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The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between
plasma elements is extended to nonideal relativistic plasmas in curved spacetime. The existence of
generalized magnetofluid connections that are preserved by the plasma dynamics is formalized by means of
a covariant connection equation that includes different nonideal effects. These generalized connections are
constituted by 2-dimensional hypersurfaces, which are linked to an antisymmetric tensor field that unifies
the electromagnetic and fluid fields. They can be interpreted in terms of generalized magnetofluid vorticity
field lines by considering a 3þ 1 foliation of spacetime and a time resetting projection that compensates
for the loss of simultaneity between spatially separated events. The worldsheets of the generalized
magnetofluid vorticity field lines play a fundamental role in the plasma dynamics by prohibiting evolutions
that do not preserve the magnetofluid connectivity.
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I. INTRODUCTION

A cornerstone of nonrelativistic ideal magnetohydrody-
namics (MHD) is the realization that two plasma elements
connected by a magnetic field line at a given time will
remain connected by a magnetic field line at any sub-
sequent time, provided that the plasma velocity field
remains smooth. This property arises because a plasma
that satisfies the ideal Ohm’s law moves with a transport
velocity that preserves the “magnetic connections” between
plasma elements [1], a result that is generally expressed
by saying that the magnetic field lines are “frozen” into
the plasma. The importance of the magnetic field line
connectivity stems from the fact that it imposes strong
constraints on the plasma dynamics, in addition to
providing the basis for concepts such as magnetic field
line motion [1], magnetic topology [2], and magnetic
reconnection [3].
The above ideal MHD theorem can be cast in more clear

mathematical terms [1] by stating that if the ideal MHD
condition Eþ v × B ¼ 0 is satisfied, where E and B are the
electric and magnetic field and v is the plasma velocity, then,
from Faraday’s equation, it follows that dðdl × BÞ=dt ¼
−ðdl × BÞ∇ · v − ððdl × BÞ ×∇Þ × v, where dl is a vector
field tangent to a curve connecting two infinitesimally close
plasma elements. Therefore, if dl is parallel to B at a given
time, dl × B ¼ 0 remains null at all times, assuming that the

velocity field remains smooth. Although not explicitly
covariant, this result is valid independently of the plasma
being relativistic or not. However, as discussed by Pegoraro
[4] for relativistic plasmas in the flat spacetime limit, its
interpretation in terms ofmagnetic field lines alone requires a
time resetting of the connected plasma elements in such a
way to restore simultaneity when the reference frame is
changed.
For general relativistic plasmas, the ideal MHD theorem

on the conservation of the magnetic connections between
plasma elements can be cast in a covariant form, but its
interpretation in terms of magnetic field lines alone requires
a specific 3þ 1 foliation of spacetime [5], in addition to
the aforementioned time resetting [4]. Given the ideal
Ohm’s law

UνFμν ¼ 0; ð1Þ

where Uν is the fluid 4-velocity field and Fμν is the
electromagnetic field tensor, the essential equation under-
lying the ideal MHD connection theorem in a general
curved spacetime takes the form [5]

Uα∇αðdlμFμνÞ ¼ −ð∇νUαÞðdlμFμαÞ: ð2Þ

Here, dlμ is the infinitesimal 4-vector separating two
different fluid elements, and ∇ν denotes the covariant
derivative associated with the spacetime metric gμν having
signature ð−;þ;þ;þÞ. From Eq. (2) it follows that if
dlμFμα ¼ 0 initially, then dlμFμα will remain null at all
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times (regularity properties of the fluid 4-velocity field are
assumed). For a properly defined magnetic 4-vector Bμ [see
Eq. (25) below], the 4-vector event separation dlμ lies in the
2-dimensional hypersurface formed by the 4-vectors Bμ

and Uμ. This implies that the 2-dimensional hypersurfaces
generated by the 4-vectors Bμ and Uμ are preserved during
the evolution of the system [5–9]. The magnetic field lines
connections are finally recovered in a chosen reference
frame when taking sections of these hypersurfaces at a
fixed time.
Although the ideal MHD condition UνFμν ¼ 0 provides

a simple and effective constitutive relation for describing
the large scale and low frequency plasma dynamics, it fails
to describe phenomena that are allowed by nonvanishing
microscopic effects that can couple to the macroscopic
plasma dynamics. Magnetic reconnection is a typical
example of such multiscale coupling, where the local
violation of the ideal MHD condition couple with the
large-scale plasma motions. There are different nonideal
effects that can play a decisive role in the plasma dynamics,
such as collisional, thermal-inertial, thermal electromotive,
Hall, or current inertia effects. In these cases, Eq. (2) is no
longer valid and the aforementioned magnetic connections
can be broken. However, for the flat spacetime limit, it was
shown in Refs. [10,11] that more general magnetofluid
connections can persist even in nonideal relativistic plas-
mas, provided that the evolution of the system is fast
compared to the dissipation timescale. These generalized
connections set important constraints on the plasma
dynamics by forbidding transitions between configurations
with different connectivity. Therefore, in this work we aim
to derive the generalized form of such invariants in curved
spacetime.
We show that dynamically preserved magnetofluid con-

nections persist also in nonideal plasmas in curved space-
time. In a generalized model that includes thermal-inertial
effects, as well as thermal electromotive effects and Hall
effects, these generalized connections can be understood
through the emergence of an antisymmetric tensor field that
unifies electromagnetic and fluid fields. We obtain this
proof in steps, by first considering a Hall MHD plasma
that encompasses thermal electromotive effects, and then
adding the thermal-inertial effects of the electrons (and
positrons for the pair plasma case). Throughout this paper,
we adopt units such that the speed of light is c ¼ 1.

II. GENERALIZED OHM’S LAW
IN CURVED SPACETIME

In what follows, we consider a plasma consisting of two
fluids, where one fluid is composed of positively charged
particles with mass mþ and electric charge e, and the other
fluid consists of negatively charged particles with mass m−
and electric charge −e. From the two-fluid equations in
curved spacetime, one can then derive a generalized Ohm’s
law retaining two-fluid effects that are neglected in general

relativistic MHD [12,13]. As usual, we define the average
and difference variables as follows:

n ¼ mþnþγ0þ þm−n−γ0−
mþ þm−

; ð3Þ

p ¼ pþ þ p−; Δp ¼ pþ − p−; ð4Þ

h ¼ n2
�
hþ
n2þ

þ h−
n2−

�
; ð5Þ

Uμ ¼ mþnþU
μ
þ þm−n−Uμ

−

nðmþ þm−Þ
; ð6Þ

Jμ ¼ eðnþUμ
þ − n−Uμ

−Þ; ð7Þ

where γ0� is the Lorentz factor of the two fluids observed by
the local center-of-mass frame of the plasma, n�,p�, and h�
are the proper particle number density, proper pressure, and
relativistic enthalpy density of the two fluids, respectively,
and Uμ

� is the 4-velocity (subscripts þ and − are used to
indicate the positively and negatively charged fluids). The
4-velocity Uμ is normalized as UμUμ ¼ gμνUμUν ¼ −1.
Finally, Jμ is the 4-current density.
Adopting these one-fluid variables, one can express the

generalized Ohm’s law in curved spacetime as [14,15]

1

4en
∇ν

�
ξh
ne

�
UμJν þ JμUν −

Δμ
ne

JμJν
��

¼ 1

2ne
∇μðpΔμ − ΔpÞ þ

�
Uν −

Δμ
ne

Jν

�
Fμν

− η½Jμ − ρ0eð1þ ΘÞUμ�; ð8Þ

where∇μ ¼ gμν∇ν. Here, ρ0e ¼ −UνJν is the charge density
observed by the local center-of-mass frame, Θ is the
thermal energy exchange rate between the two fluids
[14], and η is the electrical resistivity, which is considered
as a phenomenological parameter in this model. In Eq. (8),
we have also introduced the variables

Δμ ¼ mþ −m−

mþ þm−
ð9Þ

and

ξ ¼ 1 − ðΔμÞ2 ¼ 4mþm−

ðmþ þm−Þ2
: ð10Þ

Therefore, for an electron-ion plasma we have
ξ ≈ 4m−=mþ, while we have ξ ¼ 1 for a pair plasma.
The derivation of the generalized Ohm’s law (8) assumes

nþ ≈ n− and Δh ≪ h, where Δh ¼ mn2ðhþ=mþn2þ − h−=
m−n2−Þ=2 is the difference between the enthalpy densities
of the fluids. We can clearly recognize several terms that are
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neglected in standard MHD. The terms in the left-hand side
of Eq. (8) are due to the inertia effects of the electric current.
They enter through the electron rest mass m− and depend
also on the temperature via h� ¼ m�n�K3ðm�=kBT�Þ=
K2ðm�=kBT�Þ [16,17], where K2 and K3 are the modified
Bessel functions of the second kind of orders two and three,
T� are the temperatures of each fluid, and kB is the
Boltzmann constant. The terms with respect to pressure
gradients in the right-hand side of Eq. (8) represent the
thermal electromotive force. In an electron-ion plasma
(m ≈mþ ≫ m−), the thermal electromotive force affects
the plasma dynamics essentially through the electron pres-
surep−, while in a pair plasma (mþ ¼ m−) it comes into play
through the pressure difference Δp. The fourth term in the
right-hand side of Eq. (8) takes into account the contribution
of the Hall effect. This term vanishes in the pair plasma case
(Δμ ¼ 0). Finally, the terms proportional to the resistivity η
represent the frictional 4-force density between the fluids.
If the evolution of the system is fast compared to the

dissipation timescale, the frictional force between the fluids
can be neglected. This is the case under typical astrophysi-
cal conditions where the plasma is essentially collisionless.
In this case, we can identify important topological invar-
iants that constrain the plasma dynamics in curved space-
time by forbidding transitions between different topological
configurations. We analyze these topological invariants in
the next two sections.

III. PRESERVED CONNECTIONS
IN HALL MHD PLASMAS

In this section, we focus on collisionless Hall MHD
plasmas. Therefore, we assume that the thermal-inertial
terms are much smaller than the Hall term, which
is retained in Ohm’s law. Furthermore, if the length
scale Lp of plasma pressure variations is such that
ðm−=mþÞðLp=LthÞðh=neÞ ≪ p, where Lth is the length
scale associated with the thermal-inertial effects, also
pressure gradients terms should be retained. Thus, the
generalized Ohm’s law in curved spacetime reduces to

UνFμν þ∇μχ

ne
¼ 0; ð11Þ

where

Uν ¼ Uν −
Δμ
ne

Jν ð12Þ

is a generalized transport 4-velocity, which takes into
account the Hall effect, while

χ ¼ pΔμ − Δp
2

ð13Þ

encapsulates the thermal contributions to this reduced
Ohm’s law. Equations (11)–(13) are general to collisionless

Hall MHD plasmas in curved spacetime. It can be shown
that under the assumption n− ≈ nþ, the transport 4-velocity
is Uμ ≈ ðnþ=nÞ½ð1 −m−=mþÞUμ

− þ ðm−=mþÞUμ
þ�, where

n=nþ ≈ ð1 − m−=mþÞγ0þ þ ðm−=mþÞγ0−. Then, for
m−=mþ → 0 and immobile ions, the transport 4-velocity
becomes Uμ ¼ Uμ

−, namely the electron fluid 4-velocity.
The Ohm’s law (11) yields a connection theorem similar

to the one pertaining to ideal MHD in curved spacetime
[5–8,18–20]. Indeed, we can show that Eq. (11) implies that
the electromagnetic field is Lie dragged by the velocity
field Uν, and that the 2-dimensional connection hyper-
surfaces generated by the magnetic 4-vector Bμ and the
transport 4-velocity Uμ are preserved during the evolution
of the system. To this purpose, we consider the convective
derivative Uν∇ν defined along the generalized 4-velocity
given by Eq. (12). It is straightforward to show that the
electromagnetic potential Aμ is convected as

Uν∇νAμ ¼ Uν∇μAν þ
∇μχ

ne
; ð14Þ

which follows from the covariant form of the electromag-
netic field tensor Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ.
Then, we can write the convective derivative of the
electromagnetic field tensor as

Uα∇αFμν ¼ Uα∇αð∇μAν −∇νAμÞ
¼ Uα∇μ∇αAν − Uα∇ν∇αAμ

þ UαRβνμαAβ − UαRβμναAβ; ð15Þ

where we have exploited the noncommutative properties of
the covariant derivatives. Applying the Bianchi identity for
the Riemann curvature tensor, Rβνμα þ Rβμαν þ Rβανμ ¼ 0,
together with Eq. (14), we obtain

Uα∇αFμν ¼ ð∇νUαÞFαμ − ð∇μUαÞFαν þ Uαð∇μ∇νAαÞ
− Uαð∇ν∇μAαÞ − UαRβανμAβ

þ∇μð1=neÞ∇νχ −∇νð1=neÞ∇μχ: ð16Þ

If we assume that an equation of state of the form p� ¼
p�ðn�Þ holds, then ∇μð1=neÞ∇νχ −∇νð1=neÞ∇μχ ¼ 0.
Finally, exploiting the noncommutative properties of the
convective derivatives, we end up with

Uα∇αFμν ¼ ð∇μUαÞFνα − ð∇νUαÞFμα; ð17Þ

implying that the electromagnetic field Fμν is Lie-dragged
with the 4-velocity Uμ given by Eq. (12), instead of the
fluid 4-velocity Uμ that characterizes the ideal MHD limit
[5,7,8,12,21].
In order to prove the conservation of magnetic con-

nections in general relativistic Hall MHD plasmas, let us
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consider a spacelike event-separation 4-vector dlμ ¼
x0μ − xμ transported by the 4-velocity Uμ. Simultaneous
events are defined by the vanishing component dl0 ¼ 0
[4,5]. We take the convective derivative of dlμ along the
4-velocity Uμ, which gives

Uν∇νdlμ ¼ Uν∇νx0μ − Uν∇νxμ

¼ Uν∂νx0μ − Uν∂νxμ þ UνΓμ
νλx0λ − UνΓμ

νλxλ

¼ U 0μ − Uμ þ UνΓμ
νλdlλ

¼ dlλ∇λUμ; ð18Þ

where Γμ
νλ are the Christoffel symbols associated with the

metric gμν. Then, we can duly calculate the convective
derivative of the quantity dlμFμν by using Eqs. (17) and
(18), which leads us to the connection equation

Uα∇αðdlμFμνÞ ¼ dlαð∇αUμÞFμν

þ dlμð∇μUαFνα −∇νUαFμαÞ
¼ −ð∇νUαÞðdlμFμαÞ: ð19Þ

Equation (19) shows that if initially we have

dlμFμα ¼ 0; ð20Þ

and the 4-velocity field Uν remains smooth, then
Uα∇αðdlμFμνÞ ¼ 0 at every time, implying that dlμFμα

will remain null at all times. Therefore, the only difference
with respect to the ideal MHD case is given by the fact that
dlμFμα ¼ 0 is preserved by means of the 4-velocity field Uν

instead of Uν.
As discussed in Ref. [5], to specify the connection

concept in curved spacetime in terms of magnetic field
line connections, we need to analyze Eqs. (19) and (20)
in the 3þ 1 formalism (e.g., Ref. [22,23]), where the
4-dimensional spacetime is foliated by 3-dimensional
spatial hypersurfaces of constant coordinate time. To this
purpose, we write the line element in the Arnowitt-Deser-
Misner (ADM) form [24,25]

ds2 ¼ gμνdxμdxν

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð21Þ

with latin indices running for spatial components. Here, α is
the lapse function, βμ ¼ ð0; βiÞ is the shift vector, and γij is
the 3-metric tensor on the spacelike hypersurfaces Σt of
constant time t. The timelike unit vector field normal to Σt
is given by a normalized timelike vector field nμ with the
form

nμ ¼ −α∇μt ¼ ð−α; 0iÞ;
nμ ¼ ð1=α;−βi=αÞ; ð22Þ

which fullfill the normalization condition nμnμ ¼ −1. The
induced metric on the spacelike hypersurface Σt is

γμν ¼ gμν þ nμnν; ð23Þ

which satisfies the orthogonality condition nμγμν ¼ 0. The
hypersurfaces Σt can be viewed as an absolute space at
different instances of time t, while the 4-vector nμ can be
interpreted as the 4-velocity of the local fiducial observer
(FIDO) at rest in this absolute space.
Using the 3þ 1 split of spacetime, the electromagnetic

field tensor is decomposed as

Fμν ¼ Eμnν − Eνnμ − ϵμνρσBρnσ; ð24Þ

where ϵμνρσ ¼ ½μνρσ�= ffiffiffiffiffiffi−gp
, with ½μνρσ� indicating the

fully antisymmetric symbol and g ¼ det gμν. The electric
Eμ and magnetic Bμ 4-vectors measured in the FIDO
frame are

Eμ ¼ nνFμν; Bμ ¼ 1

2
nρϵρμστFστ: ð25Þ

In this description, both fields are purely spatial, whereby
nμEμ ¼ 0 and nμBμ ¼ 0.
We can now determine the connection condition by

substituting Eq. (24) into Eq. (20). This gives us

nμðdlνEνÞ − ϵμνρσdlνBρnσ ¼ 0; ð26Þ

where we have used that dlμnμ ¼ 0 for simultaneous events
(dl0 ¼ 0). This simultaneity condition does not affect the
generality of the analysis presented here, since if dl0 ≠ 0,
one can always restore simultaneity between spatially
separated events by performing the transformation [4]
dlμ → dl0μ ¼ dlμ þ Uμdλ, with λ indicating a scalar func-
tion, such that simultaneity can be realized with dl00 ¼ 0.
Indeed, due to the validity of Ohm’s law (11), this trans-
formation leaves the connection equation (19) unaltered.
We then project Eq. (26) along the hypersurface-orthogonal
(temporal) direction by contracting it with nμ, which gives
dlνEν ¼ 0, showing that the electric field is orthogonal to
the event-separation 4-vector. On the other hand, by
projecting Eq. (26) into the hypersurface-tangential (spa-
tial) slice through the projector tensor γμν ¼ δμν þ nμnν,
we have

ϵ0ijkdljBk ¼ 0: ð27Þ

Therefore, in the 3þ 1 formalism, and under the simulta-
neity condition dl0 ¼ 0 according to our choice of the
spacetime foliation, the condition (20) is equivalent to the
vectorial condition dl × B ¼ 0 and comprise the condition
dl · E ¼ 0. According to the connection equation (19), this
implies that if dl × B vanishes initially, i.e., the vector field
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tangent to a curve connecting two fluid elements, dl, is
aligned with the magnetic field B, the plasma evolution is
such that this property remains preserved over time. Hence,
an Ohm’s law of the form (11) for Hall MHD plasmas in
curved spacetime does not allow the breaking of magnetic
connections between fluid elements, essentially electron
fluid elements. Magnetic reconnection can occur if Eq. (11)
becomes invalid, as it happens if Δh ≫ h [26], or if
resistivity is non-negligible.
The condition (20) holds also if dl0 ≠ 0. In this case, the

4-vector event separation dlμ remains in the 2-dimensional
hypersurface generated by the 4-vectors Uμ and Bμ.
Therefore, the connected field lines are generalized in a
covariant way by using worldsheets of the magnetic field
lines [5–8]. On the other hand, differently from the ideal
Ohm’s law case, the worldsheets of the magnetic field lines
are advected by the 4-velocity Uμ instead of the plasma
4-velocity Uμ.

IV. PRESERVED CONNECTIONS IN EXTENDED
MHD PLASMAS

In Sec. III, we neglected all the electron inertia terms
under the assumption that they are much smaller than the
Hall term and/or the pressure gradients terms. However,
when electron current layers become important, these terms
cannot be neglected as they play a crucial role in the plasma
dynamics. Indeed, the finite inertia of the electrons can
break the magnetic connections and magnetic reconnection
can take place [3]. Nevertheless, magnetic reconnection
mediated by electron inertia preserves other generalized
field lines connections. This property, which is well known
in the nonrelativistic regime [e.g., [27–31] ], has been
shown to hold in special relativity [10,11,32] with a proper
definition of generalized electromagnetic fields. Here we
show that generalized connections can also exist in curved
spacetime, and that they can be interpreted in terms of
generalized magnetofluid vortex lines when a 3þ 1 split of
spacetime is employed.
For collisionless plasmas (η ¼ 0), we can rewrite the

generalized Ohm’s law (8) as

Jν

ne
∇ν

�
ξh
4ne

Uμ

�
þUν∇ν

�
ξh

4e2n2
Jμ
�

¼ ∇μχ

ne
þ UνFμν; ð28Þ

where we have used the continuity equations ∇μðnUμÞ ¼ 0

and ∇μJμ ¼ 0. Following the procedure outlined in
Refs. [10,11], we can cast the above equation in the form

UνMμν þ 1

ne
∇μχ −∇μ

�
ξh

4Δμ ne

�
¼ Σμ; ð29Þ

where we have defined the generalized magnetofluid field
tensor

Mμν ¼ Fμν −
ξ

4Δμ
Wμν; ð30Þ

with Wμν indicating the antisymmetric flow field tensor

Wμν ¼ ∇μ

�
h
ne

Uν

�
−∇ν

�
h
ne

Uμ

�
: ð31Þ

Furthermore, we have introduced the effective thermal-
inertia 4-vector

Σμ ¼ ζ

ne
∇μ

�
h
ne

�
þ ξ

4Δμ
Uν∇ν

�
h
ne

Uμ

�
; ð32Þ

along with the scalar

ζ ¼ ξ

4

�
UμJμ −

Δμ
2ne

JμJμ
�
: ð33Þ

The generalized Ohm’s law (29) includes all the thermal-
inertial effects, as well as thermal electromotive effects and
Hall effects. The generalized magnetofluid field tensor
Mμν represents an effective field tensor that unifies the
electromagnetic and fluid fields. The flat spacetime limits
of this tensor were introduced in Refs. [10,11], for electron-
ion plasmas and pair plasmas, respectively. This tensor is
similar in nature (but different in structure) to the unified
magnetofluid field tensors introduced in Refs. [33,34]. As
we show below, the effective field tensor Mμν is instru-
mental in revealing topological invariants of collisionless
plasmas beyond the MHD description.
In analogy with the previous section, we look to the

evolution of the effective field tensorMμν. It is straightfor-
ward to show that the convective derivative of Mμν along
the generalized 4-velocity Uν gives

Uα∇αMμν ¼ ð∇μUαÞMνα − ð∇νUαÞMμα

þ∇μΣν −∇νΣμ; ð34Þ

where we have assumed p� ¼ p�ðn�Þ. In order to obtain
the dynamics of the generalized connections, let us con-
sider a spacelike event-separation 4-vector dlμ ¼ x0μ − xμ

that is transported with a general 4-velocity

Vμ ¼ Uμ þ Zμ ¼ Uα∇αxμ; ð35Þ

where Zμ is a relative 4-velocity that fulfills the equation

∇μZαMαν −∇νZαMαμ ¼ ∇νΣμ −∇μΣν: ð36Þ

The velocity field Zμ takes into account all the thermal–
inertia information of the plasma fluid that is usually
neglected in simpler models. This velocity depends on
the variation of such effects, and it is used here to prove the
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existence of the generalized connections that take into
account such effects.
Now, the connection equation can be readily derived. We

take the convective derivative of dlμ along the 4-velocity
Uμ, which gives [5]

Uν∇νdlμ ¼ dlλ∇λVμ: ð37Þ

Then, using Eqs. (34) and (37), we find that the convective
derivative of dlμMμν follows the equation

Uα∇αðdlμMμνÞ ¼ −ð∇νVαÞðdlμMμαÞ; ð38Þ

which represents the magnetofluid connection equation in
curved spacetime.
Equation (38) shows that if initially we have

dlμMμν ¼ dlμFμν −
ξ

4Δμ
dlμWμν ¼ 0; ð39Þ

and Eq. (36) has a well-behaved solution for the 4-velocity
Zμ, then dlμMμν will remain null at all times. This implies
the existence of 2-dimensional magnetofluid hypersurfaces
that preserve their topology during the plasma dynamics. In
this case, the magnetofluid field tensor Mμν takes the role
that the electromagnetic field tensor Fμν has for the ideal
MHD and Hall MHD limits. Furthermore, the general
4-velocity Vμ takes into account also the thermal-inertial
contributions to the plasma dynamics.
To gain further insight on the connections that underlie

the extended MHD plasma, we rely again on the 3þ 1 split
of spacetime. Therefore, the generalized magnetofluid field
tensor is decomposed as

Mμν ¼ Ξμnν − Ξνnμ − ϵμνρσΩρnσ: ð40Þ

The generalized electric Ξμ and magnetic Ωμ fields are

Ξμ ¼ nνMμν; Ωμ ¼ 1

2
nρϵρμστMστ; ð41Þ

which are both spacelike (nμΞμ ¼ 0 and nμΩμ ¼ 0). The
generalized magnetic field Ωμ can also be viewed as a
magnetofluid vorticity, since Ωμ includes the contribution
of the 4-velocity Uν and the thermal-inertial effects, as
given by

Ωμ ¼ Bμ −
ξ

4Δμ
nρϵρμστ∇σ

�
h
en

Uτ

�
: ð42Þ

It is the magnetofluid vorticity Ωμ (in place of the magnetic
field Bμ) that preserves the topology during the nonideal
plasma dynamics.
The field line connectivity of the magnetofluid vorticity

can be shown by choosing the simultaneity condition

dl0 ¼ 0. As explained before, if dl0 ≠ 0 one can restore
simultaneity by moving the endpoints of the wordline
connecting the two close events along their trajectories
[4]. This is obtained by performing the transformation
dlμ → dl0μ ¼ dlμ þ ðUμ þHμÞdλ, such that dl00 ¼ 0 in the
adopted spacetime foliation. Indeed, this transformation
leaves the connection equation (39) unaltered whenever the
4-vector Hμ fulfills the generalized Ohm’s law (29) [10].
In this case, the 4-vector Hμ can be written as Hμ ¼
ð1=neÞNνμ∇νχ − Nνμ∇νðξh=ð4Δμ neÞÞ − NνμΣν, where
Nμν is the inverse of Mμν. Therefore, by using Eq. (40)
in Eq. (39) and projecting it into the spatial slice through
the projector tensor γμν, we obtain

ϵ0ijkdljΩk ¼ 0: ð43Þ

On the other hand, the projection of Eq. (39) along the
temporal direction by contracting it with nμ gives
dlνΞν ¼ 0. Thus, in the 3þ 1 formalism and under the
simultaneity assumption dl0 ¼ 0, the condition (39) is
equivalent to the vectorial condition dl ×Ω ¼ 0 and
comprise the condition dl · Ξ ¼ 0. According to the con-
nection equation (38), this implies that if dl ×Ω vanishes
initially, the plasma evolution is such that this property
remains preserved over time. The 4-vector event separation
dlμ remains always in the 2-dimensional hypersurface
generated by the 4-vectors Vμ and Ωμ. Therefore, the
connected field lines are generalized in a covariant way by
using worldsheets of the magnetofluid vortex lines. On the
other hand, differently from the ideal Ohm’s law case, the
worldsheets of the magnetic field lines are advected by
the general 4-velocity Vμ.
Finally, we note that the collisionless pair plasma limit of

the generalized Ohm’s law (28) yields an antisymmetric
flow field tensor

Wμν=Δμ → ∇ν

�
h

n2e2
Jμ
�
−∇μ

�
h

n2e2
Jν
�
; ð44Þ

and a generalized 4-velocity Uμ → Uμ. Therefore, also in
this limit the magnetofluid field tensor Mμν is constituted
by a combination of electromagnetic and fluid fields.

V. CONCLUSIONS

In this paper, we have extended the ideal MHD theorem
on the “frozen-in” property of the magnetic field lines to
nonideal relativistic plasmas in the presence of significant
gravitational fields. This is indeed important for plasmas
around black holes [e.g. [14,35–38] ] or in the early
Universe [e.g. [39–42] ]. In such cases, general relativity
must be taken into account in the plasma dynamics.
Furthermore, local effects that are outside the large scale
and low frequency description of the ideal MHD theory
can drastically modify the plasma behavior [e.g. [14,15,
43–45] ], as is the case with magnetic reconnection. Indeed,
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the violation of the magnetic connections due to magnetic
reconnection couples to the macroscopic plasma dynamics
and is accompanied by the rapid release of magnetic energy
into thermal and kinetic energy of the plasma, with a
resulting global behavior of the system that is very different
from the ideal MHD predictions.
There are different nonideal effects that can play a decisive

role in the plasma dynamics, such as collisional, thermal-
inertial, thermal electromotive,Hall, or current inertia effects.
Nevertheless we have shown that when the evolution of the
system is fast compared to the dissipation timescale, there are
different topological invariants that take the place of the
magnetic field in nonideal plasmas. In an extended MHD
plasma, the preserved connections are no longer related to
the electromagnetic field tensor Fμν but to an effective field
tensor that unifies the electromagnetic and fluid fields. This
generalized magnetofluid field tensor Mμν allows the
extension of the ideal MHD theorem to plasmas beyond
the MHD description. In the relativistic domain, this means
that there are generalized magnetofluid connections organ-
ized in 2-dimensional hypersurfaces that are dynamically
preserved. In the Hall MHD limit, these connections are
related to the magnetic field as in the ideal MHD theory, but
they are advected by the 4-velocity Uμ instead of the plasma
4-velocity Uμ.
The 2-dimensional magnetofluid connection hypersur-

faces can be interpreted in terms of magnetofluid vortex
lines by employing a 3þ 1 foliation of spacetime into
nonintersecting spacelike hypersurfaces of constant coor-
dinate time and the time resetting procedure introduced in
Ref. [4] to account for the loss of simultaneity in different
reference frames between spatially separated events. This
defines a new generalized vorticity Ωμ ¼ 1

2
nρϵρμστMστ that

encompasses both the magnetic and the fluid fields. The
field lines of this generalized magnetofluid vorticity are
preserved by the nonideal plasma dynamics and extend the
usual magnetic field lines, whose topology is no more
preserved when thermal-inertial effects are included.
Additionally, the generalized magnetofluid vorticity is
advected by a general transport 4-velocity that differs from
the plasma 4-velocity that characterizes the magnetic
connections in the ideal MHD limit.
The conservation of the worldsheets of generalized

magnetofluid vorticity field lines set important constraints

on the plasma dynamics in curved spacetime by forbidding
transitions between different topological configurations of
the magnetofluid vorticity sheets. In nonrelativistic ideal
MHD, the preservation of the magnetic field topology is
directly linked to the formation of electric current sheets
[e.g., [46] ]. Topological invariants in nonrelativistic
extended MHD models are also thought to be responsible
for the formation of small scale structures in different
nonlinear plasma processes, such as in magnetic recon-
nection [e.g., [28] ]. Therefore, the investigation of topo-
logical properties of the generalized magnetofluid vorticity
in curved spacetime may also provide further insights into
our understanding of the nonlinear plasma dynamics in
strong gravitational fields. Moreover, by forbidding certain
class of motions, the topological invariants may guarantee
the stability of the resulting solutions.
There are additional nonideal effects that might occur in

relativistic plasmas, especially in very high-energy regimes.
In those cases, processes such as pair creation and
annihilation, radiation-reaction, and spin effects may have
to be considered in the plasma description. While the study
of those effects is out of the scope of this work, we observe
that a similar analysis could be performed to find a
covariant generalization of the preserved field connections
including those terms. Some of these high-energy effects
can be included in properly redefined generalized electro-
magnetic fields or as dissipative processes in the general-
ized Ohm’s law [32]. In this case, the analysis presented in
this paper remains essentially unchanged, as it applies to
timescales shorter than the dissipation timescale. For those
effects that cannot be included in the definition of gener-
alized electromagnetic fields in the generalized Ohm’s law,
or that also modify conservation laws, such as pair
production, a more general calculation could be required.
These directions will be pursued in future works.

ACKNOWLEDGMENTS

F. A. A. thanks Fondecyt-Chile Grant No. 1180139.
L. C. is grateful for the hospitality of the Kavli Institute
for Theoretical Physics (KITP) of the University of
California Santa Barbara, where part of this work was
done and supported by the National Science Foundation
under Grant No. NSF PHY-1748958.

[1] W. A. Newcomb, Ann. Phys. (N.Y.) 3, 347 (1958).
[2] G. Hornig, Phys. Plasmas 4, 646 (1997).
[3] D. Biskamp, Magnetic Reconnection in Plasmas

(Cambridge University Press, Cambridge, England, 2000).
[4] F. Pegoraro, Europhys. Lett. 99, 35001 (2012).

[5] F. A.Asenjo andL.Comisso, Phys. Rev.D 96, 123004 (2017).
[6] B. Carter, in General Relativity: An Einstein Centenary

Survey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, Cambridge, England, 1979), Vol. 179,
p. 294.

GENERALIZED MAGNETOFLUID CONNECTIONS IN CURVED … PHYS. REV. D 102, 023032 (2020)

023032-7

https://doi.org/10.1016/0003-4916(58)90024-1
https://doi.org/10.1063/1.872161
https://doi.org/10.1209/0295-5075/99/35001
https://doi.org/10.1103/PhysRevD.96.123004


[7] T. Uchida, Phys. Rev. E 56, 2181 (1997).
[8] S. E. Gralla and T. Jacobson, Mon. Not. R. Astron. Soc. 445,

2500 (2014).
[9] F. Pegoraro, J. Plasma Phys. 82, 555820201 (2016).

[10] F. A. Asenjo and L. Comisso, Phys. Rev. Lett. 114, 115003
(2015).

[11] F. A. Asenjo, L. Comisso, and S. M. Mahajan, Phys.
Plasmas 22, 122109 (2015).

[12] A. Lichnerowicz, Relativistic Hydrodynamics and
Magnetohydrodynamics (Benjamin, New York, 1967).

[13] A. M. Anile, Relativistic Fluids and Magneto-Fluids
(Cambridge University Press, Cambridge, England, 1989).

[14] S. Koide, Astrophys. J. 708, 1459 (2010).
[15] L. Comisso and F. A.Asenjo, Phys. Rev. D 97, 043007 (2018).
[16] S. Chandrasekhar, An Introduction to the Study of Stellar

Structure (Dover, New York, 1938).
[17] J. L. Synge, The Relativistic Gas (North-Holland,

Amsterdam, 1957).
[18] I. D. Novikov and K. S. Thorne, in Black Holes, edited by

B. S. DeWitt and C. M. DeWitt (Gordon and Breach,
New York, 1973), p. 343.

[19] J. D. Bekenstein and E. Oron, Phys. Rev. D 18, 1809 (1978).
[20] B. Carter, in Active Galactic Nuclei, edited by C. Hazard

and S. Mitton (Cambridge University Press, Cambridge,
England, 1979), p. 273.

[21] A. Achterberg, Phys. Rev. A 28, 2449 (1983).
[22] K. S. Thorne and D. A. Macdonald, Mon. Not. R. Astron.

Soc. 198, 339 (1982).
[23] K. S. Thorne, R. H. Price, and D. A. MacDonald, Black

Holes: The Membrane Paradigm (Yale University,
New Haven, CT, 1986).

[24] R. Arnowitt, S. Deser, and C.W. Misner, in Gravitation:
An Introduction to Current Research, edited by L. Witten
(Wiley, New York, 1962), p. 227.

[25] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[26] Y. Kawazura, G. Miloshevich, and P. J. Morrison, Phys.
Plasmas 24, 022103 (2017).

[27] M. Ottaviani and F. Porcelli, Phys. Rev. Lett. 71, 3802
(1993).

[28] E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli, and A.
Saluzzi, Phys. Rev. Lett. 80, 4430 (1998).

[29] F. Pegoraro, D. Borgogno, F. Califano, D. Del Sarto, E.
Echkina, D. Grasso, T. Liseikina, and F. Porcelli, Nonlinear
Processes Geophys. 11, 567 (2004).

[30] L. Comisso, D. Grasso, F. L. Waelbroeck, and D. Borgogno,
Phys. Plasmas 20, 092118 (2013).

[31] M. Lingam, G. Miloshevich, and P. J. Morrison, Phys. Lett.
A 380, 2400 (2016).

[32] F. Pegoraro, Phys. Plasmas 22, 112106 (2015).
[33] J. D. Bekenstein, Astrophys. J. 319, 207 (1987).
[34] S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).
[35] S. Koide, K. Shibata, T. Kudoh, and D. L. Meier, Science

295, 1688 (2002).
[36] M. Zamaninasab, E. Clausen-Brown, T. Savolainen, and A.

Tchekhovskoy, Nature (London) 510, 126 (2014).
[37] F. A. Asenjo and L. Comisso, Phys. Rev. Lett. 118, 055101

(2017).
[38] K. Akiyama et al. (Event Horizon Telescope Collaboration),

Astrophys. J. 875, L1 (2019).
[39] K. A. Holcomb and T. Tajima, Phys. Rev. D 40, 3809

(1989).
[40] T. Tajima and K. Shibata, Plasma Astrophysics (Addison-

Wesley, Reading, MA, 1997).
[41] K. Subramanian and J. D. Barrow, Phys. Rev. D 58, 083502

(1998).
[42] D. T. Son, Phys. Rev. D 59, 063008 (1999).
[43] K. Parfrey, A. Philippov, and B. Cerutti, Phys. Rev. Lett.

122, 035101 (2019).
[44] F. A. Asenjo and L. Comisso, Phys. Rev. D 99, 063017

(2019).
[45] B. Ripperda, F. Bacchini, O. Porth, E. R. Most, H. Olivares,

A. Nathanail, L. Rezzolla, J. Teunissen, and R. Keppens,
Astrophys. J. Suppl. Ser. 244, 10 (2019).

[46] Y. Zhou, Y.-M. Huang, H. Qin, and A. Bhattacharjee, Phys.
Rev. E 93, 023205 (2016).

Correction: The title contained a typographical error and has
been fixed.

LUCA COMISSO and FELIPE A. ASENJO PHYS. REV. D 102, 023032 (2020)

023032-8

https://doi.org/10.1103/PhysRevE.56.2181
https://doi.org/10.1093/mnras/stu1690
https://doi.org/10.1093/mnras/stu1690
https://doi.org/10.1017/S0022377816000325
https://doi.org/10.1103/PhysRevLett.114.115003
https://doi.org/10.1103/PhysRevLett.114.115003
https://doi.org/10.1063/1.4938039
https://doi.org/10.1063/1.4938039
https://doi.org/10.1088/0004-637X/708/2/1459
https://doi.org/10.1103/PhysRevD.97.043007
https://doi.org/10.1103/PhysRevD.18.1809
https://doi.org/10.1103/PhysRevA.28.2449
https://doi.org/10.1093/mnras/198.2.339
https://doi.org/10.1093/mnras/198.2.339
https://doi.org/10.1063/1.4975013
https://doi.org/10.1063/1.4975013
https://doi.org/10.1103/PhysRevLett.71.3802
https://doi.org/10.1103/PhysRevLett.71.3802
https://doi.org/10.1103/PhysRevLett.80.4430
https://doi.org/10.5194/npg-11-567-2004
https://doi.org/10.5194/npg-11-567-2004
https://doi.org/10.1063/1.4821840
https://doi.org/10.1016/j.physleta.2016.05.024
https://doi.org/10.1016/j.physleta.2016.05.024
https://doi.org/10.1063/1.4935282
https://doi.org/10.1086/165447
https://doi.org/10.1103/PhysRevLett.90.035001
https://doi.org/10.1126/science.1068240
https://doi.org/10.1126/science.1068240
https://doi.org/10.1038/nature13399
https://doi.org/10.1103/PhysRevLett.118.055101
https://doi.org/10.1103/PhysRevLett.118.055101
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevD.40.3809
https://doi.org/10.1103/PhysRevD.40.3809
https://doi.org/10.1103/PhysRevD.58.083502
https://doi.org/10.1103/PhysRevD.58.083502
https://doi.org/10.1103/PhysRevD.59.063008
https://doi.org/10.1103/PhysRevLett.122.035101
https://doi.org/10.1103/PhysRevLett.122.035101
https://doi.org/10.1103/PhysRevD.99.063017
https://doi.org/10.1103/PhysRevD.99.063017
https://doi.org/10.3847/1538-4365/ab3922
https://doi.org/10.1103/PhysRevE.93.023205
https://doi.org/10.1103/PhysRevE.93.023205

