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We study parametric instability of compact axion dark matter structures decaying to radiophotons.
Corresponding objects—Bose (axion) stars, their clusters, and clouds of diffuse axions—form abundantly
in the postinflationary Peccei-Quinn scenario. We develop general description of parametric resonance
incorporating finite-volume effects, backreaction, axion velocities, and their (in)coherence. With additional
coarse graining, our formalism reproduces kinetic equation for virialized axions interacting with photons.
We derive conditions for the parametric instability in each of the above objects, as well as in collapsing
axion stars, evaluate photon resonance modes and their growth exponents. As a by-product, we calculate
stimulated emission of Bose stars and diffuse axions, arguing that the former can give larger contribution
into the radio background. In the case of QCD axions, the Bose stars glow and collapsing stars radioburst if
the axion-photon coupling exceeds the original Kim-Shifman-Vainshtein-Zakharov value by 2 orders of
magnitude. The latter constraint is alleviated for several nearby axion stars in resonance and absent for
axionlike particles. Our results show that the parametric effect may reveal itself in observations, from fast
radio bursts to excess radio background.
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I. INTRODUCTION

The QCD axion [1] and similar particles [2] are perfect
dark matter candidates [3,4]; they are motivated [5,6]
and have tiny interactions [7], including coupling to the
electromagnetic field. But the same interactions—alas—
make the axions “invisible” dictating overly precise detec-
tion measurements [8,9] and limiting possible observatio-
nal effects [10–12].
Nevertheless, under certain conditions, an avalanche of

exponentially growing photon number nγ ∝ expf2μ∞tg
can appear in the axionic medium [13], with growth
exponent μ∞ proportional to the axion-photon coupling
and axion field strength. This process is known as para-
metric resonance. It occurs because the axions decay into
photons which stimulate decays of more axions. In the
infinite volume, parametric axion-photon conversion is
well understood, but does not occur during cosmological
evolution of the axion field [14–16]. In compact volume of
size L, the avalanche appears if the photon stimulates at
least one axion decay as it passes the object length [13,17].
This gives order-of-magnitude resonance condition,

μ∞L≳ 1: ð1Þ

Unfortunately, apart from this intuitive estimate and brute-
force numerical computations [18–26], no consistent quan-
titative theory of axion-photon conversion in finite-size
objects has been developed so far.
In this paper, we fill this gap1 with a general, detailed,

and usable quasistationary approach to parametric reso-
nance in a finite volume. Our method works only for
nonrelativistic axions, but accounts for their coherence, or
its absence, axion velocities, binding energy and gravita-
tional redshift, backreaction of photons on axions, and
arbitrary volume shape. In the limit of diffuse axions, it
reproduces well-known axion-photon kinetic equation, if
additional coarse-graining is introduced.
Notably, the cosmology of QCD axion [14,15,29]

provides rich dark matter structure at small scales [30],
with a host of potentially observable astrophysical impli-
cations. Namely, in the postinflationary scenario, violent
inhomogeneous evolution of the axion field during the
QCD epoch [31–35] leads to formation of axion mini-
clusters [36–38]—dense objects of typical mass 10−13 M⊙
forming hierarchically bound structures [39]. In the centers
of miniclusters, even denser compact objects, the axion
(Bose) stars [40,41], appear due to gravitational kinetic
relaxation [42,43]. Simulations suggest [30,34,35,42,43]
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that these objects are abundant in the Universe, though their
present-day mass is still under study [43]. Another example
of dense object formed by the QCD axions is a cloud
around the superradiant black hole [6,44,45]; see also [46].
Beyond the QCD axion, miniclusters [4] and Bose stars

[47,48] can be formed by the axionlike particles at very
different length and mass scales.
In this paper, we derive precise conditions for parametric

resonance in the isolated axion stars, collapsing stars, their
clusters, and in the clouds of diffuse axions. We find
unstable electromagnetic modes and their growth expo-
nents μ. Contrary to what naive infinite-volume intuition
might suggest, resonance in nonrelativistic compact objects
develops with μ ≪ μ∞. As a result, in many cases, it glows
in the stationary regime, burning an infinitesimally small
fraction of extra axions at every moment, to keep the
resonance condition marginally broken.
Our calculations suggest three interesting scenarios with

different observational outcomes. In the first chain of
events, the axion-photon coupling is high and the threshold
for parametric resonance is reached during growth of
axion stars via Bose-Einstein condensation. Then all
condensing axions are converted into radio-emission with
frequency equal to the axion half-mass. This paves the way
for indirect axion searches.
Second, at somewhat smaller axion-photon coupling,

attractive self-interactions of axions inside the growing stars
may become important before the resonance threshold is
reached. As a result, the stars collapse [49–51], shrink, and
ignite the instability to photons on the way. Alternatively,
several smaller axion stars may come close, suddenly
meeting the resonance condition [20]. In these cases, a short
and powerful burst of radio-emission appears.
Amusingly, powerful and unexplained fast radio bursts

(FRBs) are presently observed in the sky [52]. It is
tempting to relate them to parametric resonance in
collapsing axion stars [19] and see if the main character-
istics can be met.
In the third, most conservative scenario all Bose stars are

far away from the parametric resonance. Nevertheless, the
effect of stimulated emission turns them into powerful
amplifiers of ambient radio waves at the axion half-mass
frequency. We compute amplification coefficients for the
Bose stars and diffuse axions and find that realistically,
stimulated emission of the stars may give larger contribu-
tion into the radio background.
In Sec. II, we introduce nonrelativistic approximation for

axions and review essential properties of Bose stars.
General description of parametric resonance in finite
volume is developed in Sec. III. In Sec. IV, it is applied
to radio-emission of static axion stars, their pairs, and
amplification of ambient radiation. In Secs. V and VI, we
study resonance in diffuse axions and consider the effect of
moving axions/axion stars, in particular, resonance in
collapsing stars. Concluding remarks are given in Sec. VII.

II. AXION STARS

The diversity of compact objects in axion cosmology
offers many astrophysical settings where the parametric
resonance may be expected. One can consider static Bose
stars, collapsing, moving, or tidally disrupted stars, even
axion miniclusters. To describe all this spectrum in one go,
we implement two important approximations.
First, we describe axions by the classical field aðt;xÞ

satisfying

□aþ V 0ðaÞ ¼ 0: ð2Þ

This is valid at large occupation numbers. Interaction with
the gravitational field in Eq. (2) is hidden in the covariant
derivatives, and the scalar potential

V ¼ m2

2
a2 −

g24m
2

4!f2a
a4 þ… ð3Þ

includes mass m and quartic coupling ðg4m=faÞ2.
Self-interaction of the QCD axion is attractive: fa ≃
ð75.5 MeVÞ2=m and g4 ≃ 0.59 [7]. Axionlike particles
may have g4 ≃ 0.
Second, we work in nonrelativistic approximation,

a ¼ faffiffiffi
2

p ½ψðt;xÞe−imt þ H:c:�; ð4Þ

where ψ slowly depends on space and time. Namely, if λ is
the typical wavelength of axions,

∂tψ ∼ ψ=mλ2; ∂xψ ∼ ψ=λ; λm ≫ 1: ð5Þ

In this approximation, Eq. (2) reduces to nonlinear
Schrödinger equation,

i∂tψ ¼ −
Δ
2m

ψ þm

�
Φ −

g24
8
jψ j2

�
ψ ; ð6Þ

where Φ is a nonrelativistic gravitational potential solving
the Poisson equation

ΔΦ ¼ 4πρ=M2
pl; ð7Þ

and ρ ¼ m2f2ajψ j2 is the mass density of axions.
Note that the method of this paper is applicable only if

both of the above conditions are satisfied: the axions are
nonrelativistic and they have large occupation numbers.
Dark matter axions meet these requirements, except under
extreme conditions.
A central object of our study is a Bose (axion) star, a

stationary solution to the Schrödinger-Poisson system

ψ ¼ e−iωstψ sðrÞ; Φ ¼ ΦsðrÞ; ð8Þ
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where ωs < 0 is the binding energy of axions and r is the
radial coordinate. Physically, Eq. (8) describes Bose-
Einstein condensate of axions occupying a ground state
in the collective potential well ΦsðrÞ. This object is
coherent: the complex phase of ψ s does not depend on
space and time. Below we consider parametric resonance in
stationary and colliding stars.
Notably, the axion stars with the critical mass

Mcr ≃ 10.2
faMpl

mg4
ð9Þ

and heavier stars are unstable [50]. In this case, attractive
self-interaction in Eq. (6) overcomes the quantum pressure
and the star starts to shrink developing huge axion densities
in the center [51]. We will see that this may trigger
explosive parametric instability.

III. GENERAL FORMALISM

A. Linear theory

In this section, we construct general quasistationary
theory for narrow parametric resonance of radiophotons
in the finite volume filled with axions. This technique was
first developed and presented in [27,28]. In contrast to the
resonance in the infinite volume [14,15,41] which univer-
sally leads to the Mathieu equation, the finite-volume one is
described by the eigenvalue problem with a rich variety of
solutions.
Consider Maxwell’s equations2 for the electromagnetic

potential Aμ in the axion background aðt;xÞ,

∂μðFμν þ gaγγaF̃μνÞ ¼ 0; ð10Þ

where Fμν ¼ ∂μAν − ∂νAμ, F̃μν ≡ ϵμνλρFλρ=2, and gaγγ is
the standard axion-photon coupling. Below we also use
dimensionless coupling g0 ≡ fagaγγ=23=2.
In the infinite volume, one describes the resonance in the

plain-wave basis for the electromagnetic field [14,15,41],
while the axion star suggests spherical decomposition [20].
We want to develop general formalism, and simpler at
the same time, usable in a large variety of astrophysical
settings.
We therefore introduce two simplifications. First, the

photons travel straight, with light-bending effects being
subdominant in the axion background, cf. [53,54]. Thus,
the parametric resonance develops almost independently
along different directions. Second, we consider nonrela-
tivistic axions decaying into photons of frequency ωγ ≈
m=2 with a very narrow spread.

This suggests decomposition in the gauge A0 ¼ 0,

Ai ¼
Z

dnCðnÞ
i ðt;xÞeimðnxþtÞ=2 þ H:c:; ð11Þ

where i ¼ fx; y; zg and the integral runs over all unit

vectors n. The amplitudes CðnÞ
i include photon frequency

spread. Hence, they weakly depend on space and time,

∂t;xjCðnÞ
i j ∼ λ−1jCðnÞ

i j; λm ≫ 1; ð12Þ

where λ−1 is the typical momentum of axions in Eq. (5).
Using Eq. (11), one finds that in the eikonal limit (12) the

field equation (10) couples only the waves moving in the
opposite, i.e., þn and −n, directions. As a result, identical
and independent equations are produced for every pair of
directions. This is manifestation of the simple fact that the
axions decay into two back-to-back photons.
Indeed, leaving one arbitrary direction z ¼ ðnxÞ and its

counterpart −z, we obtain the ansatz that passes the field
equation [27,28],

Ai ¼ Cþ
i e

imðzþtÞ=2 þ C−
i e

imðz−tÞ=2 þ H:c:; ð13Þ

where the shorthand notations Cþ
i ðt;xÞ ¼ CðnÞ

i and

C−
i ðt;xÞ ¼ ½Cð−nÞ

i �� are introduced. Namely, substituting
Eq. (13) into Eq. (10) and using approximations (12), (5),
we arrive to the closed system,

∂tCþ
x ¼ ∂zCþ

x þ ig0mψ�C−
y ; ð14aÞ

∂tC−
y ¼ −∂zC−

y − ig0mψCþ
x : ð14bÞ

The other two physical polarizations satisfy the same
equations with Cþ

x → Cþ
y and C−

y → −C−
x , while the longi-

tudinal part is fixed by the Gauss lawC�
z ¼2i∂αC�

α =m; here
and below α ¼ fx; yg. Overall, we have four amplitudesC�

α

representing two photon polarizations propagating in theþz
and −z directions.
Equations (14) should be solved for every orientation

of z axis, in search for the growing instability modes.
After that the modes can be superimposed in Eq. (11) or,
practically, only the one with the largest exponent can
be kept.
In spherically symmetric Bose star, all directions are

equivalent and description simplifies—we have to study
only one direction. Notably, in this case, one can derive
Eq. (14) using spherical decomposition; see Appendix A.
There is a residual hierarchy in Eq. (14) related to small

axion velocities v ∼ ðmλÞ−1 ≪ 1. Indeed, the nonrelativ-
istic background evolves slowly, ∂tψ ∼ ψ=mλ2, while the
electromagnetic field changes fast, ∂tC ∼ C=λ. Thus, equa-
tions for C can be solved with adiabatic ansatz,

2We disregard gravitational interaction of photons. It will be
restored below.
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C�
i ¼ e

R
t
μðt0Þdt0c�i ðt;xÞ; ð15Þ

where the complex exponent μ and quasistationary ampli-
tudes c�i evolve on the same time scales mλ2 as ψ .
Corrections to the adiabatic evolution (15) become expo-
nentially small as v → 0.
Using representation (15) in Eq. (14) and ignoring time

derivatives of μ and c�i , we finally obtain the eigenvalue
problem [27,28],

μcþx ¼ ∂zcþx þ ig0mψ�c−y ; ð16aÞ

μc−y ¼ −∂zc−y − ig0mψcþx ; ð16bÞ
where equations for the two remaining amplitudes are again
obtained by cþx → cþy and c−y → −c−x .
If the axions live in a finite region and no electromag-

netic waves come from infinity, one imposes boundary
conditions

cþα jz→þ∞ ¼ c−α jz→−∞ ¼ 0; ð17Þ
see Eq. (13).
The spectral problem (16) determines the electromag-

netic modes fcþx ; c−y g and their growth exponents μ. The
latter are not purely imaginary at ψ ≠ 0 because 2 × 2
operator in the right-hand side of Eq. (16), is not anti-
Hermitian. That is why in certain cases resonance insta-
bilities—modes with Re μ > 0 satisfying the boundary
conditions (17)—appear.
It is worth discussing two parametrically small correc-

tions to Eqs. (14) and (16). First, derivatives with respect to
x and y are absent in these systems: they appear only in the
next, ðmλÞ−1 order, determining the section of the reso-
nance ray in the ðx; yÞ plane. If needed, they can be
recovered with the substitution

∂z → ∂z −
i
m
ð∂2

x þ ∂2
yÞ ð18Þ

to solve the spectral problem in three dimensions.
If the axion distribution is not spherically symmetric, one

expects that the resonance ray is narrow in the ðx; yÞ plane.3
Indeed, according to the leading-order equations (14),
electromagnetic field grows with different exponents μ at
different x and y. This means that wide wave packets shrink
around the resonance line until the quantum pressure (18)
becomes relevant.
Second, direct interaction of photons with nonrelativistic

gravitational field can be included in Eq. (14) by changing4

∂zC�
α → ð∂z þ imΦÞC�

α : ð19Þ

However, one immediately rotates this contribution away,
C�
α → expf−im R

z dz0Φðz0ÞgC�
α , with remaining correc-

tions suppressed by ðmλÞ−2.
As an illustration, consider static homogeneous axion

field ψ in the infinite volume. Quasistationary equa-
tions (16) in this case give ∂zc�α ¼ 0 and time-independent
μ ¼ μ∞ of the form

μ∞ ¼ g0mjψ j > 0: ð20Þ

Thus, electromagnetic amplitudes in Eq. (15) grow expo-
nentially with time indicating parametric resonance.
Expression (20) reproduces well-known infinite-volume
growth rate [13–15,17,18,20,22,41] of the axion-photon
resonance.

B. Nonlinear stage

Backreaction of photons on axions can be easily incor-
porated in the Schrödinger-Poisson system (5). To this end,
one substitutes the nonrelativistic ansatz (4), (13) into the
equation for the axion field,

□aþ V 0ðaÞ ¼ −
gaγγ
4

FμνF̃μν; ð21Þ

and omits higher derivatives of ψ and C. This gives

i∂tψ ¼−
Δψ
2m

þmΦψ −
mg24
8

jψ j2ψ −
mg0

f2a
ϵαβC−

αC
þ�
β ; ð22Þ

where the backreaction is represented by the new term5 in
the right-hand side.
Let us show that the last term in the above equation

changes the mass M ¼ m2f2a
R
d3xjψ j2 of the axion cloud.

Indeed, taking the time derivative of M and using Eq. (22),
we obtain energy conservation law,

∂tM ¼ Jin −
Z

dxdyFa→γγ; ð23Þ

where Jin ¼ −mf2a
R
d2σiImðψ�∂iψÞ is the mass of axions

entering the system per unit time and

Fa→γγ ¼ 2m3g0
Z

dzϵαβImðψ�C−
αC

þ�
β Þ ð24Þ

is the flux of produced photons. Below we will also use the
electromagnetic Poynting fluxes at infinity,

3Similarly, one can compute narrow resonance rays around
every direction in spherical axion star and then combine them
in (11).

4Here mΦ accounts for the gravitational evolution of photon
four-momentum.

5If several directions in the transform (11) are essential, a
combination of backreaction terms appears here. If spherical
decomposition is used for the isolated axion star, these terms
come with factors r−2 in front; see Appendix A.
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Fγ� ¼∓ m2ðjC�
x j2 þ jC�

y j2Þ=2: ð25Þ

In conjunction with Eq. (14), this gives conservation law
for the electromagnetic energy, ∂tEγ ¼

R
dxdyðFa→γγ −

½Fþ
γ þ F−

γ �z¼þ∞
z¼−∞Þ.

To conclude, one can numerically solve Eq. (22) together
with Eq. (14) and watch the axions burn abundantly.

IV. STATIC COHERENT AXIONS

A. Condition for resonance

For a start, consider the case when the axions in a finite
volume are coherent and do not move. A notable example
of this situation is a static axion star.
Parametric resonance in this setup is presently under-

stood at the qualitative level [13,19,20]. Indeed, photons
passing through the axions stimulate their decays a → 2γ.
The photon flux grows exponentially, Fγ ∝ expf2μ∞tg,
and the secondary flux of backward-moving photons
appears. After the original photons escape the region with
axions, stimulated decays continue in the secondary flux
moving in the opposite direction, etc.; see Fig. 1. Overall,
the back-and-forth motion inside the axion cloud accumu-
lates photons at every pass if Eq. (1) is valid, i.e.,

μ∞L ¼ g0mjψ jL≳ 1; ð26Þ

where L is the typical size of the cloud.
Our equations (14) reflect the same physics. Namely,

consider the localized wave packet C−
y ðt;xÞ going through

axions in the þz direction. Due to Eq. (14a), it creates the
packet Cþ

x with the opposite group velocity which, in turn,
produces C−

y , etc. The photon flux grows exponentially
during this process if unstable modes with Re μ ≥ 0 are
present.
Axion velocities are related to the complex phase of the

field,

vi ¼ m−1∂i argψ : ð27Þ

In this section, we assume that ψ is real up to a constant
phase which can be absorbed into redefinition of c�x in
Eq. (16). This means that the axions are static and coherent.

In particular, the phase factor expf−iωstg of the Bose
star field (8) disappears from the electromagnetic equations
after replacing C�

i → C�
i e

�iωst=2. Then the total binding
energy ωs of axions inside the star does not destroy the
resonance, but slightly shifts its central frequency to

ωγ ¼ ðmþ ωsÞ=2; ð28Þ
see Eq. (13). Note that misconceptions regarding resonance
blocking by gravitational and self-interaction energies still
exist in the literature, e.g., [25].
At real ψ , the semiclassical eigenvalue problem (16) has

two types of solutions. First, delocalized modes penetrate
into the asymptotic regions z → �∞, where ψ ¼ 0 and
c�i ∝ expð�μzÞ. The exponents μ of these modes are
purely imaginary, or their profiles would be unbounded.
Physically, the delocalized modes represent electromag-
netic waves coming from infinity. Second, there may exist
localized modes satisfying the boundary conditions (17).
They behave well at infinity if Re μ ≥ 0. In addition, we
prove in Appendix B that at real ψ the exponents μ of these
modes are real. The localized modes represent resonance
instabilities.
In practical problems, the resonance is not present in

matter from the very beginning but appears in the course of
nonrelativistic evolution. For example, the Bose stars form
in slow galactic [47,48,55,56] or minicluster [37,43] col-
lapses, or afterward in kinetic relaxation [42], then grow
kinetically at turtle-slow rates [42,43,57]. Their subsequent
evolution is also essentially nonrelativistic [58,59].
At some point of quasistationary evolution, one of purely

imaginary eigenvalues μ may become real, and the para-
metric resonance develops. Let us discuss the borderline
situation when the very first localized mode has μ ¼ 0. The
solution in this case is [27,28]

cþx ¼ A cosDðzÞ; c−y ¼ −iA sinDðzÞ; ð29Þ

where A is a constant amplitude and

DðzÞ ¼ g0m
Z

z

−∞
dz0ψðz0Þ: ð30Þ

Integration in Eq. (30) runs along the arbitrary-oriented
z-axis.
The solution (29) satisfies the boundary conditions (17)

if D∞ ≡Dðþ∞Þ ¼ π=2. At larger values of this integral,
the instability mode with positive μ exists. Thus, a precise
condition for the parametric resonance along a given
z-axis is

D∞ ≡ g0m
Z þ∞

−∞
ψðzÞdz ≥ π

2
: ð31Þ

This concretizes the order-of-magnitude estimate (26).
Recall that in our notations ψ ¼ ρ1=2=ðmfaÞ, where ρ is
the mass density of axions.FIG. 1. Parametric resonance in the axion star.
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Let us find out when the parametric resonance occurs in
axion stars. In Appendix C, we compute D∞ along the line
passing through the star center; see Fig. 1. We consider two
cases. First, if self-interactions of axions inside the star are
negligible, Eq. (31) reads

Ms ≥ Ms;0 ¼ 7.66
Mpl

mgaγγ
; g4 ≈ 0; ð32Þ

where we restored gaγγ ¼ 23=2g0=fa. This condition is
applicable in the axionlike models with g4 ¼ 0 or at
Ms ≪ Mcr. In these cases, heavier stars are better for the
resonance.
Second, if attractive self-interactions are present, the

mass of the axion star is bounded from above, Ms < Mcr.
Using the profile of the critical star in Eq. (31), we obtain
condition

gaγγ > gaγγ;0 ≡ 0.52
g4
fa

; Ms ¼ Mcr; ð33Þ

cf. [20,27]. If this inequality is broken, parametric reso-
nance does not develop in stable axion stars at all.
For the parameters of QCD axion listed in Sec. II, the

inequality (33) gives the shaded region in Fig. 2 marked
“resonance.” Notably, the benchmark values [7] of axion-
photon coupling (KSVZ-DFSZ band in Fig. 2) are short by
2 orders of magnitude from igniting the resonance even in
the critical star [19,27,27] [25]. On the other hand, gaγγ is
model dependent, with the only constraint gaγγ < f−1a
coming from strong coupling in simple models [60,61].
Thus, even these simple models can satisfy (33) within the
trustworthy parameter range. More elaborated (clockwork-
inspired) QCD axion models [62] do not have these
limitations and easily meet (33).

Alternatively, the self-coupling of the axionlike particles
can be arbitrarily small. Condition (32) is then satisfied just
for a sufficiently heavy star.

B. Linear exponential growth

Let us find out how the resonance progresses. One does
not expect it to turn immediately into an exponential
catastrophe with μ ∼OðL−1Þ, like the infinite-volume
intuition might suggest, cf. Eq. (26). Rather, the electro-
magnetic field starts growing with parametrically small
exponent μ ≪ L−1 immediately after the condition (31) is
met by the nonrelativistic evolution of axions. Initial values
for this growth are tiny. They can be provided by the
ambient radiation in astrophysical setup or, universally, by
quantum fluctuations considered in Appendix D. In any
case, this initial stage proceeds linearly with no back-
reaction on axions.
We compute the growth exponent by solving the

eigenvalue problem (16) perturbatively at small μ, like in
quantum mechanics.6 To this end, we assume that the
background ψðt;xÞ did not evolve much from the point
ψ0ðxÞ≡ ψðt0;xÞ when the condition (31) was met, and the
resonance mode is close to the solution (29). Calculation in
Appendix B gives

μ ¼ D∞ − π=2R
dz sin½2D0ðzÞ�

: ð34Þ

Here D0ðzÞ is evaluated using ψ0ðxÞ, a configuration at the
rim of parametric instability, while D∞ uses ψ in Eq. (31).
Note that application of Eq. (34) essentially depends on
nonrelativistic mechanism leading to resonance and pro-
viding D∞ − π=2 ¼ Oðψ − ψ0Þ.
Expression (34) confirms that μ is indeed parametrically

small and yet, large enough for the adiabatic regime (15) to
take place. Generically, ψ − ψ0 ∼ ðt1 − t0Þ∂tψ , where
t1 − t0 ∼ Λ=μ is the time from ignition of the resonance
to the moment t1 when the backreaction starts; Λ ∼
log½C�ðt1Þ=C�ðt0Þ� ∼ 102 is a large logarithm. Then
the nonrelativistic scaling (12), (5) and Eq. (34) give
μ ∼ λ−1ðΛ=mλÞ1=2, where we also recalled that the reso-
nance condition (31) is marginally satisfied. Thus,

ðmλ2Þ−1 ≪ μ ≪ λ−1;

i.e., the electromagnetic fields evolve faster than the
axion background but slower than the light-crossing time
L−1 ∼ λ−1.
Applying Eq. (34) to the stationary axion star with

g4 ≈ 0, we getFIG. 2. Masses and couplings of QCD axions needed for the
Bose stars to develop parametric resonance (triangular shaded
region above the solid line). The respective region for collapsing
stars is above the dashed line.

6Unlike in quantum mechanics, the operator in Eq. (16) is
symplectic, not Hermitian.
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μ ¼ 0.197
m2

M2
pl

ðMs −Ms;0Þ; ð35Þ

where Appendix C was consulted and Ms;0 is given in
Eq. (32). Using this expression, one obtains μ ∼ 102 s−1 for7

m ¼ 26 μeV [32] and δMs ∼ 10−13 M⊙. Thus, duration of
the linear stage in QCD axion stars is 1 second or longer.
To confirm the above perturbative results, we numerically

solve the system of coupled relativistic Eqs. (10) and (21)
for the electromagnetic field and axions at g4 ¼ 0; see
Appendix E for details. Our simulation starts with the
axion star of mass Ms and tiny electromagnetic amplitudes
representing quantum bath of spontaneous photons. If the
mass of the axion star exceedsMs;0, the exponential growth
of amplitudes starts; see the left part of Fig. 3. The exponent
of this growth coincides with the one given by Eq. (16)
(dashed line) and within the expected precision interval of
δμ=μ ∼ ðMs −Ms;0Þ=Ms;0 ∼ 4%—with Eq. (35).
In Fig. 4, we show dependence of the exponent μ on the

axion star mass Ms. First, performing full simulations with
different stars, we extract μ from the exponentially growing
flux. This result is shown by the solid line. In the limit
Ms → Ms;0, it coincides with Eq. (35) (dashed line), as it
should. Second, solving the nonrelativistic equations (16)
numerically, we obtain points in Fig. 4 which give correct
exponent for the arbitrary mass.

C. Glowing axion stars

When the electromagnetic amplitudes in Fig. 3 become
large, the backreaction appears, and the resonant flux

immediately starts to falloff. Indeed, backreaction burns
axions diluting their density, and Re μ in Eq. (34) decreases
to negative values. At this point, a long-living quasista-
tionary level of the electromagnetic field is formed. Indeed,
at small μ < 0, the resonance mode turns into an exponen-
tially growing at z → �∞ solution to Eq. (16),

cþx ¼ Aeμz cosDðzÞ; c−y ¼ −iAe−μz sinDðzÞ; ð36Þ

and this is a correct behavior for the quasistationary wave
function [63]. Inserting the late-time axion configuration
from our full simulation into Eq. (34), we reproduce the
exponential falloff of the flux; see the dots in Fig. 3. Thus,
the solution (36), (34) remains approximately valid during
the entire evolution, with the only unknown part related to
dilution of axions in Eq. (22).
The backreaction switches on when the last term in

Eq. (22) becomes comparable to the others. Using, in
addition, Eq. (31), we find a condition for the maximal flux
at the linear stage of resonance,

Fγ ∼m2jC�j2 ≲ ρ

mλ
: ð37Þ

Here λ is the characteristic length scale of axions and ρ is
their mass density. In dynamical situations, Fγ;out is com-
pared to the axion flux vρwith v ∼ ðmλÞ−1. Notably,Fγ ≪ ρ
when the backreaction starts. Figure 3 demonstrates the gray
region where Eq. (37) is violated.
Let us reconsider the solution (29), (30) with μ ¼ 0, to

describe the regime where the backreaction stops the
resonance. The amplitudes C�

α of this solution are constant
at infinity,

Cþ
x jz→−∞ ¼ A; C−

y jz→þ∞ ¼ −iA; ð38Þ

see also Eq. (17). Thus, the solution describes stationary
flux of photons F�

γ;out ¼ �m2jAj2 from decaying axions,

FIG. 3. Luminosity LγðtÞ ¼ r2
R
dΩnr½E ×H� of axion star

with Ms ≈ 1.04Ms;0 during parametric resonance. Results of full
numerical simulation (solid line) show initial growth coinciding
with Lγ ∝ expð2μtÞ, where μ is given by Eq. (16) (dashed line).
Backreaction is important in the gray region (37). Late-time decay
also proceeds exponentially with μ given by Eq. (34) (points) or
Eq. (16).Universal units of flux and timeare chosen inAppendixC.

FIG. 4. The growth exponent μ as a function of the axion star
mass Ms. Exact numerical result (solid line) is compared to
Eq. (35) (dashed) and numerical solution to the nonrelativistic
problem (16) (points). Units are explained in Appendix C.

7Although we use this reference value in all estimates, it is
worth stressing that presently the mass of the dark matter QCD
axion is under debate, cf. [32,33,35].
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where for simplicity here and below we assume equiparti-
tion Cþ

y ¼ Cþ
x and C−

x ¼ −C−
y .

Computing the flux (24) of produced photons, we find
Fa→γγ ¼ 2m2jAj2 ¼ 2jF�

γ;outj. This means that the solution
(29) duly brings all energy of decaying axions to infinity.
Energy conservation law (23) then takes the form

∂tM ¼ Jin − 2

Z
dxdyjFγ;outj: ð39Þ

Even if an arbitrary large constant stream Jin of axions is
feeded into the system, the resonance works in the
equilibrium regime with ∂tM ¼ 0 and μ ¼ 0. All arriving
axions in this case are converted into radiation. To break
this situation, one needs a very special mechanism, e.g., the
axion star collapses in Sec. VI C.
Note that the above stationary situation is stable.

Indeed, perturbing M and Fγ;out away from their equilib-
rium values, one obtains ∂tδM ¼ −2δFγ;out due to energy
conservation—larger flux decreases the mass. Besides,
Eq. (34) gives ∂tδFγ;out ¼ 2μFγ;out ∝ δM, i.e., smaller mass
weakens the flux. Together, these equations describe
harmonic oscillations around the equilibrium. In the sim-
plest uniform model the frequency is Ω ¼ gaγγðFin=8Þ1=2,
where Fin ¼ Jin=

R
dxdy is the flux of axions arriving into

the resonance region. Thus, the resonant radio flux Fγ;out

may pulsate due to axion-photon oscillations. This effect,
however, should be strongly dumped due to energy dis-
sipation between the modes of the axion field.
In the particular daydream scenario, where the Universe

is full of axion stars reaching the condition (32) during
growth, no spectacular explosionlike radio events are
expected to appear in the sky. Most of the axion stars
would exist in the quasistationary regime with D∞ ¼ π=2,
converting all condensing axions into the radio background
of frequency ωγ ≈m=2.
Nevertheless, the latter emission may be observable,

even if the condensation time scale is comparable to the age
of the Universe. To get a feeling of numbers, let us assume
that a grown-up star with D∞ ¼ π=2 lives 100 pc away
from us. Take m ¼ 26 μeV and Ms ∼ 10−13 M⊙, the
typical values for the QCD axions. Then the condensation
rate onto the star is roughly 10−13 M⊙ per the Universe age.
All of condensing axions will be converted into radiation
in the narrow band around ωγ ∼ 2 GHz. Even for poor
spectral resolution δω=ω ∼ 10−3, one gets spectral flux of
order 10−2 Jy, which is detectable.
When reliable predictions for the abundance of Bose

stars and their growth rates appear, similar calculations may
be used to constrain the respective scenarios.

D. Amplification of ambient radio

Now, we embed the axion stars into astrophysical
background of radiophotons. Namely, suppose an external

radio wave of frequency ωγ travels through the underdense
axion medium which is safely away from the resonance.
The wave will stimulate decay of axions, so its flux will be
amplified in a narrow spectral window around ωγ ¼ m=2.
This stationary setup is described by our Eq. (16) with

μ ¼ iðωγ −m=2Þ and new boundary conditions,

cþα jz→þ∞ ¼ A0; c−α jz→−∞ ¼ 0; ð40Þ

where equipartition is again assumed and A0 is related to
the incoming electromagnetic flux Fγ;in ¼ −m2A2

0.
To find the height of the spectral line in this case, we

solve equations at ωγ ¼ m=2 (μ ¼ 0). The solution is given
by Eq. (29) with A ¼ A0= cosD∞. The outgoing flux is
therefore

Fγ;out ¼ Fγ;in= cos2D∞; ð41Þ

see also (31). Thus, at small D∞, the extra flux from axions
is weak, ΔF ¼ D2

∞Fγ;in. It grows to infinity, however, at
D∞ → π=2 when the resonance is about to appear.
For the critical QCD axion stars with D∞ ≪ 1,

ΔF ≈
π2

4

g2aγγ
g2aγγ;0

Fγ;in;

cf. Eq. (33). In the benchmark Kim-Shifman-Vainshtein-
Zakharov (KSVZ) model with gaγγ ¼ 1.92αem=ð2πfaÞ, this
gives ΔF ≈ 1.3 × 10−4Fγ;in. Thus, even underdense axion
stars in conservative models shine like tiny dots on the sky
giving narrow spectral lines in excess of smooth astro-
physical background, cf. [64].
Let us argue that the Bose stars with D∞ ≪ 1 are better

radio amplifiers than diffuse axions. The latter are described
by kinetic theory [13,64] which gives extra amplification
ΔF ∼ g2aγγρLλFγ;in from diffuse cloud of size L and corre-
lation length λ. We will rederive this expression in Sec. V
using Eq. (16). At λ ∼ L ∼ Rs, it reproduces small-D∞ result
for the axion stars. One finds that compact objects give larger
amplification, indeed. First, if the total mass M is fixed, the
product ρL ∼M=L2 is larger for smaller L. Second, the
wavelengths λ ∼ 103 m−1 of diffuse axions in the Galaxy are
much smaller than the radii of axion stars.
Let Q be the fraction of dark matter in the axion

stars. Stimulated emission from these objects in our
Galaxy is suppressed by the tiny geometric factor
R2
s=L2, where L ∼ kpc, as compared to diffuse axions.

However, multiplying it by the above boost factor, we find
ΔFstars=ΔFdiffuse ∼QmvRs, where v ∼ 10−3 is the velocity
of diffuse axions. For critical QCD axion stars and
m ¼ 26 μeV, this ratio equals QvMpl=fa ∼ 104Q, so the
stars give larger stimulated flux at Q≳ 10−4.
Finally, in the scenario with enhanced axion-photon

coupling, our Universe may be full of quasistationary
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axion stars with D∞ ≲ π=2. A radio wave passing through
one of these objects burns essential fraction of its axions
producing a powerful flash of radio-emission.8 This effect
can be used to constrain some arrogant models.

E. Radio portrait of an axion star

In generic resonating axion cloud, there exists one, at
most several directions where the condition (31) is sat-
isfied. Parametric emission forms narrow beams pointing in
these directions. But the Bose stars are spherical, with all
diameters giving the same D∞. The question is, what is the
distribution of the resonant flux in angular harmonics.
In Appendix A, we perform spherical decomposition of

the electromagnetic field inside a Bose star. We find the
same leading-order equations (16) in every angular sector
ðl; m0Þ, with dependence on l emerging as an OðmRsÞ−1
correction to the spatial derivatives,

∂z → ∂z þ
ilðlþ 1Þ
mz2

; ð42Þ

where z ¼ �r, cf. Eq. (18). In fact, even this correction
can be absorbed by the singular redefinition c�i →
c�i exp½ilðlþ 1Þ=mr� of the electromagnetic amplitudes.
Then the effect of angular quantum number is parametri-
cally weaker than ðmRsÞ−1, with leading contribution
coming from a small vicinity of r ¼ 0. We conclude that
spherical modes with essentially different l satisfy almost
the same equations inside the star and grow at close
rates μl ≈ μ.
Our numerical simulation confirms this expectation; see

Fig. 5. Namely, the numerical data suggest heuristic
expression,9

μl − μ ≈ −0.034mlðlþ 1Þ Ms

Ms;0

�
mMs

M2
pl

�
3

; ð43Þ

where μ is approximately given by Eq. (35). Thus,
dependence on l is indeed an OðmRsÞ−2 correction; see
Appendix C.
Now, it is explicit that all modes with

l≲ lcutoff ≈ 2.4

�
Ms

Ms;0
− 1

�
1=2Ms;0M2

pl

mM2
s

∼mRs

grow simultaneously in resonance; see the vertical dotted
line10 in Fig. 5. If the instability starts from random quantum
fluctuations, it produces chaotic angular distribution in

Fig. 6 with typical angular size l−1cutoff . If the instability starts
due to ambient radiowave, the cutoff sets typicalwidth of the
resonance beam.

F. Two axion stars

Suppose two Bose stars came close to each other with
negligible relative velocity. Together, their profiles may
satisfy the resonance condition even if the individual stars
are far away from it. Then strong and efficient parametric
resonance may develop in this system [20].
We describe this case considering the background

ψ ¼ ψ sðxÞeiθs þ ψ 0
sðxÞeiθ0s ð44Þ

FIG. 5. Luminosity distribution over angular harmonics Lγ;lðtÞ.
We consider resonant emission from the stationary Bose star with
Ms ¼ 1.36Ms;0,mRs ∼M2

pl=ðmMsÞ ≈ 115, and g4 ¼ 0. Lines are
the fixed-time sections of luminosity in full numerical simulation.

FIG. 6. Electromagnetic flux Fγ ≡ nr½E ×H� inside the reso-
nating star from Fig. 5; r0 ¼ M2

pl=ðMsm2Þ. Interference between
the waves moving in theþr and −r directions is clearly seen. The
simulation uses random initial data to mimic quantum fluctua-
tions in the electromagnetic vacuum; see Appendixes D and E for
details.

8In Eq. (41), we ignored backreaction of photons on axions
which may be relevant in this case.

9We do think that Eq. (43) can be derived perturbatively.
However, this calculation goes beyond the scope of this paper.

10The line is 30% off because we used Eq. (35) which has
accuracy ðMs −Ms;0Þ=Ms;0 ∼ 0.4. For better precision, one has to
compute μ in Eq. (16) numerically and obtain lcutoff from Eq. (43)
at μl ≈ 0.
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of well-separated static Bose stars ψ s and ψ 0
s centered at

z ¼ 0 and z ¼ L, respectively. In Eq. (44), we explicitly
introduced complex phases of stars θs and θ0s.
Equations (16) can be solved analytically in the limit

when the interstar distance is much larger than their sizes,
L ≫ Rs. In this case, μ ∼OðLÞ−1 corresponds to the
inverse light-crossing time between the stars. Outside every
star, i.e., at z ≪ L and at z ≫ 0, we obtain

cþx ¼ Aeμz cosDðzÞ
c−y ¼ −iAeiθs−μz sinDðzÞ

�
outside ψ 0

s;

cþx ¼ A0eμðz−LÞ sin½D0
∞ −D0ðzÞ�

c−y ¼ −iA0eiθ0s−μðz−LÞ cos½D0
∞ −D0ðzÞ�

�
outside ψ s; ð45Þ

where D and D0 are computed using ψ s and ψ 0
s in Eqs. (30)

and (31). Indeed, expressions (45) satisfy the boundary
value problem inside the left and right stars with OðμÞ
precision, and both of them give correct solution between
the stars. Gluing cþx and c−y in the latter region, one finds
A ¼ A0e−μL sinD0

∞= cosD∞ and

μ ¼ 1

2L

�
iθs − iθ0s þ ln

sinD∞ sinD0
∞

cosD∞ cosD0þ∞

�
; ð46Þ

which confirms that μ ∼OðLÞ−1.
Expression (46) deserves discussion. First, the two-star

system hosts parametric resonance if Re μ ≥ 0 or
D∞ þD0

∞ ≥ π=2. This condition reproduces the naive
criterion (31) with ψ → jψ j. Second, the resonance devel-
ops at a very slow rate μ ∼ L−1 which is nevertheless much
faster than the evolution of ψ if μ ≫ ωs or mR2

s ≫ L.
Third and importantly, left- and right-moving parametric

waves have slightly different frequenciesωγ ¼ m=2� Im μ,
where Im μ ¼ ðθs − θ0sÞ=2L, cf. Eq. (15). This splitting is a
benchmark effect of incoherent axions. Technically, it
appears because the phases of the resonant amplitudes are
locally related to the phase of the axion field,

arg cþx ≈ arg c−y − arg ψ þ π=2: ð47Þ

Indeed, all coefficients in Eq. (16) become real after
substitution c−y → ic−y expði argψÞ with corrections sup-
pressed by ∂z argψ ; hence (47). In the above setup, with
two axion stars, the shifts of emission frequencies ensure
Eq. (47) inside each star at z ≈ 0 and L.
Notably, one does expect formation of gravitationally

bound groups of Bose stars in the QCD axion cosmology.
Indeed, in the postinflationary scenario, these objects
emerge in the centers of miniclusters which are organized
in chains and hierarchically bound structures [34,35,39].
Once several stars within one group align with small
relative velocities v ≪ ðmLÞ−1, condition (31) may be
satisfied and the parametric explosion follows. The spread
of the produced spectrum will be δωγ=ωγ ∼ L−1 due to

random phases of the stars, even if their velocities are
negligibly small.

V. DIFFUSE AXIONS

Our eikonal system (16) is a microscopic Maxwell’s
equation in disguise. It is valid for general axion back-
grounds including virialized distributions in the galactic
cores and axion miniclusters. In the latter cases, however,
kinetic approach is simpler.
In this section, we study parametric radio amplification

in a cloud of random classical waves representing incoher-
ent or partially coherent axions. We fix correlators

hψi ¼ 0; hψ�ðzÞψðz0Þi ¼ ρCðz − z0Þ=ðmfaÞ2; ð48Þ

where ρ is density, Cð0Þ ¼ 1, and the correlation length
is λ ¼ R

dyCðyÞ.
Let us coarse grain Eq. (16) to a kinetic equation in

the stationary case. To this end, we consider two radio
waves with fixed frequency ωγ ¼ m=2 and amplitudes A�
traveling back-to-back through a small axion region in
Fig. 7(a). This fixes the boundary conditions,

cþx jz→þ∞ ¼ Aþ; c−y jz→−∞ ¼ A−; ð49Þ

and the incoming fluxes F�
γ;in ¼∓ m2jA�j2=2.

We assume that by itself, the axion region is too small to
host a resonance. Then the nonrelativistic Eqs. (16) and
(49) can be solved perturbatively,

cþx ¼ Aþ½1þD2;∞ −D2ðzÞ� þ iA−½D�
∞ −D�ðzÞ�;

c−y ¼ A−½1þD�
∞DðzÞ −D�

2ðzÞ� − iAþDðzÞ; ð50Þ

where DðzÞ is given by Eq. (31) and

D2ðzÞ ¼ g0m
Z

z

−∞
dz0ψ�ðz0ÞDðz0Þ: ð51Þ

We compute the outgoing fluxes by performing ensemble
average via Eq. (48),

Fþ
γ;out ¼ −

m2

2
hjcþx j2iz→−∞; F−

γ;out ¼
m2

2
hjc−y j2iz→þ∞:

The solution (50) gives

F�
γ;out ¼ F�

γ;inð1þ μ0∞LÞ − μ0∞LF
∓
γ;in: ð52Þ

Here L is the size of the axion region and μ0∞ ¼ hjD∞j2i=L
is the naive growth exponent in the infinite axion gas.
The latter parameter is explicitly computed by assuming
that the region is macroscopic, L ≫ λ, and yet, small at the
scales of ρ,
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μ0∞ ¼ g2aγγρλ=8; ð53Þ

where we restored the physical coupling gaγγ .
Now, consider large axion cloud. We divide into small

regions of width L; see Fig. 7(b). Since Eq. (52) is valid in
every region, we find

∂zF�
γ ¼ μ0∞ðzÞðF−

γ − Fþ
γ Þ; ð54Þ

where F�
γ ðzÞ are the fluxes F�

γ;in ≈ F�
γ;out at the macroscopic

position z.
Recalling that Fþ

γ and F−
γ travel in −z andþz directions,

respectively, one restores the time derivative in Eq. (55) by
changing

∂zF� → ð∂z ∓ ∂tÞF�: ð55Þ

After that our kinetic equation coincides with the one in
Refs. [13,64], if one trades the correlation length λðzÞ in
Eq. (53) for the axion velocity v ∼ ðmλÞ−1 or spectral width
of radio waves δωγ ∼ λ−1.
Solving Eq. (54) in the stationary case, we find

F−
γ ðzÞ ¼ Fþ

γ ðzÞ þ F0 ¼ F0

Z
z

−∞
μ0∞ðz0Þdz0; ð56Þ

where F0 is the integration constant. Note that this solution
does not indicate exponential growth of fluxes, unlike the
time-dependent solutions of Eqs. (54) and (55) behaving
like F�

γ ∝ expðμ0∞tÞ in the infinite medium.
Nevertheless, one can use Eq. (56) for waves with ωγ ¼

m=2 (μ ¼ 0) in two important respects. First, μ ¼ 0 when
the resonance is about to appear. In this case, the ambient
fluxes are absent: Fþ

γ ðþ∞Þ ¼ F−
γ ð−∞Þ ¼ 0, cf. Eq. (17).

The solution (56) satisfies this criterion only atD∞;diff ¼ 1,
i.e., at the boundary of the region

D∞;diff ≡ g2aγγ
8

Z þ∞

−∞
ρðzÞλðzÞdz ≥ 1: ð57Þ

This inequality gives precise condition for the parametric
resonance in diffuse axions, cf. Eq. (31).
Second, even far away from the parametric instability,

Eq. (56) predicts amplification of ambient radio flux
Fγ;in ¼ Fþðþ∞Þ due to decay of axions,

Fγ;out ¼ Fγ;in=ð1 −D∞;diffÞ;

where Fγ;out ¼ Fþð−∞Þ, cf. Sec. IV D.

VI. MOVING AXIONS

A. Doppler shifts and new resonance condition

We just saw that motion of diffuse axions decreases their
correlation length λ ∼ ðmvÞ−1 and hence suppresses the
resonance, cf. Eq. (57). In this section, we study the effect
of moving coherent axions.
Let us rewrite the system (16) in terms of physical

parameters: axion velocity viðt;xÞ in Eq. (27) and density
ρðt;xÞ ¼ m2f2ajψ j2. To this end, we change variables

cþx ¼ c̃þx e−i argψ=2; c−y ¼ c̃−y ei argψ=2: ð58Þ

Eikonal equations take the form

ð2μþ imvzÞc̃þx ¼ 2∂zc̃þx þ igaγγðρ=2Þ1=2c̃−y ; ð59aÞ

ð2μþ imvzÞc̃−y ¼ −2∂zc̃−y − igaγγðρ=2Þ1=2c̃þx : ð59bÞ

Note that only a projection vz of the axion velocity to the
resonance axis matters.
If vz is constant, one can eliminate it from Eq. (59) by

changing μ → μ − imvz=2. This is the Doppler shift of
frequencies ωγ ¼ m=2� Im μ for the left- and right-mov-
ing waves in Eq. (13). Apart from that, constant velocities
do not affect the resonance at all. Indeed, one can always
transform to the rest frame of axions.
The situation changes if some parts of the axion matter

move with respect to others: vz ¼ vzðzÞ. Then the axions
decaying in various parts produce photons with different
frequencies, and this kills Bose amplification of induced
decays. Thus, relative velocities are the main show-stoppers
for the parametric resonance.
In the next section, we will demonstrate that only the

coherent regions with relative velocities

v ≲ ðmRÞ−1 ð60Þ

can be simultaneously in resonance, where R is the size of
these regions. The above expression is natural. Indeed, R−1

is the momentum spread in the resonance mode. If the
Doppler shift mv is larger, photons produced in different
regions are out of resonance.

(a) (b)

FIG. 7. (a) Radio waves going through a small region with
axions. (b) Two resonant radio fluxes in a large axion cloud.
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B. Two moving axion stars

To get a qualitative understanding of relative velocities,
we consider two identical Bose stars approaching each
other at a nonrelativistic constant speed v,

ψ ¼ ψ1ðzÞeimvz þ ψ2ðzÞe−imvðz−LÞ;

see Fig. 8. For simplicity, we will assume that ψ1 and ψ2 are
equal to a constant ψ0 in the regions 0 < z < 2Rs and
L < z < Lþ 2Rs, and they are zero outside. We are going
to find out whether this configuration develops a resonance
before the merger, i.e., when the profiles of the stars still do
not overlap.
We compute the resonant mode by solving Eq. (59) in

the regions of constant ρ, vz and gluing the original
amplitudes c�x;y at z ¼ 2Rs and z ¼ L. Then the boundary
conditions (17) give equation for the growth exponent μ. At
the border of resonance, μ ¼ iμ0 becomes imaginary and
the equation simplifies

tan2ð2κ−RsÞtan2ð2κþRsÞ ¼
�
1þ ð2μ0 −mvÞ2

m2v20cos
2ð2κ−RsÞ

�

×
�
1þ ð2μ0 þmvÞ2

m2v20cos
2ð2κþRsÞ

�
:

ð61Þ

Here we introduced the relevant velocity scale v0 ¼ 2g0ψ0

and notations 4κ2� ¼ m2v20 þ ð2μ0 �mvÞ2.
At a very naive level, one may use jψ j instead of ψ in

Eq. (31). Then the resonance is expected at D∞ ≡
4g0mψ0Rs ≥ π=2, where D∞ sums up contributions from
both stars. In truth, the solution of Eq. (61) exists only in
the shaded region in Fig. 9 (top panel). The Doppler shift
μ0 ¼ μ0ðvÞ at the boundary of this region is plotted in the
bottom panel.
One observes sharp first-order phase transition at v ≈ v0

between the two resonance regimes; see the vertical dashed
line in Fig. 9. At v < v0, the Doppler shift is absent,
Im μ ¼ 0, although the stars have nonzero velocities.
Besides, the naive resonance condition D∞ ≥ π=2 is
approximately valid indicating that the instability develops
simultaneously in both stars. To the contrary, at v > v0, two
individual stars host their own resonances, with little help
from each other. In this case, the Doppler shift is Im μ ≈
mv=2 and the resonance condition D∞=2 > π=2 coincides

with that for one star. We conclude that the two-star
resonance occurs only at v ≤ v0 or Eq. (60).
Note that the phase transition in Fig. 9 can be understood

analytically. At large relative velocities v ≫ v0, at least
one of the two brackets in the right-hand side of Eq. (61)
should be small, so the solutions are μ0 ≈�mv=2 and
2κ�Rs ≈D∞=2 ≈ π=2. This corresponds to resonance in
individual stars. At v≲ v0, Eq. (61) with μ0 ¼ 0 takes the
form

cosð4κ�RsÞ ¼ −v2=v20;

where κ� ¼ mðv20 þ v2Þ1=2=2. At v ≪ v0, we obtain
D∞ ¼ π=2—a condition for the two-star resonance. At
v > v0, the above equation in the case μ0 ¼ 0 does not have
solutions.

C. Collapsing stars

Now, consider collapse of a critical axion star,Ms¼Mcr,
caused by the attractive self-interaction of axions. During
this process, the axions fall into the star center acquiring
velocities and making the density grow; see Fig. 10(a).
These two effects suppress the resonance and support it,
respectively.
We are going to study the resonance at the first stage of

the collapse when the infalling axions are still nonrelativ-
istic and their field is weak, jψ j ≪ 1. In this case, the
Schrödinger-Poisson system (6), (7) for axions is appli-
cable, whereas the electromagnetic field is described
by Eq. (16).
To find out how the parametric instability progresses, we

numerically solve the boundary value problem (16) in the
background ψðt; rÞ of the collapsing star at every t. We
characterize the stage of collapse with the radius r ¼ rcðtÞ
where the axion field drops by a factor of 2 from its value in
the center: jψðt; rcðtÞÞj ¼ jψðt; 0Þj=2. We will see that the
region r≲ rc is important for the resonance despite the fact
that rcðtÞ decreases by orders of magnitude during collapse.

FIG. 8. Two moving Bose stars.

FIG. 9. Condition for parametric resonance in two moving
axion stars (top panel) and respective Doppler shift μ0 ¼ Im μ
(bottom panel).
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The shaded region in Fig. 11(a) covers couplings gaγγ
required for the resonant solutions of Eq. (16) to exist at
time rcðtÞ. At the lower boundary of this region, Re μ ¼ 0;
the respectiveDoppler shifts Im μ are presented in Fig. 11(b).
Since the star is spherically symmetric, ψðzÞ ¼ ψð−zÞ,

the photon modes with complex exponents μ appear in

conjugate pairs. Indeed, for every solution fcþx ðzÞ; c−y ðzÞg
of Eq. (16) with eigenvalue μ, there exists a solution
f½c−y ð−zÞ��; ½cþx ð−zÞ��g with eigenvalue μ�. Physically, this
means that for every axion there exists a diametrically
opposite axion with the opposite velocity giving Doppler
shift −Im μ. Two signs in the ordinate label of Fig. 11
represent these two solutions.
In Fig. 11, we again see the first-order phase transition

(vertical dashed line) described in Sec. VI B. Indeed, if the
resonance appears immediately after the collapse begins
(large rc), it involves all slowly moving axions and
develops with Im μ ¼ 0. At later stages of collapse (smaller
rc), the resonance can be supported only by fast axions in
the dense star core; hence, the Doppler shift Im μ ≠ 0.
Importantly and unlike in the previous section, the stage
with fast axions is better for resonance, as it can occur at
smaller couplings, cf. Figs. 9 and 11(a).
We therefore consider resonance in the central core of a

collapsing star. It was shown [49,51] that evolution of the
axion field in this region is described by the universal self-
similar attractor,

ψðt; rÞ ¼ ð−mtÞ−iω�

mrg4
χ�ðζÞ; ζ ¼ r

ffiffiffiffiffiffiffiffiffiffiffi
−m=t

p
; ð62Þ

where t < 0, ω� ≈ 0.54, and the function χ�ðζÞ is presented
in Fig. 10(b). The core size rcðtÞ ≈ 1.5ð−t=mÞ1=2 shrinks
from the macroscopic values rc ∼ Rs to m−1 during self-
similar stage. Without the parametric resonance into
photons, relativistic corrections become relevant [51] at
the end of this stage t≳ −m−1. Simultaneously, the weak-
field approximation gets broken and higher-order terms of
the axion potential (3) become essential. Below we con-
centrate on the situations when the resonance starts at the
nonrelativistic stage t ≪ −m−1.
Substituting Eq. (62) into the spectral problem (16) and

changing variables c� ¼ ð−mtÞ�iω�=2c̃�ðζÞ, we arrive to
time-independent spectral problem

μ̃c̃þx ¼ ∂ζc̃þx þ ig0

g4

½χ�ðζÞ��
ζ

c̃−y ; ð63aÞ

μ̃c̃−y ¼ −∂ζc̃−y −
ig0

g4

χ�ðζÞ
ζ

c̃þx ; ð63bÞ

which involves only one combination of parameters g0=g4.
We also introduced

μ ¼ μ̃
ffiffiffiffiffiffiffiffiffiffiffi
−m=t

p
; ð64Þ

where the spectral parameter μ̃ does not depend on time.
We extend the above equations to the full star diameter
−∞ < ζ < þ∞ with χ�ð−ζÞ ¼ −χ�ðζÞ, as explained in
Appendix A.

(a) (b)

FIG. 10. (a) Numerical solution to the Schrödinger-Poisson
system (6), (7) describing collapse of a critical Bose star; the
axion velocity is v ¼ m−1∂r argψ . We use space and time units
r0 ¼ g4Mpl=ðmfaÞ and τ0 ¼ mr20; see Appendix C. (b) Universal
self-similar attractor.

(a)

(b)

FIG. 11. (a) Electromagnetic coupling gaγγ required for para-
metric resonance in collapsing critical star at the moment when its
core radius is rcðtÞ. (b) Doppler shifts �Im μ at the moment of
ignition. Unit of length is r0 ¼ g4Mpl=ðmfaÞ.
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We numerically solve Eq. (63) with boundary conditions
(17); the exemplary solution at g0=g4 ≈ 0.13 is shown in
Fig. 12. Notably, the nontrivial part of this solution has
width corresponding to rcðtÞ (vertical lines in Fig. 12).
Beyond this part jc�i j freely decay as expf−jζjRe μ̃g. Thus,
the resonance mode shrinks on par with the collapsing star.
Numerical solutions of Eq. (63) exist only at

gaγγ ≥ 0.25
g4
fa

: ð65Þ

This is a general condition to ignite parametric instability in
collapsing stars. It reproduces minimal coupling required
for the resonance in Fig. 11 (horizontal dashed line). Also,
it is twice weaker than the condition for critical stars before
collapse, cf. Eq. (33). For QCD axions, the region (65) is
above the dashed line in Fig. 2.
If the above inequality is met, the resonance progresses

with two complex time-dependent exponents μ and μ� in
Eq. (64), where �Im μ are the Doppler shifts. The respec-
tive eigenvalues μ̃ are plotted in Fig. 13. Importantly, the
time dependence of μ does not stop the resonance. Indeed,
we already argued that the respective mode behaves like a
localized level in quantum mechanics. Slow variations of
external background do not change occupation of this level
if the adiabatic condition is satisfied,

∂tμ

μ2
∼ ð−mtÞ−1=2 ≪ 1: ð66Þ

Thus, the electromagnetic field sits on two quasistationary
resonance levels,

C�
α ¼ Ac�α ðt; zÞe

R
t

t0
dtμ � A0ϵαβ½c∓β ðt;−zÞ��e

R
t

t0
dtμ�

;

at least until the backreaction ruins the self-similar
background.
The axion star radio luminosity follows from the above

representation. Interestingly, it oscillates in time due to
interference between the modes,

Lγ ∝ e
2Re

R
t

t0
μdt

�
1þ b cos

�
2Im

Z
t

t0

μdtþ φ0

��
; ð67Þ

where b and φ0 depend on the initial amplitudes A, A0,
with b ¼ 1 representing equipartition. In Fig. 14, we
illustrate11 these oscillations at b ¼ 0.9, φ0 ¼ 0. Dashed
line in this figure represents self-similar formula withR
μdt ¼ −2μ̃ð−mtÞ1=2. It coincides with the direct result

(points) obtained by solving Eq. (16) for μðtÞ numerically
in the background of a collapsing star and then using
Eq. (67). This supports our analytic solution in Eq. (64).
To test the above picture of parametric resonance during

collapse, we simulate the coupled system of relativistic
equations (10) and (21) for photons and axions; see Fig. 15,
movie [65], and Appendix E for details. We find that at
first, the star squeezes with no effect on the electromagnetic
field. But once the localized solution of Eq. (16) appears,
growth and oscillations of the luminosity begin (solid line
in Fig. 15). The exact result is reproduced by Eq. (67)
(points), where μðtÞ is obtained by solving the boundary
value problem (16) and b, ϕ0 are obtained from the fit.
It is worth reminding that Eq. (67) is applicable only for

nonrelativistic stars deep in the self-similar regime. This is
possible only at very large values of mRs which are hard to
achieve in relativistic simulations. In particular, the value of
μ in Eq. (64) is by a factor of 2 different from the simulation
in Fig. 15.
We finish this section with a mystery. Figure 15 dem-

onstrates that once the inequality (37) is broken (shaded
region), the backreaction ruins self-similar dynamics.
Indeed, the axion field12 does not behave anymore as
jψðt; 0Þj−2 ∝ −t, like Eq. (62) suggests. Nevertheless, the
luminosity continues to grow and saturates only deep inside
the backreaction region. We will investigate this nonlinear
regime in the forthcoming publication [66].

FIG. 12. Resonance mode in the collapsing star; functions
cþx ðζÞ and c−y ðζÞ are not symmetric to each other. We use self-
similar coordinate ζ and gaγγ ¼ 0.37g4=fa. The respective
eigenvalue is μ̃ ≈ 0.065þ 0.025i. FIG. 13. Rescaled growth exponents μ̃ in the collapsing star.

11For simplicity, we ignore time dependence of the resonance
wave functions.

12In relativistic simulation, jψ j≡ j∂ta − imaj=ðfam
ffiffiffi
2

p Þ; see
Eq. (4).
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For QCD axions, the saturated luminosity in Fig. 15 is

Lγ ¼ 1.5 × 1041
�

m
26 μeV

�
−3

erg · s−1; ð68Þ

while the corresponding flux strongly depends on direction;
see Fig. 6. Notably, this is close to the parameters of fast
radio bursts, LFRB ¼ 1038–1040 erg · s−1.

VII. DISCUSSION

In this paper, we found that the finite-volume parametric
resonance is described by the quasistationary Schrödinger-
like system (16) with non-Hermitian “Hamiltonian.” That is

where the fun began! Photon instability modes became
localized states, and their growth exponents Re μ > 0—
eigenvalues of the Hamiltonian. The condition for the
resonance then indicates whether the localized states exist.
Using this technique, we computed the resonance condition
for the isolatedBose stars, collapsing andmoving stars, their
groups, and diffuse axions. We argued that axions with
relative velocities exceeding a certain value of order ðmRÞ−1
are sharply out of resonance, where R is the system size.
With help of quantum-mechanical perturbation theory,

we analytically computed the instability modes and growth
exponents in the physically motivated case of slow reso-
nance, μR ≪ 1. Interestingly, our theory predicts a long-
living quasistationary photon mode with small negative
decay exponent Re μ < 0 after the resonance switches off,
and we see this mode in simulations.
We have found two unexpected applications of our

method. First, it describes stimulated emission of ambient
radiation in axion stars. We observed that these objects can
realistically give larger contribution to the radio back-
ground than the diffuse axions, producing a thin spectral
line at ωγ ≈m=2. Second, with additional coarse graining,
our approach reproduces well-known kinetic equation for
photons interacting with virialized axions.
Awarning is in order: our technique is applicable only in

the case of nonrelativistic axions at high occupation
numbers. These approximations may break down only
under extreme conditions, say, in the strong gravitational
field of a black hole or a neutron star, or at very late stages
of Bose star collapse. That is why our method should work
in vast majority of astrophysical settings with dark matter
axions, and we expect that truly cool applications are still
ahead. Besides, astrophysics offers an impressive set of
situations where the resonance condition can be satisfied,
and the ones with the largest D∞ are of primary interest.
Using our method, one can study parametric instability in
superradiant axion clouds near rotating black holes [46], or
in tidally elongated axion stars falling onto the neutron stars
[19], or in groups of gravitationally bound Bose stars [20].
In all these cases, an observable radio flash can appear,
constraining the axion models or even explaining fast radio
bursts [52]. On the calmer side, objects at the rim of
parametric resonance can give large contributions into the
radio background possibly explaining ARCADE 2 [67] and
EDGES [68] anomalies.
Technically,we completely disregarded potentially impor-

tant light-bending and divergence effects of the resonance
rays, cf. [53,54], as well as phenomena of astrophysical
plasma. These certainly deserve a separate study.
We explicitly saw that gravitational and self-interaction

energies of axions inside the star trivially shift the photon
frequencies without affecting the resonance. We do not
expect these effects to be important in other situations as
well. In particular, the distribution function of virialized
axions in the Galaxy depends on their total energy E, not

FIG. 14. Luminosity (67) of parametric emission from the
collapsing star in Fig. 10(a) at gaγγ ¼ 0.33g4=fa, b ¼ 0.9, and
φ0 ¼ 0. Self-similar result (64) (dashed line) is compared to the
direct solution of Eq. (16) (points).

FIG. 15. Luminosity LγðtÞ of critical collapsing star during
parametric resonance, gaγγ ¼ 0.33g4=fa. Full numerical simu-
lation (solid line) is compared to the solution of Eq. (16) (points).
We use universal units from Appendix C; in particular,
ψ2
0 ¼ 103ðfa=g24MplÞ2.
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kinetic or potential. The photon of frequency ωγ ≈ E=2
will stay in resonance with same part of the ensemble in
different parts of the Galaxy [13,17]. Thus, the main show-
stoppers for the parametric instabilities are the Doppler
shifts and backreaction effects.
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APPENDIX A: SPHERICALLY
SYMMETRIC CASE

In the background of a spherical axion star with
ψ ¼ ψðt; rÞ, it is natural to decompose the electromagnetic
field A ¼ fAig into spherical harmonics,

A ¼
X
lm0

ðAlm0
Y Ylm0 þ Alm0

Ψ Ψlm0 þ Alm0
Φ Φlm0 Þ; ðA1Þ

where we use the gauge A0 ¼ 0, spherical vectors Ylm0 ¼
xYlm0=r, Ψlm0 ¼ r∇Ylm0 , Φlm0 ¼ ½∇ × x�Ylm0 , and denote
the standard spherical functions by Ylm0 ðθ;ϕÞ. Below we
omit the superscripts lm0 for brevity.
The coefficients of decomposition AY;Ψ;Φðt; rÞ depend

only on time t and radial coordinate r. Substituting
Eq. (A1) into the Maxwell’s equation (10), one finds the
Gauss’s law

AΨ ¼ ∂rðr2AYÞ
rlðlþ 1Þ ðA2Þ

and two dynamical equations

r2∂2
t AY ¼ ∂2

rðr2AYÞ − lðlþ 1ÞAY

− gaγγlðlþ 1Þð∂taÞrAΦ; ðA3aÞ

r∂2
t AΦ ¼ ∂2

rðrAΦÞ − lðlþ 1ÞAΦ=r

− gaγγ∂ta

�
AY −

∂2
rðr2AYÞ
lðlþ 1Þ

�
; ðA3bÞ

where we omitted terms with ∂ra because they are sup-
pressed by extra powers of ðmrÞ−1 and will not contribute
into equations for C’s.

We finally introduce the eikonal ansatz,

ðmrÞ2AY ¼ 2ilðlþ 1ÞfCþ
Y e

imðrþtÞ=2 þC−
Ye

imðr−tÞ=2gþH:c:;

mrAΦ ¼ Cþ
Φe

imðrþtÞ=2 þC−
Φe

imðr−tÞ=2 þH:c: ðA4Þ

Using it in the above equations and omitting the ðmrÞ−1
suppressed contributions, we find eikonal equations (14) at
z ¼ r > 0 for the unknowns ðCþ

Y ; C
−
ΦÞ in place of ðCþ

x ; C−
y Þ,

with the additional term (42) representing derivatives with
respect to the spherical angles: Δθϕ ¼ −lðlþ 1Þ. The pair
ðCþ

Φ;−C−
Y Þ satisfies the same equations.

There are two subtleties in the spherically symmetric case.
First, the transverse polarizations AΦ and AΨ ∝ rAY are
proportional to r−1; see Eqs. (A2) and (A4). This introduces
r−2 falloff of the electromagnetic flux Fγ;out at infinity and
additional factors lðlþ 1Þ=ð4πm2r2Þ in the backreaction
terms of Eqs. (22) and (24).
Second, proper boundary conditions should be imposed

at r ¼ 0. Solving Eq. (A3) to the leading order at r ≪ Rs,
we find that AΦ and rAY are linear combinations of the
Bessel spherical functions jlðmr=2Þ expf�imt=2g. The
mr ≫ 1 asymptotics of the latter give boundary conditions

Cþ
Y ¼ ð−1ÞlðC−

Y Þ�; Cþ
Φ ¼ ð−1Þlþ1ðC−

ΦÞ�

at r ¼ 0.
Importantly, there is no need to solve Eq. (14) on

the half-line z ¼ r > 0. Instead, we extend C�
α to another

half-line using Cþ
x ðzÞ¼ð−1Þl½C−

Y ð−zÞ�� and C−
y ðzÞ¼

ð−1Þlþ1½Cþ
Φð−zÞ�� at z ¼ −r < 0. After that Cþ

x and C−
y

satisfy Eq. (14) along the entire star diameter−∞<z<þ∞
and the boundary conditions at r ¼ 0.

APPENDIX B: THE SPECTRUM
OF A SYMPLECTIC OPERATOR

Consider the eigenvalue problem (16) at real ψ . We
denote the 2 × 2 operator in its right-hand side by

L̂ ¼
� ∂z ig0mψ

−ig0mψ −∂z

�
: ðB1Þ

One can explicitly check that this operator is symplectic,
i.e., satisfies

Ω̂ L̂ ¼ L̂†Ω̂; where Ω̂ ¼
�
0 −i
i 0

�
ðB2Þ

is a symplectic form.
Now, suppose jξi ¼ ðcþx ; c−y ÞT is the eigenmode of L̂

satisfying the resonance boundary conditions (17). In this
case, the scalar product
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hξjΩ̂jξi ¼ i
Z

dzðc−�y cþx − cþ�
x c−y Þ ðB3Þ

converges; below we fix normalization hξjΩ̂jξi ¼ 1. Then,

μ� ¼ hξjΩ̂ L̂ jξi† ¼ hξjL̂†Ω̂jξi† ¼ μ; ðB4Þ

where in the last equality we used Eq. (B2). Thus, the
localized resonance modes of L̂ satisfying (17) have real μ.
Note that the eigenmodes of L̂ with different eigenvalues

are orthogonal to each other in the sense of the scalar
product (B3). Indeed, repeating the computation (B4) for
eigenvectors jξ1i and jξ2i with exponents μ1 and μ2, we
find

μ�2hξ1jΩ̂jξ2i† ¼ μ1hξ1jΩ̂jξ2i†; ðB5Þ

which proves hξ1jΩ̂jξ2i ¼ 0. Moreover, one can argue that
the set of L̂ eigenmodes—the resonance ones and the ones
from the continuum spectrum—forms complete basis in the
space of bounded functions cþx and c−y .
With the above definitions, we can develop a perturbation

theory for the spectrum of L̂. Indeed, suppose at ψ ¼ ψ0ðzÞ,
the operator L̂ ¼ L̂0 has a normalized eigenmode jξ0i
with zero eigenvalue, L̂0jξ0i ¼ 0. At slightly different
ψ ¼ ψ0ðzÞ þ δψðzÞ, this operator receives variation
δL̂ ¼ −g0mδψΩ̂. In this case, its resonance eigenmode
jξi ¼ jξ0i þ jδξi is close to jξ0i, and the respective eigen-
value μ is small. The eigenvalue problem L̂jξi ¼ μjξi takes
the form

δL̂jξ0i þ L̂0jδξi ¼ μjξ0i; ðB6Þ

where we ignored quadratic terms in perturbations. The
scalar product with jξ0i gives

μ ¼ hξ0jΩ̂δL̂jξ0i
hξ0jΩ̂jξ0i

¼ −g0m
hξ0jδψ jξ0i
hξ0jΩ̂jξ0i

: ðB7Þ

Using explicit solution (29) for ξ0, we finally obtain

μ ¼ g0m
R
dz½ψðt;xÞ − ψ0ðxÞ�R

dz sinð2D0Þ
: ðB8Þ

With (31), this expression reproduces Eq. (34) from the
main text.

APPENDIX C: SCALING SYMMETRY

We calculate parameters of Bose stars using scaling
symmetry of the Schrödinger-Poisson system (6), (7).
Consider first the model without self-coupling, g4 ¼ 0.
One finds that change of variables

x ¼ λx̃; t ¼ mλ2 t̃; ðC1aÞ

Φ ¼ Φ̃
ðmλÞ2 ; ψ ¼ Mplψ̃

m2λ2fa
ðC1bÞ

with arbitrary λ removes all constants from the equations.
This scaling allows us to map the model with arbitrary
parameters to a reference one with ψ̃ð0Þ ¼ 1. We perform
numerical calculations in tilded variables and then scale
back to physical. Parameter λ disappears in final answers, if
one expresses it via the chosen Bose star characteristics,
e.g., its mass,

Ms ¼ m2f2a

Z
d3xjψ sj2 ¼ M̃s

M2
pl

λm2
; ðC2Þ

where M̃s ≈ 3.9 is computed numerically. Similarly, the
parameter (31) equals

D∞ ≈ 0.80gaγγ
Mpl

λm
: ðC3Þ

Using this approach, we obtain Eqs. (32) and (35).
In models with g4 ≠ 0, the self-interaction can be

ignored at M ≪ Mcr, see Eq. (9), and we are back to
the above situation. Stars withM ≥ Mcr are unstable. In the
main text, we mostly consider the critical star with
M ¼ Mcr. In this case, one excludes all parameters from
the equations using Eq. (C1) with λ ¼ g4Mpl=mfa, com-
putes the critical star numerically, and then restores the
physical parameters. The integral (31) in this case equals

D∞ ≈ 3.04
gaγγfa
g4

ðC4Þ

implying (33). These “self-interaction” units are exploited
in Figs. 10, 11, 14, and 15.
Finally, if self-coupling is negligible but backreaction of

photons on axions is relevant, all constants can be elim-
inated from Eqs. (16), (22), and (7) using Eq. (C1), C�

α ¼
C̃�
α ðMpl=gaγγÞ1=2ðmλÞ−2, μ ¼ μ̃=λ, and λ ¼ gaγγMpl=m. We

perform this rescaling to plot universal quantities in
Figs. 3, 4, and 15.

APPENDIX D: INITIAL CONDITIONS

In real astrophysical settings, the axion stars are
embedded into the background of classical radio waves
which can give a good initial kick to the parametric
instability, cf. Sec. IV D. But this mechanism essentially
depends on the environment, so outside of Sec. IV D we
assume quantum start, i.e., the resonance set off by the
spontaneous decays of axions inside the isolated star.
Detailed study of quantum evolution is beyond the

scope of this paper, so we use a shortcut. Namely, the
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flux Fγ ∼ jEj2 ∼ jHj2 of spontaneous photons can be
estimated from energy conservation,

∂tMs ¼ −ΓaγγMs ¼ −4πr2Fγ; ðD1Þ

where we assumed spherical Bose star and introduced the
axion decay width Γaγγ ¼ g2aγγm3=64π. This gives typical
amplitudes

jEj ∼ jHj ∼ 1

Rs

�
MsΓaγγ

4π

�
1=2

ðD2Þ

of spontaneous emission.
It is worth reminding that the exponential growth of the

resonance mode washes out all details of initial quantum
evolution, with just one logarithmically sensitive parameter
surviving: the time of growth. That is why the above order-
of-magnitude description is adequate.
In numerical simulation of Appendix E, we mimic the

quantum bath of spontaneous photons using a stochastic
ensemble of random classical waves with amplitudes (D2).
This is required only in dynamical situations such as the
axion star collapse in Sec. VI C.

APPENDIX E: FULL RELATIVISTIC
SIMULATION

We test the theory by numerically evolving Eqs. (10) and
(21) for the electromagnetic and axion fields. In compu-
tations, we consider only spherically symmetric axion
backgrounds, a ¼ aðt; rÞ. This is justified at the linear
stages of parametric resonance and should be valid
at least13 qualitatively during backreaction. To make
Eq. (21) self-consistent, we average its right-hand side
over spherical angles: FμνF̃μν →

R
dΩFμνF̃μν=4π. We

decompose electric and magnetic fields Ei ¼ F0i and Hi ¼
−ϵijkFjk=2 in spherical harmonics Ylm0 , Ψlm0 , and Φlm0

introduced in Appendix A. With the cutoff l ≤ lmax, we find
6lmaxðlmax þ 2Þ þ 1 equations14 for the same number of
unknowns EY;Ψ;Φ

lm0 ðt; rÞ, HY;Ψ;Φ
lm0 ðt; rÞ, and aðt; rÞ.

As usual, the longitudinal number m0 does not explicitly
appear in equations for the spherical components of
E and H. We therefore leave only one component at
every l multiplying its contribution in the right-hand side
of Eq. (21) by (2lþ 1). Now, the number of equations
is 6lmax − 5.
In practice, our numerical results are insensitive to lmax:

the photon modes evolve independently at the linear stage,
while backreaction simply equidistributes energy over

them.15 We therefore perform simulations in Figs. 3, 4,
and 15 with lmax ¼ 1 and use lmax ¼ 210 with step Δl ¼ 4
to find the angular structure of the resonance in Sec. IV E.
We restore three-dimensional electromagnetic fields during
linear evolution multiplying the spherical components with
their harmonics, e.g.,

E ¼
X
lm0

EΨ
l ðt; rÞelm0Ψlm0 ðθ;ϕÞ þ…;

where the dots hide other polarizations and independent
random numbers elm0 mimic quantum distribution of the
initial resonance amplitudes over the longitudinal number
m0; see Appendix D.
To hold the axions together during resonance, we add

interaction with the gravitational potential by changing
V 0 → ð1þ 2ΦÞV 0 in Eq. (21). This approximation is trust-
worthy if the gravitational field is mostly sourced by the
nonrelativistic axions.
Since our simulations check nonrelativistic theory,

we perform them only for small-velocity axions. In
physical units, parameters of these simulations correspond
to m ¼ 26 μeV, g4 ¼ 0.59 or 0, with other parameters
ranging in wide intervals f2a ¼ ð10−11 ÷ 10−8Þ M2

pl, gaγγ ¼
ð0.15 ÷ 0.4Þ f−1a , and Ms ¼ ð10−11 ÷ 10−8Þ M⊙. This
indeed corresponds to small nonrelativistic parameter
ðmRsÞ−1 ¼ 10−3 ÷ 10−6. Note that in universal units of
Figs. 3–6, and 15 the results of our simulations look the
same at essentially different parameters.
We store aðt; rÞ, Φðt; rÞ, and the components of E, H on

a uniform radial lattice with Δr ¼ 1.3=m, using Fourier
transform to compute their r derivatives in Eqs. (10), (21),
and (7). Time evolution is then performed with the
fourth-order Runge-Kutta integrator with Δt ¼ 0.025=m.
Equation (7) is solved at each step. In our calculations, the
total energy is conserved at the level of 10−8.
In the beginning of simulation, we evolve the axion field

alone, checking Eq. (16) for the resonance mode (Re μ > 0)
to appear. Once it is there,16 we randomly populate the
Fourier modes of the electromagnetic field in the narrow
frequency band ωγ ≈m=2, with typical amplitude (D2) in
the r space. This sets off the resonance making E and
H grow.
We absorb the electromagnetic emission by introducing

the “Hubble” friction at the lattice boundary r > r1. The
outgoing luminosity Lγ ¼ r2

R
dΩnr½E ×H� is measured

at r ¼ r1.
In Figs. 10 and 14, we use the code of Ref. [51] to evolve

the Schrödinger-Poisson equations (6), (7) for axions.
Backreaction of photons on axions is not taken into account
in these calculations.13The backreaction stage in the central part of Fig. 3 is short,

and related asphericities should be small. Self-similar evolution in
Fig. 15 tracks spherically symmetric attractor which suppresses
axion modes with nonzero l.

14Note that l ¼ 0 components of E and H are absent.

15The time when the backreaction appears is logarithmically
sensitive to lmax, however, cf. Eq. (37).

16If not, the photon waves trivially leave the axion star.
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Blue line shows the density of axions (times r2) versus the
distance from the star center. Although in the beginning the
axions look static on the timescale of the movie, in fact they
influx into the center. At some point during the collapse, a
parametric instability to radiophotons appears creating a radio
flux (red line). The latter oscillates due to interference between
the two resonance modes, and burns axions creating ripples on

the blue graph.The resonance stopswith a streamof relativistic
axions leaving the star (short blue ripples).
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