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The Laser Interferometer Space Antenna (LISA) is slated for launch in the early 2030s. A main target of
the mission is massive black hole binaries that have an expected detection rate of ∼20 yr−1. We present a
parameter estimation analysis for a variety of massive black hole binaries. This analysis is performed with a
graphics processing unit (GPU) implementation comprising the PhenomHM waveform with higher-order
harmonic modes and aligned spins; a fast frequency-domain LISA detector response function; and a GPU-
native likelihood computation. The computational performance achieved with the GPU is shown to be 500
times greater than with a similar CPU implementation, which allows us to analyze full noise-infused
injections at a realistic Fourier bin width for the LISA mission in a tractable and efficient amount of time.
With these fast likelihood computations, we study the effect of adding aligned spins to an analysis with
higher-order modes by testing different configurations of spins in the injection, as well as the effect of
varied and fixed spins during sampling. Within these tests, we examine three different binaries with varying
mass ratios, redshifts, sky locations, and detector-frame total masses ranging over 3 orders of magnitude.
We discuss varied correlations between the total masses and mass ratios; unique spin posteriors for the
larger mass binaries; and the constraints on parameters when fixing spins during sampling, allowing us to
compare to previous analyses that did not include aligned spins.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA), an
ESA-led mission, is officially slated for launch in the early
2030s [1]. LISA will add the milliHertz regime of the
gravitational wave spectrum to the high-frequency obser-
vations by the LIGO-Virgo-KAGRA network [2,3]. A
primary source of interest for LISA is the inspiral and
merger of massive black hole (MBH) binaries. Recent work
has shown that LISA is expected to detect ∼1–20 MBH
binaries per year [4–8]. These sources are expected to occur

at high signal-to-noise ratios (SNRs) of ∼100–1000 out to
high redshifts (z ∼ 10–20) [1,9,10]. LISA will be sensitive
to binaries of ∼103 − 109 M⊙ if they exist [1,4,11].
The high SNR of MBH signals will help astronomers

understand the formation and evolution of these objects
over cosmic time [1,9,10]. Theories of MBH formation
channels usually fall into three categories: high-mass seeds
of ∼104 − 106 M⊙ from pregalactic halo collapse at z ∼
10–20 [12–17]; intermediate seeds of∼103 − 104 M⊙ from
runaway cluster collapse at z ∼ 10–20 [18–21]; and smaller
seeds of ∼102 M⊙ from the collapse of Population III stars
at z ∼ 20–50 [22–27]. The loud signals from MBH binaries
can also be used for tests of fundamental physics and*mikekatz04@gmail.com
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independent measurements of cosmological parameters
[10,28,29]. In addition, determining MBH binary informa-
tion such as the sky location and masses is crucial in the
search for electromagnetic counterparts. This search
requires efficient and reliable measurement of such param-
eters prior to the actual merger of the two MBHs. With
electromagnetic counterparts to MBH mergers, further
questions about cosmology can be answered [30,31], as
well as questions related to accretion processes and active
galactic nuclei [32–35].
Traditionally, Bayesian inference techniques have been

suggested for MBH binary searches and statistical analysis
(e.g., [36–40]). Prior to the use of modern Bayesian
sampling techniques [41], the Fisher information matrix
(FIM) approach was an accepted method for determining
the uncertainties of measurable quantities; however, it has
been shown that FIM analyses do not encompass the
necessary information to make strong statements about
parameter estimation with MBH binaries (e.g., [39,42,43]).
Similarly, it is important to include more advanced wave-
form models that better describe the physics of binary black
hole coalescence. Aspects such as higher-order harmonic
modes help to further constrain parameters, to remove
systematic bias, and to further understand the character-
istics of actual data analysis when the LISA mission is
launched. Any difference between the waveform models
used to create our templates and the true signals that will be
observed by LISA will create systematic error [44].
However, in this work, we will inject the same waveform
model as the model used for the templates, therefore
bypassing this issue.
In this paper, we examine MBH parameter estimation

under the new LISA sensitivity [1,45] by using modern,
computationally enhanced inspiral-merger-ringdown wave-
forms that include higher-order harmonics and aligned
spins. A variety of LISA-related parameter estimation
studies have previously been performed for MBH binaries.
The work in [46–50] addressed this problem with FIM
estimates, the low-frequency approximation to the LISA
response function, and inspiral-only Newtonian wave-
forms. The Mock LISA Data Challenges [51] expanded
on these studies by developing Markov chain Monte Carlo
(MCMC) methods toward the source search problem.
Improving upon these analyses further, Bayesian inference
techniques were developed in [36,38,39,52–58]. However,
these works still employed inspiral-only waveforms.
The effect of using higher-order harmonic corrections in

studies of MBH binaries was examined in [42,59–61].
Analyses of waveforms including merger and ringdown
were examined with the FIM method in [61–64] and with a
Bayesian approach in Babak et al. [65]. Babak et al. [66]
used the FIM method to analyze parameter constraints with
a variety of LISA designs. This study used inspiral wave-
forms with a reweighting scheme to account for the
contribution of the merger and ringdown. Baibhav et al.

[67] recently studied the ability to constrain parameters
using only ringdown signals with higher-order harmonics.
This study used the FIM method, no noise, and an
analytical description of the ringdown.
Marsat et al. [40] was the first study to use a full

Bayesian analysis on waveforms that include inspiral, mer-
ger, and ringdown. This analysis examined Schwarzschild
MBHs and featured a new prescription for the LISA
response function by Marsat and Baker [68]. They used
MCMC methods to characterize only extrinsic parameters,
by employing a noiseless injection that included higher-
order modes. In this work, we extend the findings of Marsat
et al. [40] to include MBH signals with aligned spins,
injected into a data stream that includes realistic LISA
noise. We also analyze the full parameter space of MBH
binaries, including both intrinsic and extrinsic quantities.
Many of the analyses mentioned above were performed

using the original LISA sensitivity curve [69]. The changes
to the LISA sensitivity curve in the most recent ESA-
approved proposal [1] are expected to severely affect our
ability to measure and characterize MBH binaries [11].
First, the SNR for a general MBH binary source will be
slightly lower due to higher noise at the low-frequency
end and a smaller arm length (2.5 Gm versus 5 Gm).
Additionally, it can be shown that we will observe MBH
mergers for less time with the new LISA sensitivity curve
[1], compared to previous predictions under the classic
LISA sensitivity curve [69]. For some mergers, we will
observe their signal for only a few days, instead of the
originally estimated weeks or months.
Figure 1 shows the SNR over time for the binaries

(described in Sec. IV) that are studied in this work. For
this plot, we employ a simplified calculation of the sky-
location-, polarization-, and inclination-averaged SNR for
the l ¼ m ¼ 2 mode, with the GWSNRCALC package [11]
that uses PHenomD [70,71], Eq. (3), and an averaging factor
of 16=5 [72]. It can be seen that, for the binaries tested, we
will observe them for days, whereas with the classic LISA
sensitivity, we can observe them for months. As a result of
this difference in observation time, sky localization is not
expected to be satisfactory until close to or after the merger.
Early, accurate notifications for astronomers are critical
for detecting electromagnetic counterparts to MBH binary
mergers. Developing low-latency algorithms and computa-
tional infrastructure improvements for faster analysis is
essential for this process.
In Sec. II, we discuss Bayesian inference in the context

of MBH signals and the LISA mission. This includes
our graphics processing unit (GPU)–accelerated implemen-
tations of the waveform, the LISA response, and the
Bayesian likelihood, which prove to be very beneficial
when examining a more complete version of the LISA
analysis problem that includes a full noise realization. We
detail our sampling methods in Sec. III. In Sec. IV, we
discuss the sample datasets we analyzed, our ability to infer
the proper parameters, and information gained about LISA
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parameter estimation through running our tests. For our
analysis, we use units with G ¼ c ¼ 1.

II. BAYESIAN INFERENCE WITH
GRAVITATIONAL WAVES FROM MASSIVE

BLACK HOLES

In the field of gravitational waves, the data stream, dðtÞ,
consists of a possible signal, sðtÞ, as well as noise, nðtÞ
[dðtÞ ¼ sðtÞ þ nðtÞ]. In our theoretical study, we will
generate the dataset by injecting a signal both with and
without noise. We will then estimate the parameters of the
source in the fabricated dataset using Bayesian inference
techniques. Bayesian inference methods are based on
Bayes rule given by

pðΘ⃗jd;ΛÞ ¼ pðdjΘ⃗;ΛÞπðΘ⃗jΛÞ
pðdjΛÞ ; ð1Þ

where Λ and Θ⃗ represent the underlying model and model
parameters, respectively. The probability on the left-hand
side of this equation is the posterior probability, which is
the main value we are concerned with determining. The
posterior probability represents the probability for the
model parameters given the observed data and assumed
model. In our study, the parameter set exists in RD, where
D ¼ 11 is the number of dimensions we test. The para-
meter set we examine is fMT; q; a1; a2; DL;ϕref ; ι; λ; β;
ψ ; trefg, which represents, in order, the total mass, mass
ratio, dimensionless spin of the larger black hole, dimen-
sionless spin of the smaller black hole, luminosity distance,
reference phase, inclination, ecliptic longitude, ecliptic
latitude, polarization angle, and reference time. As dis-
cussed in Sec. II A, the spins of the two MBHs are assumed
to be aligned to the orbital angular momentum vector,
therefore, reducing our parameter space from D ¼ 15 to
D ¼ 11 since the spins are represented only as magnitudes
without vector angles. For our underlying model, Λ, we
will only examine one waveform model. Therefore, we will
drop the Λ throughout the rest of this paper.
The prior probability, πðΘ⃗Þ, is based on prior knowledge

of the potential true parameters representing the injection.
For our analysis, we assume limited prior knowledge by
employing uniform priors across our parameters through-
out an encompassing volume. Information on the priors
used can be found in Table I.
The key element of Bayesian analysis involves the

calculation of the likelihood, LðΘ⃗Þ ¼ pðdjΘ⃗Þ. In the case
of gravitational waves, L is the probability for the observed
data given a set of parameters and assumed underlying
model. The negative log of the likelihood (NLL) is given by

TABLE I. Our priors used in our Bayesian inference are shown
below. For each parameter we assume a uniform distribution
between the lower and upper bounds. The lower (upper) bound on
the distance is based on a redshift of 0.01 (100.0). The inclination
(ι) and ecliptic latitude (β) are listed in terms of the cosine and
sine, respectively, of these values because these quantities
represent uniform distributions for isotropically distributed an-
gles on the sphere. The upper bound on tref represents 10 years in
seconds (the quoted maximum lifetime of the mission).

Parameter Lower bound Upper bound

lnMT lnð103Þ lnð109Þ
q 0.05 1.0
a1 −0.99 0.99
a2 −0.99 0.99
lnDL lnð0.044Þ lnð1298.00Þ
ϕref 0.0 2π
cos ι −1.0 1.0
λ 0.0 2π
sin β −1.0 1.0
ψ 0.0 π
ln tref lnð1Þ ln ð3.15576 × 108Þ

FIG. 1. SNR versus time before merger is shown above. The
focus here is when sources become detectable at an SNR of ∼10.
This calculation was performed using only the dominant l ¼
m ¼ 2 mode from PHenomD [70,71] as a part of the GWSNRCALC

package by Katz and Larson [11]. Solid lines show the SNR
computed using the proposed LISA sensitivity curve (PL; [73]).
Calculations for the classic LISA sensitivity curve (CLLF; [69])
are shown with dashed lines. CLLF employs a more realistic low-
frequency shape compared to the original classic curve by Larson
et al. [69]; for more information on this construction, see Katz
and Larson [11]. The binaries shown are those we analyze in this
work; see Sec. IV for a detailed description of these sources.
Binaries 1–3 are grouped into one example because their
parameters are identical.
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− logL ¼ 1

2
hd − hjd − hi ¼ 1

2
ðhdjdi þ hhjhi − 2hdjhiÞ;

ð2Þ

where h is the template waveform, d is the data stream, and
hajbi is the noise-weighted inner product of the Fourier
transforms of two time series aðtÞ and bðtÞ. The Fourier
transform of aðtÞ is represented as ãðfÞ ¼ FfaðtÞg. The
inner product is given by

hajbi ¼ 2

Z
∞

0

ãðfÞb̃ðfÞ� þ ãðfÞ�b̃ðfÞ
SnðfÞ

df; ð3Þ

where SnðfÞ is the one-sided power spectral density (PSD)
of the noise. The template, h, is built from the same model
as the injected signal, s; however, we use s to represent the
true signal to avoid confusion. The optimal SNR attainable
by a template h is hhjhi1=2. Here, we treat SnðfÞ as constant
over the observation duration for simplicity. In reality, the
noise is expected to vary slowly with time allowing for
noise estimation on the order of ∼week when the instanta-
neous gravitational wave amplitude is well below the noise.
For reference, the error in noise estimation is a second-
order effect on the statistics illuminated by parameter
estimation [74–76].
The denominator on the right-hand side of Eq. (1) is

referred to as the evidence, Z ¼ pðdÞ. The evidence is the
marginalization of the likelihood over the parameter space,

Z ¼
Z
Θ⃗
LðΘ⃗ÞπðΘ⃗ÞdΘ⃗: ð4Þ

The evidence, generally, helps estimate the fidelity of a
model as well as compare models with one another.
Computing the evidence directly in the gravitational wave
setting is intractable. However, in the MCMC analysis
described in Sec. III, the evidence enters only as a
multiplicative constant. Therefore, we do not need to
compute the evidence for our chosen analysis method.
However, as we will describe in Sec. III, we employ a
parallel tempering version of MCMC. Within the parallel
tempering method, the evidence can be estimated using
techniques such as thermodynamic integration [77,78] or
stepping-stone sampling [79].
To determine the signals and templates, we use the

frequency domain waveform model for binary black hole
coalescence PhenomHM [70,71,80]. We refer the interested
reader to Kalaghatgi et al. [81] for questions related to
systematic errors in this waveform model. PhenomHM

includes aligned spins, higher-order spherical harmonic
modes, and all three stages of binary black hole coales-
cence: inspiral, merger, and ringdown. This is the first study
of its kind for LISA MBH analysis to include all three of
these properties simultaneously. In this work, we analyze
the parameter estimation portion of LISA data analysis.

We do not perform the initial search for the source; instead,
we assume a source has already been identified in the data
stream. Additionally, we also ignore any effects from the
superposition of signals from other sources simultaneously
evolving in the LISA data.
The set of inputs to the waveform model are

fMT; q; a1; a2; DLg. In our implementation of the wave-
form, we receive the amplitude, A(f), and the phase, ϕðfÞ,
of each input spherical harmonic mode ðl; mÞ, given by

hlm ¼ AlmðfÞeiϕlmðfÞ: ð5Þ

There are six spherical harmonic modes within the
PhenomHM model: ðl; mÞ ∈ fð2; 2Þ; ð3; 3Þ; ð4; 4Þ; ð2; 1Þ;
ð3; 2Þ; ð4; 3Þg. The (2,2) mode is the dominant mode.
The other modes are referred to as higher harmonics or
higher modes. An example of the PhenomHM amplitudes for
each harmonic mode is shown in the left plot of Fig. 2.
The frequency bounds of the waveform are determined

from the merger time of the signal. We choose a coales-
cence time, tcoal ∼ 1 yr into the LISA observing window. In
our methodology, for our true signal we set tcoal ¼ tref þ t0.
t0 is on the order of a year and defines a temporal marker
around which we analyze our signal. tref represents the fine-
tuning of t0 to the actual coalescence time; therefore, tref is
on the scale of seconds to months. tcoal represents the time
at which the waveform reaches fmax for the (2,2) mode,
which is determined internally within PhenomHM to be the
frequency at which f2AðfÞ reaches a maximum (see [80]
and [71] for more information). Due to the complicated
nature of the time-frequency correspondence across multi-
ple higher-order modes, we determine the time evolution of
the system using the derivative of the phase and its relation
to tcoal given by

tlmðfÞ ¼ tcoal −
1

2π

dϕlmðfÞ
df

: ð6Þ

We make a cut in frequency when tlmðfÞ falls below zero
for each individual mode, indicating the initial point of
the waveform in the detector when LISA initially begins
taking data.
We then apply the transfer function projecting the

waveform onto the detector. The LISA response involves
a complex time- and frequency-dependent transfer function
[46,68,69,85]. We apply the fast Fourier domain response
from Marsat and Baker [68]. Therefore, the signal in the
LISA detector is represented by

hA;E;Tlm ðf; tlmðfÞÞ ¼ T A;E;Tðf; tlmðfÞÞhlmðfÞ; ð7Þ

where T ðf; tlmðfÞÞ is the response transfer function
and fA;E;Tg are the time-delay interferometry (TDI)
channel indicators. TDI is necessary for LISA to suppress
laser noise [86–90]. The A, E, and T channels are
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transformations of the original X, Y, and Z Michelson TDI
observables [91] given by

A ¼ 1ffiffiffi
2

p ðZ − XÞ; ð8Þ

E ¼ 1ffiffiffi
6

p ðX − 2Y þ ZÞ; ð9Þ

T ¼ 1ffiffiffi
3

p ðX þ Y þ ZÞ: ð10Þ

Employing channels A, E, and T, we assume the noise in
each channel is uncorrelated, giving a diagonalized noise
matrix [92,93]. T ðf; tlmðfÞÞ is determined using the
extrinsic parameters, fϕref ; ι; λ; β;ψ ; trefg (DL is factored
into hlm); the time-frequency correspondence of the wave-
form; and the orbital and rotational properties of the LISA
constellation. fλ; β;ψ ; trefg are used in the solar system
baricenter (SSB) frame when determining T ðf; tlmðfÞÞ;
however, during MCMC runs, these parameters are
sampled in the LISA frame and then converted to the
SSB frame before waveform generation. For details on the
construction and methodology of T ðf; tlmðfÞÞ, please see
Marsat and Baker [68] and Marsat et al. [40]. An example
of the PhenomHM waveform amplitudes fed through the
response function can be seen in the right plot in Fig. 2.
With the waveforms in each TDI channel, we need the

PSD of the noise in each channel, SA;E;Tn . We use the TDI

package from the LISA Data Challenges Working Group

software collection to generate our PSD in each channel.
Within the TDI package, we analyze the “SciRDv1” model
[45] for the PSD with a contribution from the Galactic
background noise predicted for 1 year into LISA observa-
tion. This Galactic background noise is described in Babak
et al. [84]. Figure 2 shows the PSD1=2 in the left plot, which
includes the contribution from the Galactic background. In
the right side plot of the same figure, the PSD1=2 is shown
in the TDI A channel. In Eq. (2), the inner product is really
the sum of the inner products over all three channels:

hajbi ¼
X

j¼A;E;T

hajjbji: ð11Þ

We analyze both datasets with noise [ñðfÞ ≠ 0] and with-
out noise [ñðfÞ ¼ 0]. However, the Sn weighting factor in
Eq. (3) applies in both cases as it defines the SNR. When
ñðfÞ ¼ 0, we are assuming standard LISA noise assump-
tions while analyzing the unlikely scenario the noise
assumes its average value of zero. When we do generate
noise as part of the data, we generate it in the frequency
domain given by

jñðfÞj ¼ N
�
0;

1

2
ffiffiffiffiffiffiffi
Δf

p
� ffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

; ð12Þ

where N ðμ; σÞ represents a normal distribution with mean
μ and standard deviation σ, and Δf is the Fourier bin width
equivalent to 1=Tobs. It is then assigned a random phase
from 0 to 2π based on a uniform distribution.

FIG. 2. The plots above display an example signal for Binary 1 from Sec. IV. Each harmonic mode is shown in a different color in the
characteristic strain representation. The characteristic strain, hc is given as h2c ¼ f2jh̃ðfÞj2 [82,83]. The left plot displays the amplitude
of each mode determined by PhenomHM [80] as well as the LISA sensitivity from [45] with a contribution from the Galactic background
noise after one year of observation described in Babak et al. [84]. The left plot effectively displays this signal before the LISA response
from Marsat and Baker [68] is applied. The right plot shows the same signal put through the LISA response. Here, we display TDI
channel A. This is also shown in the characteristic strain representation. The modulations shown at low frequencies are due to the motion
of the LISA constellation in its orbit about the Sun. The modes shown in the right plot are the same as those labeled in the left plot.
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With the tools to calculate the likelihood, we will now
discuss acceleration of the process using GPUs.

A. GPU accelerated waveforms and likelihoods

A GPU is a special piece of hardware designed for
parallel computation. They were originally designed for
graphics cards related to video games and other video-
related areas; however, as of the mid-2000s, it was realized
these units could be repurposed for general computational
and academic use under the description: general purpose
computing on graphics processing units (GPGPU). Here,
we implement our PhenomHM waveforms, LISA response
calculation, and likelihood computation in NVIDIA’s
proprietary GPU programming language CUDA [94].
GPUs have been used in gravitational wave analysis in
Talbot et al. [95], where they have implemented PhenomPv2

[96], a waveform for the (2,2) mode with precessing spins,
directly in CUDA for the LIGO Algorithmic Library [LAL;
[97] ]. We take a different approach to our waveform
implementation. Additionally, we have the first GPU
implementation for the LISA fast response from Marsat
and Baker [68]. We will introduce our implementation and
then provide some timing results compared to a similar
CPU-based program. For our timing tests, we used a Tesla
V100 GPU and a Xeon Gold 6132 2.60 GHz CPU.
The main goal of our implementation is to perform as

much of the computation as is feasible and beneficial on the
GPU, while reducing the number and size of necessary
memory transfers. Before beginning sampling where we
will calculate the likelihood >107 times, we perform the
aspects of this computation that only need to be completed
once. These include inputting our data stream, d, PSD
information, and transferring this information to the GPU.
Following these initial steps, we begin the calculation
process that occurs each time we call the likelihood
function.
The first part of the PhenomHM creation process, which

involves determining fitting constants from input param-
eters, is implemented in the C++ programming language.
Structures containing these constants are then copied to the
GPU. From here, the actual waveform creation from these
fitting constants is implemented in parallel across the GPU
because each frequency point is independent of one
another. With the waveform constants, the amplitude and
phase are generated and stored on the GPU. We then
calculate tðfÞ using Eq. (6). tðfÞ is input into the response
function with the extrinsic parameters. T ðf; tlmðfÞÞ is
calculated on the GPU and stored on the GPU for each
frequency point. At this stage, AðfÞ, ϕðfÞ, and
T ðf; tlmðfÞÞ are represented as smooth functions with
∼210 frequency points. In LISA analysis, the data streams
can be represented by upwards of 106–107 points depend-
ing on the sampling frequency and duration of observation.
Therefore, to maintain speed in data analysis, these smooth
functions describing the waveform and detector response

are interpolated to the resolution desired. We designed a
cubic spline interpolation algorithm, for each of these
smooth functions, based on the tridiagonal nature of the
cubic spline coefficient solution in the SciPy library [98] and
the sparse matrix computational tools included in the
cuSPARSE library provided by NVIDIA [99]. This allowed
us to avoid memory transfers necessary to perform spline
interpolation on the CPU. The final step of waveform
creation is to interpolate all input smooth functions to create
the signal in each TDI channel. In this step, we weight by
the PSD. With the waveform calculated and on the GPU,
we use the cuBLAS library [100] to compute complex dot
products for the discretized inner product in Eqs. (2) and
(11). The likelihood is then calculated and returned to the
sampling program.
For ease of usage, our program is wrapped into PYTHON

using CYTHON [101]. This allows us to run PYTHON

sampling packages using our GPU-accelerated likelihood
calculation. CYTHON generally does not interface with the
CUDA-based compiler NVCC. However, we wrote a special
wrapping for it based on McGibbon and Zhao [102].
Speed comparisons are shown in Fig. 3. Three configu-

rations are shown: 1 CPU; 1 CPU and 1 GPU (host and
device); and 28 CPUS and 2 GPUs. The last configuration
vectorizes the computation over an array of sources.
Therefore, these timings are run in vectorized form and
then divided by the number of binaries in the array. As the
points in the waveform increase, the difference between the
CPU and GPU grows. The time of GPU evaluations barely
increases until ∼106 points. Above this number, the GPU is
saturated, running a high percentage of its available threads
constantly.
This increase in speed allows us to perform our analysis

in a unique way. Traditionally, in a zero-noise representa-
tion, each spherical harmonic mode is treated separately in
the likelihood computation (see Marsat et al. [40] for an
example of this method). CPUs are not fast enough to
efficiently compute the number of points necessary for
combining all modes at a high enough resolution to
preserve the fine structure created during the mixing of
the higher modes. However, this is a balancing act because
as more modes are added, the cross terms between modes in
Eq. (2) become extensive and prohibitive. With GPUs, the
time for the calculation allows us to forgo this question and
produce templates at a high enough resolution to combine
the modes into a one-dimensional data stream. This
prevents the calculation of cross terms and allows us to
calculate one inner product per TDI channel. Additionally,
CPU speed prohibits the timely evaluation of likelihoods
with noise infused in the injection. With Tobs ∼ years,Δf in
the Fourier transform is ∼10−8 Hz, leading to data streams
with ∼107 points. Similarly, for a typical source expected
for LISA with MT ¼ 106 M⊙, the waveform must be
calculated at ∼5 × 106 points. For lower masses, this is
even larger. Therefore, CPUs have large difficulty
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performing this calculation with noise involved without
including approximations and other tricks to speed up the
calculation. The GPUs, on the other hand, facilitate the use
of the brute-force calculation, without approximations. In
the future, we may test different approximations in our
GPU implementation to gain even more performance.

III. SAMPLING METHODS

There has been a large variety of methods developed to
illuminate the posterior distribution, pðΘ⃗jDÞ, as well as to
calculate the evidence, Z. Two commonly used methods
include nested sampling [103,104] and MCMC methods,
for which the most commonly used type is the Metropolis-
Hastings (M-H) algorithm [105–107]. Nested sampling is
generally used to estimate the evidence, Z, by effectively
performing a numerical integration across the prior volume.
MCMC, on the other hand, is used to sample directly from
the posterior to produce marginalized posterior distribu-
tions across the parameters tested. In this work, we will
employ only MCMC techniques to illuminate our posterior
distributions for the injected signals we examine. However,
we have tested our accelerated likelihood with nested
sampling techniques and have confirmed its possible usage
as a search method. This will be included in future work.
For actual sampling, we use variants of the typical MCMC
techniques. Below, we will give a brief description of the
algorithms used, but refer the interested reader to the cited
papers for further details on the specific algorithms and
their implementations.

A. Markov chain Monte Carlo

The implementation we use for MCMCmethods is based
on the Python packages EMCEE [108] and PTEMCEE [109].
Please see their release papers and documentation for
details on specific constructions. The most popular form
of MCMC is the M-H algorithm. Starting with a position Θ⃗t

at step t, a new position, Θ⃗tþ1, is sampled from a transition
distribution QðΘ⃗tþ1jΘ⃗tÞ. This new point is then accepted
with a probability given by

min

�
1;
LðΘ⃗tþ1Þ
LðΘ⃗tÞ

QðΘ⃗tþ1jΘ⃗tÞ
QðΘ⃗tjΘ⃗tþ1Þ

�
: ð13Þ

A usual choice forQ is a multivariate Gaussian distribution
centered around Θ⃗t. This procedure has strong dependence
on tuning the distribution forQ (the covariance matrix for a
multivariate Gaussian) with order ∼D2 tuning parameters.
Additionally, the M-H algorithm can be slow to conver-
gence if tuning is not optimal [108].
Goodman and Weare [110] proposed a different method

for MCMC sampling that significantly outperforms M-H in
many situations. Specifically, this means the autocorrela-
tion time (see Sec. III C) of the MCMC chains is much less,
indicating fewer likelihood evaluations per independent
sample. This method is referred to as affine invariant
MCMC (AIMCMC). In AIMCMC, the sampler evolves
an ensemble of K walkers S ¼ fΘ⃗kg. The algorithm
proposes a new position for the kth walker based on the

FIG. 3. Timing results for our GPU-accelerated likelihood computations are shown above. The timing shown represents the total time
to generate the waveform, apply the response, and calculate the likelihood in all three channels. The left plot represents the actual time
per likelihood calculation. The CPU-only results are shown in red. For these results, no likelihood approximations were included; the
calculation is performed in a so-called “brute-force” way to compare directly with GPU timings. The blue line shows the usage of one
CPU and one GPU. This timing is greatly affected by the time spent on the CPU performing preprocessing for the PhenomHM [80]
waveform constants. The green line shows the speedup using 28 CPUs and 2 GPUs. This allows us to parallelize the preprocessing and
then let the GPUs split the waveform production reducing the calculation time even further. The right plot translates the left plot into an
“effective number of CPUs” by dividing the CPU-only time by the tests with at least one GPU. The vertical dashed line shows the
number of data points in the Fourier transform of a data stream sampled at 0.3 Hz for one year of observation.
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other K − 1 walkers in the ensemble (S½k� ¼fΘ⃗j; ∀ j≠kg).
First, a walker is chosen at random from S½k�, represented
by Θ⃗j. Then, a new position is proposed given by

Θ⃗k;t → Θ⃗k;tþ1 ¼ Θ⃗j þ Y½Θ⃗k;t − Θ⃗j�; ð14Þ
where Y is a random variable distributed according to the
probability density gðY ¼ yÞ, given by [110]

gðyÞ ¼
� 1ffiffi

y
p if y ∈ ½1a ; a�;
0 otherwise;

ð15Þ

where a is a tuning parameter that Goodman and Weare
[110] set to 2. This proposal is referred to as the “stretch”
proposal. The proposed point will be accepted according to
the probability, astr, given by

astr ¼ min

�
1; YðD−1Þ LðΘ⃗k;tþ1Þ

LðΘ⃗k;tÞ

�
: ð16Þ

B. Parallel tempering

In order to efficiently explore the entire prior range, we
employ parallel tempering [111,112]. Specifically, we use
the implementation from Vousden et al. [109] and its
associated PYTHON package, PTEMCEE. Here, we present
the main aspects of parallel tempering, but we refer the
interested reader to Vousden et al. [109], and sources
within, for more detailed information.
In parallel tempering, the likelihood in Eq. (1) becomes

LðΘ⃗Þ1=Ti , where Ti is the temperature of a given chain.
Groups of MCMC walkers are assigned to a specific
temperature arranged in a ladder with N rungs: Ti ¼ T1 <
T2 < � � � < TN . T1 is 1, indicating chains assigned to that
temperature represent the target distribution. As temper-
ature increases, the tempered distribution becomes more
and more representative of the prior distribution rather than
the target distribution.
Each chain explores its tempered distribution using the

AIMCMC algorithm with stretch proposals. At specified
intervals, chains can swap temperatures according to an
M-H acceptance criterion given by [109]

aswap ¼ min
�
1;
�
LðΘ⃗iÞ
LðΘ⃗jÞ

�βj−βi�
; ð17Þ

where βi ¼ 1=Ti is the inverse temperature of chain i. The
form of Eq. (17) indicates that temperature swaps usually
occur between chains at adjacent rungs in the temperature
ladder. We set the max temperature to infinity per the
PTEMCEE documentation. Setting the max temperature to
infinity means the highest temperature chain is exclusively
exploring the prior distribution. We also use the adaptive
tempering option. For more details on the adaptive method,
please see the original paper.

The parallel tempered run for each binary was performed
under the same settings. With the highest temperature, T10,
set to ∞, the remaining temperatures are geometrically
spaced set by PTEMCEE defaults using log spacing between
1 and ð2.04807Þ8 (2.04807 is chosen based on the dimen-
sionality of the parameter space). We set the scale factor (a)
in Eq. (15) to 1.15. We found the default setting of 2 was
showing an undesirably small acceptance fraction for
proposed jumps. We run a burn in of 104 steps for each
run. In Marsat et al. [40], it is shown that we can generally
expect eight sky location posterior modes in the LISA
reference frame (as opposed to the SSB reference frame).
The longitudinal modes are located at values separated by
π=2 from the true longitude value. Each of these four values
has an associated latitudinal value that is either above or
below the LISA orbital plane at �β. We use this informa-
tion to ensure faster convergence in our sampler by placing
four walkers in each temperature group at each of the eight
sky modes. It is clear from our analysis that our burn in
phase allows the walkers to spread out accordingly away
from modes that are not likely. We also verified that if we
start all the walkers on the correct mode, the walkers spread
out and locate the other modes if there is posterior weight
there thanks to the tempering technique.

C. MCMC autocorrelation time

The posterior samples generated in an MCMC analysis
are not independent. Therefore, we estimate the autocorre-
lation within a chain, referred to as the autocorrelation time,
τf, following Sokal [113] and Foreman-Mackey [114].
With multiple chains sampled based on methods described
above, we work to estimate the mean, μ̂, and variance, σ̂2,
of the posterior distribution. The sampling variance, σ2, on
these estimators is given by

σ2 ¼ τf
N
σ̂2: ð18Þ

Therefore, the effective sample size (ESS) is N=τf, repre-
senting the number of samples necessary to reduce the
variance in the estimator to an acceptable value.
We estimate the autocorrelation time with the estimator

for the normalized autocorrelation function, ρ̂fðτÞ. This is
based on the chain generated for each walker, ffngNn¼1, and
is given by

ρ̂fðτÞ ¼
ĉfðτÞ
ĉfð0Þ

; ð19Þ

with

ĉfðτÞ ¼
1

N − τ

XN−τ

n¼1

ðfn − μfÞðfnþτ − μfÞ: ð20Þ
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The mean of the chain, μf, is given by

1

N

XN
n¼1

fn: ð21Þ

The integrated autocorrelation estimator is given by

τ̂fðMÞ ¼ 1þ 2
XM
τ¼1

ρ̂fðτÞ; ð22Þ

where M ≪ N. Sokal [113] suggests using the smallest
value of M that satisfies M ≥ 5τ̂fðMÞ. With the multiple
chains generated with EMCEE, the variance in the estimator
is reduced. Therefore, according to Foreman-Mackey
[114], this procedure is satisfactory for chains longer than
50τ̂f. We thin the chains by this value before plotting
posteriors to achieve a set of effectively independent
samples.
We run our sampler without checking the ESS. We

ensure the ESS is greater than 104 at the culmination of
sampling. We report the autocorrelation time determined
with Eq. (22), the ESS, and the acceptance fraction for each
run in Table VII in the Appendix.

IV. RESULTS AND DISCUSSION

Our first aim of this paper is to build upon Marsat et al.
[40] by adding aligned spins to our waveform and injecting
noise within our fabricated data streams. To achieve this we
run four different sets of binary parameters. We begin with
the main source used in Marsat et al. [40] with fMT ¼
2 × 106 M⊙; q ¼ 1=3; z ¼ 4g (injection parameters for all
binaries tested are shown in Table II). Binary 1 is examined
with Schwarzschild MBHs and injected noise. However,
even with the a1 ¼ a2 ¼ 0 injection, we allow the sampler
to examine other spins maintaining a D ¼ 11 dimensional
parameter space.

Binary 2 is the same as binary 1, but with a pure
waveform injection with no noise realization (also referred
to as the zero-noise representation). This setup allows us to
determine what the posterior would look like averaged over
many runs with noise.
For Binary 3, which is a similar injection to Binary 1,

we fix the spins in the sampler so that we are sampling
in a D ¼ 9 dimensional space, which allows for a closer
comparison with Marsat et al. [40] in terms of the sam-
pling methods (we do use a different waveform model).
In addition to Schwarzchild injections, we want to
examine how including spinning MBHs changes the
posterior distributions while holding the other parameters
constant.
Binary 4 represents the same set of MBHs as Binaries

1–3 with a1 ≈ 0.85 and a2 ≈ 0.88. A set of antialigned
spins is tested in Binary 5 with a1 ≈ −0.83 and a2 ≈ −0.89.
The nonzero spins were chosen from a uniform distribu-
tion between þð−Þ0.75 and þð−Þ0.9 for the aligned
(antialigned) binary.
We also test a larger and smaller binary in terms of the

total mass. The larger binary has fMT ¼ 4 × 107 M⊙; q ¼
1=5; z ¼ 2g and the smaller binary has fMT ¼3×105 M⊙;
q¼7=10;z¼7g. Both large and small binaries were
injected with Schwarzschild MBHs, but the spins were
allowed to vary in sampling. The large binary was chosen to
examine MBH binaries that merge at lower frequencies
than the center of the LISA band. It was also injected
with noise.
The small binary was chosen to represent large seed

MBHs at a higher redshift. During repeated attempts to
analyze the small binary injected in noise with a variety
of trial sampler settings, we were unable to attain a
converged posterior distribution because the low temper-
ature chains were unable to explore the likelihood surface
efficiently and expand throughout the parameter space
to the level expected. This is likely due to the combi-
nation of a lower SNR, as well as the inability to gain
extra information from the higher-order modes. When we

TABLE II. The injection parameters of each binary tested. The first row shows the parameter while the second row shows the units for
each parameter. The final column displays the overall SNR for each source. It must be noted this table ismeant to be a summary. The actual
injection parameters are known to amuch higher precision. As a reminder, the actual coalescence time is tcoal ¼ tref þ t0, where t0 is 1 year.

Binary MT q a1 a2 DL ϕref ι λ β ψ tref SNR
� � � M⊙ ðq ≤ 1Þ � � � � � � Gpc � � � � � � � � � � � � � � � s � � �
1 2 × 106 1=3 0.0 0.0 36.59 2.14 1.05 −0.024 0.62 2.03 50.25 588
2 a

2 × 106 1=3 0.0 0.0 36.59 2.14 1.05 −0.024 0.62 2.03 50.25 588
3 b

2 × 106 1=3 0.0 0.0 36.59 2.14 1.05 −0.024 0.62 2.03 50.25 588
4 2 × 106 1=3 0.85 0.88 36.59 2.14 1.05 −0.024 0.62 2.03 50.25 878
5 2 × 106 1=3 −0.83 −0.89 36.59 2.14 1.05 −0.024 0.62 2.03 50.25 473
6 4 × 107 1=5 0.0 0.0 15.93 3.10 1.34 4.21 −0.73 0.14 23.93 310
7 a

3 × 105 7=10 0.0 0.0 70.58 1.22 1.32 2.24 −0.22 2.73 94.33 40
aThis binary was injected without a noise realization.
ba1 and a2 are fixed during sampling.
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lowered the temperatures in an effort to suppress the
effect of the posterior tails on the ability for the walkers
to maneuver the likelihood surface, we found the chains
exhibited τf ¼ 61 with an ESS of 15744, which are
usually positive indicators. We believe the posteriors
would converge to the proper distribution if we were
able to run our sampler for a longer time. Even with our
accelerated likelihood computations, this became difficult.
Therefore, we present results for the small binary in the
zero-noise representation. In future work we will further
examine this problem and work toward analyzing noise
injections at lower masses.
All extrinsic quantities for the large and small binaries

were sampled from uniform distributions from the entirety
of the prior domain. See Table II for a full breakdown of the
parameters used. Table III shows the SNR of each harmonic
mode for each binary tested. Please note the modes do not
directly add in quadrature due to mode mixing. Therefore,
the total SNR shown in the “all” column will not be the

quadrature sum of the singular mode values. This is purely
to indicate the type of effect each mode has in the
characterization of each binary. It is clear from the values
seen in Table III that more higher modes will be needed to
fully describe MBH binary systems since the likelihood is
related to the SNR2 [40].
In the following analysis, we will present subsections

of the overall corner plots representing the parameter
posterior distributions; we focus on specific interesting
and/or important posterior distributions. First, we will
discuss intrinsic parameters, followed by a discussion on
sky localization constraints and other extrinsic quantities.
The full corner plot for each binary is shown in Sec. A of
Appendix. Recovered parameter values for lnMT, q, a1, a2,
lnDL, ϕref , and ln tref , including their means and 1σ errors,
are shown in Tables IV–VI. Binaries 1, 2, and 3 are shown
in Table IV. Table V contains parameters for Binaries 4 and
5. Binaries 6 and 7 are shown in Table VI. These tables do
not include the sky location and orientation because these
parameters are inherently multimodal rendering their
one-dimensional means and 1σ errors not representative
of the true recovery values.

A. Intrinsic parameters

The first marginalized posterior we address is the two-
dimensional posterior for lnMT and q. Figure 4 shows this
parameter space for each binary. There are two aspects to
point out. First, Binaries 1–5 with the same injection mass
and mass ratio, as well as the small binary (Binary 7), show
an anticorrelated behavior, while the posterior for the larger
binary (Binary 6) shows a positively correlated behavior.
The difference involves the position of the merger and
ringdown over the sensitivity curve, or more specifically,

TABLE III. The SNR contribution from each mode is shown
below in addition to the full SNR of the source. The mode SNRs
are computed in isolation to avoid confusion from mode mixing.
This is to highlight in a general sense the contribution to the total
SNR from each mode. Since the various modes mix with each
other, the total SNR is not equal to the quadrature sum of all of the
modes.

Binary All (2,2) (3,3) (4,4) (2,1) (3,2) (4,3)

1–3 588 552 190 97 36 21 5
4 878 820 279 146 49 31 8
5 474 443 150 74 50 17 4
6 311 230 217 197 25 57 38
7 40 40 3 2 < 1 < 1 < 1

TABLE IV. The recovered parameters in comparison to the injected parameters for Binaries 1, 2, and 3. The one-
dimensional 1σ errors for each parameter are shown in addition to the recovered mean. The sky position and
orientation parameters are not shown because they are inherently multimodal due to, at minimum, reflection across
the LISA orbital plane (see Fig. 6). Binary 1 represents similar parameters to those shown in Marsat et al. [40] with
Schwarzschild MBHs injected; however, the sampler is free to examine spins other than zero. This binary also
included a noise realization generated according to Eq. (12). Binary 2 is the same injection and sampler settings as
Binary 1. This binary, however, does not include a noise realization allowing the likelihood to be calculated in a
zero-noise representation. Binary 3 has the same injection as Binary 1 with a noise realization. However, the spin
parameters are fixed during sampling, therefore, covering a parameter space of dimensionality D ¼ 9 rather than
D ¼ 11. This is why “N/A” is shown for the recovery of these spin parameters.

Binary 1 Binary 2 Binary 3

Parameter Injection Recovered Recovered Recovered

lnMT 14.50866 14.50913þ0.00075
−0.00075 14.50857þ0.00080

−0.00081 14.50787þ0.00061
−0.00054

q 0.33333 0.33296þ0.00085
−0.00085 0.33330þ0.00095

−0.00080 0.33439þ0.00072
−0.00092

a1 0.0 −0.0047þ0.0049
−0.0046 −0.0012þ0.0048

−0.0047 N=A
a2 0.0 0.028þ0.018

−0.019 0.003þ0.018
−0.018 N=A

lnDL 3.581 3.603687þ0.020
−0.020 3.604þ0.021

−0.021 3.617þ0.018
−0.018

ϕref 2.140 2.36þ0.14
−0.15 2.16þ0.14

−0.14 2.116þ0.022
−0.018

tref 3.9169 3.69þ0.17
−0.20 3.89þ0.13

−0.15 3.9238þ0.0074
−0.0081
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where the majority of the signal is accumulated. For the
binaries with MT ¼ 2 × 106 M⊙, the peak of the merger
and ringdown occurs at frequencies around or above
10−2 Hz. In this region, the sensitivity curve has a positive
slope (see Fig. 2). At small deviations from the highest
likelihood point, the signal, as it changes with varying
parameters, must follow the shape of the sensitivity in order
to maintain a similar likelihood value, thereby creating this
observed correlation. The effect of increasing the total mass
by a small perturbation will move the signal slightly to
higher strains and lower frequencies. Therefore, in order
for this signal with a slightly larger mass to follow the
sensitivity curve, we will need to decrease the mass ratio,
which causes the signal to decrease in strain. For this
reason, we see an anticorrelation between these two
parameters. Once again, in the limit of small deviations,
the actual signal shape will not change significantly.
This description also applies to the small binary because

it evolves at higher frequencies than Binaries 1–5, indicat-
ing the sensitivity curve is also sloping upwards where a
majority of its signal is accumulated. However, since the
mass ratio is not strongly constrained due to the lack of
information from higher modes, the morphology of the
signal does change slightly over the range of mass ratios
observed in the posterior distribution. This effect adds
curvature to the posterior ellipse.
The opposite is true for the large binary.At the frequencies

at which the large binary merges and rings down
(∼10−3 Hz), the sensitivity curve has a negative slope. As
the total mass is increased, the signal will move to higher
strains and lower frequencies. However, due to the slope of
the sensitivity curve, an increase in the mass ratio is also
needed to ensure the signal actually follows this slope.
Hence, we see a positive correlation between the two
quantities. In addition to the correlation observed, the small
binary exhibits a curved ellipsoidal shape and a mass ratio

that is not strongly constrained. This is most likely due to the
low or negligible signal contributed from the higher modes
(see Table III).
When comparing Binaries 1–5 with one another, we see

that most of the posterior distributions per parameter set are
similar in character. There are a few interesting differences.
First, most parameters, for all of these binaries, have similar
errors that vary in comparison to one another in proportion
with the SNR for each source (see Table III). However, this
is not true for the reference values, ϕref and tref , for Binary 3
(fixed spins during sampling withD ¼ 9). Even though this
binary has the exact same injection waveform as Binaries 1
and 2, the reference values are constrained to a higher
degree, with error values similar to the higher SNRBinary 4
(spin up). The reference frequency at which these
referencevalues are set is determined in part by the symmetric
combination of the mass-weighted spins [70,71]. Therefore,
when we fix the spins during sampling, we are ensuring that
two of four quantities (the others are total mass and mass
ratio) that determine the reference frequency are fixed. This
allows for better constraints on these reference values.
Similarly, in Figs. 7–11 we can see that Binary 3 (fixed
spins during sampling) has unique posterior shapes when
comparing the total mass and mass ratio to these reference
values. It can be seen these posteriors show a higher degree of

TABLE V. Similar to Table IV, the parameter recovery for
Binaries 4 and 5 are shown. Binary 4 has the same injection
parameters and sampler settings as Binary 1 with the exception of
the injected spin parameters. This binary is injected in a spin
configuration with high aligned spins for each MBH. Binary 5 is
similar to Binary 4, but it is injected in a high antialigned spin
configuration.

Binary 4 Binary 5

Parameter Injection Recovered Injection Recovered

lnMT 14.508658 14.50865þ0.00037
−0.00042 14.5087 14.5090þ0.0013

−0.0015
q 0.33333 0.33335þ0.00052

−0.00047 0.3333 0.3323þ0.0016
−0.0014

a1 0.85697 0.85678þ0.00059
−0.00059 −0.8298 −0.8291þ0.0080

−0.0079
a2 0.8830 0.8846þ0.0033

−0.0033 −0.887 −0.895þ0.027
−0.030

lnDL 3.600 3.615þ0.015
−0.015 3.600 3.591þ0.027

−0.026
ϕref 2.140 2.150þ0.029

−0.029 2.14 2.11þ0.16
−0.17

tref 3.917 3.907þ0.022
−0.023 3.92 3.95þ0.18

−0.20

TABLE VI. Recovered parameters for Binaries 6 and 7 are
shown below similar to Table IV. Binary 6 represents a com-
pletely different binary from Binaries 1–5 in terms of injection
parameters. Its total mass is chosen to represent a larger binary
about an order of magnitude larger than Binaries 1–5. It is,
however, also injected with Schwarzschild MBHs in a noise
realization. Binary 7 represents a binary with total mass about an
order of magnitude smaller than Binaries 1–5. It is also injected
with Schwarzschild MBHs. However, this binary, like Binary 2,
is analyzed in a zero-noise representation. This is due to issues
achieving convergence with our sampler on this binary when it
was injected with a noise realization. Achieving convergence in
the presence of noise for this binary is a topic for future work. The
spin parameters and ϕref for Binary 7 show a multimodal
structure; therefore, their associated mean values and errors do
not resemble the actual recovery that is observed in the posterior
distributions. For this reason, these quantities are labeled with
“Multi.” Please see the full posterior in Fig. 13 for more
information.

Binary 6 Binary 7

Parameter Injection Recovered Injection Recovered

lnMT 17.5044 17.5033þ0.0017
−0.0021 12.612 12.609þ0.012

−0.009
q 0.2000 0.1990þ0.0009

−0.0010 0.700 0.716þ0.079
−0.072

a1 0.0 −0.0044þ0.0042
−0.0053 0.0 Multi

a2 0.0 −0.0038þ0.0039
−0.0051 0.0 Multi

lnDL 2.77 2.81þ0.19
−0.13 4.27 4.58þ0.35

−0.24
ϕref 3.098 3.103þ0.013

−0.036 2.4 Multi
tref 3.2 2.6þ1.4

−1.6 6.849 6.857þ0.010
−0.014
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correlation or anticorrelation. Once again, with the spins
fixed, the mass ratio and total mass are the two quantities that
determine the reference frequency, therefore, causing the
magnitude of correlation with these quantities to increase.
When examining the large binary, it is clear its posterior

distributions are much less ellipsoidal than those shown in
Binaries 1–5. The base reason for this is the frequency range
over which we observe this signal. We receive minimal
information from the inspiral of this binary, receiving all
information from the merger and ringdown. One peculiar
intrinsic parameter posterior of note for the larger binary is
the a1 versus a2 posterior as it is far from elliptical, and
actually strongly asymmetric in relation to an antisymmetric
combination of mass-weighted spins. To further investigate
this observation, we analyzed two more injections with the
same parameters as Binary 6, but with differing mass ratios.
Figure 5 shows three binaries similar to Binary 6 in the plane
of the mass-weighted spin values. The q ¼ 1=5 binary is

Binary 6. The other two are injected with all the same
parameters, but differing mass ratios. All three binaries
exhibit similar behavior in this plane. Toward the upper left
of the plot, the likelihood surface drops off steeply. On the
contrary, toward the lower right, the likelihood surface
displays a shallow fall. The dashed lines represent a line
with the slope equal to the mass ratio. Above (below) this
line, the mass-weighted spin of the primary is smaller
(greater) than the secondary. The purpose of this line is to
illustrate that this steep dropoff is generally parallel to a line
with a slope equal to the mass ratio. For this large binary,
where we receive minimal information from the inspiral, the
swapping of the mass weighted spins causes the signal to
change in comparison to the injection with varying rapidity
that indicates the broken symmetry of the masses greatly
affects the ability of the template to match the injection. At
q ¼ 1=5 and q ¼ 1=3, the posteriors generally stay parallel
in character to that line. As the mass ratio is increased to

FIG. 4. The two-dimensional posterior distributions of lnMT versus q for all binaries tested are shown here. The binary is labeled in
the title of each plot. All binaries, with the exception of Binary 6, display an anticorrelation between these parameters. Binary 6 shows a
positive correlation. As explained in Sec. IV, this is due to the slope of the sensitivity curve at frequencies around the merger of the
binary where the signal is strongest.
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q ¼ 1=2, the mass weighting tends toward a more even
symmetry, causing this effect to decrease; however, it still
shows this nonelliptical behavior.
The small binary (binary 7) has many unique posterior

distributions due to its lower SNR and minimal information
contributed from its higher harmonic modes (see Fig. 13).
For example, the spin posteriors show a multimodal
structure. a1 shows a virtually equivalent mode at a slightly
higher spin of ∼0.2. Similarly, a2 shows a corresponding
second mode at a lower spin of ∼ − 0.3. The ratio of these
secondary spin modes is approximately equal to the mass
ratio due to the effect of the mass-weighted symmetric spin
during waveform construction. Even with this multimodal
structure, the a1 versus a2 posterior shows an ellipsoidal
shape surrounding the two local maxima.

B. Sky location and other extrinsic parameters

In terms of the ecliptic longitude and latitude, we observe
what is generally expected. Figure 6 shows the 1-3σ contours
for the sky localization of each binary. For Binaries 1–5, with
strongSNRs, signal at higher frequencies, andmeasurements
of higher modes, we are able to precisely identify the ecliptic
longitude, while strongly recovering the ecliptic latitude.
Also, as expected, we are unable to differentiate between
above and below the LISA orbital plane, even though more
posterior weight is located at the correct latitudinal mode.
The relative level to which we constrained the sky location
for Binaries 1–5 is determined by their SNR, modulated
slightly by the randomness of the noise.

The sky localization achieved for the large binary is
effectively minimal. This lack of localization in this
specific case is due to Binary 6 existing in a near-edge-
on configuration. In an edge-on configuration, the infor-
mation from higher modes in terms of constraining the sky
location is minimized. With the same binary injection
parameters but an inclination in a more face-on configu-
ration (ι ¼ π=8), the sky localization is reduced to the eight
degenerate sky modes expected for binaries at lower
frequencies (see Marsat et al. [40]). This configuration is
shown for reference in Fig. 6. In this specific case, seven of
the eight modes are highlighted. The frequency spectrum
for Binary 6 does not extend to high enough frequencies to
constrain the longitude to one of the four longitudinal
modes. However, if this binary was run in the “spin up”
configuration performed for Binary 4, the frequency-
domain spectrum would extend high enough allowing
the localization to narrow to one longitudinal mode. We
also observe uncertainty as to whether the source is truly
above or below the plane.
Similar to the large binary, the sky location constraint for

the small binary is weak. This is also due to the edge-on
configuration. When analyzed in a more face-on configu-
ration (ι ¼ π=8), the sky localization is much smaller,
locating the correct longitudinal mode as is expected for
a high-frequency binary. The sampler also located the
correct latitude, but confusion as to whether the source
is above or below the plane does exist. This face-on
configuration is also shown in Fig. 6 for reference.

FIG. 5. The two-dimensional posterior distributions for the mass-weighted spin parameters for the large binary (Binary 6). The
posteriors show a unique nonellipsoidal shape that is not observed for the other binaries. The dashed line in each plot has a slope equal to
the mass ratio to show the steep likelihood dropoff toward the upper left is approximately parallel to this line. The large binary exhibits
almost its entire signal in the merger and ringdown portion of coalescence. Therefore, it is more sensitive to quantities such as the
reference frequency that sets the location of the merger ringdown. The reference frequency, fref , is set by the symmetric combination of
the mass-weighted spins. Since this binary has similar values for a1 and a2, the injection has a larger mass-weighted contribution from
its primary. For this reason, we see the likelihood is very sensitive to changes in the spins when the mass-weighted spin contribution
from the secondary is larger than the primary’s contribution.

GPU-ACCELERATED MASSIVE BLACK HOLE BINARY … PHYS. REV. D 102, 023033 (2020)

023033-13



The other extrinsic orientation parameters follow a
predictable structure related to the ecliptic longitude and
latitude. The inclination is reflected at − cos ι and ψ is
reflected at π − ψ . Additionally, since more than one

longitudinal mode is observed for Binary 6, ψ is observed
at deviations of π=2 from both the true and the reflected
values. Binaries 1–5 show Gaussian distributions for lnDL,
lnϕref , and ln tref . However, it can be seen that tref correlates
similarly to ϕref as they both depend on the intrinsic
parameters in terms of setting the reference frequency at
which these values are set.
The large binary is the only injection where the reference

time is not constrained well (see Fig. 12). Since the merger
and ringdown are short relative to an inspiral evolution, the
movement of the LISA constellation, as well as its rotation,
is small during the observation of this signal. We are
effectively observing a snapshot of the temporal aspect of
the response function; therefore, moving the binary forward
or backward in time will not change the response of the
spacecraft by much, especially since we are operating on
the order of seconds for the reference time parameter. The
behavior of ϕref is reflective of the unique spin behavior
detailed previously: ϕref directly correlates with the abnor-
mal distribution for a2. Similar to the spin distributions, this
is due to the setting of the reference frequency at which this
phase is assigned. The luminosity distance for the large
binary is constrained to within ∼5 Gpc and shows the mean
value and main peak near the injection value. However, the
distribution of the distance measurements is not Gaussian,
tending toward higher distances. Without much inspiral
signal, we lose information that helps to constrain the
distance to the binary.
We are able to constrain tref for the small binary quite

well due to its long evolution in band (see Fig. 13). ϕref
seems to show a “split” posterior. However, it is really
a symptom of wrapping the phase at 2π. If we were to
unwrap those posteriors, the areas that seem to be
disjointed and separated would fit as one multimodal
posterior similar to those shown for the intrinsic param-
eters. The distance posterior for the small binary is
unique. Similar to the large binary, this posterior tends
toward larger distances than the injection. A difference
with the small binary is that the mean value and main
peak is not located at the true injection value. Since this
binary is analyzed in a zero-noise representation, the
random nature of noise did not cause this deviation.
Without any noise, the maximum likelihood value would
be found at the true distance value. However, since we
do not see a main peak around this value, it means the
parameter space volume centered around the true value
does not contain a high percentage of posterior weight;
our observations show there is more posterior weight
around ∼100 Gpc.

V. CONCLUSION

We present the first noise-infused analysis of MBH
binaries with LISA employing full waveforms spanning
inspiral, merger, and ringdown that include higher-order
harmonic modes. Additionally, we expand on previous

FIG. 6. The sky location from all binaries tested is shown
above. Binaries 1–5 are shown in the top plot. Binaries 6 and 7 are
shown in orange in the center and bottom plots, respectively. The
3σ, 2σ, and 1σ contours are shown with increasing line thickness
and the true injection point is marked by a magenta star. The large
binary (Binary 6) has effectively no localization. Similarly,
Binary 7 also has a large localization area. The inclination for
both Binaries 6 and 7 indicate they are close to an edge-on
configuration. To illustrate the difference compared to a more
face-on configuration, we add sky locations in blue for both large
and small binaries with the exact same parameters, but with an
injection inclination of π=8. Binaries 1–5 are all concentrated in
the center of the map, precisely around the correct longitude value
for those sources. The degeneracy above and below the plane also
exists. It cannot be seen easily, but there is more posterior weight
around the correct ecliptic latitude for all Binaries 1–5 compared
to the position opposite the LISA orbital plane.
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work by adding the inclusion of aligned spins. This study
was performed with PhenomHM [80] and the fast frequency
domain response from Marsat and Baker [68]. Both of
these processes, as well as the likelihood computation, were
accelerated with GPUs, which is a first for the LISA
response function. We showed the extreme improvement in
speed these GPU devices achieve. In instances where full
data streams are analyzed with noise-infused injections,
GPUs can achieve speeds ∼500 or more times faster than a
single CPU.
With these accelerated likelihood computations, we used

Bayesian inference techniques to extract full marginalized
posterior distributions across the D ¼ 11 dimensional
parameter space. In particular, we employed a parallel-
tempered implementation of the stretch proposal MCMC
sampler implemented in Vousden et al. [109].
We obtained full posterior distributions for seven test

binaries, which can be seen in Figs. 7–13 in Sec. A of
Appendix. The parameters of the test binaries can be seen
in Table II. For the intrinsic parameters, ϕref , DL, and tref ,
we show the recovered parameter values and their 1σ errors
in Tables IV–VI. The errors generally follow proportionally
to the SNR. However, when we fix the spins for Binary 3,
we can further constrain the reference values because the
spins help determine the frequency at which the reference
values are set.
We highlighted the correlation between lnMT and q as it

varied for the different binaries. They exhibited a positive
(negative) correlation if the slope of the sensitivity curve
near the merger, where most of the signal is accumulated, is
negative (positive).
The large binary (Binary 6) exhibits unique posteriors in

a1 versus a2. We show this posterior exhibits a non-
ellipsoidal structure that follows a slope similar to the
mass ratio (see Fig. 5). Since the large binary signal is
observed during only the merger and ringdown, this binary
is more susceptible to likelihood changes when the sec-
ondary mass-weighted spin begins to dominate over the
primary.
The small binary (Binary 7) shows a multimodal dis-

tribution most likely due to its lower SNR and lack of
strong observation of higher-order modes.
We also discuss our ability to localize each binary (see

Fig. 6). The inclination of the binary holds strong influence
over its localization. Face-on configurations provided much
better sky localization for all binaries compared to edge-on
configurations.
In future work, we plan to expand on the findings shown

here by growing the binary parameter space that we have
looked at, focusing on astrophysically motivated catalogs.
Additionally, we will examine how the sky localization for
a binary changes over time with the new LISA sensitivity
curve, as well as with newer, advanced waveforms like
PhenomHM, such as the coming waveform family for PhenomX
[115–117].

With this work, we see the aligned spins add a new
dimension to the sampling of binaries resulting in interest-
ing configurations in spin posteriors, as well as varying the
constraints on the other parameters. We see that injected
noise, as expected, has varied our ability to recover
parameters. The analysis of these noise injections was
made possible by the implementation of GPU-accelerated
likelihood calculations, a tool that will help to further the
reach of these parameter estimation studies in the run up to
the launch of the LISA mission.
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APPENDIX: POSTERIOR DISTRIBUTIONS

Here we present the full corner plots for all binaries
tested (see Table II) to accompany subsections of the
corner plots shown in Sec. IV. Binaries 1–7 are shown in
Figs. 7–13, respectively. The exact injection parameters
for each binary can be seen in Table II, and are
represented by a green point in the full posteriors. All
sky position and orientation parameters are displayed
over their entire domain (or prior range) due to their
inherent multimodal structure. The other parameters are
shown zooming in on the distributions that account for
99.9% of marginalized posterior points. The inclination, ι,
and ecliptic latitude, β, are plotted as cos ι and sin β
because these are the parameters sampled during the
MCMC runs. Similarly, the total mass, MT ; luminosity
distance, DL; and reference time, tref , are all sampled and
plotted as the natural log of these values. Table VII
shows the autocorrelation time (τf) and ESS according to
Sec. III C for each MCMC run. It also gives the average
acceptance fraction (AF) for each run.
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FIG. 7. The posterior distributions for all parameters for Binary 1 are shown above. Binary 1 was injected with Schwarzschild MBHs
with a sampled noise realization. The sampler in this case was allowed to sample nonzero spins. Refer to the beginning of Sec. A of
Appendix for information on the corner plots.
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FIG. 8. Binary 2’s posterior distributions are shown in this figure. Binary 2 was injected with Schwarzschild MBHs and analyzed in a
zero-noise representation. Spins were allowed to vary during sampling. Please see Sec. A of Appendix for more information about the
construction of the corner plots.
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FIG. 9. The posterior distributions for Binary 3 are shown. Binary 3 was injected with Schwarzschild MBHs in a sampled noise
realization. However, the sampler for this binary held the spins fixed, therefore, analyzing 9 parameters rather than 11. For this reason,
spin distributions are not shown. Section A of Appendix discusses the constructions used in the corner plots.
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FIG. 10. The binary injected with strong aligned spins, Binary 4, is shown here. This binary was injected with a noise realization and
the sampler was allowed to vary the spins during sampling. Please see Sec. A of Appendix for information on the constructions involved
in this plot.
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FIG. 11. The binary injected with strong antialigned spins, Binary 5, is shown in this plot. The sampler here was allowed to vary spins.
The data stream contained a sampled noise realization. The constructions involved in this corner plot are explained in Sec. A of
Appendix.
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FIG. 12. The large mass binary, Binary 6, is shown above. The posterior distributions represent a signal with a noise realization and
Schwarzschild MBHs. During sampling, the MCMC algorithm varied the spins, therefore, analyzing the full 11-dimensional parameter
space. Please see Sec. A of Appendix for information on the corner plot constructions.
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FIG. 13. The posterior distributions for the small mass binary, Binary 7, are shown in this plot. The small mass binary MCMC run was
performed in a zero-noise representation due to issues with convergence of the sampler when adding noise. This is an issue that will be
addressed in future work. This binary was injected with Schwarzschild MBHs and the spins were allowed to vary during sampling.
Section A of Appendix describes the constructions used in the corner plots.
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