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We investigate systematically the quark-hadron mixed phase in dense stellar matter and its influence on
compact star structures. The properties of quark matter and hadronic matter are fixed based on various
model predictions. Beside adopting constant values, the surface tension Σ for the quark-hadron interface is
estimated with the multiple reflection expansion method and equivparticle model. To fix the structures of
quark-hadron pasta phases, a continuous dimensionality of the structure is adopted as proposed by
Ravenhall et al. The corresponding properties of hybrid stars are then obtained and confronted with pulsar
observations. It is found that the correlation between radius and tidal deformability in traditional neutron
stars preserves in hybrid stars. For those permitted by pulsar observations, in almost all cases, the quark
phase persists inside the most massive compact stars. The quark-hadron interface plays an important role in
hybrid star structures once quark matter emerges. The surface tension Σ estimated with various methods
increases with density, which predicts stiffer equation of states (EOSs) for the quark-hadron mixed phase
and increases the maximum mass of hybrid stars. With or without the emergence of quark matter, the
obtained EOSs of hybrid star matter are close to each other at densities n≲ 0.8 fm−3, while larger
uncertainty is expected at higher densities.
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I. INTRODUCTION

Due to the asymptotic freedom of strong interaction, the
deconfinement phase transition is expected as one increases
the density of hadronic matter. However, it is still unclear
how such a transition takes place. Traditionally, for zero
temperature cases, a first-order phase transition between
hadronic matter (HM) and quark matter (QM) was pre-
dicted by various quark models, which indicates a quark-

hadron mixed phase (MP) [1–5]. Adopting different surface
tension values for the quark-hadron interface, it was found
that the MP exhibits various structures [6]. For vanishing
surface tensions and Coulomb interactions, the MP is
composed of HM and QM that satisfy the Gibbs condition
[1]. If a moderate surface tension is employed, with the
charged particles relocate themselves via charge screening
effects, geometrical structures appear [6–14]. Those struc-
tures become unstable for enough large surface tensions,
which leads to a bulk separation of quark and hadron
phases, i.e., the Maxwell construction scenarios.
Ever since the first discovery in 1967 [15], more than

2800 pulsars have been observed [16]. This number is
increasing exponentially with the implementation of
powerful telescopes [17–20]. Being the natural laboratory
of dense matter, the observation of pulsars has put strong
constraints on the properties of strongly interacting matter
at highest densities [21–24]. By analyzing its orbital
motion through the arrival times of the pulsations, the
masses of approximately 70 pulsars in binary systems were
measured [21], where the precise mass measurements
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of the two-solar-mass pulsars pulsar (PSR) J1614 − 2230
(1.928� 0.017 M⊙) [25,26] and PSR J0348þ 0432
(2.01� 0.04 M⊙) [27] have put strong constraints on the
equation of state (EOS) of dense stellar matter. Pulsars that
are heavier than 2 M⊙ are expected, e.g., the presently
heaviest PSR J0740þ 6620 (2.14þ0.10

−0.09 M⊙) [28] and pos-
sibly the more massive PSR J2215þ 5135 (2.27þ0.17

−0.15 M⊙)
[29]. Nevertheless, based on the numerical simulations of
binary neutron star merger event GW170817, an upper
limit of the maximum mass has been suggested
(≤2.35 M⊙) [30–32]. Both the masses and radii of pulsars
may be accurately measured via pulse-profile modeling
[33], where recently the NICER mission has obtained the
mass (1.18–1.59 M⊙) and radius (11.52–14.26 km) of PSR
J0030þ 0451 [34,35]. With the first observation of gravi-
tational waves from GW170817 event, the dimensionless
combined tidal deformability of pulsars is constrained within
302 ≤ Λ̃ ≤ 720 [36–41], with the corresponding radii esti-
mated to be 11.9þ1.4

−1.4 km [42]. A combination of the
observed masses, radii, and tidal deformabilities of pulsars
gives rise to the strongest constraint for dense matter.
In our previous study [13], we considered the possibility

of constraining the surface tension from pulsar observa-
tions, where a first-order deconfinement phase transition
was assumed. By adopting the covariant density functional
TW99 [43] for nuclear matter and perturbation model [44]
for quark matter, it was found that varying the surface
tension value will have sizable effects on the radii and tidal
deformabilities of 1.36-solar-mass hybrid stars.
Nevertheless, due to the important roles played by many-

body interactions as well as the emergence of hadrons other
than nucleons, the properties of hadronic matter at densities
larger than twice the nuclear saturation density are not very
well constrained, where the differences between various
predictions grow dramatically [45]. Meanwhile, even
though the perturbation model gives reliable predictions
at ultrahigh densities [46], the properties of quark matter
inside hybrid stars are poorly constrained. Under such
circumstances, in the present work, we further extend our
study by investigating systematically the hadron-quark
deconfinement phase transition in dense stellar matter,
where various combinations of models that describe QM
and HM are adopted along with different values of surface
tension.
For hadronic matter, we adopt ten different EOSs

predicted by relativistic-mean-field (RMF) model [47]
and variational method with realistic baryon interactions
[48,49]. Among them, two EOSs include the contributions
of hyperons explicitly. For the quark phase, we adopt 46
EOSs predicted by equivparticle model [50–52], perturba-
tion model [44,53,54], and Nambu-Jona-Lasinio (NJL)
model [55,56].
To fix the structures of quark-hadron pasta phases, a

continuous dimensionality of the structure is introduced as
proposed by Ravenhall et al. [57]. The energy contribution

due to the quark-hadron interface is treated with a surface
tension Σ, for which we employ constant values as well as
those estimated by the multiple reflection expansion
method [58–61] and equivparticle model including both
linear confinement and leading-order perturbative inter-
actions [62,63].
The EOSs of hybrid star matter are obtained, while the

corresponding compact star structures are determined by
solving the Tolman-Oppenheimer-Volkov (TOV) equation.
For the EOSs of hybrid star matter consistent with pulsar
observations, it is found that in almost all cases the quark
phase takes place inside the most massive compact stars.
Once quark matter emerges, we find that the quark-hadron
interface plays an important role on hybrid star structures.
The paper is organized as follows. We present our

theoretical framework in Secs. II–IV. Two formalisms
are adopted for the HM, i.e., the RMF model in Sec. II
A and the variational method in Sec. II B. The equivparticle
model, perturbation model, and NJL model for QM are
introduced in Sec. III. The formalism in obtaining the
structures of quark-hadron mixed phase is introduced in
Sec. IVA, while the surface tension of quark-hadron
interface is obtained in Sec. IV B. The numerical results
are presented and discussed in Sec. V. Our conclusion is
given in Sec. VI.

II. EFFECTIVE MODELS FOR
HADRONIC MATTER

A. RMF model

The Lagrangian density for infinite nuclear matter
obtained with RMF model [47] reads

LNM ¼
X
i¼n;p

Ψ̄i½iγμ∂μ −m� − γ0ðgωωþ gρτi;3ρ3Þ�Ψi

−
1

2
m2

σσ
2 þ 1

2
m2

ωω
2 þ 1

2
m2

ρρ
2
3 þ Uðσ;ωÞ: ð1Þ

Here, the Dirac spinor Ψi represents nucleons with the
effective massm� ¼ mþ gσσ and isospin τi. Three types of
mesons are included to describe the interactions between
nucleons, i.e., σ, ω, and ρ mesons with their masses being
mσ , mω, and mρ, respectively. The baryon number density
is given by n ¼ nn þ np ¼ P

i¼n;phΨ̄iγ
0Ψii. In this work,

we adopt two different schemes for the density dependence
of effective interaction strengths, i.e., the nonlinear
self-couplings of σ and ω mesons in Uðσ;ωÞ and the
Typel-Wolter ansatz with density-dependent coupling
constants [43].
The nonlinear self-couplings for σ and ω mesons are

Uðσ;ωÞ ¼ −
1

3
g2σ3 −

1

4
g3σ4 þ

1

4
c3ω4; ð2Þ

where we have adopted the effective interaction TM1 [64],
i.e., Shen EOS2 [65]. Meanwhile, it was shown that the
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slope of symmetry energy L ¼ 110.8 MeV predicted by
TM1 was too large according to various constrains from
nuclear physics and pulsar observations, which can be
reduced to L ¼ 40 MeV by adding the cross-coupling term

Lωρ ¼ Λvg2ωg2ρω2ρ2: ð3Þ

This gives Shen EOS4 by adopting the effective interaction
TM1e [66]. To further include the contribution of Λ
hyperons, in Eq. (1), we add the following Lagrangian
density [67–70]:

LY ¼ ψ̄Λ½iγμ∂μ −m�
Λ − γ0αωΛgωω�ψΛ; ð4Þ

where m�
Λ ¼ mΛ þ ασΛgσσ is the effective mass of the Λ

hyperon. The ratio of coupling constants αωΛ ≡ gωΛ=gω ¼
2=3 is predicted by the naive quark model [71], then ασΛ ≡
gσΛ=gσ ¼ 0.621 is obtained by reproducing the binding
energies of Λ hyperon in Λ hypernuclei, i.e., Shen EOS3
[65]. However, the obtained hyperonic EOS is too soft to
support massive neutron stars, i.e., the hyperon puzzle. To
resolve this, larger values of gωΛ were adopted to provide
more repulsive interaction from ω meson, where in this
work (denoted as TM1Λ) we take αωΛ ¼ 1 and ασΛ ¼
0.887 [70]. A thorough investigation on such choices can
be found in Ref. [72].
Despite the great successes in describing finite nuclei

with nonlinear self-couplings of mesons, a direct extension
of the density functional to higher densities may cause
problems of stability. Alternatively, we can adopt couplings
that depend explicitly on densities, which can be derived
from self-energies of Dirac-Brueckner calculations of
nuclear matter [43,73]. We thus adopt the effective
nucleon-nucleon interactions PKDD [74], TW99 [43],
DDME2 [75], and DD2 [76], where Uðσ;ωÞ ¼ 0 and
the density dependence of coupling constants gσ;ω;ρ [43]
is obtained with

gσ;ωðnÞ ¼ gσ;ωðn0Þaσ;ω
1þ bσ;ωðn=n0 þ dσ;ωÞ2
1þ cσ;ωðn=n0 þ eσ;ωÞ2

; ð5Þ

gρðnÞ ¼ gρðn0Þ exp ½−aρðn=n0 − 1Þ�: ð6Þ

Here, n0 represents the nuclear saturation density.
Carrying out standard mean-field and no-sea approx-

imations, one obtains the energy density E, chemical
potentials μB, and pressure P at given baryon density n.
Then the EOSs for nuclear matter and hyperonic matter can
be obtained.

B. Variational methods

The variational method for uniform nuclear matter was
developed in Refs. [77–79], where the nuclear Hamiltonian
composed of a two-body potential Vij and three-body
potentials Vijk is given by

H ¼ −
XN
i¼1

ℏ2

2mn
∇2

i þ
XN
i<j

Vij þ
XN
i<j<k

Vijk: ð7Þ

Adopting the Argonne v18 (AV18) two-body nuclear
potential [80] and the Urbana IX (UIX) three-body nuclear
force [81,82], the free energy per nucleon of uniform
nuclear matter is predicted by the cluster variational method
using the Jastrow wave function [49]. Then the equation of
states for nuclear matter (denoted as VM) can be obtained,
which was discussed in detail in Ref. [49]. For hyperonic
EOS (VMΛ), we adopt the results presented in Ref. [83]
with three-body forces of hyperons.
A more sophisticated variational method with the Fermi

hypernetted chain calculations was performed for symmet-
ric nuclear matter (SNM) and pure neutron matter (PNM)
by Akmal, Pandharipande, and Ravenhall (APR) [48],
where the aforementioned realistic nuclear Hamiltonian
and Jastrow wave function was adopted. The energy
density of nuclear matter obtained in Ref. [48] is fixed
by the fitted formula

EHM ¼
�
ℏ2

2m
þ
�
p3 þ

1þ δ

2
p5

�
ne−p4n

�
ν5n
5π2

þ
�
ℏ2

2m
þ
�
p3 þ

1 − δ

2
p5

�
ne−p4n

�
ν5p
5π2

þ gðn; δ ¼ 0Þð1 − δÞ2 þ gðn; δ ¼ 1Þδ2: ð8Þ

Here δ ¼ ðnn − npÞ=n is the isospin asymmetry and νp;n ¼
ð3π2np;nÞ1=3 the Fermi momentum of nucleons. A more
detailed description on the parameters pi and functional
form gðn; δÞ can be found in the original publication [48].
In this work, we adopt the most comprehensive case
employing the AV18 two-body nuclear potential and
UIX three-body interaction [81,82] with relativistic
corrections.

C. The EOSs of nuclear/hyperonic matter

Finally, for the hadronic phase, we adopt in total ten
different EOSs, i.e., eight nuclear EOSs (TM1e, TM1,
PKDD, TW99, DDME2, DD2, VM, APR) and two hyper-
onic EOSs (TM1Λ and VMΛ). These EOSs are predicted
by both RMF model with various effective interactions and
variational methods started from realistic baryon inter-
actions. The corresponding saturation properties are indi-
cated in Table I and compared with the constraints from
terrestrial experiments and nuclear theories [84], which
give the binding energy ε ≈ 16 MeV, the incompressibility
K ¼ 240� 20 MeV [85], the symmetry energy S ¼ 31.7�
3.2 MeV, and its slope L ¼ 58.7� 28.1 MeV [86,87]
around n0 ≈ 0.15–0.16 fm−3 and δ ¼ 0. The uncertainties
may be further reduced if the constraints from the
GW170817 binary neutron star merger event [36,42]
are included [88], e.g., a recent estimation suggests
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K ¼ 250.23� 20.16 MeV, S ¼ 31.35� 2.08 MeV, and
L ¼ 59.57� 10.06 MeV [89]. In general, TM1 and
PKDD slightly overestimate K, S, and L, while TM1e
predicts reasonable symmetry energy properties. The VM
EOS has the smallest S and L but still lie within the
permitted ranges.
At larger densities, in Fig. 1, we present the pressures of

SNM and PNM as functions of baryon number density,
which are compared with the constraints from the flow data
of heavy-ion collisions [90]. It is found that the EOSs of
nuclear matter predicted by TM1e, TM1, PKDD, DDME2,
and DD2 are slightly stiffer than those constrained from the
flow data of heavy-ion collisions [90]. Nevertheless, the
emergence of the quark phase may ease the tension and
reduce the stiffness of EOSs effectively.

The EOS of neutron star matter can be obtained by
further including the contributions of electrons and muons,
where their energy densities take the form of free Fermi gas
with

E0
i ¼

gim4
i

16π2
½xið2x2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ�: ð9Þ

Here ge;μ ¼ 2 is the degeneracy factor and xe;μ ≡ νe;μ=me;μ
with νe;μ being the Fermi momentum of leptons, which
predicts their number densities ne;μ ¼ ν3e;μ=3π2. The total
energy density of neutron star matter is obtained with
E ¼ EHM þ Ee þ Eμ. Then the pressure is determined by
P ¼ P

i μini − E with the chemical potential μi ¼ ∂E
∂ni. In

Fig. 2, we present the EOSs of neutron star matter, which
are obtained by simultaneously fulfilling the β-stability
condition and local charge neutrality condition.
Based on the EOSs indicated in Fig. 2, the corresponding

structures of compact stars are obtained by solving the TOV
equation

TABLE I. The saturation properties of nuclear matter and the corresponding maximum masses Mmax and radii R1.4 of 1.4 solar-mass
neutron stars predicted by various methods. For TM1Λ [70] and VMΛ [83], the hyperons have little impact on R1.4, while the maximum
masses are reduced to 2.06 and 2.16 M⊙, respectively.

n0 ε K S L Mmax R1.4

fm−3 MeV MeV MeV MeV M⊙ km

TM1e [66] 0.145 16.26 281.16 31.38 40 2.13 13.1
TM1 [64] 0.145 16.26 281.16 36.89 110.79 2.18 14.3
PKDD [74] 0.150 16.27 262.19 36.79 90.21 2.33 13.6
TW99 [43] 0.153 16.25 240.27 32.77 55.31 2.08 12.3
DDME2 [75] 0.152 16.14 250.92 32.30 51.25 2.49 13.2
DD2 [76] 0.149 16.02 242.72 31.67 55.04 2.43 12.8
VM [49] 0.160 16.09 245 30.0 37 2.22 11.6
APR [48] 0.160 16.00 269.28 33.94 57.9 2.19 11.4
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FIG. 1. The pressures of SNM and PNM predicted by various
nuclear theories, which are compared with the experimental
constraints from the flow data [90].
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FIG. 2. The pressure of neutron star matter as functions of
energy density.
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dP
dr

¼ −
GME
r2

ð1þ P=EÞð1þ 4πr3P=MÞ
1 − 2GM=r

; ð10Þ

dM
dr

¼ 4πEr2; ð11Þ

while the tidal deformability is estimated with

Λ ¼ 2k2
3

�
R
GM

�
5

: ð12Þ

Here the gravity constant is taken as G ¼
6.707 × 10−45 MeV−2, while k2 is the second Love number
and is obtained from the response of the induced quadru-
pole moment Qij in a static external quadrupolar tidal field

Eij with Qij ¼ −k2 2R5

3G Eij [91–93]. Note that at n <
0.08 fm−3 we have adopted the EOSs presented in
Refs. [94–96], which account for the crusts of neutron
stars. For the cases of TM1, TM1Λ, TM1e, VM, and VMΛ,
the crust EOSs were previously obtained, i.e., Shen EOSs
[65,66] and VM EOSs [49,83]. However, instead of using
those EOSs, we still adopt the crust EOSs presented in
Refs. [94–96] since the variations on neutron star structures
are relatively small. The obtained mass, radius, and tidal
deformability are presented in Fig. 3 and compared with
astrophysical observations, where the maximum masses
and radii of 1.4 M⊙ neutron stars are indicated in Table I.
All the maximum masses of compact stars predicted by
various EOSs in Fig. 2 are consistent with the observational
mass (2.14þ0.10

−0.09 M⊙) of PSR J0740þ 6620 [28].
Nevertheless, we should mention that the velocity of sound
will exceed c for APR, VM, and VMΛ at n ≥ 0.87, 0.90,
and 1.08 fm−3, which are reached in center regions of the

massive compact stars indicated in Fig. 3. The tidal
deformabilities predicted by TM1e, PKDD, DDME2,
and DD2 slightly exceed the constraint 302 ≤ Λ̃ ≤ 720
from the GW170817 binary neutron star merger event
[36–41], which coincides with the experimental constraints
on SNM from the flow data [90] in Fig. 1. Note that the
recent radius measurements of PSR J0030þ 0451 with
the equatorial radius Req ¼ 11.52–14.26 km and mass
M ¼ 1.18–1.59 M⊙ obtained via pulse-profile modeling
in the NICER mission [34,35] do not constrain the EOSs
adopted here.

III. EFFECTIVE MODELS FOR QUARK MATTER

A. Equivparticle model

In the equivparticle model, the quarks are treated as
quasifree particles with density-dependent equivalent
masses. Taking into account both the linear confinement
and leading-order perturbative interactions, the quark mass
scaling is given by [52]

miðnÞ ¼ mi0 þ
D

n1=3
þ Cn1=3: ð13Þ

Here mi0 is the current mass of quark flavor i (i ¼ u, d, s)
[97] and n≡P

i¼u;d;s ni=3 the baryon number density. The
confinement parameter D is connected to the string tension
σ0, the chiral restoration density ρ�, and the sum of the
vacuum chiral condensates

P
qhq̄qi0. Meanwhile, the

perturbative strength parameter C is linked to the strong
coupling constant αs. Due to the uncertainties in relevant
quantities, we do not know the exact values of D and C.
Nevertheless, it has been estimated that

ffiffiffiffi
D

p
approximately

lies in the range of (147, 270) MeV [51] and C≲ 1.2 [52].
In this work, we adopt the parameter sets (C,

ffiffiffiffi
D

p
in MeV):

(−0.2, 180), (0, 180), (0.7, 140), (0.7, 180), (1, 140), and
(1, 180).
At zero temperature, the energy density EQM ¼P
i¼u;d;s E

0
i ðνi; miÞ and particle number density ni ¼

ν3i =π
2 are identical to the cases of free Fermi gas with

E0
i given by Eq. (9) and gu;d;s ¼ 6. Note that in Eq. (9) we

have adopted the mass scaling of Eq. (13) for quarks, i.e.,
mi ≡miðnÞ. The pressure is determined by PQM ¼P

i¼u;d;s μini − EQM with the chemical potential μi ¼ ∂EQM

∂ni .

B. Perturbation model

By expanding the thermodynamic potential density of
quark matter to the order of αs [44], one obtains

Ωpt ¼
XNf

i

ðω0
i þ ω1

i αsÞ; ð14Þ

with
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FIG. 3. The mass, radius, and tidal deformability of neutron
stars obtained with the EOSs presented in Fig. 2. The maximum
masses Mmax and radii R1.4 of 1.4 M⊙ neutron stars are indicated
in Table I.
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ω0
i ¼ −

gim4
i

24π2

�
uivi

�
u2i −

5

2

�
þ 3

2
lnðui þ viÞ

�
; ð15Þ

ω1
i ¼

gim4
i

12π3

��
6 ln

�
Λ̄
mi

�
þ 4

�
½uivi − lnðui þ viÞ�

þ 3½uivi − lnðui þ viÞ�2 − 2v4i

�
; ð16Þ

where ui ≡ μi=mi and vi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i − 1

p
, with μi and mi being

the chemical potential and mass of quark flavor i. The
running coupling constant and quark masses are obtained
by solving the β function and γ function [98], which
give [44]

αsðΛ̄Þ ¼
1

β0L

�
1 −

β1 lnL
β20L

�
; ð17Þ

miðΛ̄Þ ¼ m̂iα
γ0
β0
s

�
1þ

�
γ1
β0

−
β1γ0
β20

�
αs

�
: ð18Þ

Here L ¼ 2 lnð Λ̄
Λ
MS
Þ with ΛMS ¼ 376.9 MeV being the MS

renormalization point, while the invariant quark masses are
fixed as m̂u ¼ 3.8 MeV, m̂d ¼ 8 MeV, and m̂s ¼
158 MeV [97]. The parameters are given by β0 ¼ 9=4π,
β1 ¼ 4=π2, γ0 ¼ 1=π, and γ1 ¼ 91=24π2. In this work, we
take the renormalization scale Λ̄ ¼ C1ðμu þ μd þ μsÞ=3
with C1 ¼ 1–4 [46], while a parametrized bag constant
is also adopted [13,99,100], i.e.,

B ¼ BQCD þ ðB0 − BQCDÞ exp
�
−
�P

iμi − 930

Δμ

�
4
�
; ð19Þ

with BQCD ¼ 400 MeV fm−3 and B0 ¼ 50 MeV fm−3.
Finally, the thermodynamic potential density for quark
matter is given by ΩQM ¼ Ωpt þ B. The particle number
density, energy density, and pressure are then obtained with

ni ¼ − ∂ΩQM

∂μi , EQM ¼ ΩQM þP
i μini, and PQM ¼ −ΩQM.

In this work, we take the parameters C1 ¼ 2, 2.5, 3, 3.5 and
Δμ ¼ 770, 800, 830, 860, 890, 920, 950, 980 MeV.

C. NJL model with vector interactions

In the mean-field approximation, the Lagrangian density
of an SU(3) NJL model is given by

LNJL ¼
X

i¼u;d;s

ψ̄ i½iγμ∂μ −Mi − 4GVγ
0ni�ψ i

þ 2
X

i¼u;d;s

ðGVn2i −GSσ
2
i Þ þ 4Kσuσdσs; ð20Þ

where the constituent quark mass reads

Mi ¼ mi0 − 4GSσi þ 2Kσjσk: ð21Þ

Note that in Eq. (20) a term in the vector-isoscalar channel
is included, which provides repulsive interactions with
GV > 0 [101].
At T ¼ 0, the thermodynamic potential density of quark

matter predicted by the NJL model is determined by

ΩQM ¼
X

i¼u;d;s

½ω0
i ðμ�i ;MiÞ − E0

i ðΛ;MiÞ þ 2GSσ
2
i

− 2GVn2i � − 4Kσuσdσs − E0; ð22Þ

with E0
i (xi ¼ Λ=Mi) given by Eq. (9) and ω0

i (ui ¼ μ�i =Mi)
by Eq. (15). Here a constant E0 is introduced to ensure
ΩQM ¼ 0 in the vacuum. Λ is the three-dimensional
momentum cutoff to regularize the vacuum part, and μ�i
the effective chemical potential which is connected with the
true chemical potential via

μ�i ¼ μi − 4GVni: ð23Þ

Based on the thermodynamic potential density in Eq. (22),

the chiral condensate is given by σi ¼ ∂ΩQM

∂Mi
and quark

number density ni ¼ ν3i =π
2 with ν2i ¼ ðμ�i Þ2 −M2

i . At fixed
μ�i , the equations for the chiral condensate σi, quark number
density ni, and constituent quark mass Mi are solved in an
iterative manner. The energy density and pressure are then
obtained with EQM ¼ ΩQM þP

i μini and PQM ¼ −ΩQM.
In this work, two different sets of parameters are adopted,
i.e., the sets HK (Λ¼631.4MeV, mu0¼md0¼5.5MeV,
ms0 ¼ 135.7 MeV, GS¼1.835=Λ2, K ¼ 9.29=Λ5) [55]
and RKH (Λ ¼ 602.3 MeV, mu0 ¼ md0 ¼ 5.5 MeV,
ms0 ¼ 140.7 MeV, GS ¼ 1.835=Λ2, K ¼ 12.36=Λ5)
[56]. For the vector coupling GV , the Fierz-transition
predicts GV ¼ 0.5GS, while in this work we take it as a
free parameter with GV ¼ 0, 0.5GS, GS, and 1.5GS.

D. General discussion on the quark EOSs

In contrast to nuclear matter cases, we have little
constraints on the properties of quark matter at intermediate
densities. At ultrahigh densities (n ≳ 40n0), however,
quantum chromodynamics (QCD) can be solved with
perturbative approaches [46]. The corresponding EOS at
highest densities is then expected to be reproduced by the
perturbation model (pQCD) explained in Sec. III B. The
NJL model, on the other hand, is a low-energy model for
QCD, where the gluons are integrated out while retaining
only local quark interactions. The corresponding coupling
constants of NJL model are then fixed by reproducing the
masses of π, K, η0 and the π decay constant [55,56]. The
equivparticle model carries similar traits of quasiparticle
model [102,103], where the results of pQCD at highest
densities can be reproduced with the parameter C in
Eq. (13) depending explicitly on αs [52]. Meanwhile, the
linear confinement of quarks is well treated with an
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inversely cubic mass scaling in the equivparticle model
[104]. Note that in this work we have neglected the effects
of color superconductivity [105], which shall be considered
in our future studies.
With the energy contributions of leptons determined by

Eq. (9), the EOSs of quark matter in compact stars can
be obtained by simultaneously fulfilling the β-stability
condition μu þ μe ¼ μd ¼ μs, μe ¼ μμ and local charge
neutrality condition

P
i qini ¼ 0 with qi (qu ¼ 2=3, qd ¼

qs ¼ −1=3 and qe ¼ qμ ¼ −1) being the charge of particle
type i. The corresponding energy per baryon of quark
matter predicted by various quark models is then presented
in Fig. 4, which includes 46 EOSs of quark matter, i.e., 6 of
them obtained with equivparticle model, 32 with perturba-
tion model, and 8 with NJL model. Note that stiffer EOSs
are obtained with larger C, C1, GV and smaller Δμ in those
models.

IV. MIXED PHASE AND QUARK-HADRON
INTERFACE

A. Inhomogeneous structures

If the surface tension of quark-hadron interface Σ is
smaller than the critical value Σc, inhomogeneous

structures of the mixed phase will emerge, i.e., the pasta
phases. Adopting linearization for the charge densities of
quark and hadron phases, the critical surface tension Σc can
be estimated with [10]

Σc ¼
ðμHe0 − μQe0Þ2
8παðλQD þ λHDÞ

; ð24Þ

where μH;Q
e0 are the electron chemical potential and λH;Q

D the
Debye screening length of hadronic matter (H) and quark
matter (Q) fulfilling both the β-stability condition and local
charge neutrality condition. To obtain the properties of
quark-hadron pasta phases, we adopt the formalism with a
continuous dimensionality proposed by Ravenhall et al.
[57], where the energy density is determined by

Et ¼ Es þ EC þ χEI þ ð1 − χÞEII; ð25Þ

with

Es ¼ dχ
Σ
r
; ð26Þ

EC ¼ 2παχr2nIch
2

ð1 − χÞ2ðdþ 2Þ
�

2

d − 2

�
1 −

d
2
χ1−

2
d

�
þ χ

�
: ð27Þ

Here χ, r, and nIch are the volume fraction, radius, and
charge density of phase I, and EI;II the corresponding
energy densities. The continuous dimensionality d lies in
the range 1 ≤ d ≤ 3, where d ¼ 1, 2, 3 represent the slab,
rod/tube, droplet/bubble phases, respectively. For the case
d ¼ 2, Eq. (27) could yield the correct expression con-
taining a logarithmic term [106]. The global charge neutral-
ity condition χnIch þ ð1 − χÞnIIch ¼ 0 is fulfilled for the two
phases in the cell. In Eq. (25), the term Es represents the
energy contribution of the quark-hadron interface, while EC
corresponds to the Coulomb energy per unit volume. Note
that due to the charge screening effects, the local densities
nI;II, nI;IIch , and EI;II should in principal vary with space
coordinates. For simplicity, we neglect such effects and the
densities in each phase are assumed to be constants, which
may affect our estimations on the sizes of the inhomo-
geneous structures at large Σ (close to Σc). However, for
smaller Σ, the nonuniform distributions of charged particles
in each phase become insignificant and assuming constant
densities gives a fairly well description. In any cases, the
negligence of charge screening effects has little impact on
the obtained EOSs of MP.
The structures of MP can be fixed by minimizing the

energy density in Eq. (25) at a given total baryon number
density n ¼ χnI þ ð1 − χÞnII. By taking derivatives of Et

with respect to each independent parameter (r; χ; d; nI; nIch)
and equate them to zero, one obtains the following
equations:
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FIG. 4. The energy per baryon of quark matter as functions of
baryon number density n predicted by equivparticle, perturbation,
and NJL models. For the equivparticle model (upper panel), the
parameter sets (C,
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) are indicated explicitly.
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Es ¼ 2EC; ð28Þ

PI − PII ¼ dΣðdχ2
d − dþ χ

2
d−1 − χ

2
d þ 1 − χÞ

rð1 − χÞðdχ2
d − d − 2χ

2
d þ 2χ

2
d−1Þ ; ð29Þ

ðd3 − 12dþ 16Þχ − 16

ð2d2 − 8Þ lnðχÞ þ d3 − 12d
χ

2
d−1 ¼ 1; ð30Þ

μIB ¼ μIIB; ð31Þ

μIe − μIIe ¼ dΣ
rnIch

: ð32Þ

Then the structures of MP are obtained by simultaneously
fulfilling those equations, while the exact phase state
(I ¼ H or Q) is determined for the case that gives a smaller
Et. The quark fraction χQ is then fixed by

χQ ¼
�
χ; I ¼ Q

1 − χ; I ¼ H
: ð33Þ

In practice, to further simplify our calculation, we expand
the thermodynamic quantities with respect to μe at a given
baryon chemical potential μB as was done in Ref. [13],
where the chemical potential of each particle species is
given by

μi ¼ BiμB − qiμe: ð34Þ

Here Bi (Bp ¼ Bn ¼ 1, Bu ¼ Bd ¼ Bs ¼ 1=3, and
Be ¼ Bμ ¼ 0) is the baryon number and qi (qp ¼ 1,
qn ¼ 0, qu ¼ 2=3, qd ¼ qs ¼ −1=3 and qe ¼ qμ ¼ −1)
the charge of particle type i. At given μB and μe, the
pressure and energy densities are obtained with

P ¼ P0 −
1

2
n0chðμe − μe0Þ2; ð35Þ

E ¼ E0 þ E0ðμe − μe0Þ þ
1

2
E00ðμe − μe0Þ2: ð36Þ

Here P0, E0, and μe0 are the pressure, energy density, and
electron chemical potential corresponding to those in
Figs. 2 and 4, while the derivatives n0ch ¼ ∂nch∂μe , E

0 ¼ ∂E
∂μe,

E00 ¼ ∂2E
∂μ2e are taken at μe ¼ μe0. The Debye screening length

is related to n0ch with λD ≡ ð−4παn0chÞ−1=2. According to the
basic thermodynamic relations, the charge density and
baryon number density are obtained with nch ¼ n0chðμe −
μe0Þ and n ¼ ðEþ μench þ PÞ=μB.

B. The quark-hadron interface

At the quark-hadron interface, the wave functions of
quarks approach to zero due to the presence of a

confinement potential, where quarks are depleted and the
corresponding energy contribution can be treated with a
surface tension Σ. Based on Massachusetts Institute of
Technology (MIT) bag model [107], linear sigma model
[108–110], NJL model [111,112], three-flavor Polyakov-
quark-meson model [113], Dyson-Schwinger equation
approach [114], equivparticle model [62], nucleon-meson
model [115], and Fermi gas approximations [116,117],
recent estimations suggest that the surface tension is likely
small and Σ≲ 30 MeV=fm2. Nevertheless, larger Σ was
also predicted in other investigations [118–120].
By counting the number of depleted quarks, the average

effects due to quark depletion are treated with a modifi-
cation to the density of states, i.e., the multiple reflection
expansion (MRE) method [58–61]. Consider only the
surface term, the modification for each quark flavor i
(i ¼ u, d, s) reads [58]

dNMRE
i

dpi
¼ −

gipi

4π2
arctan

�
mi

pi

�
S; ð37Þ

where NMRE
i is the negative number of depleted quarks, pi

the momentum of quarks, and S the surface area. The
corresponding contribution to the surface tension for each
quark species i is then obtained by equating the pressure
PMRE
i ¼ −ΣMRE

i
dS
dV, which gives

ΣMRE
i ¼ 1

S

Z
νi

0

dNMRE
i

dpi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2i þm2

i

q
Þdpi

¼ gim3
i

48π2
½ð4xi − 3πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
þ 2π − 2arcshðxiÞ

þ 2ðx2i þ 1Þ3=2arccotðxiÞ�: ð38Þ

Here xi ≡ νi=mi with νi being the Fermi momentum of
quarks. The surface tension predicted by the MRE method
is then obtained with Σ ¼ ΣMRE ¼ P

i¼u;d;s ΣMRE
i .

Nevertheless, the MRE method tends to overestimate the
surface tension by twice the value obtained with equi-
vparticle model [62,63]. This is mainly due to the different
confinement potential adopted in those models, where the
bag mechanism of the MRE method introduces an infinite
wall that results in a sharp density discontinuity. Since the
potential between quarks is proportional to the distance
instead of a wall [121], a more realistic scenario was
obtained with equivparticle model where confinement can
be reached with density-dependent quark masses in
Eq. (13). A smoothly varying quark density is then
obtained on the interface, where the surface tension was
found to be connected with the density of quark matter by
Σ ≈ 14.3nQ þ 1.3 (in MeV=fm2) [63]. Meanwhile, it was
shown that the surface tension predicted by the MRE
method coincides with equivparticle model if we introduce
a dampening factor, i.e., Σ ¼ 0.3

P
i¼u;d;s ΣMRE

i . Note that
the surface tension obtained by the equivparticle model
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[62,63] was for the quark-vacuum interface. The contribu-
tions from the hadron phase can be roughly included by
replacing the density of quark matter nQ by the density
difference Δn≡ jnQ − nHj between the two phases. To
avoid complications in minimizing the energy density in
Eq. (25), we fix Σ at a given total baryon number density n
for all cases considered here. Nevertheless, the surface
tension estimated with the MRE method or equivparticle
model varies with density, which will alter the baryon
chemical potential and pressure with

μB ¼ μI;IIB þ dχ
r
dΣ
dn

; ð39Þ

P ¼ μBn − Et: ð40Þ

The corresponding EOSs of MP will thus become stiffer if
dΣ
dn > 0, which is the case in our current study.
Due to the uncertainties in Σ, in this work we adopt nine

different values, i.e.,
(i) Σ ¼ 0 with Gibbs construction
(ii) Σ ¼ 5, 20, 50 MeV=fm2

(iii) Σ ¼ 0.5Σc with Σc predicted by Eq. (24)
(iv) Σ ¼ ΣMRE and Σ ¼ 0.3ΣMRE

(v) Σ ¼ 14.3Δnþ 1.3
(vi) Σ > Σc with Maxwell construction

We have adopted both the Gibbs and Maxwell construc-
tions in the two extreme scenarios with Σ ¼ 0 and Σ > Σc,
a detailed description on those phase construction schemes
can be found in our previous publication [13].

V. RESULTS AND DISCUSSIONS

By equating the pressures of hadronic matter in Fig. 2
and quark matter in Fig. 4, we obtain the critical chemical
potential μTB at which deconfinement phase transition
occurs. In Fig. 5, the corresponding critical surface tension
Σc fixed by Eq. (24) is presented. As the sizes of the full
circles increase, the adopted model parameters for quark
matter evolve in the order NJL: (HK, GV=GS ¼ 0 → 1.5),
NJL: (RKH, GV=GS ¼ 0 → 1.5), and Equiv with
(C,

ffiffiffiffi
D

p
in MeV): ð0; 180Þ → ð1; 140Þ → ð1; 180Þ →

ð−0.2; 180Þ → ð0.7; 140Þ → ð0.7; 180Þ. In our previous
study [13], we found a linear correlation Σc ¼ 0.23ðμTB −
930Þ þ 19 with Σc in MeV=fm2 and μTB in MeV, which is
indicated in Fig. 5 with a black solid line. However, such a
linear correlation fails to reproduce most of the current
results in Fig. 5. In particular, we notice that the slope and
intercept of the line vary with the adopted EOSs for both
HM and QM. The inclusion of hyperons also plays a role if
we adopt the effective interaction TM1 for the RMF model,
while those obtained with cluster variational methods (VM
and VMΛ) are not affected due to the much larger onset
density of Λ hyperons with the inclusion of three-baryon
forces.

With the properties of hadronic matter and quark matter
determined in Secs. II and III, the structures of MP inside
compact stars are obtained by minimizing the energy
density in Eq. (25) with the surface tension Σ fixed in
Sec. IV B. This indicates in total 4084 EOSs, where the
corresponding structures of hybrid stars are determined
by solving the TOV equation (10). Meanwhile, the tidal
deformabilities of those stars are estimated with Eq. (12). In
Fig. 6, we present the obtained tidal deformability (Λ1.4) as
a function of radius (R1.4) for 1.4 M⊙ compact stars, which
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FIG. 5. The critical surface tension Σc estimated with Eq. (24)
as a function of the chemical potential μTB on the occurrence of
deconfinement phase transition. The symbol color indicates the
hadronic EOSs adopted, while the size and shape represent the
adopted quark model.
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shows a correlation between those two observables. In
general, the traditional neutron stars indicated with open
squares have the largest radius and tidal deformability,
which will decrease as we include the quark phase. In most
cases, for a given hadronic EOS, there are stronger
correlations between Λ1.4 and R1.4 in hybrid stars, while
the inclusion of hyperons has little impact on the relation.
For traditional neutron stars, in Fig. 6, the black curve

indicates the relation Λ1.4 ¼ 5.9 × 10−5R6.26
1.4 obtained in

Ref. [122], while the correlation between the maximum
mass Mmax and Λ1.4 found in Ref. [89] is not observed due
to the first-order deconfinement phase transition.
By comparing with the observational mass

(2.14þ0.10
−0.09 M⊙) of PSR J0740þ 6620 [28] as well as the

tidal deformability constraint 70 ≤ Λ1.4 ≤ 580 from the
GW170817 binary neutron star merger event [42], we obtain
the permitted combinations of hadronic and quark EOSs
along with different values of surface tensions. In addition,
we require the hadron-quark transition density nT at μTB is
larger than 0.2 fm−3 according to heavy-ion collision
phenomenology, while the sound speed of hybrid star matter
does not exceed c. The permitted combinations of param-
eters are obtained, where in Figs. 7 and 8 we present the
corresponding maximum masses and tidal deformabilities.
For the cases where quark-matter properties are deter-

mined by equivparticle model and NJL model, the obtained
onset density for quark matter usually exceeds the central
density of 1.4 M⊙ neutron star if the two-solar-mass
constraint is reached, in which case quark matter does
not appear and Λ1.4 coincides with those of traditional
neutron stars. Nevertheless, quark matter persists in the
most massive compact stars, where in Fig. 7 we present the
maximum masses of hybrid stars that are consistent with
the aforementioned constraints. For the choices of hadronic
EOSs, only APR, VM, VMΛ, and TW99 persist due to the
constraint of the tidal deformability as indicated in Fig. 3.
For APR, VM, and VMΛ, the maximum mass is reduced
since we require the sound speed v < c. In most of the
cases, the obtained Mmax increases with Σ, while a slight
deviation is observed for a few cases if Σ is not constant,

APR

VM

VM�

TW
99

NJL
: (H

K, 0
.5)NJL

: (H
K, 1

)
NJL

: (H
K, 1

.5)
NJL

: (R
KH

, 0
)

NJL
: (R

KH
, 0

.5)
NJL

: (R
KH

, 1)

NJL
: (R

KH
, 1.

5)
Equ

iv: (
0, 1

80)
Equ

iv: (
1, 1

40)
Equ

iv: (
1, 1

80)

Equ
iv: (

-0.2
, 18

0)

Equ
iv: (

0.7
, 14

0)

Equ
iv:
(0.7

, 18
0)

2.10

2.15

2.20

M
m
a
x
(M

)

2

2

2
c

MRE

MRE
n + 1.3

c

FIG. 7. The permitted maximum masses of hybrid stars
predicted by various combinations of hadronic matter EOSs
and quark-matter EOSs. For NJL model, the parameter set (HK
[55] or RKH [56], GV=GS) is indicated explicitly. Similarly, the
parameter set (C,

ffiffiffiffi
D

p
in MeV) for equivparticle model is

presented as well.

2.0

2.5

3.0

APR

DD2

DDME2

PKDD

VM

VM�

TW99

TM1e

2.1
0

2.15

2.20

M
m
a
x (M

)

C
1

�� = 770 MeV
�� = 860 MeV
�� = 950 MeV

2

2

2
c

MRE

MRE
n + 1.3

c

2.0

2.5

3.0

APR

DD2

DDME2

PKDD

VM

VM�

TW99

TM1e

300

400

500

�
1
.4

C
1

�� = 770 MeV
�� = 860 MeV
�� = 950 MeV

2

2

2
c

MRE

MRE
n + 1.3

c

FIG. 8. Same as Fig. 7 but with the quark-matter properties determined by perturbation model, where the maximum masses (left) and
tidal deformabilities (right) of 1.4 M⊙ hybrid stars are presented. The model parameter Δμ is denoted by the size of each symbol.

CHENG-JUN XIA et al. PHYS. REV. D 102, 023031 (2020)

023031-10



e.g., Σ ¼ ΣMRE or Σ ¼ 14.3Δnþ 1.3. As indicated in
Fig. 11, the obtained Σ increases with density, so that
the corresponding EOSs of hybrid star matter are stiffer. In
such cases, the maximum mass of hybrid stars may be even
larger than those obtained with Maxwell construction at
Σ > Σc, e.g., the combinations of VM and equivparticle
model. A comparison between the values ofMmax obtained
with VM and VMΛ shows that the structures of the most
massive compact stars are altered by the emergence of
hyperons, despite the deconfinement phase transition
occurred in the center of a compact star. This can be easily
identified according to the hyperon and quark fractions
indicated in Fig. 9, where the Λ hyperon appears before
QM at n ≈ 0.6 fm−3 and reaches a fraction of χΛ ≈ 0.1. The
corresponding EOSs thus become softer in comparison
with those of VM, where hyperons persist in MP. The main
reason for this to occur is due to the fact that the energy per
baryon of QM obtained with equivparticle model or NJL
model is much larger than HM at n≲ 0.8 fm−3, so that χQ
is reduced and the onset densities of QM are larger than
hyperons.
For those where the quark-matter properties are obtained

with perturbation model, the corresponding hadron-quark
transition density nT is small for large enough C1. In such
cases, beside the most massive ones, the structures of
1.4 M⊙ hybrid stars are also altered by the quark phase.
This can be observed in Fig. 8, where the maximummasses
and tidal deformabilities of 1.4 M⊙ hybrid stars are
presented. At C1 ≳ 2.5, the obtained maximum mass
Mmax and tidal deformability Λ1.4 usually increase with
Σ, while there are few exceptions, e.g., PKDD, DDME2,

and DD2. Note that in our previous study using TW99,
sizable variation on the tidal deformability was observed
with respect to Σ [13], which is not evident in Fig. 8 since
we have ruled out the cases with Mmax < 2.05 M⊙. If the
surface tension Σ increases with density, the tidal deform-
ability and maximum mass of hybrid stars may become
larger. The obtained EOSs of hybrid star matter are softer
for larger Δμ, which predicts smallerMmax. Nevertheless, it
is worth mentioning that in most cases increasing Σ will
increase Mmax more evidently in comparison with decreas-
ing Δμ. For the cases of VM and VMΛ, adopting small C1

will give similar conclusion as in Fig. 7 since the corre-
sponding quark matter is too unstable to completely
exclude hyperons, where the maximum mass is reduced
with the emergence of hyperons. However, if we take
C1 ¼ 3, as indicated in Fig. 9, quark matter becomes more
stable so that hyperons are suppressed with χΛ ≲ 0.06 due
to a deconfinement phase transition. The structures of
hybrid stars are thus hardly affected by hyperons. In any
cases, hyperons do not appear in 1.4 M⊙ compact stars
with the central density ncentral ≲ 0.57 fm−3 so that Λ1.4 are
the same for those obtained with VM and VMΛ.
With the permitted combinations of hadronic and quark

EOSs along with different values of surface tensions
indicated in Figs. 7 and 8, in Fig. 10 we present the
corresponding radius, dimensionality, and quark fraction of
MP in hybrid star matter as functions of baryon number
density. After the quark matter (phase I) appears and forms
the droplet phase, the obtained dimensionality will later
decrease from d ¼ 3 to d ¼ 1 as we increase the density.
Then the phases I and II switch and the dimensionality
increases from d ¼ 1 to 3. For the cases with dimension-
ality lies in between (1 < d < 3), the radius r varies
smoothly, while sudden variations are observed during
the transition to d ¼ 1 or 3. It is interesting to note that the
structures of quark-hadron pasta phases vary smoothly by
treating the dimensionality as a continuous variable with
d ¼ 1–3, which may resemble the evolution of intermedi-
ate structures of droplet and rod, slab, and tube found in the
quantum molecular dynamics simulations [123] as well as
in the fully three-dimensional calculations adopting RMF
model and Thomas-Fermi approximation [124]. An early
emergence of quark matter is observed if we adopt DD2,
DDME2, PKDD, and TM1e for HM and perturbation
model for QM, which is necessary in order to reduce the
tidal deformabilities of 1.4 M⊙ hybrid stars that were
otherwise too large for traditional neutron stars. In general,
the quark fraction χQ increases with density, while there are
several cases where χQ varies nonmonotonically if we
adopt the perturbation model for QM. At certain choices of
parameters, a mixed phase may even appear after the
formation of quark phase with χQ ¼ 1, i.e., a retrograde
transition with QM → MP → QM, which is mainly caused
by adopting Eq. (19) for the quark phase. The transition
with HM → MP → HM is also observed for few cases such
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as those obtained with NJL model, which is an artifact since
the color confinement is not accounted for and we thus take
χQ ¼ 0, i.e., assuming a single phase of HM. The variation
of χQ becomes more drastic if larger surface tension values
were adopted and the density range of MP shrinks.
Meanwhile, the obtained radii of phase I are usually on
the order of fm and increase with Σ, which was discussed
extensively in previous studies [6–13].
In Fig. 11, we present the surface tension values

estimated with various methods, which are much smaller
than the critical surface tension Σc indicated in Fig. 5. This
is a strong indication that the quark-hadron mixed phase
prefers to form inhomogeneous structures inside hybrid
stars, where the energy reduction ΣcS that arises from the
relocation of charged particles is larger than the surface
energy ΣS. Note that we have fixed the surface tension
value at a given total baryon number density n, so that one
does not need to worry about the variations of Σ in
minimizing the energy density in Eq. (25). In general,
the surface tension values predicted by various methods are
increasing with μB, where the formula Σ ¼ 14.3Δnþ 1.3
gives the smallest Σ. The corresponding EOSs for MP are
thus stiffer than those obtained with constant surface
tension values, which increase the maximum masses of
hybrid stars as indicated in Figs. 7 and 8. Note that at

μB ≈ 1400 MeV, for few cases, the perturbation model
predicts smaller baryon number density of quark matter
than that of hadronic matter, which causes fluctuations if
the surface tension is estimated with Σ ¼ 14.3Δnþ 1.3.
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At larger μB, the relation 0.3ΣMRE ≈ 14.3Δnþ 1.3 can be
fulfilled approximately, which coincides with the predic-
tions of equivparticle model [62,63]. With the surface
tension values indicated in Fig. 11, the obtained structures
of quark-hadron mixed phase follow the same trend as
indicated in Fig. 10, where the radius r increases with Σ.
The EOSs of hybrid star matter are presented in Fig. 12,

where at n≲ 0.8 fm−3 the obtained pressures are close to
each other for cases with and without the emergence of
quark matter. At larger densities, the uncertainty grows and
the pressure obtained with NJL model and few cases of
equivparticle model are much larger than those of pertur-
bation model. Nevertheless, we mention that the pressure
obtained with perturbation model is expected to be rea-
sonable at highest densities since a perturbation expansion
with respect to αs becomes more reliable [44]. The EOSs of
quark-hadron mixed phase is sensitive to the surface
tension value Σ, which becomes softer with smaller density
range if Σ is larger. The corresponding structures of hybrid
stars thus vary with Σ as well, where the maximum mass
and tidal deformation are altered as indicated in Figs. 7
and 8.
Based on the EOSs presented in Fig. 12, the structures of

compact stars can be obtained by solving the TOV
equation (10). In the left panel of Fig. 13, we present
the corresponding M − R relation of hybrid stars. The
obtained radii of 1.4-solar-mass compact stars range from
11.1 to 12.9 km, which are consistent with the radius
measurements of J0030þ 0451 [34,35] and binary neutron
star merger event GW170817 [42]. Meanwhile, the total
mass of quark matter and quark-hadron mixed phase is
obtained with MQM þMMP ¼

R Rc
0 4πEtr2dr, where Rc is

the critical radius that at r > Rc the quark fraction χQ

reduces to 0. The corresponding fraction ðMQM þ
MMPÞ=M is then indicated in the right panel of Fig. 13.
The obtained M − R relation is identical to that in Fig. 3
before a deconfinement phase transition in the center. Once
the quark phase emerges, the radius of a compact star
becomes smaller and the compactness increases. For those
with a smaller onset densities of quark phase (e.g.,
TM1 e=PKDD=DDME2=DD2 perturbation model), the
fraction ðMQM þMMPÞ=M increases quickly starting at
M ≈ 0.2 − 1 M⊙ and approaches to almost 1 atM ¼ Mmax.
A third family of compact stars [125,126] is observed for
the case with a combination of PKDD perturbation model
(C1 ¼ 3, Δμ ¼ 770 MeV) Σ > Σc, where a jump of
152 MeV fm−3 in the energy density from nuclear matter
to quark matter is predicted. Note that if we take a largerΔμ
for Eq. (19), the third family of compact stars indicated in
Fig. 13 will not be permitted by astrophysical observations.
In almost all combinations of hadronic and quark EOSs
along with different values of surface tensions, the quark
phase persists in the most massive compact stars, where the
fraction ðMQM þMMPÞ=M ranges from 0 to almost 1. This
is in coincidence with the recent studies [127–129], which
suggest the presence of quark-matter cores inside massive
compact stars.
Aside from the observational constraints on the mass,

radius, and tidal deformability, the thermal evolution of
compact stars also provides important information on their
internal composition [130]. Based on the thermal emission,
kinematic measurements, spin period, and its derivative,
both the surface temperatures and ages of compact stars can
be estimated [131,132]. According to various observational
data, the theoretical cooling models suggest that rapid
cooling due to the direct Urca (DU) processes should not
occur in typical neutron stars within the mass range 1 −
1.5 M⊙ [133–135]. The DU process in nuclear matter
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involves the β decay and electron capture processes of
nucleons, i.e., n → pþ e− þ V̄e and pþ e− → nþ Ve.
The quark analogs of the nucleon DU processes are d →
uþ e− þ V̄e and uþ e− → dþ Ve. Those processes will
occur inside compact stars once the momentum conserva-
tion is fulfilled, i.e., the triangle inequalities νn ≤ νp þ νe
and νd ≤ νu þ νe with νi being the Fermi momentum [136].
If the strangeness is involved, the DU processes such as
Λ → pþ e− þ V̄e and s → uþ e− þ V̄e should also take
effects. However, we neglect those processes here since
their neutrino emissivities are expected to be less than that
of nucleon/quark DU processes [130] while hyperons
appear at rather large densities as indicated in Fig. 9. In
Fig. 14, the hybrid star masses as functions of the central
density are presented, where the open and full circles mark
the critical mass (MDU) and central density (nDU) fulfilling
the triangle inequalities. For stars with masses larger than
MDU, it was shown that the neutrino emissivity is enhanced
significantly by the DU processes [137], which cool the
stars too rapidly within just a few years [133].
The obtained critical mass and central density corre-

sponding to NJL model and equivparticle model are usually
large with MDU ≳ 2 M⊙ and nDU ≳ 0.8 fm−3, which are
consistent the observational thermal evolution of compact
stars [133–135]. If a large C1 is adopted for the perturbation
model, QM will emerge at small densities and lead to the
quark DU processes. Meanwhile, as indicated in Fig. 14,
the nucleon DU processes will take place if we adopt
PKDD for HM, where the triangle inequality is fulfilled due
to the reduction of electron chemical potentials with the
appearance of QM. A more detailed investigation on
different combinations of hadronic EOSs and surface
tensions is indicated in Fig. 15, where the critical masses

MDU for both nucleon and quark DU processes are
presented. For these where DU processes never take place,
we take MDU ¼ Mmax. By applying the constraint
MDU > 1.5 M⊙, it is found that most combinations of
hadronic EOSs with quark EOSs determined by perturba-
tion model at C1 ¼ 3 are not permitted due to an early
emergence of QM at small hadron-quark transition den-
sities nT ≲ 0.3 fm−3, which lead to the quark DU proc-
esses. Meanwhile, larger values of nT are obtained with the
hadronic EOSs VM, VMΛ, and APR, and consequently the
quark DU processes do not occur if large surface tension
values are adopted. In such cases, an early emergence of
QM at nT ≲ 0.3 fm−3 is prohibited by the DU criterion. At
C1 ¼ 2.5, the small surface tension values Σ ¼ 0 and
14.3Δnþ 1.3 are excluded for the hadronic EOSs VM
and VMΛ due to the occurrence of quark DU processes.
Similarly, Σ ¼ 20 MeV=fm2, ΣMRE, and 0.3ΣMRE are not
permitted for the hadronic EOS APR. As indicated in the
upper panel of Fig. 15, the hadronic EOS PKDD is
excluded since nucleon DU processes always occur in
typical compact stars, which rules out the third family of
compact stars in Fig. 13. It is worth mentioning that the
color superconductivity of quark matter will effectively
hinder the quark DU processes [130], so that the cases with
MDU < 1.5 M⊙ in the lower panel of Fig. 15 may not
necessarily lead to a fast cooling and the tension with the
observational data can be eased. For example, if QM forms
a two-flavor superconducting phase, the cooling history of
a hybrid star with a large quark core may be consistent with
the x-ray data [138]. Note that in the extreme scenario
where hybrid stars are comprised almost entirely of QM in
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the color-flavor-locked phase, heat capacity would be too
low to be consistent with observations [139,140].

VI. CONCLUSION

In this work, we investigate systematically the possible
hadron-quark deconfinement phase transition in dense
stellar matter and its influence on compact star structures.
For the hadronic phase, we adopt in total ten different
EOSs, i.e., eight nuclear EOSs (TM1e [66], TM1 [64],
PKDD [74], TW99 [43], DDME2 [75], DD2 [76], VM
[49], APR [48]) and two hyperonic EOSs (TM1Λ [70] and
VMΛ [83]), which are predicted by relativistic-mean-field
model [47] and variational method with realistic baryon
interactions [48,49]. For the quark phase, we adopt 46
EOSs predicted by equivparticle model [50–52], perturba-
tion model [44,53,54], and NJL model with vector inter-
actions [55,56]. With the properties of both hadronic matter
and quark matter fixed, the structures of quark-hadron
mixed phase are obtained assuming a continuous dimen-
sionality as proposed by Ravenhall et al. [57]. The energy
contribution due to the quark-hadron interface is treated
with a surface tension Σ, where we have taken constant
values for Σ as well as those estimated by the multiple
reflection expansion method [58–61] and equivparticle
model including both linear confinement and leading-order
perturbative interactions [62,63]. The critical surface ten-
sion Σc that accounts for the energy reduction due to the
relocation of charged particles is estimated for various
combinations of quark and hadronic EOSs. It is found
that in most cases we have Σ < Σc, where inhomo-
geneous structures for the quark-hadron mixed phase are
favored.
As we increase the density of hadronic matter, quark

matter will emerge and forms a quark-hadron mixed phase.
By minimizing the energy density at given baryon number
density, we have obtained the radius, dimensionality, and
quark fraction of MP. It is found that the obtained radius
normally ranges from ∼1 to ∼10 fm and is increasing with
Σ. The radius evolves more smoothly with density if the
dimensionality changes continuously. Adopting various
combinations of hadronic and quark EOSs along with

different values of surface tensions, the quark fraction
usually increases monotonically and turns into a pure quark
phase. The corresponding EOSs for hybrid star matter are
obtained, which predict the structures of compact stars by
solving the TOV equation. It is found that the correlation
between radius and tidal deformability in traditional neu-
tron stars [89,122] preserves in hybrid stars. Once quark
matter emerges inside compact stars, the quark-hadron
interface plays an important role on their structures. The
surface tension Σ estimated with the multiple reflection
expansion method or equivparticle model increases with
density, which predicts stiffer EOSs for the quark-hadron
mixed phase and increases the maximum mass of hybrid
stars. The hyperons are suppressed if we adopt a quark
model that predicts relatively small energy per baryon of
quark matter at small densities. Based on various con-
straints of nuclear physics, causality limit, and pulsar
observations, we obtain the permitted parameter sets that
are consistent with observation. It is found that the quark
phase persists inside the most massive compact stars in
almost all the permitted cases. Meanwhile, comparing with
higher density regions, the variation of pressure is small at
n≲ 0.8 fm−3 irrespective of the emergence of quark matter.
The current constraints can be further improved based on
the thermal evolution of compact stars, which rules out an
early emergence of quark matter at densities smaller than
0.3 fm−3 in the absence of color superconductivity.
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