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Dark matter is poorly constrained by direct detection experiments at masses below 1 MeV. This is an
important target for the next generation of experiments, and several methods have been proposed to probe
this mass range. One class of such experiments will search for dark matter–electron recoils. However,
simplified models with new light degrees of freedom coupled to electrons face significant pressure from
cosmology, and the extent of these restrictions more generally is poorly understood. Here, we perform a
systematic study of cosmological constraints on models with a heavy mediator in the context of an effective
field theory. We include constraints from (i) disruption of primordial nucleosynthesis, (ii) overproduction of
dark matter, and (iii) the effective number of neutrino species at recombination. We demonstrate the
implications of our results for proposed electron recoil experiments, and highlight scenarios which may be
amenable to direct detection.
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I. INTRODUCTION

The identity of dark matter (DM) remains one of the
most significant problems in cosmology and particle
physics. Over the past few decades, experimental efforts
to detect and characterize DM have been guided by the
assumption that the dark species is a weakly interacting
massive particle (WIMP). However, despite substantial
improvements to experimental sensitivity, neither astro-
physical nor terrestrially produced DM has been defini-
tively detected. Increasingly strong constraints have placed
the WIMP paradigm under pressure [1–5], spurring the
development of new models across the mass spectrum.
In the meantime, direct searches for DM have largely

targeted the weak scale. Most extant direct detection
experiments are designed to detect the scattering of
DM with atomic nuclei, and due to kinematic limits,
they have poor sensitivity to a DM particle with mass
below 10 GeV [6–8]. Analyses of the phase space dis-
tribution of DM in dwarf spheroidal galaxies bound the
mass of fermionic DM to mDM ≳ 1 keV regardless of the

production mechanism [9], and the Lyman-α forest imposes
a comparable constraint on thermal relic DM of any kind
[10]. But beyond these bounds, DM models with mass
between 1 keVand 10 GeVare poorly constrained. Several
well-motivated scenarios (e.g., asymmetric DM, [11])
naturally feature masses between 1 keV and 10 GeV,
making this range an appealing target for future direct
detection experiments [12].
This has driven much interest in novel detection methods

suited to light DM particles, and several such experiments
have been proposed in the last few years [13–23] (see
Secs. IV–V of [24] for a review). These experiments are
designed to be sensitive to the very small recoil energies
characteristic of the scattering of light particles, and as
such, many are designed to search for the scattering of DM
with electrons instead of nuclei, a strategy first detailed in
[13]. Several experiments now constrain DM–electron
scattering at masses as low as ∼1 MeV [25–30]. The more
recent proposal of [15], based on electrons in aluminum
superconductors, is sensitive to deposited energies of order
1 meV, allowing for the detection of particles as light
as 1 keV.
However, although the most generic astrophysical

constraints do not restrict DM at masses between 1 keV
and 10 GeV, it is well known that particular models can
be constrained by cosmological observables, especially
for masses below 1 MeV [31]. In particular, light DM
interacting with electrons risks running afoul of the
following restrictions:
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(i) The DM must not significantly alter successful pre-
dictions of the ratios of light elemental abundances
produced in big bang nucleosynthesis (BBN) [32–34];

(ii) To accord with measurements of the effective
number of neutrino species (Neff ), the thermal
history of the DM species must not significantly
alter the temperature ratio of photons and neutrinos
at recombination [35];

(iii) While a single species of DM particle may not
account for the entirety of the present-day DM
density, no species may be produced with an
abundance exceeding that threshold.

In each case, such cosmological constraints bound the
couplings between new species and Standard Model (SM)
particles, which also determine the event rates in direct
detection experiments. Thus, in a given model, the cos-
mological effects of light DM can be related to the direct
detection cross section. Given an experimental proposal
and a DM model, one can then determine the extent of the
parameter space accessible to the experiment and consistent
with cosmology. Such an approach has been applied to
electron recoil experiments by [36] for a class of simplified
models, and more recently in a variety of model-dependent
instances [37–45].
In this work, we show that cosmological constraints on a

new light (sub-MeV) species interacting with electrons can
be greatly generalized with a small number of assumptions.
Assuming a heavy mediator between DM and the SM, we
study the cosmological implications of a light DM species
in an effective field theory (EFT), and use the same EFT to
evaluate direct detection prospects. We thus obtain model-
independent cosmological limits on the scattering cross
section of DM with electrons in an actual experiment.
The model-independent methodology is similar in spirit to
[46–48], but applied to directly connect cosmological
constraints and detection prospects in the sub-MeV regime.
This paper is organized as follows. In Sec. II, we describe

our EFT framework for modeling light DM coupled to
electrons. In Sec. III, we derive model-independent cos-
mological constraints on the DM species. In Sec. IV, we
evaluate the DM–SM scattering cross section in our EFT,
and compare cosmological bounds with prospects in a
fiducial experiment. Finally, we discuss implications for
direct detection experiments in Sec. V. A complete set of
constraints and tables of cross sections are placed after the
end of the text.
Throughout this work, we denote a scalar DM field by ϕ

and a fermionic DM field by ψ. When speaking about the
DM species generally, without specifying its spin, we will
denote it with χ.

II. EFFECTIVE INTERACTIONS
OF SUB-MeV DARK MATTER

In this section, we build a theoretical framework to study
the effective interactions of sub-MeV DM of spin 0 or 1

2
.

We study DM candidates that are singlets under the SM
gauge groups, and we consider both scalar and fermionic
DM. We first specify the working assumptions of our EFT
framework, and we thereafter develop the scalar and
fermion cases separately.

A. The EFT framework

We assume that DM is dominated by a single particle
species with a mass below 1 MeV. The MeV scale is
cosmologically significant as the scale of big bang nucleo-
synthesis (BBN). The DM annihilation and scattering
processes that we consider in this work always involve
energy exchanges well below this scale, whether they take
place in the early universe or in a laboratory today. Thus,
this situation lends itself well to an effective low-energy
description with an EFT that has a cutoff of order 10 MeV.
In general, the EFT can be valid up to higher scales, but
since cosmological history is poorly constrained at temper-
atures above a fewMeV, we only apply the EFTat or below
this scale.
At energies well below the MeV scale, the only

dynamical SM degrees of freedoms are electrons and
positrons (e�), neutrinos (ν), and photons (γ). We assume
further that there is no additional light degree of freedom
besides the DM particle: all remaining new physics is
presumed to lie well above the MeV scale, including any
mediators between DM and SM particles. Physics at sub-
MeV scales is thus well described by an EFT in which only
e�, ν, γ, and the DM χ are dynamical degrees of freedom.
This is the theoretical framework we employ for our
analysis.
Before presenting the EFT in more detail, it is instructive

to take a step back and discuss the conceptual starting point
of our work: a renormalizable theory with DM as well as
mediator fields in the spectrum. The EFT language
powerfully encodes the many UV-complete realizations
which give the same low energy physics. We make three
additional assumptions about the UV-complete theory,
described below and graphically summarized in Fig. 1:
(1) The DM is stabilized by a Z2 symmetry and is thus

absolutely stable.
(2) The couplings between mediators and SM fields

respect electroweak gauge invariance, in the sense
that the χ − eL coupling is equal to the χ − ν
coupling. We make this assumption to clarify the
impact of the DM species on Neff , as discussed
in the next section. It does not influence the other
constraints.

(3) DM couples to the visible sector via mediator fields
ζi, with masses satisfying TBBN ≪ mζi .

When writing our EFT Lagrangian, it is convenient to
take mζi ≪ mweak ≃ 100 GeV, so that weak-scale degrees
of freedom in the SM can be integrated out before the
mediators. It is then possible to define an intermediate EFT
with weak scale particles integrated out and mediators in
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the spectrum. However, our results do not depend on this
assumption—it simply clarifies how we should write the
low-energy Lagrangian to accommodate lower mediator
masses.
Ultimately, our EFT will contain a mass scale ΛEFT

which is related to the mediator masses, and each operator
will appear with a coupling (Wilson coefficient) g. We
ensure that we remain in the regime of validity of the EFT
by enforcing ΛEFT ≫ TBBN, so it is convenient to assume
that g ∼Oð1Þ and take ΛEFT to be the free parameter in our
analysis. Small deviations of g from unity can then be
absorbed by rescaling ΛEFT. But if g is notOð1Þ in a typical
UV completion, and ΛEFT is not many orders of magnitude
larger than TBBN, we have reason for caution: rescaling
ΛEFT to absorb a very small g could violate the requirement
that ΛEFT ≫ TBBN. Thus, when the scale of the DM–SM
interaction is smaller, it is important to separate g from any
non-Oð1Þ coupling typical of UV completions. An inter-
mediate EFT lying below the weak scale guides our
expectations for the size of the coupling in the effective
theory after integrating out the mediators.
In particular, if a scalar ζ mediates the DM–SM

interaction, it is easy to generate a factor of the electron
Yukawa coupling ye. Coupling ζ to the lepton doublet L
without breaking gauge invariance involves interaction
terms of the form

LUV ⊃ M1ζϕ
†ϕþM2ζH†H

þ ζ†ζH†H þ yeL̄HeR þ c:c: ð1Þ

Thus, after electroweak symmetry breaking (EWSB), ζ
mixes with the Higgs boson h. To construct an EFT from
the Lagrangian in the broken phase, we must integrate out
the mass eigenstates corresponding to ðζ; hÞ, which will
always produce a factor of ye in addition to the inverse of
the mediator mass scale.
Such a factor of ye in the EFT is also expected on general

grounds if minimal flavor violation is assumed, regardless
of the nature of the mediator. However, in general, one can
also write UV completions which do not generate a factor
of ye, e.g., by employing a vector mediator. Still other UV
completions can be constructed to introduce other small
coefficients besides ye in the EFT. When we tabulate the
EFT operators, to facilitate comparison with arbitrary UV
completions, we do not normalize the operators with such
any such factor. However, since a factor of ye is well-
motivated, we will give our results in a format that shows
constraints both with and without a factor of ye.
Finally, note that we ignore any renormalizable couplings

between the DM and SM fields, assuming that all inter-
actions are encoded in theEFT.Notice that no such operators
exist in the fermionic case under our assumptions, since we

FIG. 1. Schematic description of a UV completion of our effective theory. The vertical direction on the diagram corresponds to the
mass scale. Arrows denote renormalizable couplings. Note that there is no renormalizable interaction between the DM and SM fields.
The line labeled “BBN” corresponds to the scale of big bang nucleosynthesis, T ∼ 1 MeV. Our results are unchanged if mζi > mweak.
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take theDM to be a SMsinglet, and theZ2 symmetry forbids
the lepton portal operator ϕLH. In the scalar case, on the
other hand, this is something we impose. However, as we
will discuss shortly, this assumption has no consequences
for the results of our analysis.
At energies at or below the scale of BBN, the effective

Lagrangian schematically reads

LEFT ¼ LSM þ LDM þ
X
d>4;α

cα
Λd−4
EFT

Oα: ð2Þ

Here ΛEFT is the mass scale associated with the EFT, which
reflects the scale of the heavy degrees of freedom in the
theory; LSM is the SM Lagrangian with only the e�, ν, and
γ fields; and LDM is the DM free theory contribution. The
form of LDM depends on whether the DM is a scalar ϕ or a
fermion ψ . If the DM is a scalar, then

LDM¼Lϕ¼
�1

2
∂μϕ∂μϕ−1

2
m2

ϕϕ
2 real scalar

ð∂μϕÞ†ð∂μϕÞ−m2
ϕϕ

†ϕ complex scalar;
ð3Þ

and if the DM is a fermion, then

LDM¼Lψ ¼
�1

2
ψ̄i∂ψ − 1

2
mψ ψ̄ψ Majorana fermion

ψ̄i∂ψ −mψ ψ̄ψ Dirac fermion:
ð4Þ

The remaining (infinite) sum over the higher-dimensional
operators in Eq. (2) accounts for the effective interactions
between DM and SM fields. In our analysis, we will retain
terms up to dimension 6.
In the following subsection, we parametrize the inter-

actions between DM and electrons. All operators consistent
with a Z2 symmetry have the schematic form

OðχÞ ∝ BIðχÞēΓIe; ð5Þ

where the function BIðχÞ contains an even number of DM
fields, and I denotes a set of Lorentz indices. We will
eventually truncate all operators beyond dimension 6, so for
our purposes, BIðχÞ always contains two DM fields. This
DM bilinear is multiplied by an electron bilinear, for which
the independent Dirac structures can be fully enumerated:

ΓI ∈ spanf1; iγ5; γμ; γμγ5; σμνg: ð6Þ

If the electron bilinear is not a Lorentz scalar, the
contraction of its free Lorentz indices with the ones of
the DM bilinear ensures that the full operator in Eq. (5) is a
Lorentz invariant. We now discuss the allowed operators
for scalar and fermion DM.

B. EFT for scalar DM

To describe our EFT for scalar DM, we must enumerate
all operators of the form

OðϕÞ ∝ BIðϕÞēΓIe ð7Þ

up to some mass dimension. Note that ϕ carries no Lorentz
indices or spinor indices. Thus, if the index set I carried by
the electron bilinear is nonempty, the only option is to insert
derivatives in the scalar bilinear so that all indices are
contracted.
A classification of all possible cases is provided in

Table I. Of the four resulting operators, two are dimension-
5, while the other two include a derivative and are
dimension-6. We use the notation

ϕ†∂↔μϕ≡ ϕ†∂μϕ − ð∂μϕ
†Þϕ: ð8Þ

Note that we omit the operator ð∂μϕ
†ϕþ ϕ†∂μϕÞēγμe,

since it vanishes under integration by parts and application
of the equation of motion:Z

d4xð∂μϕ
†ϕþ ϕ†∂μϕÞēγμe

¼ −
Z

d4xϕ†ϕ∂μðēγμeÞ ¼ 0: ð9Þ

Similarly, the operator ð∂μϕ
†ϕþ ϕ†∂μϕÞēγμγ5e is redun-

dant: integrating by parts again, we obtainZ
d4x∂μðϕ†ϕÞēγμγ5e ¼ −

Z
d4xϕ†ϕ∂μðēγμγ5eÞ ð10Þ

¼ −2ime

Z
d4xϕ†ϕēγ5e: ð11Þ

The resulting integrand is proportional to OðϕÞ
P , one of the

other operators in our basis. Moreover, this contribution is

dimension-6 while OðϕÞ
P is dimension-5, so it is suppressed

in the Lagrangian with an additional factor of Λ−1
EFT.

In some cases, renormalizable operators are allowed, and
might appear in addition to the effective operators dis-
cussed above. For instance, in the context of a Higgs portal
model (see e.g., [49]) the operator ϕ†ϕH†H is allowed
without affecting DM stability. After electroweak sym-
metry breaking (EWSB), this operator produces a cubic

TABLE I. Operators coupling the electron to a dark scalar ϕ.
The third column indicates whether or not the operator survives
when ϕ is taken to be a real scalar.

Symbol Operator Real case

OðϕÞ
S

gΛ−1
EFTϕ

†ϕēe Yes

OðϕÞ
P

igΛ−1
EFTϕ

†ϕēγ5e Yes

OðϕÞ
V igΛ−2

EFTϕ
†∂↔μϕēγμe

No

OðϕÞ
A igΛ−2

EFTϕ
†∂↔μϕēγμγ5e

No
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coupling ϕ†ϕvh. Integrating out the SM Higgs boson

generates an effective operator proportional to OðϕÞ
S .

Thus, adding renormalizable couplings does not introduce
any new physical effects in our analysis. The only effect is
to add a correction to the Wilson coefficient of a single
operator, with a size typically smaller than the values we
consider in our analysis.
At a qualitative level, we can guess at the relative

prospects for direct detection in the case of each operator
in Table I. The operator OðϕÞ

S is easily generated by
integrating out a scalar mediator, so we can expect that
the relative strength of constraints and detection prospects
for this operator will be comparable to results found in the
context of simplified models with a scalar mediator [36].

Unlike OðϕÞ
S , the other operators for scalar DM are sup-

pressed by their momentum dependence in the nonrelativ-
istic limit, relevant for scattering. Each of these operators
vanishes as the velocity and momentum transfer are taken
to zero. Thus, for scalar dark matter, we expect from the
outset that none of our operators will improve on the
detection prospects of a simplified model with a scalar
mediator, and we will indeed confirm these suspicions in
the following sections.
With the effective operators in the scalar case now

enumerated, we can consider annihilation and scattering
processes for each one. Matrix elements for 2 → 2 anni-
hilation and scattering are given in Table III. The corre-
sponding cross sections are given in Tables IV and V.

C. EFT for fermion DM

If the DM is a fermion ψ , the structure of the EFT is
similar to the scalar case. We again have a set of operators
which are products of an electron bilinear and a ψ bilinear.
Using generalized Fierz identities, it can be shown that
operators of the form ðψ̄O1eÞðēO2ψÞ are redundant, in that
they can be written as linear combinations of operators of
the form ðψ̄O0

1ψÞðēO0
2eÞ [50]. Thus, we can construct a

complete basis of effective operators by enumerating the
possible insertions O0

1 and O0
2. All of the electron bilinears

from the scalar case appear here as well, and most of the
possible ψ bilinears are obtained from these by making the
replacement e → ψ .
In addition to these bilinears, we can form a spin-2

current at dimension 6, e.g., of the form ψ̄σμνψ . Since σμν is
antisymmetric, the other bilinear must not be symmetric
in its Lorentz indices, so it must contain another insertion
of σμν. Thus, such an operator has the general form
Wμναβψ̄σ

μνψ ēσαβe. At dimension 6, the indices of Wμναβ

can come only from two factors of the metric or one factor
of the Levi-Civita symbol ε. In the former case, again due to
antisymmetry of σμν, the only nontrivial contraction is

gμαgνβψ̄σμνψ ēσαβe: ð12Þ

If W is instead formed from the Levi-Civita symbol, then
the operator has the form ερ1ρ2ρ3ρ4 ψ̄σ

μνψ ēσαβe, where
ðρ1; ρ2; ρ3; ρ4Þ is a permutation of ðμ; ν; α; βÞ. Up to an
overall sign, the indices ρi can be rearranged into the latter
order, so all such operators are proportional to

ψ̄σμνψ ēðεμναβσαβÞe: ð13Þ

But εμναβσαβ ¼ −2iσμνγ5, so if we simply add iσμνγ5 to our
list of insertions, we can assume that Wμναβ is a product of
metric tensors. (We retain the factor of i to preserve
Hermiticity.) Further, the argument above demonstrates
that it is sufficient to place this insertion in only one of the
two bilinears: the operator formed by inserting iσμνγ5 in
both bilinears is redundant. We choose to place this
insertion in the electron bilinear.
The complete list of operators for fermionic DM is

shown in Table II. Matrix elements for 2 → 2 annihilation

TABLE II. Operators coupling the electron to a dark fermion ψ .
The third column in each half of the table indicates whether or not
the operator survives when ψ is taken to be a Majorana fermion.

Symbol Operator Majorana fermion

OðψÞ
SS

gΛ−2
EFTψ̄ψ ēe Yes

OðψÞ
SP

igΛ−2
EFTψ̄ψ ēγ

5e

OðψÞ
VV

gΛ−2
EFTψ̄γμψ ēγ

μe No

OðψÞ
VA

gΛ−2
EFTψ̄γμψ ēγ

μγ5e

OðψÞ
TT

1
2
gΛ−2

EFTψ̄σμνψ ēσ
μνe No

OðψÞ
PS

igΛ−2
EFTψ̄γ

5ψ ēe Yes

OðψÞ
PP

gΛ−2
EFTψ̄γ

5ψ ēγ5e

OðψÞ
AV

gΛ−2
EFTψ̄γμγ

5ψ ēγμe Yes

OðψÞ
AA

gΛ−2
EFTψ̄γμγ

5ψ ēγμγ5e

OðψÞ
TT̃

i
2
gΛ−2

EFTψ̄σμνψ ēσ
μνγ5e No

TABLE III. Squared matrix elements for ϕϕ̄ → eþe− with ϕ a
complex scalar, summed over final spin states. The operators are

as defined in Table I. Note that the matrix elements for OðϕÞ
V and

OðϕÞ
A vanish if ϕ is taken to be a real scalar. The matrix elements

for scattering, ϕe− → ϕe−, are obtained from these by the
substitution s ↔ t.

Operator g−2Λ2
EFT

P
spin jMj2

ϕϕ̄→eþe−

OðϕÞ
S

2s − 8m2
e

OðϕÞ
P

2s

Operator y−2e g−2Λ4
EFT

P
spin jMj2

ϕϕ̄→eþe−

OðϕÞ
V

−8ðt −m2
eÞðsþ t −m2

eÞ þ 16m2
ϕðt −m2

eÞ − 8m4
ϕ

OðϕÞ
A

−8tðsþ tÞ þ 16m2
etþ 16m2

ϕðtþm2
eÞ − 8m4

e − 8m4
ϕ
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and scattering are given in Table VI. The corresponding
cross sections are given in Tables VII and VIII.
As in the scalar case, we estimate relative prospects for

direct detection among the operators in Table II. The

operator OðψÞ
SS , like OðϕÞ

S , is naturally generated by sim-
plified models with a scalar mediator. While many of the
other operators are momentum-suppressed in the non-
relativistic limit, as in the case of scalar DM, the operators

OðψÞ
VV , O

ðψÞ
AA , and OðψÞ

TT are not. These operators may be
expected to compete with or exceed the detection prospects

associated withOðψÞ
SS , an expectation that we will confirm in

our analysis.

III. COSMOLOGICAL CONSTRAINTS

Cosmological constraints on DM are typically model-
dependent. However, the broad class of models which we
consider admits only a very restricted set of thermal
histories for the DM species, which allows us to derive
general cosmological constraints in the context of our EFT.
We divide the thermal histories into two cases: either the

DM is in thermal equilibrium with the SM at high
temperatures, and freezes out below some temperature;
or it never attains thermal equilibrium, and the abundance is
instead set nonthermally. It is possible that the dark species
only enters equilibrium at late times, but this scenario
mirrors the thermal freeze-out case in almost every respect.
In the freeze-out scenario, two constraints are particu-

larly robust: first, if the DM is thermalized and relativistic
during the epoch of big bang nucleosynthesis (BBN), its
effect on the Hubble parameter is generally sufficient to
perturb light elemental abundances [34]. Second, if at some

TABLE VI. Squared matrix elements for ψψ̄ → eþe− with ψ a
Dirac fermion, summed (not averaged) over initial and final spin
states. The operators are as defined in Table II. Note that thematrix

elements forOðψÞ
VV ,O

ðψÞ
VA ,O

ðψÞ
TT , andO

ðψÞ
TT̃

vanish if ψ is taken to be a
Majorana fermion. For brevity, we define m2

� ≡m2
e �m2

ψ . The
matrix elements for scattering, ψe− → ψe−, are obtained from
these by the substitution s ↔ t.

Operator g−2Λ4
EFT

P
spin jMj2ψψ̄→eþe−

OðψÞ
SS

4ðs − 4m2
eÞðs − 4m2

ψ Þ
OðψÞ

PS
4sðs − 4m2

eÞ
OðψÞ

SP
4sðs − 4m2

ψ Þ
OðψÞ

PP
4s2

OðψÞ
VV

8ðsþ tÞ2 þ 8t2 þ 16m4þ − 32m2þt

OðψÞ
VA

8ðsþ tÞ2 þ 8t2 þ 16m4
− − 32m2þt − 32sm2

e

OðψÞ
AV

8ðsþ tÞ2 þ 8t2 þ 16m4
− − 32m2þt − 32sm2

ψ

OðψÞ
AA

8ðsþtÞ2þ8t2þ16m2þ−32m2þt−32m2þsþ2ð8memψ Þ2
OðψÞ

TT
8ðsþ 2tÞ2 þ 32m4þ − 16ðsþ 4tÞm2þ þ ð8memψ Þ2

OðψÞ
TT̃

8ðsþ 2tÞ2 þ 32m4
− − 16ðsþ 4tÞm2þ

TABLE IV. Cross sections for ϕϕ̄ → eþe− for each effective
operator in Table I, summed over final spins. Note that the matrix

elements for OðϕÞ
V and OðϕÞ

A vanish if ϕ is taken to be a real scalar.

Operator g−2Λ2
EFTσðϕϕ̄ → eþe−Þ

OðϕÞ
S

1
8πs ðs − 4m2

eÞ3=2ðs − 4m2
ϕÞ−1=2

OðϕÞ
P

1
8π ðs − 4m2

eÞ1=2ðs − 4m2
ϕÞ−1=2

Operator y−2e g−2Λ4
EFTσðϕϕ̄ → eþe−Þ

OðϕÞ
V

1
12πs ðsþ 2m2

eÞðs − 4m2
eÞ1=2ðs − 4m2

ϕÞ1=2
OðϕÞ

A
1

12πs ðs − 4m2
eÞ3=2ðs − 4m2

ϕÞ1=2

TABLE V. Cross sections for ϕe− → ϕe− for each effective
operator in Table I, averaged over initial spins and summed over

final spins. Note that the matrix elements for OðϕÞ
V and OðϕÞ

A
vanish if ϕ is taken to be a real scalar.

Operator g−2Λ2
EFTσðϕe− → ϕe−Þ

OðϕÞ
S

1
16πs2 ½s2 þ 6m2

es − 2m2
ϕðsþm2

eÞ þm4
ϕ þm4

e�
OðϕÞ

P
1

16πs2 ½ðs −m2
eÞ2 − 2m2

ϕðsþm2
eÞ þm4

ϕ�

Operator y−2e g−2Λ4
EFTσðϕe− → ϕe−Þ

OðϕÞ
V

1
16πs ½s2 þ 2ðm2

e þm2
ϕÞs − ðm2

e −m2
ϕÞ2�

OðϕÞ
A

1
16πs ½s2 − 6m2

esþ 2m2
ϕðsþm2

eÞ −m4
e −m4

ϕ�

TABLE VII. Cross sections for ψψ̄ → eþe− for each effective
operator in Table II, averaged over initial spins and summed over

final spins. Note that the cross sections for OðψÞ
VV , O

ðψÞ
VA , O

ðψÞ
TT , and

OðψÞ
TT̃

vanish if ψ is taken to be a Majorana fermion. For brevity,
we define T2

i ≡ s − 4m2
i .

Operator g−2Λ4
EFTσðψψ̄ → eþe−Þ

OðψÞ
SS

1
16π

T3
eTψ

s

OðψÞ
PS

1
16π

T3
e

Tψ

OðψÞ
SP

1
16π TeTψ

OðψÞ
PP

1
16π

sTe
Tψ

OðψÞ
VV

1
12π

Te
Tψ

ðsþ 2m2
eÞðsþ 2m2

ψ Þ
OðψÞ

VA
1

12π
T3
e

sTψ
ðsþ 2m2

ψ Þ
OðψÞ

AV
1

12π
TeTψ

sTe
ðsþ 2m2

eÞ
OðψÞ

AA
1

12π
Te
Tψ

½s2 − 4ðm2
ψ þm2

eÞsþ 28m2
ψm2

e�
OðψÞ

TT
1

24π
Te
sTψ

½ðsþ 2m2
eÞsþ 2m2

ψ ðsþ 20m2
eÞ�

OðψÞ
TT̃

1
24π

Te
sTψ

½ðsþ 2m2
eÞsþ 2m2

ψ ðs − 16m2
eÞ�
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temperature the DM is in thermal equilibrium with elec-
trons and not with neutrinos, or vice versa, then entropy can
be transferred from the DM to neutrinos alone or to
electrons and photons alone. This changes the temperature
ratio of the two thermal baths, which modifies the effective
number of neutrino species, Neff , as determined from the
cosmic microwave background (CMB) [35].
Finally, in the case of out-of-equilibrium (nonthermal)

production, the DM never attains thermal equilibrium, and
so may evade these two constraints. However, if the
coupling to electrons is too large, DMwill be overproduced
even under the most generous assumptions.
Note that new light species are also subject to constraints

from energy loss in stars and supernovae [51]. However,
these constraints rely on complicated microphysical inputs
that must be computed in detail for each model. Moreover,
supernova temperatures lie up to an order of magnitude
above the scale of BBN, requiring our effective theory to be
valid at higher energies. Thus, we do not evaluate these
constraints explicitly, but simplistic estimates suggest that
they are at best comparable in strength to our cosmological
constraints over the mass range of interest.
We now examine each of our constraints in more detail.

A. Freeze-out and primordial nucleosynthesis

Light element abundances today are a sensitive probe of
cosmology at scales near 1 MeV. If an additional light
species is assumed to be in thermal equilibrium at these
scales, the standard predictions of big bang nucleosynthesis
(BBN) are modified, with observable consequences. Since
thermal equilibrium in turn depends on DM interactions,
light element abundances translate to stringent constraints
on the interaction rates.
In a broad class of models, the DM species is in thermal

equilibrium with the SM bath at high temperatures, and

eventually drops out of equilibrium below some freeze-out
temperature, TFO. In our framework, freeze-out is a generic
requirement of any scenario in which DM is in thermal
equilibrium with electrons at temperatures T ≲ 1 MeV,
since the EFT is valid in this regime.
If the DM species freezes out during or after BBN, and

the DM species is in equilibrium at higher temperatures,
then the predictions of light element abundances are
generally perturbed to a degree incompatible with their
measured values [32–34,52]. The ratios of these abundan-
ces are set by the temperatures at which interconversion
processes freeze out, which depend in turn on the Hubble
parameter H. Since H is sensitive to the energy density,
adding a new species that stays in equilibrium and remains
relativistic for much of the epoch of BBN has a significant
impact on the produced light element abundances. Note
that in a small range of our parameter space, equilibrium
during BBN is consistent with observables if the dark
species enters equilibrium at a specific time during BBN
[40]. This is a very narrow exception to our framework, so
we neglect it for the remainder of this work.
The temperature at which freeze-out occurs is fixed by

the DM mass and the couplings. The prospect of exper-
imental detection by any particular apparatus places a lower
bound on the scattering cross section χe− → χe−. However,
for a given interaction, the scattering cross section is
directly related to the annihilation cross section χχ →
eþe− which regulates the thermodynamics of the DM
species in the early universe. A lower bound on the
scattering cross section thus corresponds to a lower bound
on the annihilation cross section, which translates to an
upper bound on the freeze-out temperature.
For our purposes, we will only consider a model to be

ruled out by light element abundances if it predicts that DM
is in equilibrium at T ¼ 1 MeV. This choice of threshold
temperature is slightly different from some other treatments

TABLE VIII. Cross sections for ψe− → ψe− for each effective operator in Table II, averaged over initial spins and

summed over final spins. Note that the cross sections for OðψÞ
VV , O

ðψÞ
VA , O

ðψÞ
TT , and OðψÞ

TT̃
vanish if ψ is taken to be a

Majorana fermion. For brevity, we define m2
� ≡m2

e �m2
ψ and s�i ≡ s�m2

i .

Operator 48πs3g−2Λ4
EFTσðψe− → ψe−Þ

OðψÞ
SS

s4 þ 2m2þs3 þ 2s2ð3m4
e − 14m2

em2
ψ þ 3m4

ψ Þ þ 2m4
−m2þsþm8

−

OðψÞ
PS

ðs2 þ 4sm2
e þm4

e þm4
ψ − 2m2

ψsþe Þðs−e 2 − 2m2
ψsþe þm4

ψ Þ
OðψÞ

SP
½m2

ψ ð4s − 2m2
e þm2

ψ Þ þ s−e 2�ðs−e 2 − 2m2
ψsþe þm4

ψ Þ
OðψÞ

PP
ðs−e 2 − 2m2

ψsþe þm4
ψ Þ2

OðψÞ
VV

2s2ð4s2 − 10m2þsþ 9m4
e þ 22m2

em2
ψ þ 9m4

ψ Þ − 8m2þm4
−sþ 2m8

−

OðψÞ
VA

2ðs−e 2 − 2m2
ψsþe þm4

ψ Þ½ðsþ sþe Þ2 − 2m2
ψsþe þm4

ψ �
OðψÞ

AV
2½2sð2s −m2

e þ 2m2
ψ Þ þm4

−�ðs−e 2 − 2m2
ψsþe þm4

ψ Þ
OðψÞ

AA
2s2ð4s2 − 4m2þs − 3m4

e þ 46m2
em2

ψ − 3m4
ψ Þ þ 4m2þm4

−sþ 2m8
−

OðψÞ
TT

2s2ð7s2 − 13m2þsþ 6m4
e þ 52m2

em2
ψ þ 6m4

ψ Þ − 2m2þm4
− þ 2m8

−

OðψÞ
TT̄

2½sðm2þ þ 7sÞ þm4
−�ðs−e 2 − 2m2

ψsþe þm4
ψ Þ
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of BBN constraints in the literature. In particular, [35] finds
that sub-MeV DM is generally ruled out by elemental
abundances if the DM is in equilibrium after neutrinos
decouple at 2.3 MeV. However, these constraints assume
that the DM is in equilibrium with only one of electrons and
neutrinos, and not both, so that the temperature ratio Tν=Tγ

is modified. We will discuss this scenario in detail in the
following section, but for the moment, we note that our EFT
accommodates equilibrium with both electrons and neutri-
nos, with decouplings taking place at different temperatures.
In such situations, constraints from Tν=Tγ can potentially be
relaxed in some areas of the parameter space. Thus, there is
not necessarily any connection betweenneutrino decoupling
and BBN constraints in our model.
Given more detailed information about the dark sector

and its couplings to the SM, it is possible that BBN could
place constraints on DM which decouples at even higher
temperatures. Between T ∼ 10 MeV and T ¼ 1 MeV, no
SM species become nonrelativistic, so the SM bath is not
heated relative to a decoupled dark sector. Thus, even if the
DM decouples from the SM bath at 10 MeVor above, it is
possible that Tχ ¼ Tγ during BBN, in which case sub-MeV
DM will typically disrupt BBN. Additionally, if DM is in
equilibrium with only one of neutrinos and electrons after
neutrino decoupling takes place, then the constraints of [35]
do apply.
We wish to place conservative constraints that are

independent of these details, and also independent of
cosmological modifications at T ≫ 1 MeV that might
occur outside the context of our DM model. We regard
1 MeVas a reasonable fiducial threshold for assessing BBN
constraints. However, while it is possible to avoid the
constraints of [35] in our model, this takes additional
tuning. Thus, we will give two versions of the BBN
constraint: one with a threshold of 1 MeV, and another
with a threshold of 2.3 MeV, corresponding to the con-
straint of [35]. This also serves to demonstrate the sensi-
tivity of our constraints to higher thresholds.
The freeze-out temperature and relic density for a given

model are found by solving the Boltzmann equation in a
relatively simple incarnation. In our framework, we have
only a single DM species χ which interacts with electrons
exclusively through 2 → 2 processes. For this case, using
Maxwell–Boltzmann statistics, the Boltzmann equation
takes the form

x
Yeq

dY
dx

¼ −
neqðxÞhσjvjiðxÞ

HðxÞ
��

YðxÞ
YeqðxÞ

�
2

− 1

�
; ð14Þ

where x≡mχ=T parametrizes cosmic time; σ is the cross
section for χ̄χ → eþe−; Y ≡ n=s is the abundance of χ,
where n is the number density and s the entropy density of χ;
and Yeq and neq are the equilibrium abundance and number
density of χ, respectively. We identify ΓA ≡ neqhσjvji as the

annihilation rate of χ when in equilibrium. The thermally
averaged cross section can be obtained as [53]

hσjvji ¼
R∞
smin

dsðs − 4m2
χÞ

ffiffiffi
s

p
σK1ð

ffiffiffi
s

p
=TÞ

8m4
χTK2ðmχ=TÞ2

: ð15Þ

It is clear fromEq. (14) that the abundancewill stabilize once
ΓA=H ≲ 1. This condition gives an estimate of the temper-
ature TFO at which χ departs from equilibrium, and thus
allows us to test whether a set of parameter values is
consistent with BBN observables.
In particular, we can immediately estimate the impact of

changing the threshold used for assessing BBN constraints.
Since the DM is relativistic at decoupling, the freeze-out
temperature can be estimated by the relation T3hσjvji∼
T2=MPl, where σ is the DM annihilation cross section. For
our operators, the cross sections scale like s=Λ4

EFT or
1=Λ2

EFT, so if we adjust TFO and determine the correspond-
ing value of ΛEFT, then ΛEFT is approximately proportional
to T3=4

FO or T1=2
FO . In particular, we expect the difference

between the 1 MeV threshold and the 2.3 MeV threshold to
correspond to a Oð1Þ factor in the constraint on ΛEFT.
In general, when studying the decoupling of χ, it is

important to consider the coupling to neutrinos as well as
electrons. If χ has a non-negligible coupling to neutrinos, it
is conceivable that the DM could be kept in equilibrium at
later times via thermal contact with the neutrino bath,
which would tend to strengthen our constraints. However,
the coupling to neutrinos can always be set to zero
independent of the coupling to electrons: we assume χ
couples to the neutrino only via the SUð2ÞL doublet, and χ
can couple independently to eR and to eL. Thus, when
evaluating BBN constraints, we ignore thermal contact with
neutrinos in order to obtain the most conservative limits.

B. Effective number of neutrinos in CMB

Another powerful constraint applicable to a new light
species is the effective number of neutrino species, Neff , as
measured from CMB. To establish constraints with the
greatest possible generality, we evaluate bounds from the
CMB without regard to the BBN constraints. As we will
show, the bounds from BBN and the CMB are comparable
in reach, but imposing each independently means that
exceptional cases that escape one bound or the other can
still be constrained.
Neff characterizes the contributions to the radiation

energy density at recombination from relativistic species
apart from photons, and is defined by

ρrad
ργ

≡ 1þ 7

8

�
4

11

�
4=3

Neff : ð16Þ

In the absence of any other relativistic species, Neff ≃ 3.
The SM actually predicts Neff ¼ 3.046, accounting for the
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three neutrino species and for small effects due to non-
idealities in the decoupling process [54,55]. This is con-
sistent with analyses of Planck data, which find
Neff ≃ 3.1� 0.2 [56]. Additional species are strongly
disfavored. A single additional relativistic degree of free-
dom, i.e., a real scalar, is weakly consistent with current
limits. However, CMB stage 4 experiments are expected to
measure ΔNeff ≡ Neff − 3.046 to within �0.03, which is
just sensitive enough to probe the minimum contribution
from a real scalar at 1σ [57].
But a new species need not be relativistic at recombi-

nation to alter Neff. The introduction of a light DM species
can change Neff by modifying the ratio of the photon and
neutrino temperatures [31,35,58,59], and hence the ratio of
energy densities in Eq. (16). In the absence of additional
species, the chemical decoupling of electrons and neutrinos
takes place at T0

D ≈ 2.3 MeV [60]. Any entropy transferred
from DM to electrons after this decoupling leads to heating
of the photon bath, and any entropy transferred to neutrinos
heats the neutrino bath. If the new species transfers entropy
differentially to the photon and neutrino baths at any time
after the two baths decouple, the temperature ratio of the
baths is modified. Note that ΔNeff thus depends on the
relative size of the couplings to electrons and neutrinos, as
pointed out in [58] and detailed extensively in [61].
Typically, the DM will transfer its entropy to one or both

baths as a consequence of the conservation of comoving
entropy density: when the DM becomes nonrelativistic
while still in thermal equilibrium, the associated entropy
must be transferred to any relativistic species to which it is
still coupled. Thus, these species are heated when the DM
becomes nonrelativistic. Now, suppose that a sub-MeV DM
species is coupled to electrons and neutrinos when T < T0

D.
If the DM species decouples from one and only one of these
two relativistic species before it becomes nonrelativistic
itself, then the DM will reheat only one of the two baths,
changing the temperature ratio. An exception to this rule
occurs when the DM enters equilibrium with one bath
below T0

D, so that the DM accepts entropy of the same order
that it loses upon decoupling later on [37]. We will discuss
this scenario further in Sec. V.
We now examine the calculation ofNeff in detail. Wewill

write TXY to denote the temperature at which species X and
Y lose direct thermal contact, i.e., the temperature below
which ΓðX ↔ YÞ=H < 1 in our effective theory. The
species X and Y might be kept in thermal equilibrium
by a third species Z in our framework, i.e., through
processes X ↔ Z and Z ↔ Y that remain active. We define
TD to be the actual temperature at which electrons and
neutrinos drop out of thermal equilibrium with one another
once all interconversion processes have frozen out, includ-
ing multistep processes involving the dark species. Thus, in
the standard scenario, TD ¼ Teν ≡ T0

D ≈ 2.3 MeV, but the
introduction of a new species can keep electrons and
neutrinos in thermal equilibrium at lower temperatures.

In particular, suppose that DM decouples from electrons
instantaneously at a temperature Tχe, and from neutrinos at a
temperature Tχν. If T0

D < minfTχe; Tχνg, then any entropy
transferred to either photons or neutrinos can be shared
between the two, so DM reheats these species equally,
and the standard calculation is unchanged. However, if
Tχe < T0

D < Tχν, then χ remains in thermal contact with
photons while relativistic, reheating the photon bath but not
the neutrino bath. This increases the photon temperature,
reducingNeff . Similarly, ifTχν < T0

D < Tχe, then the reverse
is true: DM reheats the neutrino bath, and Neff increases.
The only other possibility is maxfTχe; Tχνg < T0

D, in
which case χ acts as a thermodynamic mediator between
electrons and neutrinos below T0

D. In this situation, elec-
trons and neutrinos remain in thermal equilibrium until the
temperature falls below TD ¼ max fTχe; Tχνg. If the elec-
tron is still relativistic throughout this process, then the
impact on Neff is determined by the ordering of Tχe and
Tχν. But if TD ≲me, the impact on Neff is quite different:
photons and neutrinos are still in thermal contact while
electrons become nonrelativistic, so the electron also
transfers some of its entropy to the neutrino bath. As we
will see shortly, this can have a dramatic impact on Neff .
To calculate Neff , we follow the procedure described in

[62]. In our scenario, the DM species is nonrelativistic at
recombination, so we assume that Neff is not modified by
any additional degrees of freedom at recombination. Then,
given the temperature ratio of the neutrino and photon baths
at recombination, Neff is given by

Neff ¼
�
4

11

�
−4=3

�
Tν

Tγ

����
rec

�
4

Nν; ð17Þ

where Nν is the number of SM neutrinos (3). In turn, we
can determine the temperature ratio from conservation of
comoving entropy density.
Recall that the entropy density of a relativistic bosonic

species i with gi internal degrees of freedom is given by
2π2giT3=45. Away from the relativistic limit, denoting the
true entropy density by si, we say that this species has
g⋆s ≡ si=ð2π2T3=45Þ entropic degrees of freedom. Now, let

gðγÞ⋆s and gðνÞ⋆s denote the entropic degrees of freedom in
equilibrium with photons and neutrinos, respectively. Then

gðαÞ⋆s is given explicitly by

gðαÞ⋆s ¼
X
i∈I

15gi
4π4

Z
∞

xi

du
½4u2 − x2i �½u2 − x2i �1=2

expðuÞ � 1
; ð18Þ

where xi ¼ mi=Tα, and I indexes all species in equilibrium
with species α (γ or ν). The sign in the denominator is
determined by the statistics of species i. It can be shown
[62] that if no entropy leaves the photon or neutrino baths
after they decouple, then
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Tν

Tγ

����
rec

¼
�
gðνÞ⋆s
gðγÞ⋆s

����
TD

gðγÞ⋆s
gðνÞ⋆s

����
rec

�1=3

: ð19Þ

However, in our scenario, it is possible for entropy to leave
one of the two baths below TD: suppose the DM decouples
from one of the two baths above TD, and decouples from
the other below TD, but while still relativistic. At this
second decoupling, the DM’s remaining entropy leaves the
bath to which it was last coupled. This only happens if
Tχe < TD ≤ Tχν or Tχν < TD ≤ Tχe.
To account for this possibility, we modify the calculation

of the temperature ratio as follows. Let us assume for the
moment that Tχe < TD ≤ Tχν. Conservation of comoving
entropy density in a thermal bath α amounts to the assertion

that gðαÞ⋆s jTT3a3 is constant, where a is the scale factor. For
T < TD, comoving entropy density is conserved in each
bath except when Tγ ¼ Tχe, so the temperatures of the two
baths satisfy

Tν ¼ k1a−1g
ðνÞ⋆s j−1=3Tν

;

Tγ ¼
(
k2a−1g

ðγÞ⋆s j−1=3Tγ
Tχe < Tγ < TD

k3a−1g
ðγÞ⋆s j−1=3Tγ

Tγ < Tχe;
ð20Þ

where the ki are constants. Generally, Trec < Tχe, so

Tν

Tγ

����
rec

¼ k1
k3

ðgðνÞ⋆s =gðγÞ⋆s jrecÞ−1=3: ð21Þ

Thus, to determine the temperature ratio, it is sufficient to
identify the ratio k1=k3, which can be done in two stages.
First, since Tν and Tγ are equal at TD, we must have

k1
k2

¼ ðgðνÞ⋆s =gðγÞ⋆s jTD
Þ1=3: ð22Þ

Similarly, at Tχe, g
ðγÞ⋆s changes discontinuously while Tγ is

continuous in a. Thus, k3 must satisfy

k3
k2

¼
�gðγÞ⋆s jT−

χe

gðγÞ⋆s jTþ
χe

�1=3

; ð23Þ

where T�
χe denotes a temperature just above or below Tχe.

Now we have

Tν

Tγ

����
rec

¼
�
gðνÞ⋆s
gðγÞ⋆s

����
TD

gðγÞ⋆s jTþ
χe

gðγÞ⋆s jT−
χe

gðγÞ⋆s
gðνÞ⋆s

����
rec

�1=3

: ð24Þ

A similar calculation applies if Tχν < TD ≤ Tχe. Note that
Eq. (24) still assumes that χ does not enter equilibrium
below TD, an exception we discuss further in Sec. V.

From Eq. (24), it is easy to see why low DM decoupling
temperatures can have a large impact on Neff . In the

standard scenario, gðγÞ⋆s jTD
includes photons (2) and relativ-

istic electrons (7
8
× 4), which gives

gðγÞ⋆s jrec
gðγÞ⋆s jTD

¼ 2

2þ 7
8
× 4

¼ 4

11
: ð25Þ

But if neutrinos and photons remain in thermal contact after

electrons become nonrelativistic, then gðγÞ⋆s jTD
includes only

photons, and the above ratio is increased to 1. This
increases Neff by a factor of ð11=4Þ4=3 ≈ 3.9, already
leading to Neff ≈ 12. If Tχe < Tχν, then χ reheats the
photon bath when it becomes nonrelativistic, reducing
Neff . But if Tχν < Tχe, then χ reheats the neutrino bath,
increasing Neff even further. The impact of relative decou-
pling temperatures on Neff is shown in Fig. 2.
This approach assumes that the decouplings take place

instantaneously, which is generally a good approximation.
However, the approximation is poor when the decoupling
process overlaps the range of temperatures during which a
species becomes nonrelativistic. In this case, the entropy of
the species is changing rapidly, so it is difficult to estimate
the amount of entropy transferred to other relativistic
species before decoupling is complete. The temperature
ratio can be determined precisely by numerical methods
(see e.g., [61,63]), and while that lies outside the scope of
the present work, we note that instantaneous decoupling
should be an effective approximation away from a narrow
range of temperatures Tχe and Tχν, corresponding to a very
small span of ΛEFT values in our parameter space.
To translate these results into constraints on the coupling

between χ and electrons, we must make an assumption
about the coupling between χ and neutrinos. If the coupling
to neutrinos is very small, then χ may maintain thermal
contact with electrons after decoupling from neutrinos. On
the other hand, if the coupling to neutrinos is very large,
then χ may remain in thermal contact with neutrinos after
decoupling from electrons. In our case, we will assume that
χ couples to ν exclusively by coupling to the lepton doublet
ðeL; νeÞT. That is, we will assume that the χ − ν coupling is
the same as the χ − eL coupling.
Even in this framework, the impact on Neff depends on

the relative strengths of the χ − eL and χ − eR couplings. A
nonzero coupling to eR tends to keep χ in equilibrium with
electrons to lower temperatures, meaning that χ typically
reheats the photon bath. This reduces the temperature ratio
of Eq. (19), producing ΔNeff < 0. However, if χ stays in
equilibrium long enough to modify TD, then we can obtain
ΔNeff > 0, as discussed above. Either way, increasing the
coupling to eR only strengthens the effect, so we neglect
this coupling to obtain conservative constraints. Note that
this is different from our assumption in evaluating BBN
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constraints, where conservative constraints are obtained by
neglecting the coupling to eL.

C. Nonthermal production

A viable model of DM must (partially) account for, but
not exceed, the observed DM density of ΩDMh2 ≃ 0.12
[64]. If the DM is produced by thermal freeze-out, then a
larger annihilation cross section reduces the relic density, so
larger couplings conducive to direct detection are less likely
to overproduce DM. But in the alternative scenario, if DM
is produced out of equilibrium, the relic density increases
with the annihilation cross section. In this case, over-
production is an important consideration.
If the DM species never attains thermal equilibrium with

the SM, the abundance of DM will evolve toward its
equilibrium value, but once ΓA=H ≲ 1, the abundance will
stay fixed. For renormalizable interactions, this out-of-
equilibrium production process is the standard freeze-in
mechanism [65]. Out-of-equilibrium production has also

been studied for nonrenormalizable operators in the context
of so-called ultraviolet freeze-in [66]. For temperatures
below ∼10 MeV, within the constraints of our framework,
such nonthermal production represents the only alternative
to the freeze-out scenario.
The relic density of nonthermal DM is determined using

the Boltzmann equation, much like the freeze-out case. The
only difference is that the DM species χ is not in thermal
equilibrium with e�, and thus we cannot assume that χ has
an equilibrium phase space density. Instead, we assume that
the density of χ is negligible, such that the f2χ term drops
out of the Boltzmann equation. In other words, starting
from Eq. (14), we approximate Y=Yeq ≃ 0, which gives
Y 0ðxÞ ≃ neqðxÞhσjvjiðxÞ=HðxÞ. It follows that the out-of-
equilibrium yield can be estimated as

Yð∞Þ ≃ YðxminÞ þ
Z

∞

xmin

dx
neqðxÞhσjvjiðxÞ

HðxÞ : ð26Þ

FIG. 2. ΔNeff as a function of the two decoupling temperatures Tχe and Tχν, assuming that χ is a Dirac fermion with mass 100 keV.
Side and top panels show entropic degrees of freedom as a function of temperature. Gray shaded area indicates the region consistent with
current data at 2σ. Labeled regions can be understood qualitatively as follows. Region A: Tχe; Tχν > T0

D. Thus any entropy transferred by
χ is shared between the γ and ν baths before they decouple. The standard calculation of Neff is unaltered. Region B: Tχe < T0

D < Tχν.
However, χ and e� are relativistic at both decoupling events, so little entropy is transferred to either the γ or the ν bath. Region C: Now
e� becomes nonrelativistic while still in thermal contact with the relativistic χ. The entropy ordinarily transferred by e� to γ is now
shared with χ, so γ is reheated less efficiently, and Neff increases. Region D: Here χ is relativistic below both T0

D and Tχν, but becomes
nonrelativistic before Tχe is reached. Thus, χ reheats the γ bath exclusively upon becoming nonrelativistic, decreasing Neff . Region E: χ
becomes nonrelativistic above both Tχν and Tχe, so it reheats both baths. The impact on Neff in this region comes from the delayed
e� − ν decoupling (see text). Region F: Tχe > Tχν, and χ is relativistic at Tχe. Thus, in addition to the delayed e� − ν decoupling, χ
reheats the ν bath. Region G: The electron and χ are relativistic at Tχe, so here the impact on Neff is due to χ reheating the ν bath.
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As with freeze-out, the relic density in the nonthermal case
is determined by the DM mass and couplings with SM
particles. However, there is also a dependence on initial
conditions in the form of xmin and YðxminÞ. In the freeze-out
scenario, the abundance of DM in the early universe is
simply the equilibrium abundance: equilibrium effectively
erases the initial condition. But in the nonthermal scenario,
equilibrium is never attained, so the dependence on the
initial abundance is retained. Typically, when DM is
produced by SM annihilations out of equilibrium, one
calculates the relic density by fixing the DM density to zero
at very early times and evolving nonthermally. This
procedure requires that the interactions considered are
renormalizable, in order for the production process to be
modeled consistently at very high temperatures. Our
effective operators are nonrenormalizable, so we cannot
determine the relic density precisely in the nonthermal
case: the result depends on the choice of UV completion.
However, we can still place a lower bound on the relic

density. We require that our effective theory is valid at
scales below ∼10 MeV, so if we fix the abundance to some
value at 10 MeV, we can determine the resulting relic
abundance. In particular, by fixing the initial abundance to
zero, we necessarily underestimate the relic density. This
corresponds to a choice of xmin and the condition that
YðxminÞ ¼ 0. With this initial condition, we can exclude
models on the basis of their relic densities even when they
never attain thermal equilibrium with the SM. Further,
these constraints are determined entirely by conditions
below TBBN, and are thus completely independent of the
UV completion.
Note that if ΛEFT is sufficiently small, then even with this

initial condition, the DM species will thermalize with the
SM between TBBN and the present day. In this case, the relic
density is set by the standard freeze-out paradigm, and
Eq. (26) is not valid. Even if the DM species does not quite
enter thermal equilibrium, as long as it attains a non-
negligible abundance, Eq. (26) can significantly overpre-
dict the relic density. Thus, while Eq. (26) is useful to
understand the qualitative features of the nonthermal relic
density, we evaluate the constraint by numerically solv-
ing Eq. (14).
As in the previous cases, we need to specify the coupling

to neutrinos to perform these calculations consistently.
Since the neutrino bath has a temperature comparable to
the electron bath, a light χ can be effectively produced by
neutrinos as well as electrons. Thus, a coupling between ν
and χ can significantly affect the relic abundance. However,
as with the coupling to electrons, the relic density is not
monotonic in the coupling to neutrinos. If the DM never
enters thermal equilibrium with any SM species, then a
coupling to neutrinos tends to enhance the relic abundance
by providing another production channel. On the other
hand, if DM does enter equilibrium with neutrinos, then a
larger coupling to neutrinos keeps it in equilibrium longer,

reducing the relic abundance. However, at most of the
points of interest in our parameter space, the constraint is
driven by out-of-equilibrium production, so we neglect the
coupling to neutrinos when evaluating the relic density.

IV. CONSTRAINTS AND DETECTION RATES

The constraints we place on sub-MeV DM are relevant
for direct detection experiments based on elastic electron–
DM recoils. In principle, there are many such experiments,
but they share several important features. Generically,
electron recoil experiments prepare a low-temperature
collection of electrons for scattering with galactic halo
DM, and by whatever mechanism, the experiment is
sensitive to deposited recoil energies between some Emin
and Emax. We calculate the detector sensitivity following
[15], but the results are typical of electron recoil experi-
ments with very low thresholds.

A. Estimation of the event rate

In the proposal of [15], the detector is constructed from
an aluminum superconductor. At low temperatures, elec-
trons move through the detector with velocities of order the
Fermi velocity vF, and with the appropriate instrumenta-
tion, recoil energies as low as 1 meV may be detectable. We
now review the calculation of the detection rate, follow-
ing [15,67].
To compute the detection rate, we will consider scatter-

ing events at fixed recoil energy ER. We label the initial and
final DM momenta by p1 and p3, and the initial and final
electron momenta by p2 and p4. We do the same for the
energies, so that ER ¼ E1 − E3 ¼ E4 − E2. We define the
3-momentum transfer by q ¼ p1 − p3. We denote
4-momenta by Pi, and we write q ¼ jqj and pi ¼ jpij.
We denote the local DM number density by nχ, and the
scattering rate by Γ ¼ hneσvreli. The event rate per unit
detector mass is

R ¼ nχ
ρdetector

Z
dvχdERfχðvχÞ

dΓðvχ ; ERÞ
dER

; ð27Þ

where fχðvχÞ is the local DM velocity distribution in the lab
frame. We take the velocity distribution to be a Maxwell–
Boltzmann distribution in the galactic frame with rms
velocity 220 km=s and a cutoff at the halo escape velocity
vesc ≃ 500 km=s. We then determine fχðvχÞ by taking the
Earth velocity to be 244 km=s in the galactic frame [68].
Now we turn to the evaluation of the scattering rate

Γðvχ ; ERÞ. Observe that Γ not only contains the scattering
cross section, but also accounts for the effects of Pauli
blocking, effectively controlling the available phase space
for scattering events. Following [67], we estimate Γ by
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dΓðE1; ERÞ
dER

¼
Z

d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3 Wðp1;p2;p3;p4Þ

× 2fFDðE2Þð1 − fFDðE4ÞÞδEδ4P: ð28Þ

Here, δ4P is a Dirac delta enforcing conservation of
4-momentum; δE fixes the recoil energy, setting E1 − E3 ¼
ER; fFDðEÞ ¼ 1=ð1þ expðE − μÞ=TÞ is the Fermi-Dirac
distribution; and we define

Wðp1;p2;p3;p4Þ ¼
hjMj2i

16E1E2E3E4

; ð29Þ

where hjMj2i is the matrix element for the scattering
process.
In many cases of interest, W is independent of the initial

and final momenta of the target (p2 and p4), in which case
the rate factorizes as

dΓðE1; ERÞ
dER

¼
Z

d3p3

ð2πÞ3 δEWðp1;p3ÞSðER; qÞ; ð30Þ

where S accounts for Pauli blocking, and is given explic-
itly by

SðER; qÞ ¼
Z

2d3p2d3p4

ð2πÞ2 fFDðE2Þð1 − fFDðE4ÞÞδ4P: ð31Þ

In our EFT, W is not generally independent of the target
momenta. However, we can treat scattering in the non-
relativistic limit, where such independence is guaranteed:
the denominator in Eq. (29) is independent of the momenta
to first order, and can be replaced with 16m2

χm2
e. The

squared matrix element depends on the momenta only
through the Mandelstam variables s and t, which have
nonrelativistic limits

s ≃ ðme þmχÞ2; t ≃ 2p1 · p3; ð32Þ

so hjMj2i is also independent of p2 and p4 to first order.
Thus, for the remainder of this work, we will considerW to
be a function of p1 and p3 only, and factorize the rate as
in Eq. (30).
Wework in the low-temperature limit, where fFD reduces

to a Heaviside step function, fFDðEiÞ¼ΘðEF−EiÞ, where
EF ≈ 11.7eV is the Fermi energy of aluminum. In this case,
SðER; qÞ can be evaluated explicitly. We perform the p4

integral using the 3-momentum–conservation delta func-
tion, and we use the remaining energy-conservation delta
function to integrate over cos θ2. This leaves a 1-dimensional
integral,

SðER; qÞ ¼
me

πq

Z
p2dp2Θ

�
1−

���� 2meER − q2

2p2q

����
�

× ΘðEF − E2Þ½1 − ΘðEF − E2 − ERÞ�: ð33Þ

This integral can be evaluated directly by comparing the
arguments of the Heaviside functions. The result is

SðER; qÞ ¼
meðmeER − E2

SÞ
πq

Θð2meER − E2
MÞ; ð34Þ

where E2
M ¼ ð2meER − q2Þ2=ð4q2Þ and E2

S is given by

E2
S ¼ max ð2meðEF − ERÞ; E2

MÞ: ð35Þ

To actually evaluate the rate in Eq. (28), we change
coordinates to ðER; qÞ. Since there is no dependence on the
azimuthal angle, we obtain

d3p3 ¼
2πmχq

p1

dqdER; ð36Þ

and the limits of integration are q− < q < qþ, where

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

3 � 2p1p3

q
: ð37Þ

Under this change of coordinates, in the nonrelativistic
limit, t ≃ 2p2

1 − 2mχER − q2. In particular, this means

FIG. 3. Constraints on a Dirac fermion ψ interacting via the

operator OðψÞ
SS ¼ Λ−2

EFTψ̄ψ ēe (g ¼ 1). Background contours show
scattering cross section, labeled as log10ðσscat=cm2Þ. Black, DD:
direct detection sensitivity (95% CL) with 1 kg yr exposure.
Green, CMB: constraint from Neff . Orange, BBN: solid line:
constraint from light element abundances with a threshold
temperature of 1 MeV. Dashed line: constraint with a threshold
temperature of 2.3 MeV (see Sec. III A). Blue, RD: constraint
from relic density.

COSMOLOGY AND PROSPECTS FOR SUB-MEV DARK MATTER … PHYS. REV. D 102, 023038 (2020)

023038-13



that W depends on p1 and p3 only through q, p1, and ER.
Then the differential scattering rate dΓ=dER in Eq. (27) is
given by

dΓ
dER

¼ mχ

ð2πÞ2p1

Z
qþ

q−

qdqWðp1; ER; qÞSðER; qÞ: ð38Þ

The limits of the ER integral in Eq. (27) are set by the
lower and upper thresholds of the detector, which we take
to be 1 meV and 1 eV, respectively. Note that there are
kinematical constraints on the minimum DM velocity (E1)
required to deliver a given recoil energy ER. Thus, the
cutoff in the velocity distribution effectively imposes a
maximum ER at fixed mχ .

B. Detection prospects and constraints by operator

We now examine our cosmological constraints in rela-
tion to the projected experimental reach for each of the
operators in Tables I and II. Figures 4–7 show cosmological
constraints alongside projected 95% CL direct detection
constraints with a 1 kg yr exposure. In order to point to

some general features of our results, we duplicate con-
straints for OðψÞ

SS in Fig. 3. However, the following dis-
cussion applies to all of the results in Figs. 4 to 7.
All of the interactions considered forψ aDirac fermion can

also be evaluated for ψ a Majorana fermion, and we do not
consider matrix elements for Majorana fermions separately.
Rather, we can directly relate our cosmological constraints on
a Dirac fermion to the Majorana case. Whereas the relic
density is controlled by nψΓA ¼ n2ψhσjvji for a Dirac
fermion, this expression double-counts the phase space for
a Majorana fermion. Since the relic density is inversely
proportional to the annihilation rate, it follows that the relic
density of a Majorana fermion is simply twice that of a Dirac
fermion with the same mass and interactions [53,69].
The annihilation rate also sets the freeze-out temperature

for a species in equilibrium with the SM, via the condition
ΓA ≃H. In general, ΓA ∼ Λ4−k

EFT for a dimension-k operator.
All of our operators with DM a fermion are dimension-6, so
to go from theDirac case to theMajorana case, it is sufficient
tomake the replacementΛEFT → 2−1=ð4−kÞΛEFT ¼ ffiffiffi

2
p

ΛEFT.
In principle, the value of Neff is also different in the

FIG. 4. Constraints by operator for a scalar DM species ϕ. Background contours show scattering cross section, labeled as
log10ðσscat=cm2Þ. Green, CMB: constraint from Neff . Orange, BBN: solid line: constraint from light element abundances with a
threshold temperature of 1 MeV. Dashed line: constraint with a threshold temperature of 2.3 MeV (see Sec. III A). Blue, RD: constraint
from relic density. Black, DD: direct detection sensitivity (95% CL) with 1 kg yr exposure. Note that the direct detection contour does

not appear for OðϕÞ
P or OðϕÞ

A . For these operators, direct detection can constrain smaller values of ΛEFT than shown on the plot, but our
framework requires that ΛEFT ≳ 10 MeV.

BENJAMIN V. LEHMANN and STEFANO PROFUMO PHYS. REV. D 102, 023038 (2020)

023038-14



Majorana case, but in nearly the entire excluded parameter
space, ΔNeff is large compared with experimental uncer-
tainty, sufficient to rule out a Majorana fermion as well as a
Dirac fermion. Thus, in sum, the cosmological constraint
curves in Fig. 3 are shifted up slightly by a factor of

ffiffiffi
2

p
in the

Majorana case, while the direct detection projections are
unchanged.
In each figure, the left vertical axis shows the suppres-

sion scale ΛEFT, effectively corresponding to inverse
coupling. Thus, a stronger constraint line appears higher
on the plot, and excludes the parameter space below. The
left axis in each plot gives the value of ΛEFT alone, and the
coupling g is taken to be 1. This is distinct from fixing
g=ΛEFT or g=Λ2

EFT, since we must have ΛEFT ≫ TBBN at all
points regardless of the value of the coupling. Otherwise,
the EFT would be applied outside its regime of validity.
However, as discussed in Sec. II, many UV completions

naturally generate a coupling of order ye. To account for
this possibility, we show a second vertical axis on the right
of each plot, corresponding to the value of ΛEFT in the case
that g ¼ ye. For dimension-5 operators, which appear with
a factor of Λ−1

EFT, this corresponds to Λ0
EFT ¼ yeΛEFT. For

dimension-6 operators, Λ0
EFT ¼ y1=2e ΛEFT instead.

Where Λ0
EFT ≲ TBBN, the EFT may not be applicable.

This is important, e.g., for comparing the EFT to specific
UV completions, but it has little effect on our conclusions:
in every case, our constraints become relevant at
Λ0
EFT ≫ TBBN, and a significant range of direct detection

cross sections can still be ruled out by cosmology. In
principle, cosmological constraints on cross sections that
lie below Λ0

EFT ∼ TBBN can be evaded by models that have
new MeV-scale degrees of freedom in addition to the DM
species. However, models of this kind do not generically
alleviate the constraints.
The projected direct detection reach (DD, black) is

generally the lowest line in each figure, i.e., the weakest
constraint. The next line, stronger at low masses by greater
than an order of magnitude in ΛEFT, is the constraint from
light element ratios (BBN, orange). In certain cases, a
higher threshold temperature of 2.3 MeV is appropriate, see
for instance [35] (see Sec. III A). The corresponding
constraints are shown as dashed curves. However, in
general, we can only place a constraint at the lower
temperature of 1 MeV, shown with solid curves. In either
case, a comparable constraint is obtained from Neff as
measured from Tν=Tγ (CMB, green). The final constraint is

FIG. 5. Constraints by operator for a fermion DM species ψ , for operators composed of scalar or pseudoscalar bilinears. Background
contours show scattering cross section, labeled as log10ðσscat=cm2Þ.Green, CMB: constraint fromNeff .Orange, BBN: solid line: constraint
from light element abundances with a threshold temperature of 1 MeV. Dashed line: constraint with a threshold temperature of 2.3 MeV
(see Sec. III A). Blue, RD: constraint from relic density. Black, DD: direct detection sensitivity (95% CL) with 1 kg yr exposure.

COSMOLOGY AND PROSPECTS FOR SUB-MEV DARK MATTER … PHYS. REV. D 102, 023038 (2020)

023038-15



from overproduction of DM (RD, blue). Note that for
some operators, there are narrow islands of parameter
space where the Neff constraint is weakened. In these
regions, the impact on Neff is transitioning between

ΔNeff < 0 and ΔNeff > 0, as in Fig. 2. Similarly, some
regions with small ΛEFT are not ruled out by overproduc-
tion, since the DM thermalizes and freezes out at a lower
abundance.

FIG. 6. Constraints by operator for a fermion DM species ψ , for operators containing a vector or axial vector current. Background
contours show scattering cross section, labeled as log10ðσscat=cm2Þ.Green, CMB: constraint fromNeff .Orange, BBN: solid line: constraint
from light element abundances with a threshold temperature of 1 MeV. Dashed line: constraint with a threshold temperature of 2.3 MeV
(see Sec. III A). Blue, RD: constraint from relic density. Black, DD: direct detection sensitivity (95% CL) with 1 kg yr exposure.

FIG. 7. Constraints by operator for a fermion DM species ψ , for operators containing a spin-2 current. Background contours show
scattering cross section, labeled as log10ðσscat=cm2Þ. Green, CMB: constraint from Neff . Orange, BBN: solid line: constraint from light
element abundances with a threshold temperature of 1 MeV. Dashed line: constraint with a threshold temperature of 2.3 MeV (see
Sec. III A). Blue, RD: constraint from relic density. Black, DD: direct detection sensitivity (95% CL) with 1 kg yr exposure.
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As anticipated in Sec. II, when comparing direct detec-
tion prospects to cosmological constraints, no operator
improves on the prospects of OðϕÞ

S for scalar DM. For
fermionic DM, on the other hand, we expect that the

operators OðψÞ
VV , O

ðψÞ
AA , and OðψÞ

TT will be at least competitive

withOðψÞ
SS , and this is borne out by our results. Still, we find

no region of parameter space in which the projected direct
detection constraints exceed all three cosmological probes
for any of our effective operators.
Simplistically, this suggests that any model with a heavy

mediator detectable by such an experiment is ruled out by
cosmology. However, there remain possible exceptions to
these constraints, as we discuss in the following section.

V. DISCUSSION AND CONCLUSIONS

In this work, we have derived cosmological constraints on
a broad class of sub-MeVDMmodels that can be compared
directly with detection prospects in electron recoil detectors.
We now revisit the generality of our constraints, point out
possible exceptions, and discuss the outlook for sub-MeV
DM at electron recoil experiments.
Effectively, our goal has been to derive cosmological

constraints on the scattering cross section between elec-
trons and sub-MeV DM. Cosmology is mainly sensitive to
the DM annihilation cross section, and in order to connect
the two cross sections, we have produced these constraints
in the context of an EFT. We have enumerated the possible
thermal histories for a single DM species in this framework.
If the DM is in thermal equilibrium with electrons at high
temperatures, then light element abundances and Neff
constrain the freeze-out temperature, and thereby constrain
the interactions between χ and the SM. In the alternative
scenario, if the DM is out of equilibrium at early times, a
lower bound can be placed on the relic density, providing
an independent constraint on the interactions. In both cases,
a constraint is placed on the coupling between DM and
electrons, assuming a specific form for the interaction.
In general, the form of the operator coupling electrons to

DM affects the relationship between the annihilation cross
section at early times and the scattering cross section today.
Typically, then, constraints obtained by these methods are
model-dependent. However, if the DM–SM mediator has a
mass above ∼10 MeV, then our approach is quite general:
our results are only sensitive to physical processes at lower
temperatures, where the EFT is valid and cosmological
history is well-established. Still, beyond the mediator mass,
there are a few possible exceptions to the constraints
derived here.
First, some of these constraints can be evaded with an

extended dark sector. In principle, the overproduction
constraint can be weakened: such models provide mech-
anisms to deplete the DM relic density, although we will
discuss caveats to this scenario shortly. However, even in
this case, the existence of a light DM species is enough for

the BBN and Neff bounds to remain effective—adding
additional dark degrees of freedom does nothing to improve
the situation. One could still escape these constraints by
assuming that a phase transition takes place in an extended
dark sector between TBBN and the present day, such that the
EFT is not valid in both epochs.
Another class of exceptions consists of models in which

the dark species enters thermal equilibrium with the SM
below TBBN, and thus below TD, the temperature of
neutrino-photon decoupling. In this case, the entropy
transferred to the SM bath upon freeze-out can be com-
parable to the entropy accepted upon equilibration, so the
constraint from Neff can be circumvented [37]. This
scenario is possible only in a very limited segment of
the heavy-mediator parameter space, which we estimate as
follows. We set the abundance of DM to zero at 1 MeV, and
then determine the minimum value of ΛEFT below which
DM thermalizes before the temperature drops to 0.5 MeV,
thus still influencing BBN. Above this value of ΛEFT, it is
possible to evade bounds from BBN and Neff , depending
on initial conditions. Typically, this minimal value of ΛEFT
is about one decade weaker than the BBN limit, and still out
of reach of direct detection projections across most of our
mass range.
Note that the overproduction bound already assumes an

initial condition with zero DM abundance, so it cannot be
evaded in this way. This is an example of the utility of the
several overlapping constraints: the most conservative
assumptions are different for each constraint, and corre-
spondingly, exceptions apply differently as well. It is thus
necessary to consider all of our constraints simultaneously,
even in cases where one constraint appears to dominate. Our
goal is to generalize the constraints to the broadest possible
class of models, and even thoughmany regions of parameter
space are ruled out bymultiple observables, it is important to
carefully evaluate each constraint independently.
Still, the fact that the overproduction constraint exceeds

the constraints from BBN and the CMB is itself a notable
result. In general, there are many mechanisms that can
influence the dark matter density, so constraints from the
relic density are typically confounded by significant model
dependence. However, in the scenario of interest, the model
dependence is quite limited. To evade the constraint, one
would need a mechanism of depleting the dark matter
density at temperatures well below 1 MeV.
There are some simple methods of accomplishing this

depletion, e.g., entropy dilution [70], a late phase transition
in the dark sector, or late-time decay of a heavy species into
sub-MeV DM today. However, each of these can also be
used to evade constraints from BBN and the CMB, so they
do not bestow any additional model dependence on the
overproduction bound. It is conceivable that number-
changing interactions in the dark sector (e.g., 4 → 2
processes) could be used to deplete the DM density without
modifying the other constraints, and this model dependence
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is unique to the overproduction bound. But even this
strategy would only work in a narrow region of parameter
space, and in that sense, it is comparable to known
exceptions in the usual BBN and CMB bounds [37,40].
The overproduction constraint thus sets a new target for

future direct detection proposals. Considering only BBN
and CMB constraints motivates direct detection experi-
ments that probe scattering cross sections a few orders of
magnitude beyond the projections in this work. However,
overcoming the overproduction bound requires experimen-
tal proposals to reach several orders of magnitude beyond
the BBN and CMB constraints.
Finally, we note that it might be possible to evade our

constraints by taking some arbitrary linear combination of
the effective operators in Tables I and II. In principle, in this
high-dimensional parameter space, there might be points
for which the matrix elements in Tables III and VI conspire
by interference to reduce the DM annihilation or production
cross section while preserving the scattering cross section.
Then each of our cosmological constraints would be
weakened, while the projected direct detection constraints
would be maintained. However, in order for this to work,
the Wilson coefficients would have to be engineered to
produce such a cancellation.
In light of these constraints, the outlook for extant

electron recoil detection proposals is brightest for DM
masses 1 MeV≲mχ ≲ 1 GeV or for mediator masses
mζ ≪ 10 MeV. In order to access parameter space which
is viable in our framework, and in particular to surpass the
overproduction bound, future proposals must probe scatter-
ing cross sections at least six orders of magnitude beyond
current proposals. A light mediator certainly remains a

possibility, but is subject to additional constraints (see e.g.,
[43]). The case of a light mediator is thus best studied in the
context of simplified models, as in the analysis of [36].
Inelastic scattering may also improve direct detection
prospects relative to cosmological constraints, and, of
course, DM masses above ∼1 MeV remain an interesting
target. However, if DM is dominantly composed of a single
light species, and interacts dominantly with electrons via a
heavy mediator, then cosmological constraints compromise
the prospects of proposed experiments.
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