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We study parametric instability of compact axion dark matter structures decaying to radiophotons.
Corresponding objects—Bose (axion) stars, their clusters, and clouds of diffuse axions—form abundantly
in the postinflationary Peccei-Quinn scenario. We develop general description of parametric resonance
incorporating finite-volume effects, backreaction, axion velocities, and their (in)coherence. With additional
coarse graining, our formalism reproduces kinetic equation for virialized axions interacting with photons.
We derive conditions for the parametric instability in each of the above objects, as well as in collapsing
axion stars, evaluate photon resonance modes and their growth exponents. As a by-product, we calculate
stimulated emission of Bose stars and diffuse axions, arguing that the former can give larger contribution
into the radio background. In the case of QCD axions, the Bose stars glow and collapsing stars radioburst if
the axion-photon coupling exceeds the original Kim-Shifman-Vainshtein-Zakharov value by 2 orders of
magnitude. The latter constraint is alleviated for several nearby axion stars in resonance and absent for
axionlike particles. Our results show that the parametric effect may reveal itself in observations, from fast

radio bursts to excess radio background.
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I. INTRODUCTION

The QCD axion [1] and similar particles [2] are perfect
dark matter candidates [3.4]; they are motivated [5,6]
and have tiny interactions [7], including coupling to the
electromagnetic field. But the same interactions—alas—
make the axions “invisible” dictating overly precise detec-
tion measurements [8,9] and limiting possible observatio-
nal effects [10-12].

Nevertheless, under certain conditions, an avalanche of
exponentially growing photon number n,  exp{24qt}
can appear in the axionic medium [13], with growth
exponent p., proportional to the axion-photon coupling
and axion field strength. This process is known as para-
metric resonance. It occurs because the axions decay into
photons which stimulate decays of more axions. In the
infinite volume, parametric axion-photon conversion is
well understood, but does not occur during cosmological
evolution of the axion field [14-16]. In compact volume of
size L, the avalanche appears if the photon stimulates at
least one axion decay as it passes the object length [13,17].
This gives order-of-magnitude resonance condition,
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Unfortunately, apart from this intuitive estimate and brute-
force numerical computations [18-26], no consistent quan-
titative theory of axion-photon conversion in finite-size
objects has been developed so far.

In this paper, we fill this gap' with a general, detailed,
and usable quasistationary approach to parametric reso-
nance in a finite volume. Our method works only for
nonrelativistic axions, but accounts for their coherence, or
its absence, axion velocities, binding energy and gravita-
tional redshift, backreaction of photons on axions, and
arbitrary volume shape. In the limit of diffuse axions, it
reproduces well-known axion-photon kinetic equation, if
additional coarse-graining is introduced.

Notably, the cosmology of QCD axion [14,15,29]
provides rich dark matter structure at small scales [30],
with a host of potentially observable astrophysical impli-
cations. Namely, in the postinflationary scenario, violent
inhomogeneous evolution of the axion field during the
QCD epoch [31-35] leads to formation of axion mini-
clusters [36-38]—dense objects of typical mass 10713 M,
forming hierarchically bound structures [39]. In the centers
of miniclusters, even denser compact objects, the axion
(Bose) stars [40,41], appear due to gravitational kinetic
relaxation [42,43]. Simulations suggest [30,34,35,42,43]

"This work is based on presentations [27,28] at the Patras
workshops where the main equations first appeared.
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that these objects are abundant in the Universe, though their
present-day mass is still under study [43]. Another example
of dense object formed by the QCD axions is a cloud
around the superradiant black hole [6,44,45]; see also [46].

Beyond the QCD axion, miniclusters [4] and Bose stars
[47,48] can be formed by the axionlike particles at very
different length and mass scales.

In this paper, we derive precise conditions for parametric
resonance in the isolated axion stars, collapsing stars, their
clusters, and in the clouds of diffuse axions. We find
unstable electromagnetic modes and their growth expo-
nents y. Contrary to what naive infinite-volume intuition
might suggest, resonance in nonrelativistic compact objects
develops with y < p,. As aresult, in many cases, it glows
in the stationary regime, burning an infinitesimally small
fraction of extra axions at every moment, to keep the
resonance condition marginally broken.

Our calculations suggest three interesting scenarios with
different observational outcomes. In the first chain of
events, the axion-photon coupling is high and the threshold
for parametric resonance is reached during growth of
axion stars via Bose-Einstein condensation. Then all
condensing axions are converted into radio-emission with
frequency equal to the axion half-mass. This paves the way
for indirect axion searches.

Second, at somewhat smaller axion-photon coupling,
attractive self-interactions of axions inside the growing stars
may become important before the resonance threshold is
reached. As a result, the stars collapse [49-51], shrink, and
ignite the instability to photons on the way. Alternatively,
several smaller axion stars may come close, suddenly
meeting the resonance condition [20]. In these cases, a short
and powerful burst of radio-emission appears.

Amusingly, powerful and unexplained fast radio bursts
(FRBs) are presently observed in the sky [52]. It is
tempting to relate them to parametric resonance in
collapsing axion stars [19] and see if the main character-
istics can be met.

In the third, most conservative scenario all Bose stars are
far away from the parametric resonance. Nevertheless, the
effect of stimulated emission turns them into powerful
amplifiers of ambient radio waves at the axion half-mass
frequency. We compute amplification coefficients for the
Bose stars and diffuse axions and find that realistically,
stimulated emission of the stars may give larger contribu-
tion into the radio background.

In Sec. II, we introduce nonrelativistic approximation for
axions and review essential properties of Bose stars.
General description of parametric resonance in finite
volume is developed in Sec. III. In Sec. IV, it is applied
to radio-emission of static axion stars, their pairs, and
amplification of ambient radiation. In Secs. V and VI, we
study resonance in diffuse axions and consider the effect of
moving axions/axion stars, in particular, resonance in
collapsing stars. Concluding remarks are given in Sec. VIL.

II. AXION STARS

The diversity of compact objects in axion cosmology
offers many astrophysical settings where the parametric
resonance may be expected. One can consider static Bose
stars, collapsing, moving, or tidally disrupted stars, even
axion miniclusters. To describe all this spectrum in one go,
we implement two important approximations.

First, we describe axions by the classical field a(z, x)
satisfying

Oa +V'(a) = 0. 2)

This is valid at large occupation numbers. Interaction with
the gravitational field in Eq. (2) is hidden in the covariant
derivatives, and the scalar potential

m? grm?
V:7a2—44!f3 (14+... (3)

includes mass m and quartic coupling (gsm/f,)>.
Self-interaction of the QCD axion is attractive: f, =~
(75.5 MeV)?/m and g, ~0.59 [7]. Axionlike particles
may have g, ~ 0.

Second, we work in nonrelativistic approximation,

_ fa
V2

where y slowly depends on space and time. Namely, if 4 is
the typical wavelength of axions,

a [w(t,x)e™™ + H.c, (4)

Oy ~y/A, im>1. (5)

Ay ~w/m,
In this approximation, Eq. (2) reduces to nonlinear
Schrodinger equation,

iaw:—AWﬂLm <I>—élw\2 w (6)
! 2m 8 ’

where @ is a nonrelativistic gravitational potential solving
the Poisson equation

AD = drp/ M2, (7)

and p = m>f2|y|? is the mass density of axions.

Note that the method of this paper is applicable only if
both of the above conditions are satisfied: the axions are
nonrelativistic and they have large occupation numbers.
Dark matter axions meet these requirements, except under
extreme conditions.

A central object of our study is a Bose (axion) star, a
stationary solution to the Schrodinger-Poisson system
® = B,(r), (8)

w = e "Ny (r),
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where @, < 0 is the binding energy of axions and r is the
radial coordinate. Physically, Eq. (8) describes Bose-
Einstein condensate of axions occupying a ground state
in the collective potential well ®(r). This object is
coherent: the complex phase of y, does not depend on
space and time. Below we consider parametric resonance in
stationary and colliding stars.
Notably, the axion stars with the critical mass

faMpl

mgy

My ~102 (9)

and heavier stars are unstable [50]. In this case, attractive
self-interaction in Eq. (6) overcomes the quantum pressure
and the star starts to shrink developing huge axion densities
in the center [51]. We will see that this may trigger
explosive parametric instability.

III. GENERAL FORMALISM
A. Linear theory

In this section, we construct general quasistationary
theory for narrow parametric resonance of radiophotons
in the finite volume filled with axions. This technique was
first developed and presented in [27,28]. In contrast to the
resonance in the infinite volume [14,15,41] which univer-
sally leads to the Mathieu equation, the finite-volume one is
described by the eigenvalue problem with a rich variety of
solutions.

Consider Maxwell’s equations2 for the electromagnetic
potential A, in the axion background a(z,x),

aﬂ(F/w + gayyaF/w) =0, (10)

where F,, = 0,A, — 0,A,, F;w = €,,F,,/2, and g, is
the standard axion-photon coupling. Below we also use
dimensionless coupling ¢ = f,94,,/2%.

In the infinite volume, one describes the resonance in the
plain-wave basis for the electromagnetic field [14,15,41],
while the axion star suggests spherical decomposition [20].
We want to develop general formalism, and simpler at
the same time, usable in a large variety of astrophysical
settings.

We therefore introduce two simplifications. First, the
photons travel straight, with light-bending effects being
subdominant in the axion background, cf. [53,54]. Thus,
the parametric resonance develops almost independently
along different directions. Second, we consider nonrela-
tivistic axions decaying into photons of frequency w, =
m/2 with a very narrow spread.

‘We disregard gravitational interaction of photons. It will be
restored below.

This suggests decomposition in the gauge Ay = 0,
A; = /dnC,(»")(t, x)emmx+0/2 L He,, (11)

where i = {x,y,z} and the integral runs over all unit

vectors n. The amplitudes C l(.") include photon frequency

spread. Hence, they weakly depend on space and time,

Oux|C™M |~ 27 1CM) ames 1, (12)
where 17! is the typical momentum of axions in Eq. (5).

Using Eq. (11), one finds that in the eikonal limit (12) the
field equation (10) couples only the waves moving in the
opposite, i.e., +nr and —n, directions. As a result, identical
and independent equations are produced for every pair of
directions. This is manifestation of the simple fact that the
axions decay into two back-to-back photons.

Indeed, leaving one arbitrary direction z = (nx) and its
counterpart —z, we obtain the ansatz that passes the field
equation [27,28],

Ai _ Clﬂ»eim(z-&-t)/Q + Ci—eim(z—t)/Z +Hec., (13)

where the shorthand notations C;(7,x) = C,(.") and
Cy(t,x) = [cﬁ‘")]* are introduced. Namely, substituting
Eq. (13) into Eq. (10) and using approximations (12), (5),
we arrive to the closed system,

0,CY = 0.Cf + igmyCy, (14a)

0,Cy = —0.Cy —igmyCy. (14b)
The other two physical polarizations satisfy the same
equations with C} — Cy+ and Cy — —Cy, while the longi-
tudinal part is fixed by the Gauss law C¥ =2i0,C /m; here
and below a = {x, y}. Overall, we have four amplitudes C
representing two photon polarizations propagating in the +z
and —z directions.

Equations (14) should be solved for every orientation
of z axis, in search for the growing instability modes.
After that the modes can be superimposed in Eq. (11) or,
practically, only the one with the largest exponent can
be kept.

In spherically symmetric Bose star, all directions are
equivalent and description simplifies—we have to study
only one direction. Notably, in this case, one can derive
Eq. (14) using spherical decomposition; see Appendix A.

There is a residual hierarchy in Eq. (14) related to small
axion velocities v ~ (mA)~! < 1. Indeed, the nonrelativ-
istic background evolves slowly, 9,y ~ y/mJ?, while the
electromagnetic field changes fast, 9,C ~ C/A. Thus, equa-
tions for C can be solved with adiabatic ansatz,
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ct = e 1O x4 5y, (15)

where the complex exponent p and quasistationary ampli-
tudes ¢ evolve on the same time scales mA> as .
Corrections to the adiabatic evolution (15) become expo-
nentially small as v — 0.

Using representation (15) in Eq. (14) and ignoring time
derivatives of u and ¢i, we finally obtain the eigenvalue
problem [27,28],

ucy = 0 ¢ +igmycy, (16a)

pcy = —0,cy —igdmycy, (16b)
where equations for the two remaining amplitudes are again
obtained by ¢ — ¢ and ¢j — —c;.

If the axions live in a finite region and no electromag-
netic waves come from infinity, one imposes boundary
conditions
=0, (17)

Calimtoo = Calimoo

see Eq. (13).

The spectral problem (16) determines the electromag-
netic modes {c{,cy} and their growth exponents . The
latter are not purely imaginary at y # O because 2 x 2
operator in the right-hand side of Eq. (16), is not anti-
Hermitian. That is why in certain cases resonance insta-
bilities—modes with Reu > 0 satisfying the boundary
conditions (17)—appear.

It is worth discussing two parametrically small correc-
tions to Egs. (14) and (16). First, derivatives with respect to
x and y are absent in these systems: they appear only in the
next, (mA)~! order, determining the section of the reso-
nance ray in the (x,y) plane. If needed, they can be
recovered with the substitution

0. = 0.~ — (3 +3}) (18)

to solve the spectral problem in three dimensions.

If the axion distribution is not spherically symmetric, one
expects that the resonance ray is narrow in the (x, y) plane.’
Indeed, according to the leading-order equations (14),
electromagnetic field grows with different exponents p at
different x and y. This means that wide wave packets shrink
around the resonance line until the quantum pressure (18)
becomes relevant.

Second, direct interaction of photons with nonrelativistic
gravitational field can be included in Eq. (14) by changing®

3Similarly, one can compute narrow resonance rays around
every direction in spherical axion star and then combine them
in ﬁl D).

Here m® accounts for the gravitational evolution of photon
four-momentum.

9,CE - (0, + im®)CE. (19)

However, one immediately rotates this contribution away,
Cs — exp{—im [*dz®(Z')}C%, with remaining correc-
tions suppressed by (mA)~2

As an illustration, consider static homogeneous axion
field yw in the infinite volume. Quasistationary equa-
tions (16) in this case give 9.c: = 0 and time-independent
U = Uy, of the form

Hoo = g'mly| > 0. (20)

Thus, electromagnetic amplitudes in Eq. (15) grow expo-
nentially with time indicating parametric resonance.
Expression (20) reproduces well-known infinite-volume
growth rate [13-15,17,18,20,22,41] of the axion-photon
resonance.

B. Nonlinear stage

Backreaction of photons on axions can be easily incor-
porated in the Schrodinger-Poisson system (5). To this end,
one substitutes the nonrelativistic ansatz (4), (13) into the
equation for the axion field,

Oa+V'(a)=- Jary F,F

L EF 1)

and omits higher derivatives of y and C. This gives

mgj my
—4|W|2W_ f2

where the backreaction is represented by the new term’ in
the right-hand side.

Let us show that the last term in the above equation
changes the mass M = m?f2 [ d®x|y|? of the axion cloud.
Indeed, taking the time derivative of M and using Eq. (22),
we obtain energy conservation law,

A
0y = s A m®y —

~CH 22
m ) eaﬂcac ’ ( )

Iz

oM =Ty, — / dxdyF,_,,,, (23)

where J;, = —mf? [ d*c'Im(y*0,y) is the mass of axions
entering the system per unit time and

Fyoyy =2my / dzeaﬂlm(y/*C;C;*) (24)

is the flux of produced photons. Below we will also use the
electromagnetic Poynting fluxes at infinity,

SIf several directions in the transform (11) are essential, a
combination of backreaction terms appears here. If spherical
decomposition is used for the isolated axion star, these terms
come with factors 7~2 in front; see Appendix A.

023501-4



RADIO-EMISSION OF AXION STARS

PHYS. REV. D 102, 023501 (2020)

F, =F m*(|Cy ] + |C?) /2. (25)

In conjunction with Eq. (14), this gives conservation law
for the electromagnetic energy, 0,E, = [dxdy(F,.,, —
[Fy + F 2.

To conclude, one can numerically solve Eq. (22) together
with Eq. (14) and watch the axions burn abundantly.

IV. STATIC COHERENT AXIONS

A. Condition for resonance

For a start, consider the case when the axions in a finite
volume are coherent and do not move. A notable example
of this situation is a static axion star.

Parametric resonance in this setup is presently under-
stood at the qualitative level [13,19,20]. Indeed, photons
passing through the axions stimulate their decays a — 2y.
The photon flux grows exponentially, F, o exp{24q1},
and the secondary flux of backward-moving photons
appears. After the original photons escape the region with
axions, stimulated decays continue in the secondary flux
moving in the opposite direction, etc.; see Fig. 1. Overall,
the back-and-forth motion inside the axion cloud accumu-
lates photons at every pass if Eq. (1) is valid, i.e.,

UL = dmly|L 2 1, (26)

where L is the typical size of the cloud.

Our equations (14) reflect the same physics. Namely,
consider the localized wave packet C; (¢, x) going through
axions in the +z direction. Due to Eq. (14a), it creates the
packet C with the opposite group velocity which, in turn,
produces Cj;, etc. The photon flux grows exponentially
during this process if unstable modes with Rey > 0 are
present.

Axion velocities are related to the complex phase of the
field,

v; = m~'0; argy. (27)
In this section, we assume that y is real up to a constant

phase which can be absorbed into redefinition of ¢ in
Eq. (16). This means that the axions are static and coherent.

ey

FIG. 1. Parametric resonance in the axion star.

In particular, the phase factor exp{—iw,t} of the Bose
star field (8) disappears from the electromagnetic equations
after replacing C¥ — Cie®:'/2. Then the total binding
energy w, of axions inside the star does not destroy the
resonance, but slightly shifts its central frequency to

w, = (m+ wy)/2, (28)

see Eq. (13). Note that misconceptions regarding resonance
blocking by gravitational and self-interaction energies still
exist in the literature, e.g., [25].

At real y, the semiclassical eigenvalue problem (16) has
two types of solutions. First, delocalized modes penetrate
into the asymptotic regions z — Foo, where y = 0 and
¢ ocexp(£uz). The exponents u of these modes are
purely imaginary, or their profiles would be unbounded.
Physically, the delocalized modes represent electromag-
netic waves coming from infinity. Second, there may exist
localized modes satisfying the boundary conditions (17).
They behave well at infinity if Rey > 0. In addition, we
prove in Appendix B that at real y the exponents y of these
modes are real. The localized modes represent resonance
instabilities.

In practical problems, the resonance is not present in
matter from the very beginning but appears in the course of
nonrelativistic evolution. For example, the Bose stars form
in slow galactic [47,48,55,56] or minicluster [37,43] col-
lapses, or afterward in kinetic relaxation [42], then grow
kinetically at turtle-slow rates [42,43,57]. Their subsequent
evolution is also essentially nonrelativistic [58,59].

At some point of quasistationary evolution, one of purely
imaginary eigenvalues u may become real, and the para-
metric resonance develops. Let us discuss the borderline
situation when the very first localized mode has 4 = 0. The
solution in this case is [27,28]

ci = AcosD(z), c, = —iAsinD(z), (29)

where A is a constant amplitude and

Zz
D(z) = g’m/ dz'y (). (30)
Integration in Eq. (30) runs along the arbitrary-oriented
Z-axis.

The solution (29) satisfies the boundary conditions (17)
if Dy, = D(+00) = 7/2. At larger values of this integral,
the instability mode with positive y exists. Thus, a precise
condition for the parametric resonance along a given
z-axis is

+o00 T
D, = g’m/ y(2)dz 2 5. (31)

[Se]

This concretizes the order-of-magnitude estimate (26).
Recall that in our notations w = p'/2/(mf,), where p is
the mass density of axions.

023501-5



D.G. LEVKOV, A. G. PANIN, and I.I1. TKACHEV

PHYS. REV. D 102, 023501 (2020)

Let us find out when the parametric resonance occurs in
axion stars. In Appendix C, we compute D, along the line
passing through the star center; see Fig. 1. We consider two
cases. First, if self-interactions of axions inside the star are
negligible, Eq. (31) reads

Mpl
MSZMS,0:7.66 5
MYayy

94~ 0, (32)

where we restored g,,, = 2%2¢/f,. This condition is
applicable in the axionlike models with g, =0 or at
M, <« M. In these cases, heavier stars are better for the
resonance.

Second, if attractive self-interactions are present, the
mass of the axion star is bounded from above, M, < M.
Using the profile of the critical star in Eq. (31), we obtain
condition

94

7 M, =M., (33)

Gayy > Gayyo = 0.52

cf. [20,27]. If this inequality is broken, parametric reso-
nance does not develop in stable axion stars at all.

For the parameters of QCD axion listed in Sec. II, the
inequality (33) gives the shaded region in Fig. 2 marked
“resonance.” Notably, the benchmark values [7] of axion-
photon coupling (KSVZ-DFSZ band in Fig. 2) are short by
2 orders of magnitude from igniting the resonance even in
the critical star [19,27,27] [25]. On the other hand, g,,, is
model dependent, with the only constraint g,, < !
coming from strong coupling in simple models [60,61].
Thus, even these simple models can satisfy (33) within the
trustworthy parameter range. More elaborated (clockwork-
inspired) QCD axion models [62] do not have these
limitations and easily meet (33).

10-10 | experimentally excluded
'> 10712 resonance
O .
@ T
~ N
e > s
S P

,—;1211[:"::/

10-8 10~7 10-6 10-5 10—4 10-3
m [eV]

FIG. 2. Masses and couplings of QCD axions needed for the
Bose stars to develop parametric resonance (triangular shaded
region above the solid line). The respective region for collapsing
stars is above the dashed line.

Alternatively, the self-coupling of the axionlike particles
can be arbitrarily small. Condition (32) is then satisfied just
for a sufficiently heavy star.

B. Linear exponential growth

Let us find out how the resonance progresses. One does
not expect it to turn immediately into an exponential
catastrophe with u ~ O(L7"), like the infinite-volume
intuition might suggest, cf. Eq. (26). Rather, the electro-
magnetic field starts growing with parametrically small
exponent ¢ < L~! immediately after the condition (31) is
met by the nonrelativistic evolution of axions. Initial values
for this growth are tiny. They can be provided by the
ambient radiation in astrophysical setup or, universally, by
quantum fluctuations considered in Appendix D. In any
case, this initial stage proceeds linearly with no back-
reaction on axions.

We compute the growth exponent by solving the
eigenvalue problem (16) perturbatively at small y, like in
quantum mechanics.® To this end, we assume that the
background w(¢,x) did not evolve much from the point
wo(x) = w(ty, x) when the condition (31) was met, and the
resonance mode is close to the solution (29). Calculation in
Appendix B gives

D, —x/2

- [ dzsin[2Dy(z)]" (34)

U

Here Dy(z) is evaluated using y(x), a configuration at the
rim of parametric instability, while D, uses y in Eq. (31).
Note that application of Eq. (34) essentially depends on
nonrelativistic mechanism leading to resonance and pro-
viding Do, — /2 = O(w — w).

Expression (34) confirms that y is indeed parametrically
small and yet, large enough for the adiabatic regime (15) to
take place. Generically, w —wqy~ (t; —ty)0;, where
ty — to~ A/p is the time from ignition of the resonance
to the moment #; when the backreaction starts; A ~
log[C*(t,)/C*(ty)] ~ 10*> is a large logarithm. Then
the nonrelativistic scaling (12), (5) and Eq. (34) give
p~ A" (A/mA)'/?, where we also recalled that the reso-
nance condition (31) is marginally satisfied. Thus,

(mA)' < pu <A,

i.e., the electromagnetic fields evolve faster than the
axion background but slower than the light-crossing time
L'~ 271

Applying Eq. (34) to the stationary axion star with
g4 =0, we get

®Unlike in quantum mechanics, the operator in Eq. (16) is
symplectic, not Hermitian.
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104
backreaction
= 1r
8
c . .
C:.,f simulation
} 1074 — =— Egs. (16)
~
. Eq. (34)
10—8 | | |
0 0.05 0.1 0.15 0.2

mt -+ (gayy Mpi)

FIG. 3. Luminosity L,(r) =r* [dQn,[E x H] of axion star
with M ~ 1.04M, during parametric resonance. Results of full
numerical simulation (solid line) show initial growth coinciding
with L, o« exp(2ut), where u is given by Eq. (16) (dashed line).
Backreaction is important in the gray region (37). Late-time decay
also proceeds exponentially with x given by Eq. (34) (points) or
Eq. (16). Universal units of flux and time are chosen in Appendix C.

m2
H = 0197W (Ms - Ms,0>’ (35)
pl

where Appendix C was consulted and M, is given in
Eq. (32). Using this expression, one obtains y ~ 10% s~! for’
m = 26 ueV [32] and 6M, ~ 10713 M. Thus, duration of
the linear stage in QCD axion stars is 1 second or longer.

To confirm the above perturbative results, we numerically
solve the system of coupled relativistic Egs. (10) and (21)
for the electromagnetic field and axions at g, = 0; see
Appendix E for details. Our simulation starts with the
axion star of mass M and tiny electromagnetic amplitudes
representing quantum bath of spontaneous photons. If the
mass of the axion star exceeds M, the exponential growth
of amplitudes starts; see the left part of Fig. 3. The exponent
of this growth coincides with the one given by Eq. (16)
(dashed line) and within the expected precision interval of
Op/u~ (Ms - M‘V,O)/Ms,O ~ 4%—with Eq. (35).

In Fig. 4, we show dependence of the exponent i on the
axion star mass M. First, performing full simulations with
different stars, we extract y from the exponentially growing
flux. This result is shown by the solid line. In the limit
M — M, it coincides with Eq. (35) (dashed line), as it
should. Second, solving the nonrelativistic equations (16)
numerically, we obtain points in Fig. 4 which give correct
exponent for the arbitrary mass.

C. Glowing axion stars

When the electromagnetic amplitudes in Fig. 3 become
large, the backreaction appears, and the resonant flux

7Although we use this reference value in all estimates, it is
worth stressing that presently the mass of the dark matter QCD
axion is under debate, cf. [32,33,35].

0.6 ]
. simulation
= -
% 04 = - - Eq. (35) .
g -
=
g 02
~
=4

0 &

1 1.1 1.2 1.3
MS/MS,O

FIG. 4. The growth exponent y as a function of the axion star
mass M. Exact numerical result (solid line) is compared to
Eq. (35) (dashed) and numerical solution to the nonrelativistic
problem (16) (points). Units are explained in Appendix C.

immediately starts to falloff. Indeed, backreaction burns
axions diluting their density, and Re u in Eq. (34) decreases
to negative values. At this point, a long-living quasista-
tionary level of the electromagnetic field is formed. Indeed,
at small ¢ < 0, the resonance mode turns into an exponen-
tially growing at z — oo solution to Eq. (16),

ci = Aet*cos D(z), ¢y = —iAe™#sinD(z), (36)
and this is a correct behavior for the quasistationary wave
function [63]. Inserting the late-time axion configuration
from our full simulation into Eq. (34), we reproduce the
exponential falloff of the flux; see the dots in Fig. 3. Thus,
the solution (36), (34) remains approximately valid during
the entire evolution, with the only unknown part related to
dilution of axions in Eq. (22).

The backreaction switches on when the last term in
Eq. (22) becomes comparable to the others. Using, in
addition, Eq. (31), we find a condition for the maximal flux
at the linear stage of resonance,

F,~m|CEP 52 (37)
mA
Here 1 is the characteristic length scale of axions and p is
their mass density. In dynamical situations, F, o, is com-
pared to the axion flux vp with v ~ (mA)~". Notably, F, < p
when the backreaction starts. Figure 3 demonstrates the gray
region where Eq. (37) is violated.

Let us reconsider the solution (29), (30) with u = 0, to
describe the regime where the backreaction stops the
resonance. The amplitudes C of this solution are constant
at infinity,

Cy

—A. G — —iA, (38)

7——00 =400

see also Eq. (17). Thus, the solution describes stationary
flux of photons Fi,, = £m?|A[* from decaying axions,

023501-7



D.G. LEVKOV, A. G. PANIN, and I.I1. TKACHEV

PHYS. REV. D 102, 023501 (2020)

where for simplicity here and below we assume equiparti-
tion Cy = Cy and Cy = —Cy.

Computing the flux (24) of produced photons, we find
F oy = 2m*|A[* = 2|F . This means that the solution
(29) duly brings all energy of decaying axions to infinity.
Energy conservation law (23) then takes the form

oM =12 [ drdy|Fy ol (39)

Even if an arbitrary large constant stream J;, of axions is
feeded into the system, the resonance works in the
equilibrium regime with 9,M = 0 and y = 0. All arriving
axions in this case are converted into radiation. To break
this situation, one needs a very special mechanism, e.g., the
axion star collapses in Sec. VIC.

Note that the above stationary situation is stable.
Indeed, perturbing M and F, ,, away from their equilib-
rium values, one obtains 9,6M = —26F, o, due to energy
conservation—larger flux decreases the mass. Besides,
Eq. (34) gives 0,0F, gy = 2uF, oy o 6M, i.e., smaller mass
weakens the flux. Together, these equations describe
harmonic oscillations around the equilibrium. In the sim-
plest uniform model the frequency is Q = g,,,(Fi,/8)"/%,
where Fy, = J;,/ [ dxdy is the flux of axions arriving into
the resonance region. Thus, the resonant radio flux F, o
may pulsate due to axion-photon oscillations. This effect,
however, should be strongly dumped due to energy dis-
sipation between the modes of the axion field.

In the particular daydream scenario, where the Universe
is full of axion stars reaching the condition (32) during
growth, no spectacular explosionlike radio events are
expected to appear in the sky. Most of the axion stars
would exist in the quasistationary regime with D, = 7/2,
converting all condensing axions into the radio background
of frequency w, ~ m/2.

Nevertheless, the latter emission may be observable,
even if the condensation time scale is comparable to the age
of the Universe. To get a feeling of numbers, let us assume
that a grown-up star with D, = z/2 lives 100 pc away
from us. Take m =26 ueV and M, ~ 10713 M, the
typical values for the QCD axions. Then the condensation
rate onto the star is roughly 10~!* M, per the Universe age.
All of condensing axions will be converted into radiation
in the narrow band around w, ~2 GHz. Even for poor
spectral resolution dw/m ~ 1073, one gets spectral flux of
order 1072 Jy, which is detectable.

When reliable predictions for the abundance of Bose
stars and their growth rates appear, similar calculations may
be used to constrain the respective scenarios.

D. Amplification of ambient radio

Now, we embed the axion stars into astrophysical
background of radiophotons. Namely, suppose an external

radio wave of frequency w, travels through the underdense
axion medium which is safely away from the resonance.
The wave will stimulate decay of axions, so its flux will be
amplified in a narrow spectral window around @, = m/2.

This stationary setup is described by our Eq. (16) with
p = i(w, —m/2) and new boundary conditions,

Calioioo = Ao, cy =0, (40)

7—>—00

where equipartition is again assumed and A is related to
the incoming electromagnetic flux F,;, = —m*A}.

To find the height of the spectral line in this case, we
solve equations at @, = m/2 (u = 0). The solution is given
by Eq. (29) with A = A/ cos D,. The outgoing flux is
therefore

Fy,oul = Fy,in/ cos? D, (41)

see also (31). Thus, at small D, the extra flux from axions
is weak, AF = D% F ,in- It grows to infinity, however, at
D, — n/2 when the resonance is about to appear.

For the critical QCD axion stars with D < 1,

2 2
~ T Gary

AF ~Y
4 ggyy,o

F

y.in»

cf. Eq. (33). In the benchmark Kim-Shifman-Vainshtein-
Zakharov (KSVZ) model with g,,,, = 1.92a,,,/(2zf,), this
gives AF ~ 1.3 x 1074F ,in- Thus, even underdense axion
stars in conservative models shine like tiny dots on the sky
giving narrow spectral lines in excess of smooth astro-
physical background, cf. [64].

Let us argue that the Bose stars with D, < 1 are better
radio amplifiers than diffuse axions. The latter are described
by kinetic theory [13,64] which gives extra amplification
AF ~ gﬁpr/lF ,in from diffuse cloud of size L and corre-
lation length 4. We will rederive this expression in Sec. V
using Eq. (16). At A ~ L ~ R, it reproduces small-D , result
for the axion stars. One finds that compact objects give larger
amplification, indeed. First, if the total mass M is fixed, the
product pL ~ M /L? is larger for smaller L. Second, the
wavelengths A ~ 10° m~! of diffuse axions in the Galaxy are
much smaller than the radii of axion stars.

Let Q be the fraction of dark matter in the axion
stars. Stimulated emission from these objects in our
Galaxy is suppressed by the tiny geometric factor
R2/L?, where L ~kpc, as compared to diffuse axions.
However, multiplying it by the above boost factor, we find
AF s/ AF gigruse ~ OmuR;, where v ~ 1073 is the velocity
of diffuse axions. For critical QCD axion stars and
m = 26 peV, this ratio equals QuMy,/f, ~ 10*Q, so the
stars give larger stimulated flux at Q > 1074,

Finally, in the scenario with enhanced axion-photon
coupling, our Universe may be full of quasistationary
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axion stars with D < /2. A radio wave passing through
one of these objects burns essential fraction of its axions
producing a powerful flash of radio-emission.® This effect
can be used to constrain some arrogant models.

E. Radio portrait of an axion star

In generic resonating axion cloud, there exists one, at
most several directions where the condition (31) is sat-
isfied. Parametric emission forms narrow beams pointing in
these directions. But the Bose stars are spherical, with all
diameters giving the same D . The question is, what is the
distribution of the resonant flux in angular harmonics.

In Appendix A, we perform spherical decomposition of
the electromagnetic field inside a Bose star. We find the
same leading-order equations (16) in every angular sector
(I, m"), with dependence on [ emerging as an O(mR,)™!
correction to the spatial derivatives,
il(l1+1)

z_)az—i_m—zz’ (42)

0

where z = +£r, cf. Eq. (18). In fact, even this correction
can be absorbed by the singular redefinition c¢; —
ciexplil(l+ 1)/mr] of the electromagnetic amplitudes.
Then the effect of angular quantum number is parametri-
cally weaker than (mR,)~', with leading contribution
coming from a small vicinity of r = 0. We conclude that
spherical modes with essentially different / satisfy almost
the same equations inside the star and grow at close
rates yu; ~ .

Our numerical simulation confirms this expectation; see
Fig. 5. Namely, the numerical data suggest heuristic
expression,

M, (mM\3
) — i~ —0.034mi(l + 1) S( ﬁ, (43)
: Ms.O Mgl

where p is approximately given by Eq. (35). Thus,
dependence on [ is indeed an O(mR,)~? correction; see
Appendix C.

Now, it is explicit that all modes with

M, 12 My oM},
[ 5 lcutoff ~2.4 (MSTO - 1) T]\ﬁ ~ mRS

grow simultaneously in resonance; see the vertical dotted
line' in Fig. 5. If the instability starts from random quantum
fluctuations, it produces chaotic angular distribution in

*In Eq. (41), we ignored backreaction of photons on axions
which may be relevant in this case.

*We do think that Eq. (43) can be derived perturbatively.
However, this calculation goes beyond the scope of this paper.

OThe line is 30% off because we used Eq. (35) which has
accuracy (My — M, )/ Mg ~ 0.4. For better precision, one has to
compute x in Eq. (16) numerically and obtain / g from Eq. (43)
at y; =~ 0.

10100 |- — . e B
N Q.
= ti ~ 5
= e '~ g
- ~ :
& 10° = - - B . .
3 - < _ N
=~ T~ D
= TSN
— tO ~ \~
<1 b -
~ R~ .
\~ ~
: N
1075 I | . I M
0 100 200
l

FIG.5. Luminosity distribution over angular harmonics L, (7).
We consider resonant emission from the stationary Bose star with
M, = 136M,o, mR; ~ M;l/(mMS) ~ 115, and g4 = 0. Lines are
the fixed-time sections of luminosity in full numerical simulation.

Fig. 6 with typical angular size lc‘u'mff. If the instability starts
due to ambient radio wave, the cutoff sets typical width of the
resonance beam.

F. Two axion stars

Suppose two Bose stars came close to each other with
negligible relative velocity. Together, their profiles may
satisfy the resonance condition even if the individual stars
are far away from it. Then strong and efficient parametric
resonance may develop in this system [20].

We describe this case considering the background

w =, (x)e +yl(x)e (44)

2 [ ‘ ' | 1B F

A _
€ 4 RN 10!

£ DN ]

= )
Z é//,
i _ L 10-2
ol B
—2 -1 O 1 2 10
x/To

FIG. 6. Electromagnetic flux F, = n,[E x H] inside the reso-
nating star from Fig. 5; rg = M, gl/ (M;m?). Interference between
the waves moving in the +r and —r directions is clearly seen. The
simulation uses random initial data to mimic quantum fluctua-
tions in the electromagnetic vacuum; see Appendixes D and E for
details.
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of well-separated static Bose stars y, and v/, centered at
z=0 and z = L, respectively. In Eq. (44), we explicitly
introduced complex phases of stars 6, and ¢.

Equations (16) can be solved analytically in the limit
when the interstar distance is much larger than their sizes,
L> R,. In this case, u~ O(L)™" corresponds to the
inverse light-crossing time between the stars. Outside every
star, i.e., at z << L and at z > 0, we obtain

¢ = Aet?cos D(Z> } outside v’
S5

¢y = —iAe < sin D(z)
cf = A'e"“Dsin[D., — D'(2)] .
: outside yr;, (45)
¢; = —iA'e® L) cos[Dl, — D'(z)]

where D and D' are computed using y, and v/, in Egs. (30)
and (31). Indeed, expressions (45) satisfy the boundary
value problem inside the left and right stars with O(u)
precision, and both of them give correct solution between
the stars. Gluing ¢ and c; in the latter region, one finds

A= A'e*LsinD, /cos D, and

B ) o sin D, sin D,
W= |10 m 0 In Dy cosD' |’ (46)
which confirms that g~ O(L)~.

Expression (46) deserves discussion. First, the two-star
system hosts parametric resonance if Reu >0 or
Dy, + D, > x/2. This condition reproduces the naive
criterion (31) with w — |y]|. Second, the resonance devel-
ops at a very slow rate y ~ L™ which is nevertheless much
faster than the evolution of v if u > w, or mR2 > L.

Third and importantly, left- and right-moving parametric
waves have slightly different frequencies @, = m/2 4 Im ,
where Imu = (6, — 0})/2L, cf. Eq. (15). This splitting is a
benchmark effect of incoherent axions. Technically, it
appears because the phases of the resonant amplitudes are

locally related to the phase of the axion field,
arg ¢ marg ¢y —arg y + /2. (47)

Indeed, all coefficients in Eq. (16) become real after
substitution ¢y — icy exp(iargy) with corrections sup-
pressed by 0, argy; hence (47). In the above setup, with
two axion stars, the shifts of emission frequencies ensure
Eq. (47) inside each star at z ~ 0 and L.

Notably, one does expect formation of gravitationally
bound groups of Bose stars in the QCD axion cosmology.
Indeed, in the postinflationary scenario, these objects
emerge in the centers of miniclusters which are organized
in chains and hierarchically bound structures [34,35,39].
Once several stars within one group align with small
relative velocities v < (mL)~!, condition (31) may be
satisfied and the parametric explosion follows. The spread
of the produced spectrum will be éw,/w, ~ L~" due to

random phases of the stars, even if their velocities are
negligibly small.

V. DIFFUSE AXIONS

Our eikonal system (16) is a microscopic Maxwell’s
equation in disguise. It is valid for general axion back-
grounds including virialized distributions in the galactic
cores and axion miniclusters. In the latter cases, however,
kinetic approach is simpler.

In this section, we study parametric radio amplification
in a cloud of random classical waves representing incoher-
ent or partially coherent axions. We fix correlators

(W (w(2)) =pC(z=2)/(mf,)*,  (48)

where p is density, C(0) =1, and the correlation length
is A= [dyC(y).

Let us coarse grain Eq. (16) to a kinetic equation in
the stationary case. To this end, we consider two radio
waves with fixed frequency @, = m/2 and amplitudes A*
traveling back-to-back through a small axion region in
Fig. 7(a). This fixes the boundary conditions,

C;CL|Z—>+00 = A+’ C}_’|Z—>—oo = A_’ (49)
and the incoming fluxes F;, =F m*|A*[*/2.

We assume that by itself, the axion region is too small to
host a resonance. Then the nonrelativistic Egs. (16) and
(49) can be solved perturbatively,

ci =AT[1 + Dy, — D2(2)] + iA™ D}, — D*(z2)],
¢y = A7[1 + D D(z) — D;(2)] — iA"D(z). (50)

where D(z) is given by Eq. (31) and

Dy(z) = gm / * 2y (2)D(). (51)

(e8]

We compute the outgoing fluxes by performing ensemble
average via Eq. (48),

2 m2

F 5 F;.out = 7<‘c)_'|2>z—>+oo'

y.out = 2 <|Cjc>|2>z—>—oo’
The solution (50) gives

= F*

7.in

+
Fy.out

(1 + peoL) = oL F . (52)
Here L is the size of the axion region and u}, = (|D|*)/L
is the naive growth exponent in the infinite axion gas.
The latter parameter is explicitly computed by assuming
that the region is macroscopic, L > A, and yet, small at the
scales of p,
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FIG. 7. (a) Radio waves going through a small region with

axions. (b) Two resonant radio fluxes in a large axion cloud.

Heo = G202/ 8. (53)

where we restored the physical coupling g, .

Now, consider large axion cloud. We divide into small
regions of width L; see Fig. 7(b). Since Eq. (52) is valid in
every region, we find

0.F7 = U (2)(F, = F/), (54)

where F (z) are the fluxes F;, ~ F, o at the macroscopic
position z.

Recalling that Ff and F travel in —z and +z directions,
respectively, one restores the time derivative in Eq. (55) by

changing
O0.Ff - (0, F 0, F*. (55)

After that our kinetic equation coincides with the one in
Refs. [13,64], if one trades the correlation length A(z) in
Eq. (53) for the axion velocity v ~ (mA)~! or spectral width
of radio waves dw, ~ 47"

Solving Eq. (54) in the stationary case, we find

Fr(@) = F{ @)+ Fo=Fo [ sl (56)

—0o0

where F|) is the integration constant. Note that this solution
does not indicate exponential growth of fluxes, unlike the
time-dependent solutions of Eqs. (54) and (55) behaving
like F7 o« exp(ut,t) in the infinite medium.
Nevertheless, one can use Eq. (56) for waves with w, =
m/2 (u = 0) in two important respects. First, y = 0 when
the resonance is about to appear. In this case, the ambient
fluxes are absent: F; (+00) = F; (—00) = 0, cf. Eq. (17).
The solution (56) satisfies this criterion only at D, gitr = 1,

i.e., at the boundary of the region

2
[P +oo
D gifr = 8W/ p(2)A(z)dz > 1. (57)

This inequality gives precise condition for the parametric
resonance in diffuse axions, cf. Eq. (31).

Second, even far away from the parametric instability,
Eq. (56) predicts amplification of ambient radio flux
F, iy = F(+0c0) due to decay of axions,

F;/,out = Fy,in/<1 - Doo,diff)’

where F, o = F(—00), cf. Sec. IVD.

VI. MOVING AXIONS

A. Doppler shifts and new resonance condition

We just saw that motion of diffuse axions decreases their
correlation length A~ (mv)~! and hence suppresses the
resonance, cf. Eq. (57). In this section, we study the effect
of moving coherent axions.

Let us rewrite the system (16) in terms of physical
parameters: axion velocity v;(¢, X) in Eq. (27) and density
p(t,x) = m?f2|y|?. To this end, we change variables

cf = ofeiTYR o = gemev (S8

Eikonal equations take the form

(2p + imv )T} =20.8) + iga,, (p/2)' ey, (59a)

(2u + imv,)&; = 20,85 — iga, (p/2)"?Er.  (59b)
Note that only a projection v, of the axion velocity to the
resonance axis matters.

If v, is constant, one can eliminate it from Eq. (59) by
changing y — py —imw,/2. This is the Doppler shift of
frequencies @, = m/2 + Imy for the left- and right-mov-
ing waves in Eq. (13). Apart from that, constant velocities
do not affect the resonance at all. Indeed, one can always
transform to the rest frame of axions.

The situation changes if some parts of the axion matter
move with respect to others: v, = v,(z). Then the axions
decaying in various parts produce photons with different
frequencies, and this kills Bose amplification of induced
decays. Thus, relative velocities are the main show-stoppers
for the parametric resonance.

In the next section, we will demonstrate that only the
coherent regions with relative velocities

v < (mR)™! (60)

can be simultaneously in resonance, where R is the size of
these regions. The above expression is natural. Indeed, R™!
is the momentum spread in the resonance mode. If the
Doppler shift mv is larger, photons produced in different
regions are out of resonance.
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FIG. 8. Two moving Bose stars.

B. Two moving axion stars
To get a qualitative understanding of relative velocities,
we consider two identical Bose stars approaching each
other at a nonrelativistic constant speed v,

—imv(z—L)

w =y (2)e™* +y,(z)e :
see Fig. 8. For simplicity, we will assume that y/; and y, are
equal to a constant y in the regions 0 < z < 2R, and
L <z < L+ 2R, and they are zero outside. We are going
to find out whether this configuration develops a resonance
before the merger, i.e., when the profiles of the stars still do
not overlap.

We compute the resonant mode by solving Eq. (59) in
the regions of constant p, v, and gluing the original
amplitudes cfy at z = 2R, and z = L. Then the boundary
conditions (17) give equation for the growth exponent u. At
the border of resonance, u = iy’ becomes imaginary and
the equation simplifies

20 — 2
tan®(2k_R;)tan*(2x  R,) = [1 + 2 = mv) }

m*v3cos®(2k_Ry)
(2 + mv)?
x |1 ) .
m*vgcos* (2, Ry)

(61)

Here we introduced the relevant velocity scale vy = 2¢'w
and notations 4x% = m*v} + (24 £ mv)>.

At a very naive level, one may use |y| instead of y in
Eq. (31). Then the resonance is expected at D, =
49 myR, > n/2, where D, sums up contributions from
both stars. In truth, the solution of Eq. (61) exists only in
the shaded region in Fig. 9 (top panel). The Doppler shift
u = y'(v) at the boundary of this region is plotted in the
bottom panel.

One observes sharp first-order phase transition at v = v
between the two resonance regimes; see the vertical dashed
line in Fig. 9. At v < v, the Doppler shift is absent,
Impu =0, although the stars have nonzero velocities.
Besides, the naive resonance condition D > /2 is
approximately valid indicating that the instability develops
simultaneously in both stars. To the contrary, at v > v, two
individual stars host their own resonances, with little help
from each other. In this case, the Doppler shift is Imu =
muw/2 and the resonance condition D /2 > /2 coincides

Q F resonance

Im p /(mwy)

v/vg

FIG. 9. Condition for parametric resonance in two moving
axion stars (top panel) and respective Doppler shift 4’ = Imu
(bottom panel).

with that for one star. We conclude that the two-star
resonance occurs only at v < vy or Eq. (60).

Note that the phase transition in Fig. 9 can be understood
analytically. At large relative velocities v > v, at least
one of the two brackets in the right-hand side of Eq. (61)
should be small, so the solutions are u'~ +mwv/2 and
2k R, ~ D /2~ /2. This corresponds to resonance in
individual stars. At v < vy, Eq. (61) with i/ = 0 takes the
form

cos(4k.R) = —v*/v3,

where k. = m(v3 +0v?)"/2/2. At v < v,, we obtain
D,, = n/2—a condition for the two-star resonance. At
v > v, the above equation in the case x/ = 0 does not have
solutions.

C. Collapsing stars

Now, consider collapse of a critical axion star, M, =M,
caused by the attractive self-interaction of axions. During
this process, the axions fall into the star center acquiring
velocities and making the density grow; see Fig. 10(a).
These two effects suppress the resonance and support it,
respectively.

We are going to study the resonance at the first stage of
the collapse when the infalling axions are still nonrelativ-
istic and their field is weak, |y| < 1. In this case, the
Schrodinger-Poisson system (6), (7) for axions is appli-
cable, whereas the electromagnetic field is described
by Eq. (16).

To find out how the parametric instability progresses, we
numerically solve the boundary value problem (16) in the
background (¢, r) of the collapsing star at every 7. We
characterize the stage of collapse with the radius r = r.(7)
where the axion field drops by a factor of 2 from its value in
the center: |y (¢, r.(1))| = |w(z,0)|/2. We will see that the
region r < r, is important for the resonance despite the fact
that r.(¢) decreases by orders of magnitude during collapse.
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FIG. 10. (a) Numerical solution to the Schrodinger-Poisson

system (6), (7) describing collapse of a critical Bose star; the
axion velocity is v = m~'0, argy. We use space and time units
ro = 9sMp/(mf,) and 7y = mr§; see Appendix C. (b) Universal
self-similar attractor.

The shaded region in Fig. 11(a) covers couplings g,
required for the resonant solutions of Eq. (16) to exist at
time r. (). At the lower boundary of this region, Re y = 0;
the respective Doppler shifts Im y are presented in Fig. 11(b).

Since the star is spherically symmetric, w(z) = w(-z),
the photon modes with complex exponents y appear in

|
3 o4l @) '
2 |
S |
03 resonance :
§ ................... 1-- Eq. (65)
| ! L
| ! :
10-4 10-3 10—2 10~

re(t)/ro

FIG. 11. (a) Electromagnetic coupling g,,, required for para-
metric resonance in collapsing critical star at the moment when its
core radius is r.(t). (b) Doppler shifts +Im y at the moment of
ignition. Unit of length is ry = g4M,/(mf,).

conjugate pairs. Indeed, for every solution {c/ (z). ¢} (2)}
of Eq. (16) with eigenvalue y, there exists a solution
{ley (=2)I. [cf (=2)]"} with eigenvalue p*. Physically, this
means that for every axion there exists a diametrically
opposite axion with the opposite velocity giving Doppler
shift —Imy. Two signs in the ordinate label of Fig. 11
represent these two solutions.

In Fig. 11, we again see the first-order phase transition
(vertical dashed line) described in Sec. VI B. Indeed, if the
resonance appears immediately after the collapse begins
(large r.), it involves all slowly moving axions and
develops with Im ¢ = 0. At later stages of collapse (smaller
r.), the resonance can be supported only by fast axions in
the dense star core; hence, the Doppler shift Imy # 0.
Importantly and unlike in the previous section, the stage
with fast axions is better for resonance, as it can occur at
smaller couplings, cf. Figs. 9 and 11(a).

We therefore consider resonance in the central core of a
collapsing star. It was shown [49,51] that evolution of the
axion field in this region is described by the universal self-
similar attractor,

(—mt)~i

w(t,r) =——"—x.({), {=ry-m/t, (62)

mrg,

where 1 < 0, w, ~ 0.54, and the function y, () is presented
in Fig. 10(b). The core size r,(f) ~ 1.5(—t/m)"/? shrinks
from the macroscopic values r, ~ R, to m~' during self-
similar stage. Without the parametric resonance into
photons, relativistic corrections become relevant [51] at
the end of this stage ¢ > —m~'. Simultaneously, the weak-
field approximation gets broken and higher-order terms of
the axion potential (3) become essential. Below we con-
centrate on the situations when the resonance starts at the
nonrelativistic stage t < —m~!.

Substituting Eq. (62) into the spectral problem (16) and
changing variables ¢* = (—mt)*@/2¢*(¢), we arrive to
time-independent spectral problem

pc = ol + i . OF 5, (63a)
94 ¢ ’
v
ies = —0,e — 900 (63b)
’ 94 ¢

which involves only one combination of parameters ¢/ g,.
We also introduced

H=fr—m/t, (64)

where the spectral parameter fi does not depend on time.
We extend the above equations to the full star diameter
—00 < { < 400 with y,(=¢) = —y.({), as explained in
Appendix A.
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el -7
Lot

—20 —10

FIG. 12. Resonance mode in the collapsing star; functions
¢ () and c; ({) are not symmetric to each other. We use self-
similar coordinate { and g,,, = 0.37g4/f,. The respective
eigenvalue is ji = 0.065 + 0.025i.

We numerically solve Eq. (63) with boundary conditions
(17); the exemplary solution at ¢’/g, ~0.13 is shown in
Fig. 12. Notably, the nontrivial part of this solution has
width corresponding to r.(¢) (vertical lines in Fig. 12).
Beyond this part |ci| freely decay as exp{—|¢|Re i }. Thus,
the resonance mode shrinks on par with the collapsing star.

Numerical solutions of Eq. (63) exist only at

Gapy 2 0.25%. (65)

a

This is a general condition to ignite parametric instability in
collapsing stars. It reproduces minimal coupling required
for the resonance in Fig. 11 (horizontal dashed line). Also,
it is twice weaker than the condition for critical stars before
collapse, cf. Eq. (33). For QCD axions, the region (65) is
above the dashed line in Fig. 2.

If the above inequality is met, the resonance progresses
with two complex time-dependent exponents y and p* in
Eq. (64), where +Im yu are the Doppler shifts. The respec-
tive eigenvalues fi are plotted in Fig. 13. Importantly, the
time dependence of u does not stop the resonance. Indeed,
we already argued that the respective mode behaves like a
localized level in quantum mechanics. Slow variations of
external background do not change occupation of this level
if the adiabatic condition is satisfied,

a—’zﬂ~ (=mt)™1? <« 1. (66)

Thus, the electromagnetic field sits on two quasistationary
resonance levels,

*

" d >
Ct = Ack(t,2)ehn ™ & WeylcF(r—2) o™,

at least until the backreaction ruins the self-similar
background.

The axion star radio luminosity follows from the above
representation. Interestingly, it oscillates in time due to
interference between the modes,

0.08
3 0.04
0 | | |
0.25 0.3 0.35
ga'y’y f a / g4
FIG. 13. Rescaled growth exponents jz in the collapsing star.

t t
L, CZReﬁo udt [1 + bcos (ZIm/ udt + (,00>] , (67)
)

where b and ¢, depend on the initial amplitudes A, A’,
with b =1 representing equipartition. In Fig. 14, we
illustrate'" these oscillations at b = 0.9, @o = 0. Dashed
line in this figure represents self-similar formula with
[ udt = =2fi(—mt)'/2. Tt coincides with the direct result
(points) obtained by solving Eq. (16) for x(7) numerically
in the background of a collapsing star and then using
Eq. (67). This supports our analytic solution in Eq. (64).

To test the above picture of parametric resonance during
collapse, we simulate the coupled system of relativistic
equations (10) and (21) for photons and axions; see Fig. 15,
movie [65], and Appendix E for details. We find that at
first, the star squeezes with no effect on the electromagnetic
field. But once the localized solution of Eq. (16) appears,
growth and oscillations of the luminosity begin (solid line
in Fig. 15). The exact result is reproduced by Eq. (67)
(points), where p(7) is obtained by solving the boundary
value problem (16) and b, ¢, are obtained from the fit.

It is worth reminding that Eq. (67) is applicable only for
nonrelativistic stars deep in the self-similar regime. This is
possible only at very large values of mR, which are hard to
achieve in relativistic simulations. In particular, the value of
uin Eq. (64) is by a factor of 2 different from the simulation
in Fig. 15.

We finish this section with a mystery. Figure 15 dem-
onstrates that once the inequality (37) is broken (shaded
region), the backreaction ruins self-similar dynamics.
Indeed, the axion field'? does not behave anymore as
ly(£,0)|72 o —t, like Eq. (62) suggests. Nevertheless, the
luminosity continues to grow and saturates only deep inside
the backreaction region. We will investigate this nonlinear
regime in the forthcoming publication [66].

11 N . .
For simplicity, we ignore time dependence of the resonance

wave functions.
“In relativistic simulation, |y| = |0,a — ima|/(f,mV/2); see

Eq. (4).

023501-14



RADIO-EMISSION OF AXION STARS

PHYS. REV. D 102, 023501 (2020)

B3
)
1010 L o ,Q %
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FIG. 14. Luminosity (67) of parametric emission from the
collapsing star in Fig. 10(a) at g,,, = 0.33g4/f,, b = 0.9, and
@o = 0. Self-similar result (64) (dashed line) is compared to the
direct solution of Eq. (16) (points).

10°
backreaction

Mpl)

3
ayy

— simulation

L'y‘(g

o Egs. (16), (67)

0 I 1
—4 -3 -2

mit - 104(fa/94Mpl)2

FIG. 15. Luminosity L,(f) of critical collapsing star during
parametric resonance, g,,, = 0.33g4/f,. Full numerical simu-
lation (solid line) is compared to the solution of Eq. (16) (points).
We use universal units from Appendix C; in particular,

wg = 10°(fa/g3My)>.

For QCD axions, the saturated luminosity in Fig. 15 is

-3
L,=15x10" <26 ,ueV> erg-s™!, (68)

while the corresponding flux strongly depends on direction;
see Fig. 6. Notably, this is close to the parameters of fast
radio bursts, Lygg = 103-10% erg - s71.

VII. DISCUSSION

In this paper, we found that the finite-volume parametric
resonance is described by the quasistationary Schrodinger-
like system (16) with non-Hermitian “Hamiltonian.” That is

where the fun began! Photon instability modes became
localized states, and their growth exponents Reu > 0—
eigenvalues of the Hamiltonian. The condition for the
resonance then indicates whether the localized states exist.
Using this technique, we computed the resonance condition
for the isolated Bose stars, collapsing and moving stars, their
groups, and diffuse axions. We argued that axions with
relative velocities exceeding a certain value of order (mR) ™!
are sharply out of resonance, where R is the system size.

With help of quantum-mechanical perturbation theory,
we analytically computed the instability modes and growth
exponents in the physically motivated case of slow reso-
nance, uR < 1. Interestingly, our theory predicts a long-
living quasistationary photon mode with small negative
decay exponent Re u < 0 after the resonance switches off,
and we see this mode in simulations.

We have found two unexpected applications of our
method. First, it describes stimulated emission of ambient
radiation in axion stars. We observed that these objects can
realistically give larger contribution to the radio back-
ground than the diffuse axions, producing a thin spectral
line at @, ~ m/2. Second, with additional coarse graining,
our approach reproduces well-known kinetic equation for
photons interacting with virialized axions.

A warning is in order: our technique is applicable only in
the case of nonrelativistic axions at high occupation
numbers. These approximations may break down only
under extreme conditions, say, in the strong gravitational
field of a black hole or a neutron star, or at very late stages
of Bose star collapse. That is why our method should work
in vast majority of astrophysical settings with dark matter
axions, and we expect that truly cool applications are still
ahead. Besides, astrophysics offers an impressive set of
situations where the resonance condition can be satisfied,
and the ones with the largest D, are of primary interest.
Using our method, one can study parametric instability in
superradiant axion clouds near rotating black holes [46], or
in tidally elongated axion stars falling onto the neutron stars
[19], or in groups of gravitationally bound Bose stars [20].
In all these cases, an observable radio flash can appear,
constraining the axion models or even explaining fast radio
bursts [52]. On the calmer side, objects at the rim of
parametric resonance can give large contributions into the
radio background possibly explaining ARCADE 2 [67] and
EDGES [68] anomalies.

Technically, we completely disregarded potentially impor-
tant light-bending and divergence effects of the resonance
rays, cf. [53,54], as well as phenomena of astrophysical
plasma. These certainly deserve a separate study.

We explicitly saw that gravitational and self-interaction
energies of axions inside the star trivially shift the photon
frequencies without affecting the resonance. We do not
expect these effects to be important in other situations as
well. In particular, the distribution function of virialized
axions in the Galaxy depends on their total energy E, not
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kinetic or potential. The photon of frequency w, ~ E/2
will stay in resonance with same part of the ensemble in
different parts of the Galaxy [13,17]. Thus, the main show-
stoppers for the parametric instabilities are the Doppler
shifts and backreaction effects.
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APPENDIX A: SPHERICALLY
SYMMETRIC CASE

In the background of a spherical axion star with
w = y(t, r), it is natural to decompose the electromagnetic
field A = {A;} into spherical harmonics,

A= (AVY + AR, + AR D), (AD)
Im'

where we use the gauge A, = 0, spherical vectors Y;,, =
XY /1y Oy =1VYp, @, = [V xx]|Y,,, and denote
the standard spherical functions by Y,,, (0, ¢). Below we
omit the superscripts Im’ for brevity.

The coefficients of decomposition Ay y q(t, r) depend
only on time ¢ and radial coordinate r. Substituting
Eq. (A1) into the Maxwell’s equation (10), one finds the
Gauss’s law

ar(r214Y)
Ay = A2
YR (42)
and two dynamical equations
rza,sz = a%(rsz) - l(l + 1)AY
= Gay L1+ 1)(0,a)rAg, (A3a)

ra%A‘b = a%(rA(b) - l(l + 1)Aq>/r

97 (r*Ay)
— gay},ala |:Ay - l(l_|_1):| s (A3b)

where we omitted terms with 0,a because they are sup-
pressed by extra powers of (mr)~! and will not contribute
into equations for C’s.

We finally introduce the eikonal ansatz,

(mr)?Ay = 2il(1+1){Cyem+D/2 4 CyemU=0/2} L Hee.,

mrAg = Cge™+0/2 4 Cge™=1/2 4 H.c. (A4)
Using it in the above equations and omitting the (mr)~!
suppressed contributions, we find eikonal equations (14) at
z = r > 0for the unknowns (Cy, Cg) in place of (C{, Cy),
with the additional term (42) representing derivatives with
respect to the spherical angles: Ay = —I(I + 1). The pair
(C4.—Cy) satisfies the same equations.

There are two subtleties in the spherically symmetric case.
First, the transverse polarizations Ag and Ay o rAy are
proportional to 7~!; see Eqs. (A2) and (A4). This introduces
r~2 falloff of the electromagnetic flux F v.out At infinity and
additional factors I(/ + 1)/(4zm*r?) in the backreaction
terms of Egs. (22) and (24).

Second, proper boundary conditions should be imposed
at r = 0. Solving Eq. (A3) to the leading order at r < R|,
we find that Ag and rAy are linear combinations of the
Bessel spherical functions j,(mr/2)exp{+imzt/2}. The
mr > 1 asymptotics of the latter give boundary conditions

Cf = (-DUCP. Cp=(=1)*1(C)"
at r =0.

Importantly, there is no need to solve Eq. (14) on
the half-line z = r > 0. Instead, we extend C to another
half-line using C/(z)=(-1)'[Cy(-z)]* and C;(z)=
(1) 1Cy(=2)]* at z =—r < 0. After that C{ and C;
satisfy Eq. (14) along the entire star diameter —oo < 7 <400
and the boundary conditions at r = 0.

APPENDIX B: THE SPECTRUM
OF A SYMPLECTIC OPERATOR

Consider the eigenvalue problem (16) at real yw. We
denote the 2 x 2 operator in its right-hand side by

id’""’). (B1)

A_( 0,
-\ —igmy -0,

One can explicitly check that this operator is symplectic,
1.e., satisfies

o /0 i
Of =110, wheregz<, ol> (B2)
L

is a symplectic form. R

Now, suppose |£) = (¢, ¢y)" is the eigenmode of L
satisfying the resonance boundary conditions (17). In this
case, the scalar product
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@0 =i [dxlerel —eie) )

converges; below we fix normalization (£|Q|&) = 1. Then,

W= (EQL1E = @l =u (B4
where in the last equality we used Eq. (B2). Thus, the
localized resonance modes of £ satisfying (17) have real u.

Note that the eigenmodes of £ with different eigenvalues
are orthogonal to each other in the sense of the scalar
product (B3). Indeed, repeating the computation (B4) for
eigenvectors |&,) and |&,) with exponents p; and pu,, we
find

ﬂ§<51|§2\52>T = /41<51|§2|§2>T, (BS)

which proves (&,|Q|&) = 0. Moreover, one can argue that
the set of £ eigenmodes—the resonance ones and the ones
from the continuum spectrum—forms complete basis in the
space of bounded functions ¢ and cj.

With the above definitions, we can develop a perturbation
theory for the spectrum of L. Indeed, suppose aty = yy(z),
the operator £ = £, has a normalized eigenmode |&))
with zero eigenvalue, Lo|&) = 0. At slightly different
w =yo(z) + 6w(z), this operator receives variation
SL = —q mﬁz//fl. In this case, its resonance eigenmode
|E) = |&) + |6E) is close to |&y), and the respective eigen-

value y is small. The eigenvalue problem £|£) = u|&) takes
the form

SL|Eo) + Lo|6E) = ul&), (B6)

where we ignored quadratic terms in perturbations. The
scalar product with |&,) gives

§= <§0|Qi3£|<§0> — —dm <§0|51l/|§0> . (B7)
{0[€2[S0) (0[€2[S0)

Using explicit solution (29) for &,, we finally obtain

_ ozl (tx) = wo(x)]
=gm [ dzsin(2Dy)

(B8)

With (31), this expression reproduces Eq. (34) from the
main text.

APPENDIX C: SCALING SYMMETRY

We calculate parameters of Bose stars using scaling
symmetry of the Schrodinger-Poisson system (6), (7).
Consider first the model without self-coupling, g4 = 0.
One finds that change of variables

X = JX, t = mi*i, (Cla)
o My
O = e m2,}1)2f (C1b)

with arbitrary 4 removes all constants from the equations.
This scaling allows us to map the model with arbitrary
parameters to a reference one with (0) = 1. We perform
numerical calculations in tilded variables and then scale
back to physical. Parameter 1 disappears in final answers, if
one expresses it via the chosen Bose star characteristics,
e.g., its mass,

_ MY
Ms :mzftzl/d3x|l//s|2 :Msﬁ7

(€2)
where M, ~ 3.9 is computed numerically. Similarly, the
parameter (31) equals

M,
D, ~0.80g,, ﬁ (C3)
Using this approach, we obtain Egs. (32) and (35).

In models with g, #0, the self-interaction can be
ignored at M < M, see Eq. (9), and we are back to
the above situation. Stars with M > M, are unstable. In the
main text, we mostly consider the critical star with
M = M. In this case, one excludes all parameters from
the equations using Eq. (C1) with A = g,M;/mf,, com-
putes the critical star numerically, and then restores the
physical parameters. The integral (31) in this case equals

gay;/f a
9a

D, ~3.04 (C4)

implying (33). These “self-interaction” units are exploited
in Figs. 10, 11, 14, and 15.

Finally, if self-coupling is negligible but backreaction of
photons on axions is relevant, all constants can be elim-
inated from Egs. (16), (22), and (7) using Eq. (C1), C} =
Ctzxt(Mpl/gayy)l/z (mll)_a M= ﬁ/l’ and 1 = gayyMpl/m- We
perform this rescaling to plot universal quantities in
Figs. 3, 4, and 15.

APPENDIX D: INITIAL CONDITIONS

In real astrophysical settings, the axion stars are
embedded into the background of classical radio waves
which can give a good initial kick to the parametric
instability, cf. Sec. IV D. But this mechanism essentially
depends on the environment, so outside of Sec. IVD we
assume quantum start, i.e., the resonance set off by the
spontaneous decays of axions inside the isolated star.

Detailed study of quantum evolution is beyond the
scope of this paper, so we use a shortcut. Namely, the
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flux F, ~|E[> ~|H|* of spontaneous photons can be
estimated from energy conservation,
oMy =-T

M, = —4zr°F (D1)

ary v

where we assumed spherical Bose star and introduced the
axion decay width I',,,, = g2,,m’/64z. This gives typical
amplitudes

ary

1 /M, \/2
E|~ H| ~ (—)
R, 4z

(D2)
of spontaneous emission.

It is worth reminding that the exponential growth of the
resonance mode washes out all details of initial quantum
evolution, with just one logarithmically sensitive parameter
surviving: the time of growth. That is why the above order-
of-magnitude description is adequate.

In numerical simulation of Appendix E, we mimic the
quantum bath of spontaneous photons using a stochastic
ensemble of random classical waves with amplitudes (D2).
This is required only in dynamical situations such as the
axion star collapse in Sec. VIC.

APPENDIX E: FULL RELATIVISTIC
SIMULATION

We test the theory by numerically evolving Eqgs. (10) and
(21) for the electromagnetic and axion fields. In compu-
tations, we consider only spherically symmetric axion
backgrounds, a = a(t,r). This is justified at the linear
stages of parametric resonance and should be valid
at least” qualitatively during backreaction. To make
Eq. (21) self-consistent, we average its right-hand side
over spherical angles: F WF w — [ dQF ”DF w/4r. We
decompose electric and magnetic fields E; = F; and H; =
—€;jxF jx/2 in spherical harmonics Y, ¥, and ®,,,
introduced in Appendix A. With the cutoff / < /., we find
6l max (lnax + 2) + 1 equations'* for the same number of
unknowns E)"V®(¢,r), H"®(t,r), and a(t, r).

As usual, the longitudinal number m’ does not explicitly
appear in equations for the spherical components of
E and H. We therefore leave only one component at
every [ multiplying its contribution in the right-hand side
of Eq. (21) by (214 1). Now, the number of equations
iS 6/ — 5.

In practice, our numerical results are insensitive to ,:
the photon modes evolve independently at the linear stage,
while backreaction simply equidistributes energy over

“The backreaction stage in the central part of Fig. 3 is short,
and related asphericities should be small. Self-similar evolution in
Fig. 15 tracks spherically symmetric attractor which suppresses
axion modes with nonzero /.

“Note that [ = 0 components of E and H are absent.

them."”” We therefore perform simulations in Figs. 3, 4,
and 15 with /,, = 1 and use [, = 210 with step Al =4
to find the angular structure of the resonance in Sec. IV E.
We restore three-dimensional electromagnetic fields during
linear evolution multiplying the spherical components with
their harmonics, e.g.,

E =) EF(t.r)e, Y (0.¢) + ...,

Im’

where the dots hide other polarizations and independent
random numbers ¢;,, mimic quantum distribution of the
initial resonance amplitudes over the longitudinal number
m'; see Appendix D.

To hold the axions together during resonance, we add
interaction with the gravitational potential by changing
V' — (1+2®)V in Eq. (21). This approximation is trust-
worthy if the gravitational field is mostly sourced by the
nonrelativistic axions.

Since our simulations check nonrelativistic theory,
we perform them only for small-velocity axions. In
physical units, parameters of these simulations correspond
to m =26 ueV, g, =0.59 or 0, with other parameters
ranging in wide intervals f2 = (10~!! + 107%) Mgl, Gayy =
(0.15+0.4) 7', and M;= (107" +107%) M. This
indeed corresponds to small nonrelativistic parameter
(mR;)™" = 1073 +107°. Note that in universal units of
Figs. 3-6, and 15 the results of our simulations look the
same at essentially different parameters.

We store a(t, r), ®(t, r), and the components of E, H on
a uniform radial lattice with Ar = 1.3/m, using Fourier
transform to compute their r derivatives in Egs. (10), (21),
and (7). Time evolution is then performed with the
fourth-order Runge-Kutta integrator with Az = 0.025/m.
Equation (7) is solved at each step. In our calculations, the
total energy is conserved at the level of 1078,

In the beginning of simulation, we evolve the axion field
alone, checking Eq. (16) for the resonance mode (Re u > 0)
to appear. Once it is there,'® we randomly populate the
Fourier modes of the electromagnetic field in the narrow
frequency band w, ~ m/2, with typical amplitude (D2) in
the r space. This sets off the resonance making E and
H grow.

We absorb the electromagnetic emission by introducing
the “Hubble” friction at the lattice boundary r > r;. The
outgoing luminosity L, = r* [ dQn,[E x H| is measured
at r = ry.

In Figs. 10 and 14, we use the code of Ref. [51] to evolve
the Schrodinger-Poisson equations (6), (7) for axions.
Backreaction of photons on axions is not taken into account
in these calculations.

"The time when the backreaction appears is logarithmically
sensitive to /.., however, cf. Eq. (37).
'®If not, the photon waves trivially leave the axion star.
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Blue line shows the density of axions (times %) versus the
distance from the star center. Although in the beginning the
axions look static on the timescale of the movie, in fact they
influx into the center. At some point during the collapse, a
parametric instability to radiophotons appears creating a radio
flux (red line). The latter oscillates due to interference between
the two resonance modes, and burns axions creating ripples on

the blue graph. The resonance stops with a stream of relativistic
axions leaving the star (short blue ripples).
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