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We report on the gravitational-wave signal computed in the context of a three-dimensional simulation of
a core-collapse supernova explosion of a 15M⊙ star. The simulation was performed with our neutrino
hydrodynamics code CHIMERA. We detail the gravitational wave strains as a function of time, for both
polarizations, and discuss their physical origins. We also present the corresponding spectral signatures.
Gravitational wave emission in our model has two key features: low-frequency emission (less than 200 Hz)
emanates from the gain layer as a result of neutrino-driven convection and the standing accretion shock
instability (SASI), and high-frequency emission (greater than 600 Hz) emanates from the proto–neutron
star due to Ledoux convection within it. The high-frequency emission dominates the gravitational wave
emission in our model and emanates largely from the convective layer itself, not from the convectively
stable layer above it, due to convective overshoot. Moreover, the low-frequency emission emanates from
the gain layer itself, not from the proto–neutron star, due to accretion onto it. We provide evidence of the
SASI in our model and demonstrate that the peak of our low-frequency gravitational wave emission
spectrum corresponds to it. Given its origin in the gain layer, we classify the SASI emission in our model as
p-mode emission and assign a purely acoustic origin, not a vortical–acoustic origin, to it. We compare the
results of our three-dimensional model analysis with those obtained from the model’s two-dimensional
counterpart and find a significant reduction in the strain amplitudes in the former case, as well as significant
reductions in all related quantities. Our dominant proto–neutron star gravitational wave emission is not well
characterized by emission from surface g modes, complicating the relationship between peak frequencies
observed and the mass and radius of the proto–neutron star expressed by analytic estimates under the
assumption of surface g-mode emission. We present our frequency normalized characteristic strain along
with the sensitivity curves of current- and next-generation gravitational wave detectors. This simple
analysis indicates that the spectrum of gravitational wave emission between approximately 20 Hz and
approximately 1 kHz, stemming from neutrino-driven convection, the SASI, accretion onto the proto–
neutron star, and proto–neutron star convection, will be accessible for a Galactic event.

DOI: 10.1103/PhysRevD.102.023027

I. INTRODUCTION

The first direct detection of gravitational-wave signals
from a binary–black hole merger [1,2] opened a new era in

observational astronomy and a new window on the
Universe. Followed not long after by the detection of
gravitational waves from a binary–neutron star merger [3],
what was envisioned to be the importance of gravitational
wave astronomy to the study of gravity per se, and
astrophysics, was realized. The detections resulted in the*mezz@utk.edu
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confirmation of one of the most important predictions of
general relativity: the existence of gravitational waves.
Predictions of waveforms from the inspiral of binary black
holes, long sought after and finally obtained by the
numerical relativity community, were validated as well.
And, last but not least, confirmation that binary–neutron
star mergers may in fact be key to the production of heavy
elements rounded out the early successes. While such
confirmations reassured the relativity and astrophysics
communities of their progress, the detections of the
gravitational waves from these systems also raised many
questions, e.g., how the black holes of the masses inferred
from the first observed black-hole inspiral are produced.
This has set the stage to prepare, even more fervently, for

future detections, especially of one of the last of the primary
sources of gravitational waves that will be detectable by
current-generation gravitational wave detectors: a (Galactic)
core-collapse supernova explosion. Core collapse super-
novae are physics rich, with many processes operating in
conjunction to produce a supernova. Supernova models are,
therefore, innately complex. In the case of a Galactic event, a
gravitationalwave detection is possible [4]. Such a detection,
along with a detection of the supernova neutrinos, would
provide direct information about these processes and the
supernova “central engine,” in turn allowing us to validate
ourmodels and to derive a better understanding of the central
engine’s physics. Progress in core-collapse supernova theory
will be necessary to address questions such as the question
raised earlier regarding the masses of black holes formed
during stellar core collapse. Stellar mass black holes are
produced in core collapse supernovae. Theory will need to
progress to better determine the outcomes of stellar collapse
across the range of progenitormass and progenitor character-
istics (e.g., metallicity and rotation) observed in nature.
Many studies of gravitational wave emission in core

collapse supernovae based on a variety of two- and three-
dimensional core-collapse supernova models were per-
formed in the past [5–26], including our studies [27,28].
Arguably, progress on multidimensional core-collapse
supernova modeling has been exponential, in light of the
increasingly powerful computational resources available to
modelers, culminating in the recent three-dimensional
modeling efforts of a number of groups [29–54]. Studies
of the gravitational wave emission based on simulation data
from these latter studies have demonstrated that emission
predictions made in the context of two-dimensional, axi-
symmetric models differ quantitatively and qualitatively
from thosemade in the context of three-dimensional models.
Moreover, conclusions regarding the physical origin of the
gravitational radiation produced differ as well, especially for
the dominant contributions from late-time proto–neutron star
gravitational wave emission, which dominates the emission
in all models, both two- and three-dimensional. Andresen
et al. [18] find that gravitational wave emission in their three-
dimensional models is dominated by emission from the

convectively stable, overshoot layer (region 2 in Fig. 1; their
counterpart is labeled A2) above the layer of ongoing proto–
neutron star convection (region 1; their counterpart is labeled
A1). While the dominant emission of gravitational radiation
still emanates from the proto–neutron star, the excitation
mechanism of the modes generating the radiation is funda-
mentally different. In two dimensions, the modes
are excited from above. Accretion funnels resulting from
neutrino-driven convection and the standing accretion shock
instability (SASI) impinge on the proto–neutron star surface
layers (region 3; Andresen et al.’s counterpart is labeled B)
and excite g modes within them. In three dimensions,
Andresen et al. find that the modes are excited internally,
from below, by proto–neutron star convection. Moreover,
they find a significant reduction in the amplitude of the
gravitational waves emitted relative to the amplitudes they
and others obtain in two dimensions. In more recent studies
of gravitational wave emission based on three-dimensional
models, O’Connor and Couch [48], Radice et al. [25], and
Powell and Müller [54] come to a different conclusion. In
their models, g-mode oscillations of the convectively stable
layers below the surface of the proto–neutron star remained
excited from above, as in the two-dimensional case.
Moreover, for Radice et al., the dominant gravitational wave
emission after approximately 400 ms of postbounce evolu-
tion stemmed from the fundamental (quadrupolar) mode, not
from g modes. In our study, we expand the spectrum of
possibilities.
Thus, gravitational wave analysis in the context of some

of today’s most sophisticated three-dimensional core-col-
lapse supernova models is so far pointing to a model-
dependency to some of the critical aspects—specifically,
the source and nature—of the gravitational wave emissions.
As additional three-dimensional models become available—
particularly in the context of equivalent models across
different groups using different codes—we will be able to

FIG. 1. Schematic showing the five critical regions in our
analysis.
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separate out any biases introduced by numerical effects. But
fundamental physical differences for different equations of
state and/or different progenitors and progenitor character-
istics may remain. Along with continued three-dimensional
modeling and the resultant growth in the number of models
available, the emergent field of proto–neutron star seismol-
ogy [55–57] will be useful to help sort through the possibil-
ities, to properly classify the modes leading to gravitational
wave emission in the community’s emerging three-dimen-
sional models. This will be essential to extracting core
collapse supernova and proto–neutron star physics when
we are fortunate enough to detect the gravitational waves
from a (Galactic) event.

II. MODELS AND METHODS

Our gravitational wave analysis is based on the data
generated in the two- and three-dimensional core-collapse
supernova simulations performed by Lentz et al. [39]. The
simulations were both initiated from the nonrotating 15M⊙
progenitor of Woosley and Heger [58]. The simulations
were performed with the CHIMERA code, which is based on
multigroup flux-limited diffusion in the ray-by-ray approxi-
mation, Newtonian self-gravity with a monopole correction
to account for the effects of general relativity, Newtonian
hydrodynamics, and a nuclear reaction network [59].
CHIMERA includes electron capture on protons and nuclei,
the latter using the Langanke–Martinez-Pinedo–Sampaio–
Hix capture rates, electron–positron annihilation, and
nucleon–nucleon bremsstrahlung, along with their inverse
weak interactions. It also includes coherent isoenergetic
scattering on nuclei, as well as neutrino–electron (large-
energy transfer) and neutrino–nucleon (small-energy trans-
fer) scattering. In both simulations, we employed two
equations of state: Lattimer and Swesty [60] (with an
incompressibility K ¼ 220 MeV) for ρ > 1011 g cm−3 and
an enhanced version of the Cooperstein [61] equation of
state for ρ < 1011 g cm−3. In outer regions, we employed a
14-species α network [62].
The three-dimensional computational grid for model

C15-3D comprised 540ðrÞ × 180ðθÞ × 180ðϕÞ zones
equally distributed in the ϕ direction only. (Here, “C”
means from the CHIMERA C-Series simulation suite, and 15
delineates the progenitor mass.) The θ resolution in the
three-dimensional model varied from 2=3° near the equator
to 8.5° near the poles (i.e., to keep μ≡ cos θ constant). The
θ resolution in the two-dimensional model, C15-2D, was
uniformly 0.7°. The radial resolution in both simulations
varied according to conditions of the moving grid and
reached 0.1 km inside the proto–neutron star. Model C15-
3D was evolved in one dimension during collapse and
through bounce. At 1.3 ms after bounce, random density
perturbations of 0.1% were applied to the matter between
10–30 km, which is the region that had been shocked.
We employ the quadrupole approximation for extracting

the gravitational-wave signals from the mass motions,

using the expressions detailed in Ref. [28] (for the two-
dimensional case) and below (for the three-dimensional
case). Unless otherwise noted, the results presented here are
for model C15-3D. To isolate the impact of dimensionality,
all comparisons of the gravitational wave emissions in C15-
2D and C15-3D have been performed using the same
evolution time frame, dictated by the duration of both runs
(0–450 ms).
We begin with the lowest multipole (quadrupole)

moment of the transverse-traceless gravitational wave
strain [63]

hTTij ¼ G
c4
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The mass quadrupole is
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In Eq. (7), dV ¼ r2 sin θdrdθdϕ, and τ00 is simply the
rest-mass density, ρ, for the weak fields assumed here.
(N.B. (Nota bene.) The coefficient 1

15
was incorrectly

written as 1
5
in Refs. [27,28].) We also define the gravita-

tional wave amplitude
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A2m ≡ G
c4

d2I2m
dt2

: ð8Þ

Any gravitational wave extraction method should endeavor
to minimize numerical noise. Unfortunately, most numeri-
cal differentiation methods amplify numerical noise. To
avoid this, we define

A2m ≡ dN2m

dt
; ð9Þ

where

N2m ¼ G
c4

dI2m
dt

: ð10Þ

Combining Eqs. (7) and (10), we obtain

N2m ¼ 16
ffiffiffi
3

p
πG

15c4
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The continuity equation can be used to eliminate the time
derivative in Eq. (11), which gives [64]

N2m ¼ 16
ffiffiffi
3
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where r0, ϑ0, and φ0 are the spherical coordinates in the
source frame. vi

0
are the components of the velocity in the

same frame. (N.B. The factor 1
15
is missing in Ref. [28].) To

compute the gravitational wave amplitude, Eq. (8), we
evaluate the time derivative of N2m numerically by com-
puting N2m using Eq. (12) on each time slice of our
simulation and in turn computing the time derivative by
differencing the values of N2m obtained on adjacent slices
using a second-order finite-difference stencil. Finally, we
compute the gravitational wave strains for both polar-
izations, which are related to hTTij by

hþ ¼ hTTθθ
r2

; ð13Þ

h× ¼ hTTθϕ
r2 sin θ

: ð14Þ

The total luminosity emitted in gravitational waves is
given by [65]

dE
dt

¼ c3

G
1

32π

Xþ2

m¼−2

����� dA2m

dt

����2
	
; ð15Þ

where the hi indicate averaging over several wave cycles.
To compute the spectral signatures, we must relate the
gravitational wave luminosity to its spectrum, using
Parseval’s theorem:

Z þ∞

−∞
jxðtÞj2dt ¼

Z þ∞

−∞
jx̃ð2πfÞj2df: ð16Þ

Here, x̃ð2πfÞ is the Fourier transform of xðtÞ. The total
energy emitted in gravitational waves is

E ¼
Z þ∞

−∞
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dt

dt ¼ c3
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where the overdot now represents the time derivative. The
time derivative of Ã2m in Eq. (17) can be eliminated using
the standard property of Fourier transforms, i.e.,

j _̃A2mð2πfÞj2 ¼ ð2πfÞ2jÃ2mð2πfÞj2: ð18Þ

Inserting Eq. (18) in Eq. (17) and taking the derivative with
respect to frequency gives

dE
df

¼ c3

16πG
ð2πfÞ2

Xþ2

m¼−2
jÃ2mj2: ð19Þ

The stochastic nature of GW signals from core collapse
supernovae prompts the use of short-time Fourier transform
(STFT) techniques to determine Ã2m [6],

STFTfA2mðtÞgðτ;fÞ¼
Z

∞

−∞
A2mðtÞHðt− τÞe−i2πftdt; ð20Þ

where Hðt − τÞ is the Hann window function. In our
analysis, we set the window width to approximately
15 ms. The sampling interval of our data is approximately
0.02 ms during the first tens of ms after bounce, rises to
approximately 0.15 ms at 100 ms, and then settles down to
a value approximately 0.10 ms from 300 ms postbounce
until the end of our run. Data from this nonuniform
temporal grid are interpolated onto a uniform temporal
grid prior to the computation of the short-time Fourier
transform. Finally, we relate dE=df to the characteristic
gravitational wave strain, defined by [66]
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h2charðfÞ ¼
2Gð1þ zÞ2
π2c3D2ðzÞ

dE
df

½ð1þ zÞf�; ð21Þ

where z is the source’s redshift. Here, we assume z ¼ 0, as
for a Galactic supernova. Then, Eq. (21) becomes

hcharðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G

π2c3D2

dE
df

s
: ð22Þ

Here, D is the distance to the supernova.

III. RESULTS

A. Temporal analysis

Figures 2, 3, 4, and 5 show the time evolution of Dhþ,
Dh×, and the Fourier transform of hþ, respectively, as a
function of time after bounce, for the entire duration of our
run. After the quiescent phase, which lasts until t ∼ 100 ms
after bounce, a signal with frequencies below approxi-
mately 200 Hz begins and persists through the remainder of

our simulation. This phase of gravitational wave emission
corresponds to the development of aspherical mass motion
in the gain layer, or net neutrino heating layer, between the
gain radius and the shock, due to the development of
neutrino-driven convection there and the development
of the SASI. This low-frequency emission persists through-
out the remainder of our run, as neutrino-driven convection
and the SASI are maintained through the entire remaining
evolution we cover in this model. After approximately
150 ms after bounce, the low-frequency signal is joined by
another, intermediate-frequency signal, between approxi-
mately 400–600 Hz. This is particularly evident in Fig. 5
between 150 and 200 ms after bounce. We associate this
with gravitational wave emission by the proto–neutron star
(mostly from regions 2 and 3; see Figs. 13 and 14) as the
aspherical accretion flow impinges on it once neutrino-
driven convection and the SASI have developed. This
component of the gravitational wave emission weakens
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FIG. 2. The gravitational wave strain for the þ polarization,
plotted as a function of time over the course of our simulation,
viewed along the z axis. The period between bounce and
approximately 100 ms is fairly quiescent with regard to gravi-
tational wave emission. This initial quiescent period is followed
by a period during which neutrino-driven convection and the
SASI develop, generating low-frequency (less than 200 Hz)
gravitational waves for the duration of the simulation. In the
period between approximately 150 and 200 ms, this low-
frequency emission is joined by intermediate frequency emission
from the proto–neutron star, in the range approximately 400–
600 Hz, due to neutrino-driven convection- and SASI-induced
aspherical accretion onto it. After approximately 200 ms, gravi-
tational wave emission is dominated by high-frequency emission,
above approximately 600 Hz, by a second phase of Ledoux
convection deep within the proto–neutron star, which is long-
lived and persists to the end of our simulation, as well. The
change in character of the gravitational wave strain across these
phases is readily seen in the plot.
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FIG. 3. Same as in Fig. 2 but for the × polarization.
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FIG. 4. Plot of the strain amplitude for both polarizations,
viewed along the z axis. Clearly, the strain amplitudes for the two
polarizations are comparable, which reflects the fact there is no
preferred physical direction in our model.
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as the shock radius begins to expand and explosion is
initiated, which occurs after approximately 200 ms in this
model [39]. After approximately 200 ms, the final and
dominant phase of gravitational wave emission begins.
This is due to a second, but now long-lived, phase of
Ledoux convection deep in the interior of the proto–neutron
star. Unlike the case of early prompt Ledoux convection in
the proto–neutron star, this second phase of Ledoux
convection is sustained by continued neutrino diffusion
out of the core and, consequently, by the maintenance of the
lepton gradients that drive it. The rise in the peak frequency
for this higher-frequency branch of the gravitational wave
emission results from the evolution of the proto–neutron
star as it deleptonizes and contracts. In Fig, 4, we plot the
strains associated with the two polarizations. They are
clearly comparable in magnitude and share very similar
time dependence, which mirrors the hydrodynamics we
observe in this model. No particular direction can be
singled out (although, along these lines, we comment on
the impact of our constant-mu grid in Sec. III E).
Figure 6 is a plot of the shell-averaged Brunt-Väisälä

(BV) frequency as a function of radius and postbounce time
over the course of our run. The BV frequency plotted here
is given by [67]

ωBV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

ρ

∂Φ
∂r

��∂ρ
∂s

�
P;Yl

ds
dr

þ
� ∂ρ
∂Yl

�
P;s

dYl

dr

�s
: ð23Þ

where Φ, s, and Yl are the gravitational potential, entropy
per baryon, and total lepton fraction (electrons plus
neutrinos), respectively. The BV frequency is evaluated
using the CHIMERA simulation data. For ρ ≥ 1012 g cm−3,
the neutrino fraction in Yl is computed assuming the
neutrino distribution function is the equilibrium distribu-
tion function at the local thermodynamic conditions. For
lower densities, we substitute Ye for Yl in Eq. (23). Ledoux
stable (unstable) regions correspond to real (imaginary)ωBV.
Ledoux unstable regions are shown in red. Stable regions are
shown in blue. Five contours are clearly visible. The inner-
most contours (shown in black, located where the convective
velocities are 5% of peak) bound the region of convective
overturn deep in the proto–neutron star interior. Moving
outward in radius, two additional contours (shown in dark
green) mark the 1012 and 1011 g cm−3 constant-density

FIG. 5. The Fourier transform of hþ binned in frequency and
time over the course of our simulation. Three distinct features are
evident. After approximately 100 ms, gravitational radiation with
frequencies less than approximately 200 Hz is emitted, due to
aspherical mass motions in the gain layer from neutrino-driven
convection and the SASI. Between approximately 150 and
200 ms, this is joined by intermediate-frequency emission from
the proto–neutron star, in the range approximately 400–600 Hz,
due to aspherical accretion onto it. The accretion flows become
aspherical after neutrino-driven convection and the SASI de-
velop. After approximately 200 ms, gravitational radiation at high
frequencies greater than 600 Hz is emitted, due to Ledoux
convection in the proto–neutron star. The peak frequency of this
emission rises as the proto–neutron star evolves.

FIG. 6. Plot of the shell-averaged BV frequency as a function of
radius and time in our simulation. The scale on the right-hand
side is in Hertz. Stability (instability) to Ledoux convection is
indicated by blue (red) shading. Five contours are pronounced
in the plot, bounding five regions. Two contours (black, located
where the convective velocities are 5% of peak) bound the
region of convective overturn deep within the proto–neutron
star. Moving outward, two contours (dark green) mark the ρ ¼
1012;11 g cm−3 constant-density contours, respectively. The outer-
most contour (light green) traces the angle-averaged gain radius.
In our model, the surface of the proto–neutron star is defined by
ρ ¼ 1011 g cm−3, above which the BV frequency is not com-
puted. Early Ledoux instability between 20 and 50 km and for
postbounce times less than approximately 10 ms is indicated as is
instability between 60 and 80 km up to approximately 30 ms after
bounce. Deep proto–neutron star Ledoux instability is evident, as
well, beginning after approximately 175 ms after bounce and
continuing for the duration of our simulation, between approx-
imately 9 and 20 km.
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contours, respectively. The 1011 g cm−3 constant-density
contour corresponds to the (defined) surface of the proto–
neutron star. Finally, the outermost contour (shown in light
green) marks the gain radius, bounding the gain layer from
below. We do not compute the BV frequency above the
proto–neutron star surface. There, the BV frequency is set to
zero. The early Ledoux instabilities between 20 and 50 km
and between 60 and 80 km initiate prompt convection, but by
approximately 30 ms after bounce, prompt convection
renders this region of the core Ledoux stable. No significant
gravitational wave emission occurs in association with this
first phase of proto–neutron star Ledoux instability.
However, at approximately 175 ms after bounce, between
10 and 20 km, clearly the proto–neutron star core once again
becomes Ledoux unstable and remains unstable for the
duration of the run. In turn, this long-lived Ledoux instability
drives convection in the region, which is responsible for the
higher-frequency gravitational wave emission that persists,
as well. [The red line along the 1012 g cm−3 constant-density
contour is an artifact and simply the result of switching there
between evaluating the BV frequency using Yl versus Ye in
Eq. (23) as we move inward toward higher densities. It does
not reflect a physical Ledoux instability.]
Direct evidence that the gravitational wave emission in

our model after 200 ms postbounce is dominated by
Ledoux convection in the proto–neutron star is provided
by looking at snapshots of the gravitational wave ampli-
tudes at late times in the run. Figures 7 and 8 show the
integrand of the gravitational wave amplitude A20 as a
function of r and θ for two values of ϕ, at approximately
400 ms after bounce. Here, we plot the time derivative
(computed by differencing) of the integrand in Eq. (12), for
m ¼ 0. Specifically, we plot

8

ffiffiffiffiffi
π

15

r
G
c4

Δfr3ρ sin θ½vrð3cos2 θ − 1Þ − 3vθ sin θ cos θ�g
Δt

:

ð24Þ

It is clear that the amplitude is largest in the region between
10 and 20 km, where the proto–neutron star is Ledoux
unstable. The proto–neutron star radius at this time is
approximately 30 km (this can be read off of Fig. 6).
Modest gravitational wave amplitudes in regions just below
and just above the proto–neutron star surface, as well as
above approximately 45 km—i.e., in the gain layer—can be
seen, as well.
In Figs. 9 and 10, we plot the gravitational wave strain as

a function of radius only (lower panels in both figures). The
upper panels show the entire strain over the course of our
run. The total strain at the particular postbounce time when
we look at the strain’s radial profile is indicated by the
green dot in the upper panel. The value of the strain
indicated by the dot is simply the sum of all of the strains
across the plot in the lower panel—i.e., each amplitude
across our radial grid in the lower panel is the value of the

gravitational wave strain for its radial shell, including both
the integrand and the volume element in Eq. (12). The
vertical blue line in both plots marks the radius of the
proto–neutron star surface. Two time slices are displayed.
In both cases, it is evident that the strain is largest between
10 and 20 km—i.e., in the Ledoux convective region. Also

FIG. 7. The integrand [Eq. (24)] of the gravitational wave
amplitude A20 is plotted for ϕ ¼ 0 as a function of r and θ at a
time ∼400 ms after bounce. The largest amplitudes are seen
concentrated in the region between 10 and 20 km in radius, for all
θ. We attribute these amplitudes to Ledoux convection in this
region of the proto–neutron star, which begins after approx-
imately 175 ms after bounce and persists throughout our
simulation. Nontrivial amplitudes are also evident in the region
just below and above the proto–neutron star surface, which is
located at approximately 30 km at this time. These latter
amplitudes are induced by a combination of convective overshoot
(undershoot) from the regions below (above).

FIG. 8. Same as in Fig. 7 but for ϕ ¼ π=2. In this snapshot,
gravitational wave amplitudes are particularly evident in the
region above approximately 45 km, signatures of the aspherical
mass motions in the gain layer.
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evident by comparing the strain in this region in both
figures is its rapid variability, with the magnitude and even
sign of the radial profile of the strain changing rapidly over
a period of only approximately 380 μs.
From Figs. 11 and 12 through 16, the origin of the

gravitational wave emission as a function of radial region
and t > 100 ms postbounce can be extracted. Figure 11
makes clear that the largest gravitational wave strains are
generated in the convectively unstable layer: region 1.
Following the classification in Torres-Forné et al. [56],
based on the nature of the restorative force in a region, we
associate such emission with p modes. Region 2, which is
convectively stable, produces notable strains, which we

associate with g modes, resulting from convective over-
shoot from region 1. Region 5 is the gain region and is
clearly the source of our low-frequency—i.e., frequencies
below approximately 200 Hz—gravitational wave emis-
sion. Gravitational wave emission in region 5 results from
mass motions induced by neutrino-driven convection and
the SASI. We associate the emission in this region with p
modes. This breakdown of the gravitational wave emission
by radial layer is borne out in the heat maps for each of
these layers, shown in Figs. 12–16. The high-frequency
emission clearly stems from regions 1 and 2, whereas the
low-frequency emission, below approximately 200 Hz,
clearly stems from region 5. Although of secondary
importance here, it is worth noting that regions 1 and 2
also emit gravitational radiation in the frequency range
between 200 and 400 Hz. We attribute emission from
these regions at these frequencies to accretion onto the
proto–neutron star from above and the resultant excitation
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FIG. 10. Same as in Fig. 9 but 380 μs later. Here, we
demonstrate the rapid variability of the strain in the Ledoux
convecting region.
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FIG. 11. Same as in Fig. 2 but decomposed in terms of the five
layers defined in Fig. 6.
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FIG. 9. Top panel: The total gravitational wave strain for the þ
polarization at approximately 399.97 ms after bounce is marked
by a green dot. Bottom panel: The þ polarization gravitational
wave strain is given as a function of radius only, now integrated
over θ relative to what was shown in Figs. 7 and 8 for A20, but
now including all contributions, A2m, form ≠ 0. The vertical blue
line marks the proto–neutron star surface. The total gravitational
wave strain at this time is clearly dominated by contributions
from the region between 10 and 20 km, where there is ongoing
Ledoux convection.

FIG. 12. Same as in Fig. 5 but for region 1.
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of additional g modes within it. This emission is well
correlated with the development of neutrino-driven con-
vection and the SASI. As can be seen from Figs. 12, 13, and
16, emission at these frequencies from these regions begins
after neutrino-driven convection and the SASI develop and
is most pronounced near the end of our run, as explosion
develops in the model.
Figure 17 shows the spectrum of gravitational wave

emission from thegain layer. To discern to the extent possible
which features of the spectrum arise from neutrino-driven
convection and which arise from the SASI, we compute the
characteristic timescales associated with both and, in turn,
their expected characteristic gravitational wave emission
frequencies. We begin by estimating the convective overturn
timescale in the gain layer, which is given by

τ ∼
2ðRShock − RGainÞ

vConvective
: ð25Þ

At 200 ms after bounce in our model, our angle-averaged
shock radius RShock ≈ 205 km, and our angle-averaged gain
radius RGain ≈ 75 km. Looking at Fig. 18, which shows the
mean radial velocity in thegain region (region 5) as a function
of time after bounce, the mean radial velocity at this time is
approximately 6000 km s−1. The convective overturn time-
scale is then approximately 43 ms, which corresponds to an
emission frequency approximately 23 Hz. At 300 ms after
bounce, RShock ≈ 250 km, RGain ≈ 56 km, and vConvective ∼
7800 km s−1, which gives τ ∼ 50 ms and an emission
frequency approximately 20 Hz. Such emission frequency

FIG. 13. Same as in Fig. 5 but for region 2.

FIG. 14. Same as in Fig. 5 but for region 3.

FIG. 15. Same as in Fig. 5 but for region 4.

FIG. 16. Same as in Fig. 5 but for region 5.
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estimates will of course correspond to the lowest, or
“injection,” frequencies. In our three-dimensional model,
the cascade of large-scale convective eddies to smaller scales
is expected, and with such a cascade, higher-frequency
gravitational wave emission should also be expected.

Figure 19 plots the evolution of the center of mass of the
fluid within the cavity between the surface of the proto–
neutron star and the shock, projected along the y axis. The
evolution of the center of mass is due to the SASI and a
marker of its presence in our postshock flow. Measuring
from trough to trough or peak to peak, beginning at
approximately 150 ms after bounce and continuing until
300 ms, after which explosion commences, we find that the
SASI period remains remarkably steady, at approximately
35 ms, corresponding to a SASI cycle frequency of
approximately 29 Hz. In every l ¼ 1 SASI cycle, two
quadrupole deformation cycles result. Consequently, the
SASI-induced gravitational wave emission from the l ¼ 1
mode is expected to occur at double the frequency—i.e., at
a frequency approximately 58 Hz. This prediction agrees
remarkably well with the location of the peak of the low-
frequency spectrum we observe, shown in Fig. 17.
Figure 20 shows the gravitational wave luminosity as a

function of time after stellar core bounce. We attribute the
initial rise and fall of the luminosity between the beginning
of our run and approximately 100 ms after bounce to the
development of prompt convection in the proto–neutron
star and the ensuing three-dimensional flows it induces in
the region. The production of gravitational wave energy
then rises after approximately 100 ms, given the develop-
ment of aspherical mass motions in the gain layer due to
neutrino-driven convection and the SASI. This period of
gravitational wave energy production is then followed by a
final period of production, beginning at approximately
150 ms after bounce, during which time gravitational wave
emission emanates from the proto–neutron star, initially
due to accretion onto it from above, and later due also and

FIG. 18. A plot of the mean radial velocity in the gain region
(region 5) as a function of time after bounce. The mean radial
velocity provides a measure of the convective overturn timescale
in the gain region, which in turn provides a measure of the
anticipated gravitational wave emission frequency from convec-
tion in the region.

FIG. 19. A plot of the evolution of the center of mass (C.O.M.)
of the cavity between the proto–neutron star surface and the shock,
projected along the y direction, as a function of time after bounce.
Such evolution is a marker for the SASI. A steady oscillation of the
center of mass, with a period of approximately 35 ms, between
approximately 150 and approximately 300 ms, at which time
explosion develops in our model, is evident in the plot.
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FIG. 17. The spectrum of gravitational wave emission from
region 5. The peak in the spectrum is well correlated with the
expected emission frequency of the l ¼ 1 SASI mode. The
spectrum also reflects contributions from (1) neutrino-driven
convection, whose expected emission frequency begins at ap-
proximately 20 Hz, with higher-frequency contributions ex-
pected, as well, due to the cascade of turbulent eddies to
smaller spatial scales, expected and observed in our three-
dimensional model, and (2) higher-order SASI modes—in
particular, the l ¼ 2 mode.
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predominantly to Ledoux convection within it. During this
last period of gravitational wave emission, the gravitational
wave amplitude continues to rise, as shown in Fig. 2, and
the gravitational wave energy luminosity continues to rise,
as well, though at a decreasing rate toward the end of
our run.
Figure 21 gives the total energy emitted in gravitational

radiation as a function of time after bounce. Despite
multiple sources contributing to gravitational radiation
emission before approximately 200 ms after bounce, which
includes prompt convection (to a small degree), neutrino-
driven convection, the SASI, and accretion onto the proto–
neutron star from above, the gravitational wave energy
emitted remains low until the second and lasting phase of
proto–neutron star Ledoux convection begins.

B. Filtering

During the early course of our run (t < 70 ms of
postbounce evolution), we identified two sources of
numerically induced, though small-amplitude, gravitational
wave emission:
(1) We obtained radial fluctuations in the entropy profile

in the postshock region induced by our hydrody-
namics method (a well-known artifact of the piece-
wise parabolic method [68,69]). When convolved
with the angular dependence found in the formulas

to compute the gravitational wave strain [e.g., see
Eq. (12)], these entropy “wiggles” resulted in a
numerically induced gravitational wave strain.
Given the numerical origin of these entropy fluctua-
tions, to the extent possible, we filtered out any
contributions by them to the gravitational wave
strain. This was accomplished by truncating the
radial integration in Eq, (12) at the outer radius of the
initial Ledoux unstable region shown in Fig, 6. This
removed any gravitational wave emission from
numerically induced entropy fluctuations above this
region. At early times, it is possible to have limited
overlap between the Ledoux unstable region and the
region in which the initial entropy fluctuations
occur. In this case, it is not possible to separate
physical from numerically induced signals fully. The
radius at which the truncation was imposed by our
filtering method was delineated as a function of time
in our run, and in turn used in the postprocessing of
our gravitational wave strains, until the need for
filtering disappeared. Once filtering ceased at 70 ms
after bounce, the integral in Eq. (12) was carried out
over our entire numerical domain.

(2) Given our use of a gravitational potential, which can
carry information from one region in the core to
another instantaneously, we observe mildly aspheri-
cal flows ahead of the shock in an otherwise
spherically symmetric infalling fluid. These flows
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FIG. 21. The total gravitational wave energy emitted as a
function of time after bounce. The significant rise in the
gravitational wave energy production after approximately
200 ms of postbounce time results from the onset of Ledoux
convection deep within the proto–neutron star, which persists for
the remainder of the simulation. The sharp rise is further evidence
of the dominance of this phase of Ledoux convection in the
proto–neutron star for the production of gravitational waves,
despite the occurrence of several other sources—prompt con-
vection, neutrino-driven convection, the SASI, and accretion onto
the proto–neutron star—prior to its development.
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FIG. 20. The gravitational wave luminosity as a function of
time after bounce. The time evolution of the luminosity follows
the development of the instabilities in the stellar core that give rise
to gravitational wave emission. The early rise and fall are
associated with prompt convection. This is followed by a second
rise in the gravitational wave luminosity after approximately
100 ms after bounce, due to the development of aspherical mass
motions in the gain layer from neutrino-driven convection and the
SASI. The gravitational wave luminosity continues to rise in our
model, through to the end of our run, as gravitational wave
generation in the gain layer is joined by emission from the proto–
neutron star, after approximately 150 ms, due to emission from
accretion onto it, and after approximately 200 ms, due to Ledoux
convection within it.
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result from the aspherical potential given the
aspherical flows deep within the core, from prompt
convection. Figure 22 compares the filtered and
unfiltered gravitational wave strains for the þ
polarization, as a function of postbounce time. There
is no appreciable difference between the strains as a
result of filtering.

C. Spectral analysis

The gravitational wave energy spectrum computed at the
end of our run is shown in Figure 23. The spectrum peaks
just above 1 kHz. It is clear the gravitational wave energy
emission is dominated by high-frequency emission. We
associate this part of the spectrum with long-lived Ledoux
convection deep within the proto–neutron star. The spec-
trum also features two breaks. As we move from the peak
frequency to lower frequencies, the spectrum drops pre-
cipitously until we reach a frequency of approximately
400 Hz, at which point the spectrum levels off. Between
approximately 400 and approximately 40 Hz, the spectrum
varies more slowly with frequency. Below approximately
40 Hz, it again drops off rapidly. The spectrum in the
frequency range between approximately 40 (and below)
and approximately 400 Hz is sustained by neutrino-driven
convection, the SASI, and accretion of convection- and
SASI-induced aspherical flows onto the proto–neutron star.
Figure 24 shows the characteristic gravitational wave

strain as a function of frequency, for a supernova at 10 kpc.

Also shown are the sensitivity curves for the current-
generation gravitational wave detectors Advanced LIGO
[70], Advanced VIRGO [70], and KAGRA [70] and the
next-generation Cosmic Explorer [71] and Einstein
Telescope (D configuration) [72,73]. Sufficient sensitivity
to strains down to approximately a few ×10−23, at frequen-
cies between approximately 20 Hz up through approxi-
mately 1 kHz, would provide much of the core-collapse
supernova gravitational wave emission spectrum, from the
low-frequency emission associated with mass motions in
the gain layer, linked to neutrino-driven convection and the
SASI, to the high-frequency emission associated with
proto–neutron star Ledoux convection. Such sensitivity
for a Galactic event (10 kpc) is exhibited by all of the
gravitational wave detectors included here.

D. Comparison of two-dimensional and three-
dimensional gravitational wave emission

Figures 25 and 26 show the differences between the
gravitational wave strain and the dimensionless character-
istic strain based on our two- and three-dimensional models
(in both cases, the supernova is presumed to be at a distance
of 10 kpc). Focusing first on the gravitational wave strain,
two key differences stand out:
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FIG. 22. A comparison of the filtered and unfiltered gravitational
wave strains as a function of time after stellar core bounce, for theþ
polarization. The filtering removes the contributions to the early
gravitational wave strain from the region between the initial
Ledoux unstable region and the shock, due to numerically induced
entropy fluctuations, which can give rise to gravitational wave
emission. It also removes any gravitational wave strain from
regions ahead of the shock induced by the instantaneous trans-
mission of aspherical gravitywithin the core to this region given our
use of a gravitational potential. An aspherical potential can induce
aspherical flows in this otherwise spherically collapsing region.
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FIG. 23. The gravitational wave energy spectrum, computed at
the end of our simulation. Most of the gravitational wave energy
is emitted at frequencies approximately 1 kHz, whose origin is
persistent Ledoux convection in the proto–neutron star driven by
continued deleptonization during the course of our simulation. As
we move to lower frequencies, the spectrum decreases quickly
until approximately 400 Hz, at which point its rate of decline
slows considerably until approximately 40 Hz, at which point it
again drops quickly. Gravitational emission between approxi-
mately 40 Hz (and below) and approximately 400 Hz has its
origins in the mass motions in the gain layer due to neutrino-
driven convection and the SASI and to the resultant aspherical
accretion onto the proto–neutron star.
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(1) The gravitational wave amplitudes are significantly
lower in three dimensions.

(2) Explosion is significantly delayed in three di-
mensions.

The overall rise in the gravitational wave amplitude after
approximately 225 ms in our two-dimensional model is
evidence of the onset of explosion. Indeed, based on the
angle-averaged shock trajectory and evolution of the
diagnostic energy, explosion in the two-dimensional model
sets in at this time [39].
Regarding the dimensionless characteristic strains, the

two- and three-dimensional strains are both dominated by
high-frequency (proto–neutron star) emission. Across the
spectrum, the amplitude of the characteristic strain is on
average significantly lower in the three-dimensional case,
although there are large variations in the strain in the two-
dimensional case that make comparison of the amplitudes
difficult. Below approximately 40 Hz, the characteristic
strains for the two- and three-dimensional cases diverge. In
two dimensions, symmetry constraints promote the growth
of long-wavelength, low-frequency mass motions. No such
constraints are present in three dimensions, and the
behavior of the characteristic strain simply reflects the
character of neutrino-driven convection in three dimen-
sions, as we have shown.

E. Other, numerical considerations

For times t > 100 ms after bounce, Fig. 27 shows the
gravitational wave strain (for the þ polarization) from the
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FIG. 25. The gravitational wave strain for the þ polarization
plotted as a function of postbounce time over the course of our
simulation, for both the two-dimensional (black) and the three-
dimensional (red) models. In the two-dimensional case, the view
is along the x axis, whereas in the three-dimensional case, it is
along the z axis. In axisymmetry (about the z axis), the strain
viewed along the z axis is zero. The strains plotted here are
differentiated by two key factors. The strain amplitude for the
three-dimensional case is significantly smaller, and the time to
explosion in this case (as marked by the offset of the gravitational
wave strain in the two-dimensional case) is significantly delayed.
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FIG. 24. The characteristic gravitational wave strain plotted as a
function of frequency for a supernova at 10 kpc. Also shown are
the sensitivity curves for the current-generation gravitational wave
detectors Advanced Laser Interferometer Gravitational Observa-
tory (AdvLIGO), Advanced VIRGO, and Kamioka Gravitational
Wave Detector (KAGRA) and the next-generation Cosmic Ex-
plorer and Einstein Telescope (D configuration). Detection of the
gravitational-wave signal from a core collapse supernova across
the full spectrum of emission that would bring information about
both neutrino-driven convection/SASI activity and proto–neutron
star Ledoux convection will require sensitivities as low as ∼3 ×
10−22 at frequencies above approximately 20 Hz, which, except for
the lowest frequencies between approximately 20 and approx-
imately 40 Hz, is satisfied by all of the detectors included here.
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FIG. 26. The characteristic gravitational wave strain plotted as a
function of frequency, for both our two-dimensional and our
three-dimensional models. The peak frequency is somewhat
higher in the three-dimensional case, but the gravitational wave
energy across the spectrum is significantly less. At the lowest
frequencies, the characteristic strains for the two cases diverge.
This is the result of the well-known accumulation of kinetic
energy at larger spatial scales in two dimensions, resulting in
greater gravitational wave energy at lower frequencies.
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region below the Ledoux unstable region in our run. We
show this for two reasons: (1) to demonstrate that the stable
region below the Ledoux unstable region is a negligible
source of gravitational radiation and (2) to quantify to what
extent our strain predictions are impacted by the fact that
we impose spherical symmetry below approximately 8 km.
With regard to 1, the maximum amplitudes observed in this
region over the course of our run are approximately 0.3 cm,
whereas the amplitudes in the convective layer above reach
maxima that are of approximately 6 cm. Moreover, that any
strain is associated with the region below the convective
layer results in part from the definition of the boundary
between it and the convective layer, which in our analysis is
done through spherical averaging. A small shift of the
boundary inward could result in the elimination of this
contribution to the strain. With regard to 2, our imposition
of spherical symmetry within a very small volume at the
center of our model likely had some impact on our
determination of the gravitational wave radiation emitted
from the region directly above it (i.e., the region in
question, the region below the convective layer), but given
the disparate magnitude of the strain amplitudes in the
region in question relative to the convective region above it
and given the fundamentally different nature of the gravi-
tational wave emission from these two adjacent regions,
one being convectively stable and one being convectively
unstable, we think it unlikely that our limited imposition of
spherical symmetry in our simulation would have funda-
mentally altered the results we present here and the
conclusions we have drawn from them. However, definitive
conclusions will have to wait on more advanced
simulations.

In Fig. 28, we plot the gravitational wave strains in our
model, for both polarizations, but now viewed along the x
axis—i.e., at a viewing angle of θ ¼ π=2 (and, as before,
ϕ ¼ 0). By doing so, we are able to see the impact of our
use of a constant-μ grid, with lower angular resolution at
θ ¼ 0 and higher angular resolution at θ ¼ π=2, on our
gravitational wave strain predictions. In particular, we can
see that the amplitude of the strain for the þ polarization is
affected by the change in viewing angle, whereas the
amplitude of the strain for the × polarization is not. The
ratio of the two is a factor approximately 2 for a viewing
angle along the x axis, whereas in Fig. 4, corresponding to a
viewing angle along the z axis, they are comparable. This is
an artifact of our constant-μ grid. To prove this, we include
here the results of a test of our code that has an analytical
solution. We consider the gravitational waves emitted by
binary neutron stars in Keplerian orbit about one another.
We consider two cases: (1) binary orbit in the xy plane and
(2) binary orbit in the yz plane. The binary orbit in the xy
plane should not be affected by our use of a constant-μ grid.
In Fig. 29, we see that the predictions made by our code for
both polarizations and both viewing angles are in close
agreement with the analytical solution. On the other hand,
Fig. 30 shows that the þ-polarization strain is consistently
larger than the analytical solution when viewed along the x
axis, whereas the ×-polarization strain continues to agree
with the analytical result except when the binary orbit
crosses the z axis. Moreover, with the exception of the pole
crossing, both strains agree well with the analytical solution
when the strains are viewed along the z axis. From the point
of view of mass distribution, this test represents an extreme
not sampled in our model. The results shown in Figs. 29
and 30 together demonstrate that our predictions for
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FIG. 27. The þ polarization gravitational wave strain for the
innermost region in the proto–neutron star in our model, below
the region of sustained Ledoux convection dominating our
gravitational wave emission. The strain amplitudes from this
region are a small fraction of the amplitudes from the region
above it, indicating little contribution to the gravitational wave
emission in this model from convective undershoot.
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FIG. 28. Plot of the strain amplitude for both the þ and the ×
polarizations, viewed along the x axis. The impact of the
constant-μ grid on the magnitude of the þ-polarization strain
is apparent, where now the expectation that the strain amplitudes
for the þ and × polarizations be comparable due to the lack of a
preferred physical direction in our model is no longer satisfied.
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gravitational wave emission for our model are robust for a
viewing angle along the z axis, as chosen in the analysis
presented in this paper. Finally, in Fig. 31, we plot the
þ-polarization gravitational wave strains for regions 1–5,
as in Fig. 11, but now for a viewing angle along the x axis.
Our conclusion that our gravitational wave emission is
dominated by emission from region 1, the region of Ledoux
convection, is unaltered, as is our conclusion that the
dominant low-frequency source is region 5.

IV. CONCLUSIONS

We have performed an analysis of the gravitational wave
emission based on the output data of our first three-
dimensional core-collapse supernova simulation performed
with the CHIMERA code [39]. We have herein discussed the
temporal evolution—specifically, the gravitational wave
strain for both polarizations, peak frequency evolution,
gravitational wave luminosity, and total emitted gravita-
tional wave energy—with time. We have also provided the
gravitational wave energy spectrum and characteristic
strain as a function of frequency, both computed at the
end of our run. We also documented the sources of the
gravitational wave emissions in our model. The results
presented here differ significantly from those presented by
Yakunin et al. [74] and replace them. The associated
gravitational wave data, available online (http://www
.phys.utk.edu/smc), were replaced on March 7, 2019. We
updated the data, on May 23, 2020, with the data used for
the analysis presented here.
The gravitational wave emission occurs in multiple

phases. The first phase, which is fairly quiescent, during
which time gravitational wave emission in either polari-
zation is not significant, results from the development of
prompt convection in the proto–neutron star shortly after
bounce and lasts approximately 100 ms. The core is
Ledoux unstable for only approximately 30 ms after
bounce, then becomes Ledoux stable as the convection
stabilizes the entropy and lepton gradients. But the gravi-
tational wave–producing flows resulting from the initial
convective instability persist. The second phase of gravi-
tational wave emission, beginning after approximately
100 ms after bounce and lasting until approximately
150 ms after bounce results from the development of
aspherical mass motions in the gain layer induced by
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FIG. 29. Gravitational wave predictions for both polarizations
in the case of a test using orbiting neutron stars for which an
analytical solution is available. In this case, the binary is set to
orbit in the xy plane, and the gravitational wave emission is
observed along both the x axis and the z axis.
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FIG. 30. Same as in Fig. 29, but now the neutron stars are made
to orbit in the yz plane. Points are excluded when the binary
crosses the z axis, where the numerical results fluctuate and are
no longer illustrative for our present purpose. When viewed along
the z axis, the strains agree well with the analytical result except
when a pole crossing occurs. On the other hand, when viewed
along the x axis, the þ-polarization strain is consistently larger
than the analytical result, whereas the ×-polarization strain
continues to agree well with it.
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frequency gravitational wave emission are unchanged.
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neutrino-driven convection and the SASI. This phase is
particularly evident in the sharp rise in the gravitational
wave luminosity during this time frame. The low-frequency
emission from these sources persists throughout the
remainder of our run, evident in the heat map below
frequencies approximately 200 Hz. After approximately
150 ms after bounce, a third phase of gravitational wave
emission begins when emission from the above sources is
joined by emission from the proto–neutron star due to (1)
aspherical accretion onto it, which gives rise to intermedi-
ate-frequency emission in the range approximately 400–
600 Hz, and (2) a second phase of Ledoux convection, deep
in the interior of the proto–neutron star, which gives rise to
high-frequency gravitational wave emission. Both persist to
the end of our run. The latter dominates the gravitational
wave emission in our model. Unlike the first phase of
proto–neutron star Ledoux convection, the second phase
persists due to the maintenance of unstable lepton gradients
given continued neutrino diffusion out of the core. The
gravitational wave amplitude in this third phase of emission
grows with time. The peak frequency from Ledoux con-
vection emission begins at approximately 600 Hz at the
start of convection and rises to approximately 1200 Hz by
the end of our run; as the proto–neutron star deleptonizes,
its central density increases, and its radius declines. The
gravitational wave luminosity associated with this final
phase of emission continues to rise through to the end of
our run, as well, and the total gravitational wave energy
emitted rises dramatically after approximately 200 ms after
bounce, once significant Ledoux convection–induced
gravitational wave emission begins.
The spectrum of gravitational wave energy emitted peaks

at a frequency just above 1 kHz. The emission at high
frequency clearly dominates the total gravitational wave
energy produced. We associate this part of the spectrum
with the last phase of proto–neutron star convection. As we
move to lower frequencies, the spectrum drops precipi-
tously, between 1 kHz and approximately 400 Hz, and then
exhibits a more gradual decline down to approximately
40 Hz, followed by a second dropoff. We associate the
region of the spectrum between approximately 400 and
approximately 40 Hz (and below) with the mass motions in
the gain layer induced by neutrino-driven convection and
the SASI and with gravitational wave emission from the
proto–neutron star due to aspherical accretion onto it.
Detectors with sensitivities down to approximately a few
×10−23 at frequencies approximately 20 Hz will be able to
capture much of the spectrum of gravitational wave
emission we have detailed here, between approximately
20 Hz and ∼1 kHz, and, with it, invaluable information
about the underlying sources of emission in the supernova.
Fortunately, for the event presumed here—a core collapse
supernova at a distance of 10 kpc—such sensitivity will be
provided by current-generation detectors (Advanced LIGO,
Advanced VIRGO, and KAGRA).

Based on our model, we arrive at the same conclusion as
that drawn by Andresen et al. [18] in the context of their
models that the gravitational wave emission is dominated
by late-time, long-lived Ledoux convection in the proto–
neutron star—i.e., that the gravitational wave energy
produced stems largely from the fluid dynamics within
the proto–neutron star, not from perturbations of the proto–
neutron star by fluid dynamics above it. However, in our
model, the dominant emission stems from the convective
region itself, rather than from the convective overshoot
layer above it, as was the case for the models they
considered. Following the analysis of the characteristics
of gravitational wave modes performed by Torres-Forné
et al. [56], we associate the dominant emission in our
model with p modes. We do obtain gravitational wave
emission in the convectively stable overshoot layer, as seen
by our isolation of the contribution from this layer to the
gravitational wave strain. This emission, instead, is natu-
rally interpreted as g-mode emission. Thus, our results
suggest that the high-frequency gravitational wave emis-
sion from within the proto–neutron star in our model is
hybrid emission from both p and g modes, though
dominated by the former. Finally, in our model, we do
not obtain any gravitational wave emission of note in the
surface layer of the proto–neutron star. Our conclusions and
the conclusions of Andresen et al. therefore differ from
those drawn by O’Connor and Couch [48], Radice et al.
[25], and Powell and Müller [54] in the context of their
models. They conclude that, even in the three-dimensional
case, gravitational wave emission from the proto–neutron
star, from its surface layers, is still excited by accretion
funnels generated in the region between the proto–neutron
star surface and the shock, due to the mass motions induced
by neutrino-driven convection and the SASI.
In the model we consider here, we come to a different

conclusion than Kuroda et al. [17]—again, made in the
context of their models—with regard to the source of low-
frequency gravitational wave emission. We find that
emission of gravitational waves at frequencies below
approximately 200 Hz stems from mass motions in the
gain layer and not from within the proto–neutron star due to
low-frequency modulation of the accretion flow onto it. In
the context of their models, Andresen et al. [18] conclude
that low-frequency gravitational radiation is emitted from
the gain layer, as well, but they conclude that layers below
the gain layer, including the deep convective layer, con-
tribute, too. They conclude, as do Kuroda et al., that
low-frequency emission from layers below the gain layer
results from SASI-induced, low-frequency, accretion-flow
modulation.
Finally, Powell and Müller [54] point out that gravita-

tional wave emission in their models is greatest after the
onset of explosion and emphasize the need to push super-
nova models sufficiently far post bounce to capture the full
gravitational wave signature. This was emphasized by
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Yakunin et al. [27,28] as well. It is not simply a matter of
running sufficiently long to capture what might potentially
be the strongest phase of gravitational wave emission. It is a
matter also of capturing accurately the phases of gravita-
tional wave emission prior to explosion. The model we
present here covered approximately the first half-second of
postbounce evolution. In this particular model, explosion
(as defined by both the angle-averaged shock trajectory and
the diagnostic energy) begins at approximately 300 ms after
bounce [39]. Thus, our analysis spans sufficient postbounce
time to cover the majority of the explosion epoch, though
our strain amplitudes continue to grow, and the total
gravitational wave energy emitted continues to increase
at the end of our run. However, our gravitational wave
luminosity, though still increasing at the end of our run, as
well, exhibits a leveling. We certainly have not run
sufficiently long to capture the very-low-frequency tail
of the gravitational wave strain associated with prolate or
oblate explosive outflows [6,27,28], though this is of
secondary importance from a detection perspective. In this
context, it is important to note that the fundamentally
different generation mechanism of gravitational wave
emission in our model—i.e., excitation from deep within
the proto–neutron star and not from accretion flows above
the proto–neutron star surface—should impact conclusions
we might draw with regard to the postbounce time evolved
and whether or not the dominant gravitational wave
emission has been captured.
Along with Powell and Müller [54], we emphasize that

we do not believe that the findings of the different groups
[17,18,25,48,54], including the findings we present here,
are necessarily in conflict but rather point to a potential
model dependency and to a richer spectrum of core-
collapse supernova gravitational wave physics than could
have been fully anticipated prior to the completion of these
studies.
With regard to potentially SASI-associated gravitational

wave emission, Torres-Forné et al. [56] recently identified
the low-frequency emission in their models with the
fundamental 2f mode, not with the SASI, and suspect that
the low-frequency emission has been misclassified by
others as SASI induced. They further concluded that the
fundamental mode is excited during periods of significant
SASI activity and that its characteristics match perfectly
with the time evolution of the shock—i.e., the shock
oscillates with the same frequency. They were puzzled
by this, expecting instead that in the presence of the SASI
the shock would oscillate with frequencies corresponding
to the unstable modes of the vortical-acoustic cycle, not
with a frequency corresponding to an acoustic cycle. Our
results may shed some light on this discussion. Our low-
frequency emission clearly stems from the convective gain
layer and, therefore, must have its origins in either neutrino-
driven convection or the SASI, or both. We have provided
clear evidence of the SASI in our model and were able to

correlate the SASI timescale we observe with the peak in
the low-frequency gravitational wave spectrum. Guided by
Torres-Forné et al.’s analysis, we would naturally classify
our low-frequency emission, with its origins in the con-
vective layer, as p-mode emission—i.e., as emission whose
origin lies in acoustic modes. Thus, the SASI-induced
emission in our model is p-mode emission. Laming [75]
demonstrated that the SASI may result from either a
vortical-acoustic cycle or a purely acoustic cycle, depend-
ing on the shock standoff radius. Foglizzo et al. [76] were
able to conclude that a vortical-acoustic cycle is operative
only for large standoff radii (greater than or equal to 10).
Laming came to the same conclusion for such large radii,
but concluded that a purely acoustic mechanism, as dis-
cussed by Blondin and Mezzacappa [77], should operate at
smaller standoff radii, such as those found in our model
(less than or equal to 3). Looking at Fig. 1 of Torres-Forné
et al. [56], the largest standoff radius observed in either of
their models—s20 or 35OC—over the course of the
evolution of both models is approximately 2.3, seen in
model s20 between 100 and 200 ms after bounce, which,
according to Laming, is in the range where an acoustic
origin of the SASI should be expected.
Finally, our Ledoux unstable region—i.e., our main

source of gravitational radiation—is deep within the
proto–neutron star, far removed from the star’s surface
layers, and produces gravitational wave emission best
characterized as p-mode emission. Thus, extracting infor-
mation about the mass and radius of the proto–neutron star
in our model from analytic estimates of surface g-mode [9]
frequencies, whether the g modes are excited from below
[18] or from above [25,48,54], would not be appropriate.
Further consideration on how to connect, if at all possible,
the observed peak frequencies and important proto–neutron
star parameters in our model and in others like it is
warranted. Thus, our results suggest there is an even richer
spectrum of possibilities, with gravitational radiation emis-
sion stemming from i) surface g modes excited by proto–
neutron star convection, ii) surface g modes excited by
flows in the gain layer, or iii) p modes within the proto–
neutron star convective layer itself. In some cases, it may be
more difficult, perhaps impossible, to extract proto–neutron
star parameters, such as mass and radius. We also wish to
acknowledge a caution raised by Powell and Müller [54].
We attribute our gravitational wave emission largely to
Ledoux convection in the proto–neutron star. The direct
correlation between the onset of Ledoux instability in the
deep interior of the proto–neutron star and the onset of the
high-frequency gravitational wave emission associated
with it is obvious in our model. Regions of Ledoux
instability will not give rise to other instabilities, such as
the doubly diffusive instabilities discussed by Bruenn et al.
[78,79]. Ambiguity does not arise in this sense. However,
such instabilities cannot be accurately captured in our
model given our use of ray-by-ray neutrino transport.
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This requires a three-dimensional treatment of neutrino
transport. Thus, our model precludes an accurate develop-
ment of such, more exotic modes and, in turn, any
gravitational wave emissions associated with them.
Future studies by us and by others should be conducted
to exhaust the possibilities that may in fact become
manifest in core-collapse supernova environments.
Our gravitational wave analysis is based on data from our

first three-dimensional core-collapse supernova simulation,
which is part of our CHIMERA C-series simulation suite.
Thus, it is confined to a single progenitor mass and a single
equation of state. Future work along these lines will be
based on our follow-up D-series CHIMERA runs, which will
span progenitor mass and metallicity (including the pro-
genitor considered here) and which will be performed using
a Yin–Yang angular grid with higher spatial resolution in
both radius and angle. In particular, the one degree angular-
resolution equivalent, in both θ and ϕ, in our D-series
models, afforded by the use of a Yin–Yang grid, should be a
notable improvement over the constant-μ grid employed
here. Other equations of state will be considered, as well.
We will report on the results of our gravitational wave
analysis using the data from these models as they become
available. This will allow us to validate the analysis
presented in this work, as well as the conclusions drawn
from it, while at the same time allowing us to assess
quantitatively the impact of numerical resolution and other
numerical issues on our gravitational wave emission
predictions. It will also allow us to explore the variety

of core-collapse supernova gravitational wave emission and
its underlying causes given different progenitors and input
physics.
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