center of virialized haloes. This moti-
vates high resolution observations and detailed study of
high-density sources with rich ambient radio emission for
an accurate estimate of Σbeam and F eff .
The discussion so far has focused on the axion mass

range mac2 ≈ 250 μeV, but we have also motivated
searches at lower masses, for example, mac2 ¼ 20 μeV
which corresponds to fobs ¼ 2.4 GHz. The Five hundred
meter Aperture Spherical Telescope (FAST) might be a
candidate large telescope for the detection of axions in
this mass range. Despite its name, it can only illuminate
beams with D ≈ 300 m corresponding to a resolution
of ≈1.4 arcmin and Rbeam ≈ 2 kpc ≪ Rvir. The band-
width corresponding to Δv ¼ 200 km sec−1 at z ¼ 0
is Δfobs ¼ 1.6 MHz. The instantaneous sensitivity to
such Tsys=ðη

ffiffiffiffiffiffiffiffiffiffiffi
Δfobs

p Þ ≈ 20 mKs1=2ðTsys=20 KÞðΔfobs=
1.6 MHzÞ−1=2 which is a little larger than for our estimate
for the GBT at 30 GHz despite having a lower system
temperature. The formula (27) should apply here as well
with the values of Tsys and Σbeam adjusted to take into
account Rbeam being a little larger. Ultimately, we come to
the same conclusion.
If a focal plane array or phased array were fitted to the

telescope, it might be possible to observe withN beams and
this would reduce the amount of integration time required
by a factor of 1=N. However, there are practical limitations
on the size of array which one can deploy on telescope
since the physical size of the region over which one can

3We note that (27) and (24) would be identical if Σbeam,Mbeam,
and Rbeam were chosen to be consistent with each other.
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focus is limited; much more than N ∼ 100 would be
difficult to imagine. Moreover, the beams cannot point
at the same region of the sky and just serve to increase the
field-of-view. This does reduce the noise level, but over a
wider area which would likely result in the decrease in the
expected signal strength.
A number of recent works [29–32] have suggested that it

might be possible to use the Square Kilometre Array (SKA)
to search for axions. Naively the very large collecting area
of the SKA in the formula (24) would substantially reduce
the necessary integration time. The proposed band 5 of the
SKA, which has a frequency range of 4.6–13.7 GHz, could
potentially be of interest for the detection of axions in the
mass range 40–110 μeV. However, it is not valid to use
the entire collecting area of the SKA in this way because
the beam size, since it is an interferometer, is set by the
longest baseline and this would be far too small. If one
thinks in terms of brightness temperature, there is an extra
factor, known as the filling factor, ηFF ≪ 1, which will
increase the noise level ∝ η−1FF .
An interesting alternative approach would be to use each

of the SKA telescopes as single telescopes in autocorre-
lation mode as it is envisaged for HI intensity mapping
[50]. The SKA dishes will have a diameter of D ¼ 15 m
and a sensitivity defined by A=Tsys ≈ 6 m2 K−1. Operating
in band 5, this will have a resolution of θFWHM ≈ 15 arcsec
at the lower end of the band and ≈6 arcsec at the higher
end. In the first instance the SKA—SKA phase 1, some-
times called SKA1—will have ≈200 such dishes but may
eventually—SKA2—have ≈10000. As before, the integra-
tion time for the telescopes decreases by a factor of N,
the number of telescopes, but unlike a phased array on a
single telescope they can copoint at the same region of sky
which is advantageous. With 200 telescopes, we estimate
an integration time of about 1.5 × 106 years, while for 104

telescopes, we obtain tint ≈ 3 × 104 years. This estimate
will be smaller for lower masses (around 2 orders of
magnitude at mac2 ¼ 20 μeV) due to the enhancement
from the stimulated decay. However, this will be mitigated
to some extent by the factor mac2 in the denominator of
(27). The values used are for a straw man object, while if
we use the surface mass density of (28), we would estimate
integration times ≈104 times smaller, which might bring
this in the realm of possibility. We note that our integration
time estimate for dwarf galaxies is consistent with that of
Ref. [32] up to a factor of a few, although it is difficult to
make a precise comparison. We believe that any minor
discrepancies might be due to the fact that observational
measurements of the size of the individual dwarf galaxies
might lead to a slight overestimation of the signal from
them. This point is born out in Fig. (6), where we obtain
slightly lower integration times for higher mass objects
when we determine object size from the virial overdensity
parameter, via the relationship between the virial mass and
radius.

We have already mentioned that [28] published an
upper limit for gaγγ based on 6 days of observations using
the Haystack radio telescope for axions in the mass range
around mac2 ≈ 300 μeV. In [28] they state that Tsys ≈
100 K and we estimate Aeff ≈ 750 m2 (assuming η ≈ 0.6)
and hence flux density and brightness temperature sensi-
tivities of 100 mJy s1=2 and 40 mKs1=2, respectively, in an
observing bandwidth of Δfobs ≈ 4 MHz. They assume
a mass of ≈107 M⊙ and a diameter of ≈10 kpc for the
dwarf galaxies which they probe at distances in the range
d ≈ 200 kpc with velocity width of Δv ≈ 30 km s−1 equiv-
alent to Δfobs ≈ 3.6 MHz. For τ2γ ¼ 5 × 1033 s, which
corresponds to their upper limit of gaγγ < 10−9 GeV−1,
we predict a flux density of S ≈ 4 mJy which would take
3 × 103 s to obtain a 95% exclusion limit. However,
the typical angular diameter of these objects is ≈3 deg,
which is very much larger—by around more than a factor
of 100—than the beam size which would mean that
Mbeam ≪ Mvir. For the reasons explained earlier, it is clear
that they must have made some error in their calculations
and this limit should be discounted.

C. Optimizing target objects

In the previous two sections we have explained that if
one targets a halo with surface mass density Σbeam ≈
0.07 kgm−2 and velocity width Δv ≈ 200 km s−1, the
signal from spontaneous decay combined with stimulated
emission from the CMB for gaγγ ¼ 10−10 GeV−1 is too
weak to be detected even for an array of receivers with
N ≲ 106. We came to this conclusion by estimating the
integration time required to detect the signal focusing on
the expression for the signal expressed in terms of the
brightness temperature (18).

1. Maximizing brightness temperature

Examination of this equation makes it clear that the
largest possible signal is obtained by maximizing
Σbeam=Δv. If the object is such that θFWHM ≈ θvir, we
estimate the quantity to be ≈3.5 × 10−7 kgm−3 s−1 for
the straw man object used in the previous section which is
around 300 times larger than the background value. This
value is based on what we think, at a level of better than a
factor two, are realistic values, but precise knowledge of it
is absolutely critical to any attempt to improve the CAST
limits of gaγγ using this approach. In this section, we will
discuss, using theoretical arguments and comparing to
observations, the range of values for Σbeam=Δv that might
be available for us to be observed in the Universe.
Consider now the possibility that the effective beam size

is sufficiently large to capture the full object flux so that
Sbeam ¼ Stot. From the beam geometry, one expects that
Stot ∝ Mvir—the scenario considered by [31]. Indeed this
setup can be realized by considering the resolution of the
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SKA dishes at 2.4 GHz (mac2 ¼ 20 μeV) for which most
of our candidate objects (Table II) are within the beam of
the telescope. Put simply, this means that we are in the
regime where the surface mass density within the beam is
that of the whole object, i.e., Σbeam ¼ Σvir. Similarly,
Mbeam ¼ Mvir. Throughout the subsequent discussion we
therefore identify Σbeam ¼ Σvir and phrase our analysis
purely in terms of Σvir.
One might wonder how Σvir=Δv depends on the size of

the object. If we consider a halo with virial overdensity
Δvir ∼ 100, then Mvir ¼ 4π

3
ΔvirρaR3

vir, where ρa ¼ Ωaρcrit is
the background density of axions and ρcrit is the critical
density. An estimate for the velocity width, up to order one
factors, is Δv ¼ ðGMvir=RvirÞ1=2 and hence we find that

Σvir

Δv
≈ 0.7

�
Δvirρa
G

�
1=2

≈ 3.5 × 10−7 kgm−3 s; ð29Þ

which is independent of the size of the object—that is, there
is no dependence on Mvir or Rvir. If Δvir is universal and
independent of the size of the object, as it is supposed to be
almost by definition, then the expected brightness temper-
ature averaged over a virialized halo will be independent of
the size and hence the optimal detection for a specific halo
size and telescope configuration would be obtained by

matching the size of the object approximately to the
telescope beam width. This is the standard practice to
optimize detection efficiency in all branches of astronomy.
This suggestion, that there is no optimal size of object,

appears to be contrary to the conclusions of [31], who
claimed that the optimal detection would be for dwarf
spheroidal galaxies, that is, the very lowest mass halos.
They came to this conclusion considering the quantity

1

Δv

Z
dΩdlρa ∝

Mbeam

d2Δv
∝ Sbeam; ð30Þ

where d is the distance to the object and the angular
integration is over the angular size of the object—or, as
they state it, for a telescope beam which has the same size
as the object. This quantity is ∝ Sbeam defined in (12) which
is equivalent to (17) if one is careful with the choice of
Σbeam. But we have already explained that one can come to
the wrong conclusion if one uses the wrong value ofMbeam
for a specific halo and that it is actually better to think in
terms of the surface mass density Σbeam.
In Fig. 4, we have plotted the quantities in (30) and (29)

using the data in Table II which is similar to, but not exactly
the same as, that used in [31]. In particular, we have added
some galaxies and galaxy clusters to the dwarf galaxies
which they focus on that enable us to probe a wider lever

TABLE II. Table of masses (Mobj), distances (Dobj), angular sizes (θobj), and velocity widths (Δvobj) extracted from the literature and
used in Fig. 4. In each case we have specified the reference of the paper from which the numbers are extracted/calculated. From paper to
paper the methods employed are different and hence the overall sample is relatively heterogeneous. For each object we can infer a radius
Robj ¼ θobjDobj=2 and a velocity width Δvinf ¼ ðGMobj=RobjÞ1=2. We find that Δvobj is strongly correlated with Δvinf as we would
expect and indeed that Mobj is also correlated with Robj.

Object Dobj Mobj (M⊙) θobj Δvobj [km s−1] Reference(s)

Leo 1 250 kpc 2.2 × 107 12.6 arcmin 8.8 [51]
NGC 6822 490 kpc 1.6 × 109 40 arcmin 8 [51]
Draco 82 kpc 2.2 × 107 28.3 arcmin 9.5 [51]
Wilman 1 45 kpc 4 × 105 9 arcmin 4 [52]
Reticulum 2 30 kpc 5.6 × 105 3.6 arcmin 3.3 [53,54]
Sextans B 1345 kpc 3.9 × 108 3.9 arcmin 18 [51]
Pegasus 955 kpc 5.8 × 107 3.9 arcmin 8.6 [51]
Antlia 1235 kpc 1.2 × 107 5.2 arcmin 6.3 [51]
NGC 205 815 kpc 7.4 × 108 6.2 arcmin 16 [51]
NGC 5128 3.8 Mpc 5.1 × 1011 34.7 arcmin 477 [45]
NGC 5194 15.8 Mpc 4.2 × 1010 8.4 arcmin 175 [45]
Maffei2 2.8 Mpc 4.2 × 1010 3.8 arcmin 306 [45]
IC2574 4.0 Mpc 4.6 × 109 13.2 arcmin 107 [45]
SexA 1.3 Mpc 2.5 × 108 5.9 arcmin 46 [45]
NGC 3556 9.9 Mpc 3.3 × 1010 5.0 arcmin 308 [45]
IC 0342 3.3 Mpc 1.4 × 1011 21.4 arcmin 181 [45]
NGC 6744 8.3 Mpc 2.2 × 1011 21.4 arcmin 323 [45]
ESO 300-014 9.8 Mpc 1010 7.1 arcmin 130 [45]
NGC 3184 11.1 Mpc 6.3 × 1010 7.4 arcmin 128 [45]
Virgo 18 Mpc 2.9 × 1015 7 degrees 1100 [55,56]
Coma 100 Mpc 3 × 1015 100 arcmin 1100 [57,58]
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arm in mass. The table contains values for the distance to
and the mass of the object Dobj and Mobj, respectively, the
angular size θobj and the velocity width Δvobj. These are
inferred in a heterogeneous way, but should at least be
indicative of some truth. We would not necessarily expect
these values to be those for a virialized halo and therefore
we denoted them with the suffix “obj” to distinguish them
as being observationally determined. From the observed
information, we can infer the radius, Robj ¼ θobj=ð2DobjÞ
and also check consistency with our analytic estimates
above by inferring Δvinf ¼ ðGMobj=RobjÞ1=2, as well as
calculating the surface mass density appropriate to an
average over the object radius, Σobj ¼ Mobj=ðπR2

objÞ.
Firstly, we find in the right panel of Fig. 4 that (30)

which was plotted in [31] is indeed ∝ θ2obj as claimed. But
on the basis of the theoretical argument above, this is
exactly what one would expect for the total flux density
Stot ∝ Σaveθ

2=Δv, where Σave is some average surface mass
density for the objects, and, hence, while it provides some
confidence that the modeling is correct, it does not yield
any obvious information about which objects would be
optimal.
In the left panel of Fig. 4 we have plotted Σobj=Δv for the

data presented in Table II, using both Δvobj and Δvinf with
consistent results. We find that the data are compatible with
Σbeam=Δv being a constant over eight orders of magnitude
and for it to be ≈500 times the background value—slightly
higher than for our straw man object—within the kind of

uncertainties that we might expect coming from a hetero-
geneous sample such as the one which we have used.
Visually, there could be some evidence for a trend ∼M−0.2

which we have also included to guide the eye, but the
evidence for this is largely due to a few outliers at the low-
and high-mass ends where perhaps the observational
estimates are most uncertain. So it could be that there is
some preference for lower mass halos over high mass halos,
but the effect is not very dramatic. Note that on the y—axis,
we plot ðΣ=ΔvÞrel ≡ Σ=Δv

1.2×10−9 kgm−3 s, where the denominator

is the value associated to the background.
It could be that the possible trend seen in the left panel of

Fig. 4 is related to the concentration parameter of the halo.
It is likely that the observationally determined angular size,
θobj, is not the virial radius but some scale radius from a
fitting function used in conjunction with images. If this is
the case, then we might expect a weak trend with mass.
The concentration parameter has been computed in

numerical simulations and is usually assumed to be
universal for halos of a given mass,M. A recently proposed
expression is [59]

ĉðM; zÞ ¼ ĉ0ðzÞ
�
M
M0

�
−γðzÞ�

1þ
�

M
M1ðzÞ

�
0.4
�
; ð31Þ

where M0 ¼ 1012h−1100 M⊙ and ĉ0ðzÞ, γðzÞ and M1ðzÞ are
fitted parameters which are redshift dependent. We will
focus on low redshifts where ĉ0ðzÞ ≈ 7.4, γð0Þ ≈ 0.12 and

FIG. 4. In the left panel. Signal strength as given by Σ=Δv ∝ TRJ. We assume an identical object and beam size Σ ¼ Mobj=ðθobjDobjÞ2
taking values from Table II. Note we normalized Σ by the background value 1.2 × 10−9 kgm−3 s. The trend appears relatively flat for the
data in the table—the solid green line—and is compatible with the simple argument presented in the text, albeit with a somewhat higher
value (≈500) relative to the background value. Possibly there is a trend with mass which we denoted with a line ∝ M−0.2 which could be
due to the concentration parameter varying as a function of mass and the fact that the angular sizes are probably the scale radius for some
fitted profile function rather than the virial radius. We note that much of this trend is driven by the outliers at low mass, ultrafaint dwarf
spheroidal, and high mass, the galaxy clusters, Virgo and Coma. In the right panel, we present the quantity in (30) for the data in Table II
which clearly increases like θ2obj as denoted by the line in the plot. Note that the starred data points, which use observational

measurements of the velocity width Δvobj, and the circular points, which correspond to the inferred width Δvinf ≈ ðGMobj=RobjÞ1=2,
show the same trend.
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M1ð0Þ ¼ 5.5 × 1017h−1100 M⊙. From this we see that at
z ¼ 0, ĉ ∝ M−0.12, that is, lower mass halos typically are
more concentrated than higher mass halos, and therefore
there will be more mass inside the scale radius, and for
observations focusing on the region inside this scale radius
Σbeam might be larger.
This leads us on to an important caveat in this discussion:

one does not have to choose to focus on trying to detect
the entire signal from a halo and indeed it will be optimal,
as well as practical, to not do this. Using (25), we can
eliminate Mbeam and Mvir in terms of Σbeam and Σvir. To do
this we first recall the definition of the beam surface-mass
density (see Appendix A)

ΣðRbeamÞ ¼
Z

ĉ

Rbeam

rρðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

beam

p dr; ð32Þ

Mbeam ¼ 2π

Z
Rbeam

0

RΣðRÞdR; ð33Þ

where r is the radial coordinate of the object in question and
Rbeam is the projected distance which we identify to be
given by the beam size. Explicitly for an NFW profile
ρðrÞ ¼ ρsFðr=rsÞ with FðyÞ ¼ y−1ð1þ yÞ−2, where rs is
the scale radius, Rvir the virial radius and the ratio of the two
ĉ ¼ Rvir=rs. Next we can expand these integrals in small
beam radius limit R̄beam ≪ 1 to find the relation

Σbeam ≃ G

�
ĉ;
Rbeam

Rvir

�
Σvir; R̄beam ≪ 1; ð34Þ

for an NFW profile Gðx; yÞ ¼ x2 logð2y=xÞ=fðxÞ for
y=x ≪ 1. We anticipate that one could derive a similar
expression for any halo profile.
We plot the function Gðĉ; Rbeam

Rvir
Þ as a function of ĉ and

R̃ ¼ Rbeam=Rvir, in Fig. 5, which indicates that enhance-
ments of up to 1000 might easily be possible and that these
are likely to be larger in lower mass objects than those of
higher mass. Therefore, at a first glance it would appear
that, for a fixed experimental set up (Rvir=Rbeam fixed), one
should search for an object with the largest concentration, a
general result which we already anticipated in Sec. II A.
However, one should also note that for small R̃, which
is fixed by the resolution of the telescope, the enhance-
ment across the different concentration parameters is
comparable. Furthermore, for a fixed resolution θ,
Rbeam=Rvir is significantly smaller for larger mass halos,
since Rvir is much larger. As a result, Σbeam is larger for
larger mass halos.
In conclusion, we have argued that maximizing

Σbeam=Δv will give the largest possible brightness temper-
ature signal. Theoretical arguments suggest that if the beam
encloses the virial radius of a particular object, this will be
independent of mass and a very rudimentary search of the
literature for specific values suggests that this could be true.

However, for fixed observational setup, and, hence, fixed
resolution, one might find a significant enhancement of the
signal due to the fact that the surface mass density will
increase as one probes the more central regions of a halo.
These are likely to be larger for larger mass objects since
the telescope beam probes denser regions of larger mass
halos. This is the reason we have presented our sensitivity
estimates as a function of Σbeam and results for range of
values Σbeam ¼ 0.07–70 kgm−2 in Fig. 2.

2. Minimizing integration time

From (24) and (27) we see that the integration time can
be expressed either in terms of Mbeam or Σbeam. Here we
shall use the latter measure. We have just seen how
brightness temperature is proportional to Σbeam=Δv and
therefore largest when this ratio is maximal. However,
whilst brightness temperature is a key observable, the
ultimate arbiter of feasibility of detection is of course
the integration time. From (24) we see the integration time
has a slightly different dependence on the halo parameters
Σbeam and Δv to that of the brightness temperature, scaling
instead as tint ∝ 1

Δv ðΣbeam=ΔvÞ−2, with the additional factor
of 1=Δv arising from the bandwidth of the signal. In light of
the different parametric dependence of the integration time
and brightness temperature on the halo parameters Σbeam
and Δv, and from Table II since Δv varies significantly
between objects, formally maximizing Σbeam=Δv (bright-
ness temperature) is slightly different to minimizing
Δv=Σ2

beam (integration time). Thus, it is natural to rerun

FIG. 5. The function Gðĉ; R̃Þ as a function of its arguments. In
the left panel, we plot G as a function of ĉ for different values
constant R̃, and vice versa in the right panel.
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the analysis of the previous discussion and check whether
there is also no preferred object group for tint.
We can then estimate the beam surface mass density

Σbeam using the NFW profile as found in (34) and take
values of Δv from Table II as before. Thus, we must know
Rvir, ĉ, and Δv. We can infer the virial radius from the mass
of the object Mvir ¼ Mobj ¼ 4π

3
ΔvirρaR3

vir, using the values
in the table. The results for the integration time for different
objects are plotted in Fig. 6. We have assumed the
resolution of the GBT, i.e., θFWHM ≈ 10−4 at 30 GHz.
At mac2 ¼ 250 μeV, the stimulated enhancement factor

is quite small. However, the decay time τ2γ is significantly
smaller than atmac2 ¼ 20 μeV. The values of F eff

γ at lower
mass are not large enough to compensate for the increase of
the decay time. Note that Σbeam is roughly a factor of 2–3
smaller for lower mass, since the resolution is a factor ≈12
larger. Therefore, the integration time is lower at larger
masses. As mentioned before, we see that the larger mass
halos give a slightly lower integration time, since we are
probing smaller values of R̃, i.e., denser regions of the halo.
The Virgo cluster at mac2 ¼ 250 μeV has an integration
time of around 350 years. Ideally, one would want to find
objects where 1þ F γ ≫ 1 at mac2 ≥ 100 μeV. Therefore,
this motivates a more detailed study of the radio emission
from the center of the Virgo cluster.
In [32] it was suggested that the Galactic Center could be

a target since it would benefit from a large signal enhance-
ment from the CMB, the measured radio background, but
perhaps most importantly from the diffuse radio emission

associated with the high density region and supermassive
black hole located there. The size of the enhancement in
this direction, FGC

γ , due to the photon occupation number
density, will depend on the resolution of the telescope used
in the measurement since F ≈ Iν=E3. Hence, we need to
estimate the intensity of radio emission from the Galactic
Center.
A measurement of the flux density of Sagittarius A� at

30 GHz is presented in the Planck Point Source Catalogue
[60] and we will assume an intensity power law spectral
index α ¼ −2.8 indicative of synchrotron emission and
compatible with the spectrum of the Galactic Center [61].
For any observation for which this source is effectively
pointlike, the intensity can be estimated as I ¼ S=Ωbeam ×
ðf=30 GHzÞ−2.8 where S ≈ 200 Jy is the flux density from
the catalogue, f is the frequency of observation, and Ωbeam
is the area of the beam, which scales with frequency
like f−2.
For a GBT-like instrument, this gives us an intensity

estimate ≈5 × 105 Jy sr−1 and hence the enhancement is

FGC
γ ≈ 50

�
250 μeV
mac2

�
0.8
: ð35Þ

Clearly, this suggests that the galactic center might be a
good candidate to target for future studies. Of course, we
are assuming in this calculation that the synchrotron index
is the dominant contributor to the frequency dependence of
the signal, which might be an oversimplification. However,
this estimate clearly demonstrates that one can achieve
similar sensitivity to the galactic center with just a 100 m
single-dish telescope rather than an array of many dishes
used in autocorrelation mode, as done in reference [32]
(which indicates that our order-of-magnitude estimate
approximately agrees with their analysis). To make an
accurate estimate of the stimulated enhancement factor, a
dedicated study of the synchrotron, free-free as well as
anomalous microwave emission(s) needs to be carried out,
ideally on a pixel-by-pixel basis, from high-resolution
observations of the galactic center.

D. Observational conclusions

In the previous sections we have argued that the bright-
ness temperature is a more robust quantity to measure,
since one does not have to optimize to a specific solid angle
for a given resolution. As a result, we have concluded that
the appropriate quantity to optimize is Σbeam=Δv. Higher
resolution measurements of objects can benefit from an
enhancement in the measured Σbeam. For a flux density
measurement, such an arrangement would result in
Mbeam ≪ Mvir, which, of course, implies a weaker signal.
Therefore, for single dish observations, the clear way
forward is to target smaller regions of the Universe where
one may obtain an enhancement for the surface mass
density. Clearly, for such observations, one will require

FIG. 6. The integration time for the 1σ detection of the
brightness temperature signal for the objects in Table II, assuming
a single-pixel detector in a GBT-like telescope and the stimulated
enhancement from both the CMB and the radio background. In
this case, we have used (34) to evaluate Σbeam assuming the
resolution of the GBT, that is, the virial mass and the virial radii
are related by the virial overdensity parameter, Mvir ∝ R3

virΔvir.
Note that we assume the fiducial signal strength corresponding
to gaγγ ¼ 10−10 GeV−1.
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higher resolution which is easy for instruments like
the GBT.
We have also discussed the stimulated decay enhance-

ment of the signal and noted that this enhancement is
substantial at lower mass. A future experiment would
greatly benefit from a dedicated study of specific sources
for which high intensity radio emission has been measured.
In our previous section, we motivated the Virgo cluster and
the galactic center. Note that for our sensitivity estimates
for the galactic center, we have assumed a constant Σbeam
for all axion masses, since the presence of the black hole
results in a density spike at the galactic center out to a
few parsecs from the position of Sagittarius A�. For the
radio background, we use the power law derived in [36],
given by

TARCADE−2 ≈ 1.2 K
�
1 GHz
fobs

�
2.62

: ð36Þ

Substituting this expression back in, one obtains

FRB
γ ≈ 1.6 × 103

�
1 GHz
fobs

�
3.62

: ð37Þ

We note that this is probably an overestimate of FRB since
the ARCADE measurement would require an additional
population of radio sources at the relevant frequencies. In
principle, there is also a free-free component as well as
anomalous microwave emission from the galactic plane,
some of which will contribute to the photon occupation
number associated to the galactic center. We remark that
while a complete study of the sensitivity to the galactic
center is outside the purpose of this work, our order of
magnitude estimate motivates a more detailed future study.
In the near future, the SKAwill go into operation. With

1 km2 of collecting area, the SKA brings the possibility of
very high radio sensitivity. However, we note a sparse
interferometer is, by construction, most suited to measuring
flux densities with high resolution. One can use Rayleigh-
Jeans law to convert the noise level on the flux density,
which is set by the collecting area into a brightness
temperature sensitivity

Tσ ¼
Tsys

ηFF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δfobstobs

p : ð38Þ

The factor ηFF ≡ ðNAeffÞ=D2
baseline ≪ 1 is known as the

filling factor and this increases the expected noise level for
the brightness temperature. Here, N is the number of
telescopes in the interferometric setup and Aeff is the
effective collecting area of each telescope. However, if

FIG. 7. The sensitivity to axion-photon coupling as a function of axion mass observing a source with surface mass density Σbeam and a
velocity dispersion of 200 km s−1. In the left panel, we assume N ¼ 104 telescopes (SKA2:Band 5), used in single-dish mode for an
integration time of 4 days and a system temperature of 30 K. The frequency coverage is as given in Table I. We include the enhancement
due to the CMB and the radio background in this case, but note that the enhancement from the radio background is very uncertain. In the
right panel, we show the sensitivity from observations of the galactic center between 1 and 100 GHz, assuming a 100 m single-dish
telescope with a system temperature of 30 K, such as the GBT, and an integration time of 4 days. We included estimates of the stimulated
emission enhancement from the CMB, the radio background, and the synchrotron emission from the supermassive black hole, Sagittarius
A�, discussed in the text. We note that, in reality, the system temperature for most radio telescope receivers varies with frequency, which
would need to be modeled in an experiment. The sky-blue shaded region is the parameter region excluded by the CERN Axion Solar
Telescope (CAST) [27].4 The green and magenta exclusions are from the ADMX [22] and HAYSTAC [62] haloscope experiments. We also
highlight the axion mass ranges predicted by the misalignment mechanism (red) and the string decay (cyan).

4We thank Igor Irarstorza for sharing the CAST data.
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the telescopes are all used in single dish mode, then the
integration time for a measurement decreases by a factor N
since all the telescopes can point at the same region of
the sky.
The high resolution associated with interferometers also

means that their large collecting area is offset by the small
beam size, again decreasing Mbeam by several orders of
magnitude. As mentioned before, the flux density sensi-
tivity can be increased by using the telescope in single-dish
mode, which results in a factor of N decrease in integra-
tion time.
We conclude from our analysis that the brightness

temperature is the appropriate quantity to optimize radio
telescope searches for the spontaneous decay. In Fig. 7 we
show our estimates of the radio sensitivity to the sponta-
neous decay. In both the panels, we have set the integration
time, tint, to be 4 days. The left panel shows the SKA2:Band
5 sensitivity operating in the single dish mode for the
Virgo cluster and the Reticulum 2 dwarf galaxy using the
numbers explained in the caption. Note that in principle,
the sensitivity to the Virgo cluster could be significantly
better, as we assume there is no radio emission from the
center of Virgo at frequencies larger than 10 GHz. In the
right panel, we show the sensitivity to the galactic center,
assuming Σbeam ≈ 7 and 70 kgm−2 and a single pixel
detector in a GBT-like telescope. It is clear the galactic
center is a promising target for future experiments, which
motivates a more detailed study of the different sources of
stimulated enhancement.

III. RESONANT MIXING IN NEUTRON STARS

There has recently been renewed interest in the possibil-
ity of detecting radio signals from the resonant conversion
of dark matter axions in neutron star magnetospheres
[41,42], originally proposed in [40] together with a number
of follow-up studies [63–65]. The conversion happens in
some small critical region within the magnetosphere where
the plasma mass ωpl is approximately equal to the axion
mass ma. This part of the magnetosphere—whose width
∝ 1=j∇ωplj is determined by the gradients of the back-
ground plasma—acts essentially as a stellar haloscope. The
characteristic frequencies for nonrelativistic axions are
given by the axion mass. The emitted radiation then results
in a radio line peaked at frequencies ω ≃ma.
The effect is similar to the Mikheyev–Smirnov–

Wolfenstein (MSW) mechanism for neutrino interconver-
sion [66] where a finite density of background charge
carriers can endow neutrinos with an effective mass so that
when the mass-splitting becomes small, flavor mixing is
enhanced. Relativistic axion-photon mixing in neutron
stars has also been studied in [43], where, by contrast
with the dark matter axion case, it was assumed that all
particles are in the weak dispersion regime ω ≃ jkj, as in
earlier references [67].

The principal aim of this section is to reexamine the
canonical assumptions made in the study of axion-photon
mixing in a medium and determine to what extent they can
be justified in a neutron star setup. Our analysis focuses on
the following points:
(1) Unlike for simple haloscopes with constant mag-

netic fields and uniform plasma densities, magneto-
spheres are inhomogeneous with a nontrivial 3D
structure. We, therefore, examine to what extent the
axion-Maxwell equations can be reduced to a two-
flavor mixing system in a 1D planar geometry,
whose evolution depends on a single integration
parameter along the line of sight.

(2) We go beyond Refs. [41,43] and perform a con-
trolled gradient expansion (Appendix B) of the
mixing equations similar to Ref. [68]. This allows
us to obtain in a systematic way the leading order
WKB behavior of the mixing system and has the
particular advantage of providing a careful treatment
of dispersion relations which are in general distinct
for the axion and photon away from the resonance
region. Our treatment is also valid away from purely
relativistic/nonrelativistic regimes, with our final
form of the first order mixing equations valid for
arbitrary values of the momenta.

(3) We establish in which regions of the axion phase-
space ðk;maÞ the evolution can be considered non-
adiabatic. This determines when the a → γ conver-
sion can be treated perturbatively in the coupling gaγγ
and where a nonperturbative Landau-Zener formula
[43,44] for two-level mixing must be applied.

(4) We examine the role of higher dimensional structure
in producing a longitudinal mode ∇ ·E ≠ 0 for the
photon and to what extent geometry affects the
decoupling of polarizations Ek and E⊥, parallel
and normal to the background magnetic field.

A. Axion electrodynamics

Our starting point is the standard Lagrangian for the
axion and photon, with medium effects described by a
current jμ:

L ¼ −
1

4
FμνFμν − Aμjμ

þ 1

2
ð∂μa∂μa −m2

aa2Þ þ
1

4
gaγγaFμνF̃μν; ð39Þ

where Fμν and F̃μν are the electromagnetic field tensor and
its dual, respectively. The equations of motion for the
electromagnetic (EM) fields are given by

∇ ·E ¼ ρ − gaγγB ·∇a; ð40Þ

∇ ×B − _E ¼ Jþ gaγγ _aB − gaγγE ×∇a; ð41Þ
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∇ ·B ¼ 0; ð42Þ

_Bþ∇ ×E ¼ 0: ð43Þ

Next, we linearize the equations of motion about the
background solutions satisfying the gaγγ ¼ 0 equations of
motion by setting E → E0 þE and B → B0 þB, with a
corresponding ansatz for ρ and J. We also neglect the
background electric field, setting E0 ¼ 0, since for neutron
stars the magnetic component typically dominates in the
magnetosphere, see, e.g., [69]. The electromagnetic fluc-
tuations must be self-consistently accompanied by pertur-
bations of charge carriers in the plasma via Lorentz forces.
This can be modeled via an Ohm’s law relation between the
current and electric fluctuations E and J,

J ¼ σ ·E; ð44Þ

where the three-by-three matrix σ is the conductivity tensor.
Note that together with current conservation _ρþ∇ · J ¼ 0,
this closes the system of equations. To obtain a simple
system of mixing equations, we specialize to a stationary
background throughout the remainder of this section
assuming B0 and σ to be time-independent, as would be
the case for an aligned rotator neutron star model. One
then obtains the following system of mixing equations for
E and a,

□aþm2
aa ¼ gaγγE ·B0; ð45Þ

□Eþ∇ð∇ ·EÞ þ σ · _E ¼ −gaγγäB0; ð46Þ

where (46) was obtained by taking the curl of (43) and
combing with (41) and (44). We have thus completely
parametrized the axion-photon fluctuations in terms of
two physical fields, E and a. Note that the magnetic com-
ponent is determined immediately from integration of (43).
We see from (46) that, in general, different polarizations
of E will mix owing to the presence of a longitudinal mode
∇ ·E ≠ 0, which can be sourced via the axion [see
Eq. (40)] or when σ has off-diagonal components. Note,
furthermore, that in a stationary background, the fields have
simple harmonic time-dependence ∼e−{ωt. The conduc-
tivity in a magnetized plasma takes the form [70]

σðωÞ ¼ {e2ne
me

RBðθÞ

0
BBB@

ω
ω2−ω2

B

iωB
ω2−ω2

B
0

− iωB
ω2−ω2

B

ω
ω2−ω2

B
0

0 0 1
ω

1
CCCARBðθÞ−1;

ð47Þ

where θ ¼ θðxÞ, ωB ¼ eB0=me is the gyrofrequency,
RBðθÞ is the local rotation matrix which rotates B0 into

the z-direction, and B0 ¼ jB0j. We assume furthermore
that ω ≪ ωB, which is easily satisfied for neutron stars
with B ≃ 109–1014 G and frequencies ω ≃ma ∼ μeV asso-
ciated to nonrelativistic axions. In this case, one has
σðωÞ ·E ¼ {ðω2

pl=ωÞEk, where Ek is the component of
E along B0.

B. Resonant mixing in 1D

Here we spell out what are the precise physical assump-
tions needed to reduce the plasma (45)–(46) to a simple 1D
problem.
Consider first a planar geometry in which all background

fields depend on a single parameter z, i.e., B0 ¼ B0ðzÞ.
Then, since B0 is transverse (∇ · B0 ¼ 0), it follows
immediately that B0 has no polarization in the z-direction.
Consider also that the wavefronts propagate in the same
direction, such that a ¼ aðzÞ and E ¼ EðzÞ. Crucially,
these geometric assumptions ensure

B0ðzÞ ·∇ð∇ ·EðzÞÞ ¼ 0; ð48Þ

since by construction there are no gradients in the direction
of B0. Thus, by geometric considerations and assumptions,
we are able to exclude the effects of a longitudinal
component ∇ ·E from the mixing equations. One can
then project (46) onto B0 to arrive at the following set of
mixing equations:

� ∂2
z −m2

a þ ω2 ωgaγγB0ðzÞ
ωgaγγB0ðzÞ ∂2

z − ω2
plðzÞ þ ω2

��
a

E

�
¼ 0; ð49Þ

where E ¼ Ek=ω, Ek ¼ E ·B0=jB0j is the component of E
parallel to B0 and ω2

pl ¼ e2ne=me is the plasma frequency.
The remaining component E⊥ normal to B0, from Gauss’s
law can be seen to satisfy ∂zE⊥ ¼ 0 and thus by boundary
conditions must vanish. Thus, in such a geometry, the
mixing simplifies to only two degrees of freedom. To fully
solve these equations, one should ensure that solutions have
the appropriate ingoing and outgoing waves at infinity,

z → −∞∶
�
a

E

�
¼

�
aIe{kaz

0

�
þ
�
aRe−{kaz

γRe−{kγz

�
; ð50Þ

z → ∞∶
�
a

E

�
¼

�
aTe{kaz

γTe{kγz

�
; ð51Þ

where aI is the amplitude of the incident wave and γR and
aR, γT and aT are the amplitudes of the reflected and
transmitted waves, respectively.
There are two principal analytic formulas which describe

the resonant conversion, one of which, as we now show, is
the truncation of the other. The first result [41,63–65] is
perturbative, whilst the second explicitly solves the mixing
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equations with appropriate boundary conditions, providing
a nonperturbative conversion amplitude in gaγγ—this is the
Landau-Zener formalism [43,44].
The first step in deriving analytic results is to reduce the

system to a first order equation. This involves two stages,
firstly a gradient expansion with respect to background
fields and secondly imparting information about local
dispersion relations into the resulting equations. A some-
what heuristic derivation of a first order equation is given in
the classic reference [67] for relativistic particles k ≫
ωpl; ma with trivial dispersion ω ≃ k. This is the so-called
“weak dispersion” regime also examined in [43]. However,
here we deal with nonrelativistic dark matter axions
which have ω ≃ma, and since we are interested also in
a photon whose dispersion varies locally according to
ω2 ¼ k2 þ ω2

pl, a more subtle analysis is required. We
therefore derive explicitly in Appendix B the following
first-order analogue of (49):

d
dz

�
ψ a

ψγ

�
¼ {

2k̄ðzÞ
� m2

a ωgaγγB0ðzÞ
ωgaγγB0ðzÞ ω2

plðzÞ

��
ψ a

ψγ

�
;

ð52Þ

with k̄≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − M̄2

p
and where the key difference from

Refs. [41] or [43] is the realization that the distinct axion
and photon mass-shell conditions express themselves in a
local average momentum associated to the average M̄2 ¼
ðM2

1 þM2
2Þ=2 ¼ ðω2

pl þm2
aÞ=2 of the two eigenmasses,

M2
1;2 ¼

1

2
fm2

a þ ω2
pl � ½ðm2

a − ω2
plÞ2 þ 4B2

0g
2
aγγω

2�1=2g:
ð53Þ

In particular, it also varies throughout space. Note that in
the relativistic limit k̄ → ω reproduces the weak dispersion
equations of [43] and, at the critical point, one can set
k̄ → k to the axion momentum ω2 ¼ k2 þm2

a , giving the
localized version of Ref. [41] about z ¼ zc, where zc is the
location of the resonance at which ma ¼ ωpl. Here ψ a and
ψγ appearing in Eq. (52) can be viewed as axion and photon
states which have been put on-shell. For compactness of
notation we also define

Δa ¼ m2
a=2k̄; Δγ ¼ ω2

pl=2k̄; ΔB ¼ ωgaγγB0=2k̄:

ð54Þ

1. Perturbative calculation

As was done in [41] following the approach of [67],
these equations can be solved perturbatively. Following
the latter of these references, by going to the interac-
tion picture, one can derive the following conversion
probability:

Pa→γ ¼
����
Z

∞

−∞
dz0ΔBðz0Þe{

R
z0
0

dz00½Δγðz00Þ−Δaðz00Þ�
����2: ð55Þ

The exponent is stationary at the resonance, allowing one to
perform the integral using the stationary phase approxi-
mation to get

Pa→γ ¼
2πΔ2

BðzcÞ
jΔ0

γðzcÞj
≡ 2πγ; ð56Þ

where zc is defined by ωplðzcÞ ¼ ma and the prime
represents the derivative with respect to z. In order to
make contact with the Landau-Zener formula for the
conversion probability of Ref. [43], we note that by using
the definition of the mixing angle

tan 2θ ¼ ωB0ðzÞgaγγ
m2

a − ω2
pl

; ð57Þ

we can write

γ ¼ 2π
ΔM2ðzcÞ=2k̄c

4jθ0ðzcÞj
þOðk̄0ðzcÞ; B0

0ðzcÞÞ; ð58Þ

where ΔM2 ¼ M2
1 −M2

2 is the mass-splitting in the mass-
diagonal basis. Thus, up to gradients in the dispersion
relation and the magnetic field, the result is precisely that
of [43]. Note that by looking at the exponent in the
stationary phase approximation, the width of the corre-
sponding Gaussian gives the characteristic width Δzc of the
resonant region

ðΔzcÞ2 ¼
π

jΔ0
γðzcÞj

: ð59Þ

Wemimic the∼1=r3 behavior of the near-field dipole of the
neutron star by taking

B0ðzÞ ¼
B�R3

z3
; ð60Þ

and use the Goldreich-Julian density [71] for the plasma
frequency, with ne ¼ ΩB0ðzÞ and Ω the rotation frequency
of the neutron star, from which it follows that:

Δzc ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
2πzck̄
3m2

a

s
; zc ¼ R

�
B�Ωe2

mem2
a

�
1=3

: ð61Þ

This allows one to write the conversion probability explic-
itly as

Pa→γ ¼
1

2

ω2

k̄2ðzcÞ
g2aγγBðzcÞ2Δz2c : ð62Þ
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There is a pleasing interpretation of this result in terms
of a resonant forced oscillator solution—as can be seen
from the form of (46). The photon field E ¼ Ek=ω can be
viewed as a harmonic oscillator with local “frequency”

kγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

pl

q
which becomes equal to that of the axion

forcing ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

a

p
when ωpl ¼ ma. Since the par-

ticular solution to the forced resonant oscillator grows
linearly with z behaving as ∼ze{kγz and since the overall
magnitude of the forcing is set by ωgaγγB0, the total
resonant growth in the photon amplitude is then given
by multiplying the size of the region (linear z behavior) by
the magnitude of the forcing—which gives precisely the
amplitude-squared of (62).

2. Landau-Zener

It is also interesting to quote the well-known Landau-
Zener expression for the conversion probability in a two-
state system [44] which is obtained by linearizing Δγ in
(52) about z ¼ zc and neglecting gradients in the mixing
ΔB, leading to (see Appendix B)

Pa→γ ¼ 1 − e−2πγ; γ ¼ Δ2
BðzcÞ

jΔ0
γðzcÞj

: ð63Þ

The physical interpretation of this result is that γ controls
the adiabaticity of the evolution—i.e., how rapidly the
background is varying. Formally this corresponds to the
size of background plasma gradients. We see immediately
that the perturbative result (56) (Refs. [41,67]) is precisely
the truncation of the Landau-Zener probability (63)
([43,66]) in the nonadiabatic limit for small γ.
It is intriguing to note the link between these results. Of

course mathematically speaking, the stationary phase
approximation used to compute (55) amounts to a lineari-
zation of the plasma mass about the critical point and our
use of the Landau-Zener result is formally valid in the limit
for which the mass-splitting m2

a − ω2
pl varies linearly with z

implying the same implicit assumption. However, given
that the derivation of each of these results seems a priori to
be quite different—it is striking to see that their agreement
is exact in the γ ≪ 1 limit.
The size of γ—and therefore the regime in which a

perturbative treatment is appropriate—is given in Fig. 8 for
the QCD axion with canonical neutron star parameters.
Note that our systematic treatment of mass-shell constraints
allows us to study γ across the full range of relativistic and
nonrelativistic axion parameter space.
Figure 9 summarizes our results for conversion in 1D

and compares the full numerical results of the second order
equation (49) against analytic approximations. The numeri-
cal conversion probability was computed by assuming an
incident axion from z → −∞ with the magnetic field
background (60) and solving the equations for the photon
up to a finite depth inside the region of plasma overdensity

defined by ωpl > ω in which the photon amplitude
becomes exponentially suppressed. This was implemented
numerically as a Dirichlet and Neumann boundary con-
dition by setting the electric field and its first derivative to
zero at some finite depth inside the ωpl > ω region.

FIG. 8. The adiabaticity parameter γ of (63) for the QCD axion
with gaγγ given by (4) with E=N ¼ 8=3. We considered a
magnetic field (60) with B� ¼ 1014 G, a rotation period P ¼
0.1 s with R ¼ 10 km. We also show the velocity at the critical
point vc ¼ kc=ma for the value 10−1 which can be reached via
gravitational acceleration.

FIG. 9. The analytic Landau-Zener probability, adiabaticity
parameter γ and the numerical solution of the full second order
equations of motion as a function of the axion mass. Here, we
assume gaγγ ¼ 10−12 GeV−1, B0 ¼ 1014 G, and ka ¼ 0.1ma. For
these parameters, we find from energy conservation that the
average velocity of the axion at the resonant conversion region
vc ≈ 2GM

zc
is roughly 10% of the speed of light.
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Figures 8 and 9 show that the conversion of dark matter
axions in neutron star magnetospheres typically involves
nonadiabatic evolution for which a perturbative treatment
in gaγγ is valid. The fact one does not stray into the adiabatic
regime arises from two considerations. Firstly, for asymp-
totic values of the axion velocity va ≡ ka=ma given by 10−3,
gravitational acceleration can bring these up to around 10−1

shown by the purple line in Fig. 8. Secondly there is an
upper limit on the axion mass beyond which the resonance
region would be pushed inside the neutron star. These two
facts together restrict one to the nonadiabatic region of dark
matter axions.
Of course there are some caveats to the above assump-

tions. Firstly axions with very high or very low momenta
can in principle be pushed into the adiabatic regime.
However, the gravitational acceleration of the neutron star
puts a lower bound vc ≥ GM=zc, which is saturated by
axions which are asymptotically at rest. Meanwhile for
large v, the distribution is exponentially suppressed by the
velocity dispersion v0.

C. Mixing in higher dimensions

Firstly we review some of the canonical assumptions
made in reducing the system of equations (45)–(46) to a
simple 1D form and then explain why these assumptions
may break down in more complicated geometries.

1. Polarization, geometry, and the longitudinal mode

It is common to assume a transverse photon [67,72],
such that ∇ · E ¼ 0. In this instance, the purely transverse
field E can be projected onto the magnetic field in such a
way that the polarization normal to B0 decouples

∇ ·E ¼ 0 ⇒
□aþm2

aa ¼ gaγγEkBt;

□Ek þ ω2
plEk ¼ −gaγγäBt

; ð64Þ

where Bt is the projection of B0 onto the (assumed to be
transversely polarized) E field. This form is valid either
for isotropic conductivities or ω;ωpl ≪ ωB such that
σ ·E ¼ {ω2

pl=ωEk. Under such an assumption the system
will reduce to the mixing of two scalar degrees of freedom,
Ek and a.
However, in the absence of special geometric consid-

erations described in Sec. III B the presence of plasma and
the axion itself will source a longitudinal component
∇ ·E ≠ 0, as can be seen explicitly from Gauss’s equa-
tion (40), which, by using current conservation in a
stationary background together with Ohm’s law, reads

∇ ·E ¼ ∇ ·

�
σ

ω
· E

�
− gaγγB0 ·∇a: ð65Þ

If one chooses a geometry such that the axion field has no
gradients in the direction of B0, then the longitudinal mode

will not be excited by the axion. If, for instance, the axion
gradients are negligible over the scale of the experiment in
question, it will have no effect, and in a homogeneous
background one would then have ð1 − ω2

pl=ω
2Þ∇ · E ¼ 0,

allowing to neglect the longitudinal mode. However, for the
neutron star case, these simplifications need not apply so
straightforwardly as we now demonstrate explicitly.

2. 2D example

Several authors have studied axion-electrodynamics in
nonplanar geometries [73,74]. We also note in passing a
more detailed examination of axion-plasma effects [75,76].
We solve (46) in a stationary background, working per-
turbatively in gaγγ such that the back-reaction onto the axion
beam can be neglected. We, therefore, consider the axion as
a fixed source, to solve for E

−∇2Eþ∇ð∇ ·EÞ þ ω2
pE − ω2E ¼ ω2gaγγaB0; ð66Þ

with a ¼ a0e{ka·x. This form implicitly assumes that
enough time has elapsed since the axions last scattering
that an initially localized axion packet will have dispersed
to scales much larger than the neutron star via quantum
diffusion by the time it approaches the resonant region,
justifying the infinite transverse extent of the axion wave
fronts in (66). Such an approximation is easily justified by
the low density of particles in the interstellar medium and
the weakness with which they couple to the axion [9]. The
wave-optics picture used above can be viewed as summing
over all possible rays parallel to ka which pass through the
neutron star, since by virtue of the uncertainty principle,
only the axion’s momentum ka, not its location, is known.
To solve (66), we implement a finite element method

solver by constructing a mesh over a given integration
region. In order to resolve the wave-front structures, the
characteristic length of the mesh elements must be less
than the wavelength λa ¼ 1=k of the axion. Furthermore,
the size of the resonance region can be written as rc ¼
vaλa½rc=ð3λaÞ�1=2 where va is defined by va ¼ k=ma. Since
the critical radius rc ≫ λa is set by neutron star scales, we
see that Δrc ≫ λa. In other words, the effective haloscope
size is many orders of magnitude larger than the axion
wavelength. This should be contrasted with the results of
[74], where axion wavelengths are comparable to the size
of the experiment. This hierarchy presents a numerical
challenge in that one must integrate over many wavelengths
along the conversion region, with a sufficiently high
resolution over each wavelength, resulting in a large
number of mesh cells. The situation is clearly exacerbated
in higher dimensions, where even more cells will be
required.
Therefore, we consider a 2D setup, which allows one to

study the mixing process in nonplanar geometries, whilst
keeping the computational cost low. We consider the
following “2D dipole” magnetic field:
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B0 ¼ ∇ ×A; A ¼ fðr; θÞẑ;

fðr; θÞ ¼ e{mθB�

�
R
r

�
m
; R ≤ r < ∞; ð67Þ

which satisfies ∇ · B0 ¼ 0 automatically and ∇ ×B0 ¼ 0
by virtue of fðθ;φÞ being a solution to the cylindrical
Laplace equation. We take m ¼ 1 to mimic a dipolelike
configuration explicitly, then

B0ðx; yÞ ¼ B�R
�

−2xy
ðx2 þ y2Þ2 ;

x2 − y2

ðx2 þ y2Þ2
	
: ð68Þ

The conductivity is taken in the high-magnetization limit
ωB ≫ ω, and mimics the Goldreich-Julian density of an
aligned rotator by projecting on the direction of the
magnetic dipole:

σ ¼ {ω2
pl

ω
ðB̂0 ⊗ B̂0Þ; n2DGJ ¼ Ωðŷ · B0Þ: ð69Þ

The resulting background configurations are shown in
Fig. 10. We implement the following boundary conditions
which are correspondingly of Robin and Dirichlet type

n ×∇ ×E − {ωn × ðn ×EÞ ¼ 0; r → ∞; ð70Þ

E ¼ 0; r ¼ R; ð71Þ

where n is the unit normal to the outer boundary of the
integration region. The first of these implements purely
outgoing waves so that the outer boundary is absorptive. It
can be derived by considering asymptotic solutions of the
vector Helmholtz equation [74,77]. The second condition
assumes a perfect conductor at r < R so that E vanishes

FIG. 10. Magnetic field and 2D Goldreich-Julian density of Eqs. (67)–(69) normalized to surface values.

FIG. 11. The electric fields components perpendicular and normal to B0 from solving (66) (normalized to B�a0gaγγ) with the profiles
in (69) and the boundary conditions (70)–(71). We took the values k ¼ ð0; 3Þ and ma ¼ 1 in units of R−1.
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for r ≤ R, with no surface charges at r ¼ R such that the
electric field continuity conditions n · ½Eðr → RþÞ−
Eðr → R−Þ� ¼ 0 and n × ½Eðr → RþÞ − Eðr → R−Þ� ¼ 0
on the inner boundary at r ¼ R. The results are shown in
Figs. 11 and 12.
It is clear to see that in those regions where ∇a · B0 ∼

ka ·B0 ≠ 0 one has ∇ · E ≠ 0 whose profile tracks those
axion wave fronts parallel to B0. Since the decoupling
procedure of the different polarizations breaks down in a
nonplanar geometry, we also see in Fig. 11 thatE⊥ enters in
the mixing equations and becomes dynamical.
In general then, we see that a simple decoupling of

polarizations need not hold in nonplanar geometries,
suggesting that the 2-component mixing equations applied
to a neutron star context in [41] are at best an order of
magnitude approximation. That said, since the sourcing of
∇ ·E arises via axion gradients, it may be that for
sufficiently nonrelativistic axions these terms could be
neglected in a controlled way, however such an analysis
is beyond the scope of the present work. In addition, even if
one can decouple polarizations, one still has to contend
with multidirectional gradients, such that the 1D Landau-
Zener formulas would need to be adapted to a 3D setting.
Ultimately, it may be that accurate results can only be

obtained by full 3D simulations of the mixing equations as
in [74]. However, as discussed in previous paragraphs,
resolving the wave-front structure across the resonance
region requires a large number of mesh cells. One remedy
could be a coarse-graining procedure in which one tracks
the field amplitudes, but integrates out structures below
wavelength scales. This is akin to a gradient expansion used
to derive (52) in Appendix B and would entail performing
the same expansion in 3D on (66) to derive a three
dimensional set of transport equations similar to those of

[68,78] encountered in flavor mixing in leptogenesis or
neutrino oscillations in supernovae.

IV. ESTIMATING THE SIGNAL AND RADIO
SENSITIVITY FOR THE RESONANT DECAY

The radio sensitivity to resonant conversion in neutron
star magnetospheres has been previously discussed in
[41,64]. In particular, [64] discussed the radio sensitivity
to neutron star populations. The conclusion of their study
was that the radio lines from the individual “brightest”
neutron stars (where bright here means where the resonant
conversion is the strongest) offer better sensitivity to the
axion-photon coupling than a population. An important
factor contributing to this is that the frequency width of the
signal in the case of observing a population of stars is
proportional to the inverse of the velocity dispersion,
compared to the inverse square of the velocity dispersion
in the case of single neutron stars, which increases
integration time considerably. Therefore, one needs to
increase the field of view of the observation considerably
to observe a large enough population in order to get a larger
signal compared to the isolated bright neutron star case.
Unfortunately, one is then limited by the fact that telescopes
with large collecting areas have higher resolution, which
lead to smaller fields of view. We remark that it might be
possible to design a bespoke instrument optimized to try
and maximize this signal, but such an undertaking is
beyond the scope of this current work.
In this section, we work out the flux density associated

with the resonant mixing and explore the possibility of a
detection with current and future telescopes. We discuss the
impact of the velocity dispersion near a neutron star and
Doppler broadening due to its overall motion in Sec. IVA.
We then discuss the single-dish sensitivity to the axion-
photon decay in neutron stars and describe potential
neutron star targets in Sec. IV B, where we also compare
and contrast our sensitivity calculations to that of [41]. Our
sensitivity estimates are for the resonant production in a
single neutron star, where we assume that the signal is a
spectral line broadened by the velocity dispersion of the
axions. We also forecast sensitivities of single-dish tele-
scopes (for which we assume the GBT or the Arecibo
telescope to be typical examples) and interferometers, like
the SKA.

A. Velocity dispersion and Doppler broadening

Since the pulsar magnetosphere in general is not a
stationary configuration, the energy of test particles moving
in this background is not conserved. While a somewhat rich
structure is indicated by simulations [79,80], we consider
here the minimal model of an oblique rotating magnetic
dipole field that also determines the electron density
according to Goldreich and Julian [71] and hence the
critical surface. In order to arrive at an analytically

FIG. 12. The divergence of the electric field (arbitrary units)
with values as in Fig. 11.
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transparent picture, we make some additional simplifying
assumptions.
For an oblique rotator, the intersection of a plane

perpendicular to the rotation axis with the critical surface
takes the shape of an ellipse. When the lengths of the
semimajor and semiminor axes are a and b, respectively,
the numerical eccentricity is ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=a2

p
. This ellipse

rotates at an angular velocity Ω about its middle point.
Consider a corotating point on the critical surface, where

an axion may be converted into a photon. We can further
distinguish the cases of reflection and transmission. For
reflection, an infalling axion reaches the critical surface
from the outside and the photon is subsequently reflected
when further climbing the potential barrier made up by the
plasma. For transmission, the axion is coming from the
inside region and the photon then continues to travel
outbound. The instantaneous velocity of the tangential
plane of the critical surface in general is not parallel to
the plane itself (unless the point considered is aligned with
one of the axes of the ellipse or in the degenerate case of a
circle). Physically, a particle that interacts with the critical
surface transfers momentum to the magnetosphere, corre-
sponding to the Doppler effect from the reflection by a
moving mirror.5

We therefore calculate the reflection or transmission of a
ray of a particle of mass ma in the xy-plane that approaches
the origin at an angle α (all angles refer here to the x-axis),
where it falls on a plane whose normal vector points in the
direction φ. Upon reflection or transmission, the particle is
converted into a massless state. The plane moves at a
constant velocity v in the direction of the angle ϑ, see
Fig. 13. The calculation can be carried out by first boosting
the four-momentum of the massive initial state from the rest
frame of the observer to the rest frame of the critical
surface. In that frame, the zero-component of the four-
momentum is conserved as well as the spatial components
of the momentum parallel to the surface. The component
perpendicular to the surface is then found by imposing the
energy-momentum relation of a massless particle. The final
answer is obtained when boosting back to the frame of the
observer.
To clarify this approach, we first quote the result for the

situation where the surface moves toward the incoming
massive particle, α ¼ ϑ ¼ φ ¼ 0, such that we obtain

k00 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ k2
p

þ kv
c ∓ v

; ð72Þ

where k and k0 are the moduli of the wave vectors of
incoming and reflected waves, respectively. Throughout
this section, an upper sign refers to the case of reflection
and a lower one to transmission. Clearly, when setting

ma ¼ 0, we obtain the classic result for Doppler shift for
reflection as well as zero change in the frequency for
transmission. We may therefore anticipate that, for non-
relativistic axions, the Doppler shift for axions leaving the
magnetosphere is not suppressed compared to infalling
axions.
To arrive at a conservative estimate of the Doppler

broadening in the magnetosphere, we now assume that
the shape is only mildly elliptical such that the misalign-
ment angle φ − ϑþ π=2 ≪ 1 between the tangential plane
and its velocity corresponds to a small parameter that we
can expand in. The Doppler shift then takes the simple form

k00

k0
¼ 1 ∓ v

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a − k2cos2ðα − ϑÞ
p

� k sinðα − ϑÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a

p ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q
× ½2ðφ − ϑþ π=2Þ þO½ðφ − ϑþ π=2Þ2��: ð73Þ

In the limit of a relativistic incident particle, ma=k → 0,
this reduces to

k00

k0
¼ 1 −

v
c
sinðα − ϑÞffiffiffiffiffiffiffiffiffiffiffi

1 − v2

c2

q 2ðφ − ϑþ π=2Þ

þO½ðφ − ϑþ π=2Þ2�; ð74Þ

for reflections and k00=k0 ≈ 1 for transmissions. In the
opposite limit, ma ≫ k, we find

k00

k0
¼ 1 ∓ v

c
1ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q 2ðφ − ϑþ π=2Þ

þO½ðφ − ϑþ π=2Þ2�; ð75Þ

which is the expression useful for the present context.
In order to estimate the average effect for the conversion

in the magnetosphere, we note that, for a given eccentricity,
the angle φ − ϑþ π=2 can assume values between �ε2=4
within one rotation. Furthermore, depending on the impact
parameter, the angle α − θ approximately takes values

FIG. 13. Parametrization of the Doppler shift on a moving,
misaligned mirror.

5We thank Georg Raffelt for bringing this issue to our
attention.

R. A. BATTYE et al. PHYS. REV. D 102, 023504 (2020)

023504-24



between −π=2 (for trajectories that come very close to the
core of the pulsar) and π (for trajectories that just about
touch the critical surface on the far side of the pulsar). A
full quantitative analysis involving the axion and photon
trajectories should be straightforward, but it is probably not
of obvious benefit since the oblique rotator model of the
magnetosphere is likely to be oversimplified, and hence we
just make an estimate of the size of the effect. Assuming
further v=c ≪ 1, we estimate that


���� k00k0 − 1

����
�
∼
Ωrcε2

c
≈ 6 × 10−4

�
Ω

1 Hz

��
rc

200 km

�
ε2:

ð76Þ

This is to be compared with the width from the velocity
dispersion of the axion dark matter

1

2
v20=c

2 ≈ 8 × 10−7
�

v0
100 km s−1

�
2

: ð77Þ

We see that the impact of Doppler broadening depends very
strongly on the axion velocity in the resonant conversion
region. When the axion is nonrelativistic, the Doppler
broadening dominates in the width of the spectral line over
the velocity dispersion. For axions that are relativistic at the
point of conversion, there is the interesting possibility that
the Doppler broadening for transmissions is strongly sup-
pressed, which may be of importance for line searches.
For our subsequent estimates, we use the nonrelativistic
expression (76) for the Doppler broadening.
As stated above, the oblique rotator model with the

electron density proposed by Goldreich and Julian is chosen
here because it is analytically tractable. Eventually, it
should be replaced with a more realistic model of the
magnetosphere. Even for the Goldreich–Julian model, we
have made simplifying assumptions that we now com-
ment on.
First, the conversion from the axion to the photon takes

place during some finite time during which the location zc
of the critical surface, where the conversion takes place,
changes its position due to acceleration. The width (61)
of the surface in which the conversion occurs can be
estimated as Δzc ∼ ðzcmaÞ1=2vc=c. Assuming that the
converting axion passes through this region at a speed
vc=c ∼ 0.1 (created in the gravitational potential of the
neutron star), it is clear that this takes a time much smaller
than the rotation time, 2π=Ω, for axions in the GHz
mass range.
Second, more important are corrections that should arise

from the fact that the outgoing photon can only be con-
sidered relativistic when the Lorentz factor γ ≈ma=ωpl is
large, which occurs for large ðz=zcÞ3=2. Integration of time
along the photon trajectory implies that the point z is
reached after the time z=cþOðzc=cÞ. If during that time
the background plasma changes significantly because of

the rotation of the pulsar, one should anticipate order-one
corrections to the Doppler effect.
Finally, due to the curvature of the contours of equal

plasma mass and the finite distance to be traversed before it
becomes relativistic, there should be corrections due to the
continuous refraction of the escaping photon. For axions
traversing the critical surface at a small angle, these can also
be of order one.
In case there is additional structure in the magnetosphere

beyond the Goldreich-Julian model, then the estimate (76)
should be considered as conservative when applied within
its range of validity, which is ε ≪ 1. This is because for
structures in the magnetosphere that are indicated by simu-
lations, the critical surfaces appear to move at large
velocities ∼Ωrc. It would, therefore, be desirable to
numerically compute the broadening for realistic magneto-
sphere models on a full statistical average of axion
trajectories and, if possible, to devise of methods of
correcting for the Doppler effect. We stress that since
the estimate in (76) is significantly larger than the back-
ground velocity dispersion, the amplitude of the radio
signal will be weaker, as we will show in the subsequent
sections of the paper.

B. Single-dish sensitivity to resonant conversion

From (8), the flux density reads

S ¼ c2

4πΔfobsrðzÞ2
Z

ρa
τobs

dV; ð78Þ

where we have set the total energy from the decay to be
equal to the volume integral of the axion density, i.e.,
NaEobs ¼

R
ρac2dV. Since we are interested in the flux due

to the resonant axion-photon decay at a distance zc over a
thin shell of width Δzc, we have thatZ

ρadV ¼
Z

ρcz2cΔzcdΩ; ð79Þ

where ρc is the density of the axions in the resonant
conversion region. If vc is the velocity of the axions at zc,
there is then a characteristic time scale over which the
axions traverse the width of the shell, Tc ¼ Δzc=vc.
Substituting these expressions into (78), the flux density
can be expressed as

S ¼ c2

4πΔfobsrðzÞ2
Z

ρcz2cvc
Tc

τobs
dΩ; ð80Þ

where we identify Tc=τobs ≡ Pa→γ. Therefore, we have a
pleasing interpretation of the probability of conversion as
the ratio of the resonant crossing time Tc to the decay time
τobs, which means that when the two timescales are equal,
the probability of conversion becomes unity. This implies
that the integral in Eq. (80) is equivalent to a specific
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intensity integrated over the area of the source associated
with this decay,

R
IdAsource ≈ 4πz2cI, which is consistent

with previous work, where this quantity was viewed as the
power radiated by the flux of photons sweeping across the
resonance shell at a velocity vc [41]. The estimated decay
time is, therefore,

τobs ¼ Tc=pa→γ ¼
Δzc=vc
pa→γ

≈ 190 s; ð81Þ

assuming that pa→γ ≈ 10−8. For comparison, the axion
decay time derived by [35] is given by

τSiglobs ≈ 2 × 104 s

�
B0

1014 G

�
−2
�

gaγγ
10−12 GeV−1

�
−2

×

�
r0

10 km

�
−3
�

zc
200 km

�
3

: ð82Þ

This expression has been derived directly from the rate of
conversion of axions to photons in an astrophysical
magnetic field using a nonresonant perturbative calculation
and it is two orders of magnitude larger than the decay time
in (81).
With current, and realistically possible, telescopes, it is

impossible to resolve objects on the scales of zc. Therefore,
we assume that the neutron star is a point source and, hence,
in contrast the resolved sources discussed in Sec. II are
better to talk in terms of the flux density rather than the
brightness temperature. To determine whether it is possible
to detect this conversion, we estimate the flux density

S ≈
c2

Δfobs
ρcz2cvc
4πrðzÞ2 ; ð83Þ

where the total flux is given by integrating the specific
intensity over the solid angle subtended by the source,
S ¼ R

IdΩ, We note that in [41], it was assumed that
Δf ≈mav20=c

2. We have shown that the broadening of the
signal is dominated by the relative motion of the critical
surface with respect to the observer (see Sec. IVA).
Therefore, using (76) we can deduce that

Δfobs ¼ 7 MHz

�
Ω

1 Hz

�
4=3

�
mac2

6.6 μeV

�
1=3

�
B0

1014 G

�
1=3

ϵ2:

ð84Þ

In the subsequent projections we will use ϵ2 ¼ 1 and 0.1 as
spanning the likely range of values for this geometrical
factor.
If we now define the dimensionless quantities ρ̃ ¼ ρc=ρ0

and ṽ ¼ vc=v0, where ρ0 and v0 are the density and
velocity of the axions in the neighborhood of the neutron
star, we can write S ¼ S̃ ṽ ρ̃, where S̃ is a characteristic flux
density given by

S̃ ¼ c2

Δfobs
ρ0v0z2c
4πrðzÞ2

Tc

τobs
;

¼ 1.6 μJy
�

ρ0
GeVcm−3

��
rðzÞ

300 pc

�
−2

×

�
Pa→γ

10−8

��
zc

224 km

�
−3
�

Δfobs
7 MHz

�
−1
�

mac2

6.6 μeV

�−1

¼ 1.6 μJy

�
ρ0

GeV cm−3

��
Ω

1 Hz

�
−7=3

×

�
mac2

6.6 μeV

�
2=3

�
B0

1014 G

�
2=3

�
rðzÞ

300 pc

�
−2

×

�
gaγγ

10−12 GeV−1

�
2

: ð85Þ

The velocity of the axions near the neutron star, vc, can
be estimated in terms of the dark matter virial velocity and
the neutron star mass from energy conservation, i.e., the
kinetic energy of the axion far away from the neutron star
must be equal to its total energy near the neutron star.
According to this argument, one finds that [41]

v2c ¼ v20 þ
2GM
zc

≈
2GM
zc

; ð86Þ

since the escape velocity from the neutron star is much
larger than the background virial velocity, v0. It is easy to
see that vc is roughly 10% of the speed of light and
therefore vc ≫ v0. This implies that the axion velocity in
the conversion region is nonrelativistic suggesting that the
width of the spectral line is likely to be dominated by the
Doppler broadening effect. A direct consequence of this is
the signal being enhanced by 2 orders of magnitude,
since ṽ ≈ 150.
In [41], the authors estimate the dark matter density at zc

from Liouville’s theorem for the distribution function in the
phase-space. Assuming a time-independent Maxwell-
Boltzmann distribution function fðvÞ for the dark matter
velocity, one may obtain an expression for ρc integrating
the distribution function by expanding in the small param-
eter v20=v

2
c ¼ ṽ−2 ≪ 1. The result is that the density at the

resonant conversion region is enhanced by a factor ṽ, which
means a further 2 orders of magnitude increase in the flux.
Under these assumptions, we obtain a flux of about
0.04 μJy. We note that the integration time required to
detect this flux using the a GBT-like instrument assuming a
bandwidth of about 7 MHz is ≈640 years. If one were to
consider the Arecibo telescope instead, the collecting area
being approximately a factor of 9 larger, the total integra-
tion times decreases by a factor of ≈80. Clearly, this
decrease cannot make this signal detectable.
However, we note that the flux increases with axion

mass. If we assume that zc scales as m
−2=3
a [see (61)], then

the resonance occurs closer to the neutron star and the
magnetic field at the resonant conversion region will be
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stronger. However, the resonant shell has a smaller radius,
which means the density at zc is integrated over a smaller
volume for larger masses. The increase in the magnetic
field dominates over the decrease in volume for a dipole
magnetic field that scales as 1=z3. An upper mass limit
exists due to the condition that zc ≥ R�. This hard limit
obviously varies for different neutron stars. We note the
subtlety that while low-period neutron stars are preferred
since S ∝ Ω−7=3, the larger the period of the neutron star,
the smaller the range of masses one can probe in a radio
observation. Therefore, we conclude that the period of the
neutron star is perhaps not the best parameter to optimize an
experiment for.

1. Potential neutron star targets

Our analysis until now has suggested that the decay due
to neutron stars cannot be detected at the level of
gaγγ ≲ 10−12 GeV−1, as claimed in [41]. Using Eq. (23),
we estimate the integration time for an axion mass of
around 82.5 μeV=c2, assuming the collecting area of the
Arecibo telescope, to be

tint ¼ 50 days

�
S̃

8.5 × 10−6 μJy

�−2� ρ̃

150

�
−2
�

ṽ
150

�
−2

×

�
Δfobs

17 MHz

�
−1
�

Aeff

50000 m2

�
−2
�
Tsys

30 K

�
2

: ð87Þ

Note that this value of the axion mass corresponds to about
10 GHz, which is the largest frequency the Arecibo

telescope can presently operate at. With the larger fre-
quency coverage of the GBT, one may probe axion masses
in the range 1–825 μeV c2. For the fiducial mass we used in
Sec. II of 250 μeV c2, we obtain an integration time of
around 3.5 years with a GBT-like instrument. Clearly, to
probe larger axion masses with current telescopes, one
would have to design an optimization procedure that might
alleviate the difficulties to some extent.
Assuming that ṽ is set by the mass of the neutron star via

its gravitational potential, and is therefore fixed, one would
require a larger ρ̃ to enhance the signal enough for detec-
tion. In other words, a simple optimization procedure
would be to look for low-period neutron stars in regions
where ρDM is several orders of magnitude larger than the
background value. Another scheme of detection could be to
target neutron stars of the largest magnetic fields, like
magnetars which are associated to magnetic fields of up to
1015 G [81–84]. As mentioned in [41], such a candidate
magnetar exists near the density spike due to the black hole
Sagittarius A� at the galactic center (see Sec. II), for which
ρ̃ could be ≈109. Of course, with the advent of the SKA2
interferometer with a collecting area of 106 m2, one could
think of probing down to model sensitivities for KSVZ and
DFSZ axions.
In Fig. 14, we plot the sensitivity of the Arecibo

telescope (left panel) and the SKA2:Band 5 (right panel)
assuming a system temperature of 30 K and pulsar mass
and radius of 1 M⊙ and 10 km, respectively. For our
standard sensitivity estimate, we consider the pulsar
RX J0806.4-4123 [85]. For this pulsar, Ω ≈ 0.5 Hz,

FIG. 14. The sensitivity of radio telescopes to the resonant axion-photon decay. In the left panel, we plot the sensitivity of a single dish
telescope between 0.3 and 10 GHz, assuming a system temperature of 30 K, a diameter Dtel ¼ 300 m, and efficiency η ¼ 0.5. These
numbers are representative of an Arecibo-like single dish system. In the right panel, we plot the sensitivity representative of SKA2:Band
5, assuming η ¼ 0.7, Tsys ¼ 30 K, and Aeff ¼ 106 m2. The yellow line is for the isolated neutron star RX J0806.4-4123, while the red
line is for the neutron star observed to be near Sagittarius A� with ρ̃ ≈ 109. We have use dashed lines for the case where the geometrical
factor ϵ2 ¼ 1 in (76), that is, where the Doppler broadening is maximal and dot-dashed lines for when ϵ2 ¼ 0.1. We remark that these
estimates have been chosen to be representative of the typical sensitivity one might expect to achieve. In reality, one would need to take
into account the variation in system temperature as a function of frequency.
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B0 ≈ 2.5 × 1013 G and rðzÞ ≈ 250 pc. We also consider the
magnetar near the galactic center SGR J1745-2900, for
which B0 ≈ 1.4 × 1014 G and Ω ≈ 1.67 Hz. Note that our
sensitivity estimates are more than 2 orders of magnitude
weaker than those of reference [41]. This is because our
estimate of the bandwidth is approximately 2 orders of
magnitude larger. Furthermore, no radio telescope is 100%
efficient and therefore the system-equivalent-flux-density
(SEFD) for the Arecibo telescope is actually a little larger
than 2 Jy. We would like to stress that radio observations of
the axion-photon decay are most useful when they are
complementary to the haloscope searches, which cannot
probe arbitrarily high axion masses.6

V. SUMMARY AND DISCUSSION

In this work we have clarified and extended the analysis
of spontaneous decays and resonant conversion of dark
matter axions, with an extensive discussion of both theory
and observations. Axion masses larger than 100 μeV=c2

cannot be probed by axion haloscopes and these masses
have been motivated by studies of axion string decay
[10,17] and the nonlinear substructure formed as a result
[86]. In the case of the detection of the spontaneous decay,
previous work [31,32] has suggested that nearby dwarf
spheroidal galaxies are ideal candidates to observe under
the claim they maximize the flux density. In our analysis,
we argue that a procedure to maximize the flux density
signal can be nontrivial. This is because the resolution
of most single-dish radio telescopes is such that the beam
size is smaller than the apparent size of these dwarf
galaxies, resolving them. As a result, it becomes confusing
to optimize an experiment where one is interested in
maximizing the flux-density signal since it is difficult
to observationally determine the virial radius of dwarf
galaxies [87].
Our analysis highlights the fact that one need not carry

out a matching procedure of sources to the resolution of the
telescope. Indeed, the relevant quantity that determines the
specific intensity is the ratio of the surface-mass density to
the velocity dispersion, Σbeam=Δv. Our results show that,
except for a weak trend in the halo concentration parameter
with respect to the mass, this ratio is independent of the
halo mass. We infer that a high resolution is in fact
desirable, since the surface-mass density along the line
of sight is enhanced for a more concentrated beam. This
result motivates a search for structures that are character-
ized by large values of Σbeam.
An important point that was first studied in [31,32] is the

enhancement due to simulated emission, since photons and
axions are both described by Bose-Einstein statistics and
are therefore indistinguishable. Thus, the presence of an

ambient radiation field at the same frequency as that of the
axions results in an effective enhancement of the decay.
This is quantified by the photon occupation number.
Our analysis of the sensitivity to virialized objects shows

that it is virtually impossible to design a conventional
interferometer that can constrain the axion-photon coupling
below the CAST limit. This is due to the fact that the
sensitivity of an interferometer to any brightness temper-
ature signal is weakened by a filling factor that increases
the integration time to unachievable values. On the other
hand, one may use an interferometer as a “light-bucket”,
where all dishes are used in single-dish autocorrelation
mode. We show that even in this case, one would require
4 days of on-source integration time with band 5 of SKA2
observing the Virgo cluster to improve on the CAST
constraints [27] on the axion-photon coupling.
Our previous results indicate that the ideal source for

detecting the spontaneous decay is characterized by large
values of Σbeam and large amounts of ambient radiation at
the same frequency—corresponding toF eff ≫ 1. Our order
of magnitude estimate of the sensitivity to the galactic
center due to synchrotron emission (using the Planck
Point Source catalogue [60]) from Sagittarius A� shows
that this may be an ideal target to improve the CAST limit.
This motivates a further detailed study of the radiation field
in the galactic center, which in principle could include
components from Anomalous Microwave Emission (AME)
(dust), free-free emission as well as synchrotron radiation.
For the resonant conversion in neutron star magneto-

spheres, we began our analysis with a careful discussion
axions in magnetized plasmas. Our results on mixing in 1D
formalize many of the aspects of axion-photon conversion
in magnetized plasmas, where we derived a controlled
WKB expansion, mass-shell conditions in inhomogeneous
backgrounds, adiabatic/nonadiabatic limits, and their appli-
cation to the neutron star case. We also hope that our
arguments lay bare the precise geometrical assumptions
needed to simplify the axion-Maxwell equations to a
simple 1D form involving only the parallel electric com-
ponent and the axion. It seems that these assumptions seem
not always transparent in the literature.
Our results on 3D mixing, though preliminary, raise

some interesting questions about the role geometry can play
in exciting additional plasma modes and highlights the
qualitative importance of both the perpendicular photon
polarizations E⊥ and the emergence of a longitudinal
mode. Of course, one might be tempted to argue that it
is a well-known and unsurprising fact thatE⊥ also becomes
active in a magnetized plasma due to mixing between E⊥
and Ek. This is a typical feature of anisotropic media of
which a magnetic background is but one example.
Formally, this can be seen to happen in the off-diagonal
components of the conductivity (47) (see also equation (29)
of Ref. [43]). However, our argument is more subtle than
this. For the neutron star case, one is typically in the

6We note that the MADMAX axion haloscope [23] is sensitive
to axions masses predicted by the string decay mechanism
(100 μeV=c2 ≲ma ≲ 400 μeV=c2).
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high-magnetization limit where the cyclotron frequency
greatly exceeds that of the photon, ωB ≫ ω, thus conduc-
tivity-induced mixing is, in fact, switched off, but none-
theless a mode E⊥ is activated. For example, the Gauss
equation shows the complications arising from longitudinal
modes in the high-magnetization limit

�
1 −

ω2
pl

ω2

�
∇ · Ek þ∇ ·E⊥ ¼ −gaγγ∇a · B; ð88Þ

which clearly couples E⊥, Ek and a in a nontrivial way
with the axion fundamentally changing the form of
Maxwell’s equations. Given the arguments of Sec. III C
1, it seems that the only way to prevent the additional
modes becoming active, and to completely decouple E⊥
and the effects of ∇ ·E ≠ 0 terms, is to choose a very
peculiar geometry in which the momentum of the axion and
photon are normal to the magnetic field and all background
gradients are dominated by a particular preferred direction
parallel to the momentum. For a neutron star magneto-
sphere, this is clearly too simplistic and the plasma will
exert gradient forces on the photon causing it to deflect
away from the initial axion trajectory.
It is also worth noting that in going from the planar 1D

setup to 3D backgrounds, results are not only modified by
the presence of additional polarizations, but also the nature
of mixing itself may change. Specifically, any analytic
formulas for conversion probabilities must be sensitive to
the dimensionality of the underlying differential equations
to be solved. For example, an analytic expression such as
the Landau-Zener formula (63) is a 1D result and is
expected to be modified in higher dimensions regardless
of which polarizations are most important.
The ultimate goal is clearly to determine quantitatively

what are the effects of 3D geometries since this is the most
relevant aspect from an observational perspective. This will
either entail more work to obtain analytic results in 3D and/
or cross-checking these results against numerical simula-
tions. Of course, the latter option presents some numerical
challenges, as explained in Sec. III C 2 owing principally to
the fact wavelengths are much smaller than background
scales over which the equations must be integrated, in
contrast to [74] where laboratory haloscopes contain only a
few wavelengths. Clearly this limit strongly suggests the
problem should be amenable to a WKB expansion, which
would require performing a gradient expansion of the
axion-Maxwell’s equations in 3D as done in 1D in
Appendix B. The resulting 3D transport equations may
allow one to circumvent the issue resolving the wavefront
structure and track only field amplitudes/number densities
relevant for computing the flux.
We showed that Doppler broadening of the signal due to

the relative motion of the neutron star results in a
bandwidth that is at least two orders of magnitude larger
than the value estimated in reference [41] if the axion

velocity is nonrelativistic in the resonant conversion region.
As a result, our sensitivity estimates are significantly
weaker in the mass range 1–10 μeV. Therefore, we
emphasize the need to identify candidate pulsars that are
located in regions of dark matter density peaks large
enough to make the flux density detectable. We find that,
in possibly realistic scenarios, it is possible to significantly
improve on the CAST constraints from 4 days of obser-
vations using the Arecibo telescope. We also find that the
SKA2:Band 5 can possibly rule out DFSZ axions of
mac2 ≥ 20 μeV, assuming an enhancement of 109 in the
dark matter density at the location of the magnetar near the
galactic center.
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APPENDIX A: MASS INSIDE THE
BEAM RADIUS

Consider a halo density profile ρðrÞ ¼ ρsFðr=rsÞ for
r < Rvir and zero otherwise. In the function FðyÞ, rs is the
scale radius, Rvir the virial radius, and the ratio of the two
ĉ ¼ Rvir=rs is the concentration parameter. For the specific
case of an Navarro-Frenk-White (NFW) profile [48],
FðyÞ ¼ y−1ð1þ yÞ−2. The mass inside the virial radius
is given by

Mvir ¼ 4πρsr3s

Z
ĉ

0

x2FðxÞdx; ðA1Þ

and the surface mass density at some radius, R, is

ΣðRÞ ¼ 2rsρs

Z
ĉ

R̄

yFðyÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − R̄2

p ; ðA2Þ

where R̄ ¼ ĉR=Rvir. Both expressions (A1) and (A2)
converge for R̄ → 0.
In this work, we are particularly interested to the mass

inside the radius of a telescope and defined by Rbeam. We
can evaluate this from
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Mbeam ¼ 2π

Z
Rbeam

0

RΣðRÞdR;

¼ Mvir

R R̄beam
0 xdx

R
ĉ
x

yFðyÞdyffiffiffiffiffiffiffiffiffi
y2−x2

pR
ĉ
0 x

2FðxÞdx ; ðA3Þ

where R̄beam ¼ ĉRbeam=Rvir. By manipulating the double
integral, we can deduce that

Mbeam

Mvir
¼ 1 −

R
ĉ
R̄beam

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − R̄2

beam

p
FðyÞdyR

ĉ
0 x

2FðxÞdx : ðA4Þ

For an NFW profile [88]

Mbeam

Mvir
≈

1

fðĉÞ
�
log

�
R̄beam

2

�

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R̄2

beam

p cosh−1
1

R̄beam

�
; ðA5Þ

where fðxÞ ¼ logð1þ xÞ − x
1þx. For small R̄ this is given

by

Mbeam

Mvir
¼ −R̄2

beam

logðR̄beam
2
Þ

2fðĉÞ : ðA6Þ

The analytic approximation (A6) and the exact results (A4)
are shown respectively as solid/dotted lines in Fig. 3.

APPENDIX B: DENSITY MATRIX AND
LANDAU-ZENER

One can define a density matrix for the system by
writing:

ρðz1; z2Þ ¼ ðaðz1Þ; Eðz1ÞÞ ⊗ ðaðz2Þ; Eðz2ÞÞ†; ðB1Þ

which satisfies

� ∂2
z1 −m2

a þ ω2 ωgaγγBðzÞ
ωgaγγBðzÞ ∂2

z1 − ω2
plðzÞ þ ω2

�
ρðz1; z2Þ ¼ 0:

ðB2Þ

One can introduce a local phase-space by performing a 1D
Wigner transformation defined by

ρðk; zÞ ¼
Z

dyρ

�
zþ y

2
; z −

y
2

�
e−{ky; ðB3Þ

with y ¼ z1 − z2 and z ¼ ðz1 þ z2Þ=2, and using temporal
translation invariance, one arrives at [68,89]�
ω2 − k2 þ 1

4
∂2
z − {k∂z −M2ðzÞe{

2
∂⃖z∂k

�
ρðk; zÞ ¼ 0; ðB4Þ

where the Hermitian mass-mixing matrix is given by

M2 ¼
� m2

a ωgaγγBðzÞ
ωgaγγBðzÞ ω2

plðzÞ

�
; ðB5Þ

whose mass eigenvalues are

M2
1;2 ¼

1

2
fm2

a þ ω2
pl � ½ðm2

a −m2
pðzÞÞ2 þ 4B2g2aγγω2�1=2g:

ðB6Þ

Since local physical states are mass-diagonal states, in
order to extract useful dispersion information, we first
convert to the local mass basis:

M2
d ¼ UM2U†; ρd ¼ UρU†; ðB7Þ

where

U ¼
�

cos θ −{ sin θ
−{ sin θ cos θ

�
; ðB8Þ

with tan 2θ ¼ ωBðxÞgaγγ
m2

a−m2
γ
, diagonalizes the mass matrix, which

amounts to the replacement

∂ → Dz ¼ ∂z − {½Ξ; ·�; Ξ ¼ {U∂zU†; ðB9Þ

in Eqs. (B4), leading to�
ω2 − k2 þ 1

4
D2

z − {k∂z −M2
dðzÞe

{
2
D⃖z∂k

�
ρdðk; zÞ ¼ 0;

ðB10Þ

where M2
d ¼ diagðM2

1;M
2
2Þ. Taking the hermitian and

antihermitian parts of (B4) gives�
ω2 − k2 þ 1

4
D2

z

�
ρ −

1

2
fM2

c; ρg þ
{
2
½M2

s ; ρ� ¼ 0; ðB11Þ

kDzρþ
1

2
fM2

s ; ρg −
{
2
½M2

c; ρ� ¼ 0; ðB12Þ

where

M2
c ¼ M2 cos

�
1

2
D⃖z∂k

�
; ðB13aÞ

M2
s ¼ M2 sin

�
1

2
D⃖z∂k

�
: ðB13bÞ

These are known as the constraint and kinetic equations,
respectively. The first contains information about dis-
persion relations and imposes appropriate mass-shell con-
straints, whilst the second controls the evolution of number
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densities. To leading order in gradients, the constraint
equation (B11) implies the following Ansatz for the
mass-basis density matrix ρd:

ρd;iiðz; kÞ ¼ niðz; kÞδðω2 − k2 −MiÞ; ðB14aÞ

ρd;ijðz; kÞ ¼ nijðz; kÞδðω2 − k2 − M̄2Þ; ðB14bÞ

where M̄ ¼ ðM2
1 þM2

2Þ=2 is the average mass and any total
derivatives in k drop out upon integration. In the present
setup

Ξ ¼
�

0 −θ0

−θ0 0

�
; ðB15Þ

so that inserting (B14) into Eq. (B12) and integrating over k
to put all states on shell, leads to the following equations:

{
dNðzÞ
dz

¼ ½H;NðzÞ�; ðB16aÞ

H ¼
�
M2

1=2k̄ θ0

θ0 M2
2=2k̄

�
; ðB16bÞ

N ¼
�

n1 n12
n21 n2

�
; ðB16cÞ

where k̄2 ¼ ω2 − M̄2 is the “average momentum” arising
from the off-diagonal coherence terms. Reverting to the
flavor basis, one finds

i
dNf

dz
¼ 1

2k̄
½M2;Nf �; ðB17Þ

where M2 is the flavor mass matrix (B5). For “pure state”
solutions, the system can be realized via a wave function
Nf ¼ Ψ ⊗ Ψ†, where Ψ ¼ ðψ a;ψγÞ, corresponding to an
auxiliary Schödinger-like equation

{
d
dz

�
ψ a

ψγ

�
¼ 1

2k̄ðzÞ
� m2

a ωgaγγBðzÞ
ωgaγγBðzÞ ω2

plðzÞ

��
ψ a

ψγ

�
:

ðB18Þ

For a problem in which the mass-splitting varies linearly
with the integration parameter such that the mass-mixing
takes the form:

M2ðzÞ ¼
�
ϵ1 þ λ1z v�

v ϵ2 þ λ2z

�
; ðB19Þ

where ϵ1; λ1 ∈ R and v ∈ C are constants, the S-matrix for
conversion probabilities is given by the well-known
Landau-Zener formula [44]

SLZ ¼
�
p q

q p

�
; ðB20Þ

where p ¼ e−πγ , q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
and γ ¼ jvj2=jλ2 − λ1j.

Thus, by linearizing the plasma frequency in (B18) about
z ¼ zc with ω2

pl ≃m2
a þ ðz − zcÞðω2

plÞ0ðzcÞÞ, we can
immediately read off the form of γ, leading to

γ ¼ g2aγγB2ðzcÞω2=2k̄

jðω2
plÞ0ðzcÞj

: ðB21Þ

The conversion probability is then given by the squared S-
matrix elements:

Pa→γ ¼ 1 − e−2πγ; γ ≃
ΔM2ðzcÞ=2k̄
4jθ0ðzcÞj

; ðB22Þ

where we used the definitions (B8) and (B6) to parametrize
the probability in terms of the mass-splitting ΔM2 ¼
M2

1 −M2
2 and mixing angle gradients, evaluated at the

resonance, where we neglected gradients in BðzÞ and k̄ðzÞ.
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