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The Skyrme model and its generalizations provide a conceptually appealing field-theory basis for the
description of nuclear matter and, after its coupling to gravity, also of neutron stars. In particular, a specific
Skyrme submodel, the so-called Bogomol’nyi-Prasad-Sommerfield (BPS) Skyrme model, allows for both
an exact field-theoretic and a mean-field treatment of neutron stars, as a consequence of its perfect fluid
property. A pure BPS Skyrme model description of neutron stars, however, only describes the neutron star
core, by construction. Here we consider different possibilities to extrapolate a BPS Skyrme neutron star at
high baryon density to a description valid at lower densities. In the exact field-theoretic case, a simple
effective description of the neutron star crust can be used, because the exact BPS Skyrme neutron star
solutions formally extend to sufficiently low densities. In the mean-field case, on the other hand, the BPS
Skyrme neutron star solutions always remain above the nuclear saturation density and, therefore, must be
joined to a different nuclear physics equation of state already for the outer core. We study the resulting
neutron stars in both cases, facilitating an even more complete comparison between skyrmionic neutron
stars and neutron stars obtained from other approaches, as well as with observations.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear field theory of pion
fields which represents a particular proposal for a low-
energy effective field theory (EFT) of strong-interaction
physics. Baryons are realized as topological solitons
(“skyrmions”) supported by the model [2–4]. Already
the original Skyrme model incorporates several nontrivial
features of QCD in its defining properties, like chiral
symmetry and its breaking, the conservation of baryon
charge, or the extended character of nucleons. Further, it
leads to a reasonable description of the physical properties
of nucleons [5] and some light nuclei [6–8]. Several
features, however, impede its use as a quantitatively precise
EFT of nuclear and strong-interaction physics. First of all,
it leads to too high (classical) binding energies of nuclei.
Second, some skyrmions are more symmetric than the
nuclei they are supposed to describe and do not reproduce
the alpha-particle clustering observed in physical nuclei.
Related to this issue, also the description of nuclear
excitation spectra is only partially successful.

The Skyrme model permits, in principle, generalizations
via the inclusion of higher order terms or by the incorpo-
ration of further mesons into the theory, and both of these
generalizations were considered [9–11] almost immedi-
ately after the interest in the model revived owing to the
influential papers [12]. In the last years, moreover, it was
found that among these generalizations of the Skyrme
model particular cases can be identified [13–22] which
significantly improve on the shortcomings of the original
model. In addition, new methods have been employed for
their physical applications [23–29] which further improve
this situation. On the one hand, several generalizations of
the Skyrme model have been proposed which alleviate the
binding energy problem. As demonstrated very recently,
the particular coupling to vector mesons proposed in [16],
in addition, also leads to the desired alpha particle cluster
structures [30]. On the other hand, a more refined treatment
of quantum excitations of skyrmions, beyond the rigid rotor
approximation, has led to a vastly improved description of
some nuclear excitation spectra [24–29].
In line with its role as an EFT for nuclear matter, after its

coupling to gravity the Skyrme model should be capable of
describing neutron stars (NS). The simplest (“hedgehog”)
ansatz, however, leads to stable solutions only for baryon
number one [31,32], like in the case without gravity.
Further attempts to describe NS used variants of the rational
map approximation [33,34] or a cubic lattice of alpha
particles [35] (the ground state of the standard Skyrme
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model for large baryon number [36–40]). This last attempt,
in particular, already provided a reasonably good descrip-
tion like, e.g., a maximal NS mass of about 1.9 solar masses
(for a recent review of skyrmionic NS we refer to [41]).
In view of the improvements achieved by generalizations

of the Skyrme model, their use for NS seems to be an
obvious next step. If we restrict the field content to pions
and demand a Lorentz-invariant Lagrangian with a standard
Hamiltonian (quadratic in time derivatives), then the most
general Skyrme model is

L ¼ L2 þ L4 þ L6 þ L0 ð1:1Þ

where the first two terms represent the sigma model
(kinetic) term and the Skyrme term,

L2 ¼ λ2Tr∂μU∂U†; L4 ¼ λ4Trð½Lμ; Lν�Þ2: ð1:2Þ

Here, U is an SUð2Þ valued matrix Skyrme field and Lμ ¼
U†∂μU is the left-invariant Maurer-Cartan current. Further,
the λn are non-negative, dimensionful coupling constants.
Moreover, L0 ¼ −λ0UðTrUÞ is a potential. The depend-
ence on TrU only implies that isospin remains a symmetry,
while chiral symmetry is broken. One frequent choice is
the pion mass potential U ¼ Uπ ¼ ð1=2ÞTrðI − UÞ. The
last term

L6 ¼ −ð24π2Þ2λ6BμBμ ð1:3Þ

is just the baryon current squared,

Bμ ¼ 1

24π2
ϵμνρσTrLνLρLσ; B ¼

Z
d3xB0 ð1:4Þ

where the topological charge B is identified with the baryon
number. For the Skyrme field U, we frequently use the
parametrization UðxÞ ¼ eiξðxÞn⃗ðxÞ·τ⃗ where ξ is called the
profile function, na is a unit isovector, and τa are the Pauli
matrices. Further, we define h ¼ ð1=2Þð1 − cos ξÞ for
convenience.
The description of NS using the full generalized model

(1.1) is, however, difficult. A full field-theoretic treatment
of the self-gravitating generalized Skyrme model is beyond
current possibilities for the large baryon numbers involved.
Even the ground state of the model (1.1) for large baryon
number, as well as possible phase transitions at different
densities, are currently unknown. There exists, however, a
specific submodel [13] of (1.1) which leads to a drastic
simplification and, at the same time, already to a rather
realistic description of NS [42,43] (for an overview see
[41,44]). The resulting NS are still compatible with the
most important observational constraints. This so-called
BPS (Bogomol’nyi-Prasad-Sommerfield) Skyrme model
LBPS ≡ L6 þ L0 has several features which make it an
interesting model for certain bulk properties of nuclear

matter and, in particular, of neutron stars. First of all, it is a
perfect fluid already at the microscopic (field theoretical)
level, without any need for a thermodynamical or hydro-
dynamical limit. A thermodynamical (mean-field) limit may,
nevertheless, be performed easily [44,45]. Second, a topo-
logical bound (BPS bound) for the static energy can be
derived, and there exist infinitely many BPS solutions
saturating the bound, with energies proportional to the
topological charge [13,44]. The resulting classical nuclear
binding energies are, therefore, zero, and small, realistic
binding energies can be achieved by including further small
corrections to the energy (spin, isospin, Coulomb energy,…)
[14,44]. Third, the sextic term L6 provides the leading
contribution to the energy and equation of state (EoS) for the
generalized Skyrme model (1.1) in the limit of large density,
and this contribution to the EoS exactly coincides with the
(leading) contribution induced by the omega meson repul-
sion in relativistic mean field theories (RMF) of nuclear
physics [46], like the Walecka model [47,48]. This fact,
together with the perfect-fluid property of the BPS Skyrme
model, is the underlying reason for its success in the
description of the central regions of NS, which provide
the main contributions to their bulk properties. We want to
emphasize that this possibility to describe the central, high-
density region of NS by a simple and well-motivated
physical model is particularly important, because the proper-
ties of baryonic matter at these high densities are still poorly
understood, whereas low density regions can be described by
standard methods of nuclear physics. The relevance of
skyrmionic NS is further underlined by the observation that
certain generic consequences of the Skyrme model, like a
rather stiff EoS at high density or relatively large maximum
masses Mmax > 2 M⊙ of NS, are supported by recent
observations, disfavoring models with too soft EoS.
The arguments given above already indicate that a more

complete and more detailed description of NS, including
their peripheral, low density regions, probably cannot be
achieved by the BPS Skyrme model alone and needs a
completion in terms of standard nuclear physics. Indeed,

(i) Skyrmions for arbitrary baryon number are either of
a strictly finite extension (“compactons,” like in the
case of the BPS Skyrme model for a wide class of
potentials), or have exponential tails. In both cases
they essentially describe finite chunks of nuclear
matter, already in the absence of gravity.

(ii) Classical soliton solutions (skyrmions) have a given
baryon number but do not distinguish between
protons and neutrons (after quantization, the proton
and neutron content of a skyrmion is determined by
its isospin).

(iii) Classical BPS skyrmions solve a first-order BPS
equation and, therefore, have identically zero pres-
sure everywhere.

(iv) Classical BPS skyrmions, therefore, should be in-
terpreted as describing symmetric nuclear matter.
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The BPS property also excludes surface effects (the
energy of a BPS skyrmion is exactly proportional to
the volume). If electromagnetic effects are not taken
into account, either (which we assume in this paper),
then BPS skyrmions of sufficiently large baryon
number describe infinite nuclear matter at saturation.

(v) This implies that, as long as we model nuclear matter
in terms of the BPS Skyrme model only (without the
inclusion of further terms), the model parameters
should be calibrated to infinite nuclear matter. That
is to say, its soliton solutions should reproduce
the nuclear saturation density n0 ¼ 0.160 fm−3 and
the energy per nucleon of infinite nuclear matter
Einm ¼mN−Eb ¼ ð938.9–16.0ÞMeV¼ 922.9MeV
(here mN is the nucleon mass and Eb is the binding
energy per nucleon of infinite nuclear matter; we use
the up-to-date values given in [49], Table 2). The
average baryon density (baryon density in mean-
field theory) is, thus, equal to n0 for BPS skyrmions.

As a consequence of the above, the baryon density of BPS
Skyrme NS within a mean-field theory (MFT) approach is
bounded from below by n0 and takes the value n0 at the NS
surface. Physically, describing a NS purely by the BPS
Skyrme model within MFT implies that only the infinite
(or symmetric) nuclear matter aspects of NS matter are
modeled. For n > n0, we still have different equations of
state (EoS) for different MFT BPS Skyrme models, which
are related to different choices for the potential U, see
Sec. IV. In principle, already in the region of high density
n > n0, isospin corrections to the BPS Skyrme NS masses
should be considered, to account for the mainly neutron
nature of nucleons in a NS. Numerical calculations,
however, indicate that these isospin corrections are small.
More importantly, it is well-known from standard nuclear
physics calculations that NS contain peripheral regions of
lower density n < n0. This implies that the equation of
state (EoS) resulting from the MFT BPS Skyrme model
must be joined to a standard nuclear physics EoS at
some point n� > n0. The NS core is, thus, divided into an
inner core n > n�, described by the MFT BPS Skyrme
model and an outer core described by a standard nuclear
physics EoS. Concretely, we shall use the universal EoS
of [49], which is based on a Brueckner-Hartree-Fock
many-body calculation for the core and the BCPM
(¼ Barcelona-Catania-Paris-Madrid) nuclear energy den-
sity functional for the crust (BCPM EoS for short).
The situation is slightly different for the exact field

theory solutions of BPS Skyrme NS. First of all, the perfect
fluid described by the exact BPS Skyrme model (beyond
MFT) is nonbarotropic, and an algebraic EoS relating the
energy density ρ and the pressure p does not exist, see
Sec. IV. A low-density completion of an exact BPS Skyrme
NS, therefore, cannot be achieved by simply joining
different EoS. Second, the microscopic baryon density
of an exact BPS Skyrme NS is zero at the NS surface and,

therefore, takes arbitrarily small values close to it. Still, for
low densities a NS description in terms of the exact BPS
Skyrme model will probably not be reliable, and a low-
density completion is required. In particular, the BPS
Skyrme model leads to a homogeneous matter distribution,
whereas matter in the crust of a NS is known not to be
homogeneous, essentially consisting of droplets of nuclear
matter embedded in a gas of nucleons and electrons. A
rather obvious proposal, thus, consists in using the exact
BPS Skyrme NS for the core region and a different
description for the crust region. The core-crust (cc) tran-
sition typically occurs for baryon densities ncc ∼ ð1=2Þn0,
where the precise value of ncc is slightly model dependent.
The above proposal, however, meets two obstacles, namely
the difficulty in joining an exact BPS Skyrme NS with a NS
derived from an EoS mentioned above, and the intrinsic
difficulty of a full microscopic description of the inhomo-
geneous crust. To overcome these problems, we propose to
use the effective description of the NS crust recently
developed in [50]. This effective description cannot lead
to a complete description of the complicated crust structure,
but it reproduces the bulk observables of NS (masses, radii)
with a surprisingly high precision. It is one of the aims of
this paper to apply the effective crust description of [50] to
the NS resulting from the exact BPS Skyrme model.
We briefly review the theoretical description of NS in the

next section. In Sec. III, we summarize the effective crust
description of [50]. Some relevant properties of the BPS
Skyrme model are introduced in Sec. IV. In Sec. V, we
present the numerical results for exact BPS Skyrme NS
with the effective crust of [50], and for BPS Skyrme NS in
MFT joined to the EoS of [49]. Finally, Sec. VI contains
our conclusions. We use units such that the speed of light
c ¼ 1. We are, thus, left with a mass (or energy) unit and a
length unit where, depending on the context, we use either
nuclear physics units (MeV and fm) or stellar astrophysics
units (solar masses M⊙ and km). Finally, Newton’s con-
stant is GN ¼ 1.322 × 10−42 fmMeV−1.

II. NEUTRON STARS

The theoretical description of a neutron star (NS) usually
starts with the assumption that the matter composing it can
be described by the energy-momentum tensor (EMT) of a
perfect fluid,

Tμν ¼ ðpþ ρÞuμuν − pgμν: ð2:1Þ

Here, uρ is the four-velocity of the fluid, ρ is its energy
density, and p its pressure. For the purposes of the present
paper, we are only interested in static NS solutions. In the
corresponding static space-time, the time direction can
always be chosen perpendicular to spacelike hypersurfaces,
implying a block-diagonal metric
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ds2 ¼ g00ðx⃗Þdt2 − gijðx⃗Þdxidxj ð2:2Þ

and the fluid four-velocity uμ ¼ ðg00Þ−1=2δ0μ. In such a
static space-time, the Einstein equations Gρσ ¼ 8πGNTρσ

are compatible with the assumption of spherical symmetry,
i.e., with a metric

ds2 ¼ AðrÞdt2 −BðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ ð2:3Þ

and with a pressure pðrÞ and energy density ρðrÞ which
only depend on the radial coordinate r. For this ansatz, the
Einstein equations simplify to three independent ordinary
differential equations (ODEs) for the four functions ρðrÞ,
pðrÞ, AðrÞ and BðrÞ, known as Tolman-Oppenheimer-
Volkoff (TOV) equations [51,52]. It turns out that the
function A can be completely eliminated from two of the
three TOV equations, such that the system simplifies to a
system of two equations for ρ, p andB, and a third equation
which expresses A in terms of the remaining functions.
Concretely, the first two equations can be expressed like
(here p0 ≡ ðdp=drÞ etc.)

m0 ¼ 4πr2ρ; BðrÞ≡
�
1 −

2GNmðrÞ
r

�
−1

ð2:4Þ

p0 ¼ −
ρþ p
r

�
1

2
ðB − 1Þ þ 4πGNr2Bp

�
ð2:5Þ

¼ −
GNðρþ pÞ
1 − 2GNmðrÞ

r

�
mðrÞ
r2

þ 4πrp

�
ð2:6Þ

whereas the third equation is

A0

A
¼ 1

r
ðB − 1Þ þ 8πGNrBp: ð2:7Þ

The covariant conservation of the EMT, gλν∇μTμν ¼ 0,
which for a perfect fluid reads

∂λp
ρþ p

¼ −
1

2
∂λ ln

ffiffiffiffiffiffi
g00

p
; ð2:8Þ

is, in fact, implied by the above Einstein equations. Indeed,
Eqs. (2.5) and (2.7) immediately lead to

p0

ρþ p
¼ −

1

2

A0

A
ð2:9Þ

which is just Eq. (2.8) for our spherically symmetric ansatz.
Equations (2.4) and (2.5) are two equations for the three
unknown functions ρ, p, andB, therefore a third equation is
required to close the system. The simplest possibility,
which is assumed in almost all investigations of NS, is
to consider an algebraic equation of state (EoS) ρ ¼ ρðpÞ.
This is equivalent to the assumption that the fluid described

by (2.1) is barotropic. Another possibility is that the field
theory describing the NS matter is already of the perfect-
fluid form, and then the system of equations is closed by
the corresponding field equations. If, in addition, these
field equations are equivalent to the covariant energy-
momentum conservation condition (2.8), then they are
implied by the Einstein equations and the system (2.4)
and (2.5) closes by itself. This happens, e.g., for a field
theory of one real scalar field, or if the field space is
effectively one-dimensional after a symmetry reduction to
spherical symmetry. Most field theories are not of the
perfect-fluid form and require a macroscopic description
like mean-field theory (MFT) to arrive at a perfect-fluid
energy momentum tensor and an EoS. The BPS Skyrme
model, on the other hand, is a perfect fluid and, therefore,
offers the unique opportunity to compare exact and MFT
results.

III. EFFECTIVE CRUST DESCRIPTION

A. Baryon chemical potential

The baryon number chemical potential μ is one impor-
tant observable for the description of NS. In addition, it
plays a distinguished role in the effective crust description
of [50], therefore it will be useful to briefly review some of
its properties. There exist several definitions of the chemi-
cal potential, which are all equivalent in the case of a
barotropic fluid where the energy density can be expressed
as a function of the pressure, ρ ¼ ρðpÞ or, equivalently,
both ρ and p can be expressed as functions of the baryon
number density n, i.e., ρ ¼ ρðnÞ, p ¼ pðnÞ. The baryon
chemical potential is defined as the change of the free
energy F under a change of baryon number B at constant
volume V. For our purposes, we assume zero temperature
T ¼ 0, such that the free energy coincides with the
(static Skyrmion) energy, EðV; BÞ ¼ FðV; B; T ¼ 0Þ.
Consequently,

μ ¼ ∂E
∂B

����
V
: ð3:1Þ

The pressure is spatially constant for matter in a thermo-
dynamical equilibrium. For barotropic matter this implies
that the energy density and baryon number density are
constant, as well, and may be simply defined like ρ ¼ E=V
and n ¼ B=V. Equation (3.1) then leads to

μ ¼ dρ
dn

: ð3:2Þ

Further, if ρ is considered as a function of n, then the
pressure exerted by the matter with particle number density
n (in our case, baryons) is given by p ¼ nðdρ=dnÞ − ρ.
Inserting definition (3.2), we find yet another definition
for μ,
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ρþ p ¼ nμ: ð3:3Þ

Finally, taking the differential of this expression, dp ¼
μdnþ ndμ − dρ ¼ ndμ and replacing n with the help of
(3.3), leads to the relation

dp
pþ ρ

¼ dμ
μ
: ð3:4Þ

For a nonbarotropic perfect fluid, the pressure in flat space
is still constant in equilibrium, as a consequence of the
conservation equation (2.8). ρ and n, on the other hand, do
not have to be constant. As a result, the above expressions
for μ are no longer equivalent, leading to the obvious
question of which one to use to define the chemical
potential. Some simple thermodynamical considerations
allow us to answer this question. For a perfect fluid, the
densities ρ, n, and p are the natural variables, so definition
(3.1) does not apply directly. Further, without gravity (and
in the absence of external potentials), both the temperature
(zero in our case) and the chemical potential must be
spatially constant in thermodynamical equilibrium. In
particular, a nonconstant chemical potential would allow
us to lower the energy by rearranging the baryonic matter.
But only definition (3.4) implies a constant chemical
potential for an equilibrium (constant pressure) configura-
tion. Finally, in the presence of gravity, both the temper-
ature [53] and the chemical potential [54] are redshifted (no
longer constant) in equilibrium, i.e., T

ffiffiffiffiffiffi
g00

p ¼ const and
μ

ffiffiffiffiffiffi
g00

p ¼ const. This may be reexpressed like ∂λ ln μ ¼
−ð1=2Þ∂λ ln

ffiffiffiffiffiffi
g00

p
and is, again, implied by the definition

(3.4) together with the conservation equation (2.8). In
particular, for spherical symmetry and using (2.9), we get

μ0

μ
¼ p0

pþ ρ
¼ −

1

2

A0

A
: ð3:5Þ

We remark that Eq. (3.5) implies that μ is determined only
up to a multiplicative constant, which does not follow from
the TOV equations and must be fixed by some physical
considerations.

B. Crust description of Zdunik, Fortin, and Haensel

The effective crust description of [50] is motivated by the
problem that nuclear matter in the crust of a NS is not
homogeneous, so finding a realistic EoS for it is difficult.
In particular, only a few unified EoS, i.e., derived from the
same nuclear model for the NS crust and core, are available.
On the other hand, if the crust and core EoS stem from
different nuclear models (nonunified EoS), then the match-
ing at the core-crust (cc) interface introduces uncertainties,
especially for the NS radius. The procedure of [50] does not
require a knowledge of the crust EoS, at all. All that is
required are some NS core properties derivable from the
core description (core mass, core radius, the chemical

potential at the core radius (or cc interface), μcc), and
the chemical potential at the NS surface (a physical input
value). Further, a comparison with the full calculations for
some unified EoS shows that the simple crust description of
[50] reproduces certain bulk observables (NS mass, radius)
with a surprisingly high precision.
The procedure of [50] starts from the second TOV

equation (2.6), with the following additional assumptions.
(i) the core contribution to the NS mass is much bigger than
the crust contribution. For the crust region rcc ≤ r ≤ R, the
mass function mðrÞ may, therefore, be replaced by the full
NS mass MNS ¼ mðRÞ (here R is the NS radius where
pðRÞ ¼ 0). (ii) In the last term at the right-hand side (r.h.s.)
of (2.6), rp may be neglected in comparison with MNS=r2

(the pressure close to the surface is small). With these
assumptions, Eq. (2.6), simplifies to

dp
pþ ρ

¼ −GNMNS
dr

r2ð1 − 2GNMNS=rÞ
: ð3:6Þ

Here, the left-hand side (l.h.s.) is just the defining relation
for the chemical potential, (3.4). Further, the r.h.s. is a given
function of r, independent of any EoS. Integrating both
sides from rcc to R (from pcc ¼ pðrccÞ to pðRÞ ¼ 0), we
arrive at

�
μcc
μ0

�
2

¼ 1 − ð2GNMNSÞ=R
1 − ð2GNMNSÞ=rcc

ð3:7Þ

where μ0 ¼ μðRÞ is the chemical potential at the NS
surface. This equation permits to determine the NS radius
R from μ0, μcc, rcc and MNS. Here, μ0 and μcc are
determined from physical considerations. μ0 is the energy
per baryon of iron, μ0 ∼ 930 MeV. Further, calculations
for different unified EoS determine μcc to be about μcc ∼
955 MeV [50]. This is the value we shall use in this paper,
implying ðμcc=μ0Þ ¼ 1.027. rcc is now determined from the
core EoS. For a barotropic fluid in the core, μðrÞ may be
determined directly from the solution of the TOVequations
using the algebraic relation (3.3). rcc then follows from
μðrccÞ ¼ μcc ¼ 955 MeV. For a nonbarotropic fluid in the
core, only the differential relation (3.4) or (3.5) is available,
and the full function μðrÞ in the core (including the
multiplicative constant) can only be determined by impos-
ing one additional physical condition.
Finally, the NS mass can be expressed as a sum of the

core and crust mass contributions, MNS ¼ Mcore þMcrust.
Here, Mcore ¼ mcoreðrccÞ is the value of the mass
function mcoreðrÞ for the core EoS evaluated at r ¼ rcc.
Further, taking into account the smallness of Mcrust,
Mcrust=Mcore ≪ 1, it may be determined from the TOV
equation (2.6) by using an even cruder approximation.
Indeed, neglecting p also in (pþ ρ), replacing mðrÞ by a
constant M and using ρ ¼ m0=ð4πr2Þ we get [50]
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dm
dp

¼ −
4πr4

GNM

�
1 −

2GNM
r

�
: ð3:8Þ

In the interval rcc ≤ r ≤ R, the r.h.s. of this expression does
not vary too much. In a last approximation, we therefore
assume that it is constant (i.e., its variation is a subleading
effect) and given by its value at rcc. The reason for this
choice is that, by assumption, we know the core EoS and,
therefore, all observables at rcc. The integration is then
trivial and leads to

Mcrust ¼
Z

0

pcc

dm
dp

¼ 4πpccr4cc
GNMcore

�
1 −

2GNMcore

rcc

�
ð3:9Þ

where pcc ≡ pcoreðrccÞ.

IV. BPS SKYRME MODEL

For a general metric, the BPS Skyrme model reads
(we introduce the new coupling constants λ and μ for
convenience)

SBPS ¼
Z

d4xjgj12ð−λ2π4jgj−1gρσBρBσ − μ2UÞ; ð4:1Þ

leading to the perfect fluid EMT

Tρσ ¼ −2jgj−1
2

δ

δgρσ
SBPS ¼ ðpþ ρÞuρuσ − pgρσ ð4:2Þ

with

uρ ¼ Bρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gσπBσBπ

p
ð4:3Þ

ρ ¼ λ2π4jgj−1gρσBρBσ þ μ2U ð4:4Þ

p ¼ λ2π4jgj−1gρσBρBσ − μ2U: ð4:5Þ

Here, we use the convention that the totally antisymmetric ϵ
symbol used in the definition (1.4) of the baryon density
current Bμ still obeys ϵ0123 ¼ −ϵ0123 ¼ 1, even for a
general metric. That is to say, the ϵ symbol and, as a
consequence, also Bμ are tensor densities rather than
tensors, and Bμ still obeys the ordinary conservation law
∂μBμ ¼ 0. This explains the additional factor jgj−1 in
Eq. (4.1). The true tensor B̃μ (contravariant vector, obeying
∇μB̃

μ ¼ 0) is B̃μ ¼ ð1= ffiffiffiffiffijgjp ÞBμ.
As the BPS Skyrme model is a perfect fluid, it can be

inserted directly into the TOV equations, without the need
for a thermodynamical or hydrodynamical limit. Indeed,
the ansatz

h ¼ hðrÞ; n⃗ ¼ ðsin θ cosBφ; sin θ sinBφ; cos θÞ
ð4:6Þ

for the Skyrme field leads to a spherically symmetric
energy density (in the standard Skyrme model the same
ansatz only preserves an axial symmetry of the energy
density [55]). Further, for the BPS Skyrme model this
ansatz together with the spherically symmetric metric (2.3)
is compatible with the Einstein and Skyrme field equations
and lead to the r-dependent energy density and pressure
expressions

ρ ¼ 4B2λ2

Br4
hð1 − hÞh02 þ μ2UðhÞ; ð4:7Þ

p ¼ 4B2λ2

Br4
hð1 − hÞh02 − μ2UðhÞ: ð4:8Þ

The boundary conditions are hð0Þ ¼ 1 and hðRÞ ¼ 0 (or
ξð0Þ ¼ π, ξðRÞ ¼ 0), where R is the radius where the
skyrmion approaches its vacuum value (the NS surface).
Further, we used that for the above ansatz B0 ¼
−ðB=2π2Þ sin θ sin2 ξξ0, where sin2 ξξ0 ¼ 4h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 − hÞp

and ξ0 ≡ ∂rξ, etc. For a block-diagonal metric (2.2) and
for static fields we may define the thermodynamical baryon
density n via

B0 ¼
ffiffiffiffiffi
jgj

p
B̃0 ¼

ffiffiffiffiffiffiffi
gð3Þ

q
n; B ¼

Z
d3x

ffiffiffiffiffiffiffi
gð3Þ

q
n ð4:9Þ

where gð3Þ is the determinant of the spatial metric gij. For
the above ansatz, this leads to

B0 ¼ r2
ffiffiffiffiffiffiffiffi
AB

p
sin θB̃0ðrÞ ¼ r2

ffiffiffiffi
B

p
sin θnðrÞ;

nðrÞ ¼ −
2B

π2r2
ffiffiffiffi
B

p h0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 − hÞ

p
ð4:10Þ

and to the (off-shell) thermodynamical relation

ρþ p ¼ 2π4λ2n2: ð4:11Þ

Despite this relation, the perfect fluid described by the
BPS Skyrme model is nonbarotropic. In particular, in flat
(Minkowski) space-time equilibrium configurations (static
solutions) lead to constant pressure but to a nonconstant
energy density and baryon density, see below.

A. Thermodynamics of the BPS Skyrme model

For the purpose of this section, we will only consider
static Skyrme configurations Uðx⃗Þ in flat (Minkowski)
space, where we shall, however, allow for arbitrary space
coordinates (an arbitrary flat metric gij) on R3. Further, the
field space (target space) SU(2), as a manifold, is just the
unit three-sphere S3, therefore each static Skyrme configu-
ration defines a map U∶R3 → S3. The baryon density
allows us to define the following three-form,
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B0d3x ¼ n
ffiffiffiffiffiffiffi
gð3Þ

q
d3x≡ n volR3 ð4:12Þ

where volR3 is the invariant volume form on R3. Here, the
domain of the three-form (4.12) is restricted to the region
where n ≠ 0. The topological character of B0 is implied
by the observation that the above three-form is just the
pullback, under the map U, of the volume form on target
space (up to a normalization factor) [44,45,56],

n volR3 ¼ 1

2π2
U�ðvolS3Þ: ð4:13Þ

Indeed, it immediately follows that
R
n volR3 ¼

Bð1=ð2π2ÞÞ R volS3 ¼ B, where 2π2 is the volume of S3,
and B counts the number of times the target space is
covered by the map U.
The static energy functional is

EBPS ¼
Z

volR3ρ ¼
Z

volR3ðλ2π4n2 þ μ2UÞ ð4:14Þ

and allows for the usual completion of the square to derive
the BPS bound and equation. For our purposes it is,
however, simpler to use the conservation of the EMT,
which, for static configurations in flat space, is equivalent
to the condition of constant pressure,

p ¼ λ2π4n2 − μ2U ≡ P ¼ const: ð4:15Þ

(the proper BPS case can be recovered in the limit P → 0).
This condition is, in fact, a first integral of the static field
equations, where P is an integration constant. It may be
rewritten like

n ¼ � μ

λπ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ðP=μ2Þ

q
ð4:16Þ

(in the sequel we will choose the þ sign). This equation
(which generalizes the BPS equation to nonzero pressure)
has a huge amount of symmetries, among them the volume-
preserving diffeomorphisms (VPS) on physical space [57].
Inserting it into (4.13) allows us to reexpress the invariant
volume form as a pullback by itself,

volR3 ¼ π2λ

μ

1

2π2
U�

�
volS3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ðP=μ2Þ
p

�
: ð4:17Þ

This implies that for integrands which depend on x⃗ only via
U, the resulting integrals can be written as target space
integrals and give the same result for any static solution
(equilibrium configuration) with the same pressure (inte-
gration constant) P. In particular, for the volume VðPÞ and
on-shell energy (i.e., using the constant pressure condition)
we get

VðPÞ ¼
Z

volR3 ¼ Bπ2
λ

μ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ðP=μ2Þ
p

�
ð4:18Þ

EðPÞ ¼
Z

volR3ð2μ2U þ PÞ ¼ Bπ2λμ

�
2U þ ðP=μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ðP=μ2Þ

p
�

ð4:19Þ

where the brackets define the target space average,
hfðUÞi ¼ ð2π2Þ−1 R volS3fðUÞ. They obey the thermody-
namical relation P ¼ −ðdE=dVÞ, as may be checked easily.
For typical potentials like the pion mass potential Uπ ¼ 2h
or the pion mass potential squared, these averages can
be expressed in terms of generalized hypergeometric
functions [43,44].
The above results allow us to define average observables,

corresponding to a MFT treatment of the BPS Skyrme
model. In particular, the average energy density ρ̄, baryon
density n̄ and baryon chemical potential μ̄ for arbitrary
static solutions are

ρ̄ðPÞ ¼ EðPÞ
VðPÞ ; n̄ðPÞ ¼ B

VðPÞ ; μ̄ðPÞ ¼ ρ̄þ P
n̄

ð4:20Þ

and lead to a barotropic perfect fluid, by construction.
Remark.—Looking at relation (4.11), it is tempting to

define a local chemical potential density μ̃ ¼ 2π4λ2n. It
should be emphasized, however, that μ̃ is not a chemical
potential. In particular, it is not constant at equilibrium. In
any case, by integrating Eq. (4.11) we find a second,
equivalent expression for μ̄,

μ̄ ¼ B−1
Z

volR3nμ̃

¼ 2π4λ2B−1
Z

volR3n2

¼ 2π2λμ
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ðP=μ2Þ
q E

: ð4:21Þ

B. Parameter values

Before doing numerical calculations, we have to choose
values for the parameters λ and μ of the model. As
explained in the introduction, we will do so by fitting to
the properties of infinite nuclear matter. Concretely, we
consider the two potentials Uπ and U2

π , and a third potential
which approaches the vacuum with a fourth power in ξ, like
the potential U2

π, but is flat (constant) in the antivacuum
hemisphere 1=2 ≤ h ≤ 1, i.e.,

U flat ¼
�
sin4ξ ¼ 16h2ð1 − hÞ2 ; ξ ∈ ½0; π

2
�;

1 ; ξ ∈ ½π
2
; π�: ð4:22Þ
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The idea here is that the two potentials Uπ and U2
π are the

simplest expressions in terms of the Skyrme field. They
may be considered as the first two terms in an expansion,
which provide the leading contributions for small field
(close to the vacuum). In a more general model, probably
both terms will contribute, but we chose the two extreme
cases for simplicity. Further, their approach to the vacuum
is as required from physical considerations (the quadratic
approach of Uπ provides the pions with a mass, whereas
the quartic approach of U2

π induces a repulsive short-
range interaction, alleviating the binding energy problem
[19–21]). On the other hand, they are rather peaked at the
antivacuum h ¼ 1, leading to large central baryon densities
already in the case without gravitation. We, therefore, chose
the flat potential U flat as an example which avoids these
high central baryon densities. For a flat potential like
(4.22), the baryon density is constant in the region of
constant potential by construction, as an immediate con-
sequence of the constant pressure equation (4.16). This
behavior probably provides a more realistic modeling of
nuclear matter for high densities, and the potential (4.22) is
a concrete example thereof. In any case, the detailed
determination of the correct Skyrme model potential will
require a fitting to many more observables of nuclear
physics.
The corresponding fit values are (for Uπ and U2

π they
were calculated in [43], but for the slightly different values
n0 ¼ 0.153 fm−3, Einm ¼ 923.3 MeV for the parameters of
infinite nuclear matter)

Uπ∶ λ2 ¼ 26.88 MeV fm3; μ2 ¼ 88.26 fm−3 fm−3

ð4:23Þ

U2
π∶ λ2 ¼ 15.493 MeV fm3; μ2 ¼ 141.22 MeV fm−3

ð4:24Þ

U flat∶ λ2 ¼ 23.60 MeV fm3; μ2 ¼ 121.08 MeV fm−3:

ð4:25Þ

V. NUMERICAL NEUTRON STAR
CALCULATIONS

For the numerical calculations, both in the MFT and in
the exact BPS case, we use a shooting from the center.
Details of the method and of the relevant boundary
conditions in both cases can be found in [43].

A. Full field theory calculations
with the effective crust

In the full field theory case, we calculate the NS masses
and radii resulting from the effective crust description
by a two-step procedure. In a first step, we determine

the full BPS theory NS solutions by integrating the
corresponding TOV equations from the center r ¼ 0 to
the BPS NS radius RBPS, defined as the radius where the
full BPS theory pressure takes the value zero, pcoreðRBPSÞ≡
pBPSðRBPSÞ ¼ 0. In a second step, we determine the radius
rcc where the chemical potential from the full BPS theory
takes the value μcc ¼ 955 MeV, that is to say, μcoreðrccÞ≡
μBPSðrccÞ ¼ μcc. For r > rcc, we then replace the BPS
crust by the effective crust, using the procedure of [50]
explained in Sec. III. The resulting NS observables are the
NS radius R given by Eq. (3.7) and the NS mass MNS ¼
Mcore þMcrust where the crust contribution is given by
(3.9). Both observables are somewhat different from the
full BPS theory values RBPS and MBPS ≡mBPSðr ¼ RBPSÞ.
More concretely, we use the expressions (4.7) and (4.8)

for ρ and p in the TOVequations (2.4) and (2.5) for the full
field theory calculation. They constitute a system of two
equations for the two unknown functions h and B and,
therefore, close by themselves. In this case, the baryon
number B is an input parameter on which ρ and p depend
explicitly, see (4.7) and (4.8). As a consequence, solutions
do not exist for arbitrary initial values p0 ≡ pðr ¼ 0Þ.
Instead, for each B the corresponding p0 must be found
such that the resulting formal solution is sufficiently regular
at the BPS NS surface RBPS and leads to nonsingular metric
functions there. Concretely, the regularity condition is that
at the BPS NS radius RBPS (defined by pBPSðRBPSÞ ¼ 0)
of the pure BPS model (with BPS crust) the condition
p0ðRBPSÞ ¼ 0 is satisfied, see [42,43]. Once this solution is
found for a given B, the effective crust is then constructed
as a second step.
To determine this effective crust, we have to find the

radius rcc where μBPSðrccÞ ¼ μcc. As explained in Sec. III,
this faces the additional problem that for the exact BPS
model, like for any nonbarotropic fluid, only the differ-
ential relation (3.5) for the chemical potential is available,
which allows to determine the functional dependence of
μBPSðrÞ but not its absolute value. This absolute value can
be determined by the following observation. The classical
soliton solutions of the BPS Skyrme model correspond to
infinite nuclear matter, by assumption. But this implies
that at the surface of the pure BPS Skyrme NS, where
pBPSðRBPSÞ ¼ 0, the chemical potential should be equal to
the energy per baryon of infinite nuclear matter,
μBPSðRBPSÞ ¼ μ0 ≡ 922.9 MeV. This determines the abso-
lute value of μBPS and allows to find the radius rcc where
μBPSðrccÞ ¼ 955 MeV. In a last step, for r ≥ rcc the BPS
solution is replaced by the effective crust, as described in
Sec. III B. We show our results for the potentials considered
in this paper in Fig. 1.
In particular, for the potential U2

π (central panel of Fig. 1)
we find that the M − R curves with and without the
effective crust are almost the same for M ≥ 0.5 M⊙. The
reason is that, for this potential with its quartic approach to
the vacuum, the energy density in the “tail” or BPS crust
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region of the pure BPS NS (close to RBPS) is very small
for the full BPS model. As a consequence, the “post-
Newtonian” approximation implied by the procedure of
[50] gives a result which is rather close to the full field
theory result in this region.

B. Mean field theory calculations joining
the BCPM EoS of Ref. [49]

Even in the MFT case, one might want to try the simple
effective crust construction of [50] as a first, rough
approximation. This construction is, however, no longer
consistent in the MFT case. Indeed, the MFT BPS Skyrme
NS ends at a density nðRÞ ¼ n0, therefore the putative
“crust” must be joined at some n� > n0. If this n� is chosen
very close to n0, then the resulting crust thickness is
unrealistically small. If, on the other hand, n� is chosen
sufficiently large to provide a reasonable crust thickness,
then the corresponding crust mass is no longer small, and
the self-consistency of the whole construction breaks down.
In the MFT case, therefore, we join the EoS resulting

from the MFT BPS Skyrme model for n > n� to the BCPM

EoS of [49] for n < n�, for some n� > n0, as explained in
the Introduction. In other words, we assume that the EoS of
[49] is valid both for the crust n < ncc and for the outer core
ncc < n < n�, whereas we use the MFT BPS Skyrme EoS
for the inner core n > n�. For simplicity, we will use the
corresponding pressure value p� ¼ pðn�Þ to fix the tran-
sition point. In addition, in some cases we will assume a
smooth interpolation between the two EoS instead of a
sudden transition at a fixed n� (or p�), concretely

ρtotðpÞ ¼ ð1 − αðpÞÞρBCPMðpÞ þ αðpÞρBPSðpÞ ð5:1Þ

where ρBPSðpÞ is given by the expression ρ̄ðpÞ of
Eq. (4.20),

αðpÞ ¼ b2p2

1þ b2p2
ð5:2Þ

is the interpolation function, and b is a parameter which
determines the transition region [located close top�∼ð1=bÞ].
We show our numerical results in Figs. 2 and 3, which are
discussed in some more detail in the next section.

FIG. 2. Mass-radius relation for NS of the BPS Skyrme model in the MFT limit, for the three potentials Uπ ¼ 2h, U2
π ¼ 4h2 and U flat.

For the potentials 2h and 4h2, we choose a sudden transition between the BCPM EoS of Ref. [49] and the BPS EoS. Concretely, for
Uπ ¼ 2h at p� ¼ 0.1 ðMeV=fm3Þ (Crust 1) and at p� ¼ 2.5 ðMeV=fm3Þ (Crust 2), and for U2

π ¼ 4h2 at p� ¼ 0.1 ðMeV=fm3Þ (Crust 1)
and at p� ¼ 8.0 ðMeV=fm3Þ (Crust 2). For the potential U flat we choose the smooth interpolation (5.1) with the two parameter values
b ¼ 0.1 ðfm3=MeVÞ (Crust 1) and b ¼ 10 ðfm3=MeVÞ (Crust 2). For comparison, we also show the pure BPS case without the crust.
For reasons of numerical convenience, also the unstable branch (where M diminishes with increasing central pressure) is shown.

FIG. 1. Mass-radius relation for NS of the BPS Skyrme model in full field theory, for the three potentials Uπ ¼ 2h, U2
π ¼ 4h2, and

U flat. For comparison, we show both the case with (green line) and without (violet line) the effective crust.
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The BCPM EoS for the (liquid) core in [49] is derived
using some advanced standard methods of many-particle
nuclear physics based on the Brueckner-Hartree-Fock
(BHF) approach (plus the BCPM density functional for
the crust), where nucleons are treated as quantum mechani-
cal point particles. For the outer core ncc < n < n�, nuclear
matter is rather well understood, and the EoS of [49] can
be expected to provide a precise description of NS matter.
For densities which are significantly higher than n0, on the
other hand, the EoS of [49]—like all other proposals—must
be considered an extrapolation. One basic assumption of
this extrapolation is the adequacy of a point-particle
description of nucleons even at high density. Skyrme
models, on the other hand, are paradigmatic examples of
EFT where nucleons are extended objects (topological
solitons), and their extended nature is the underlying cause
for the rather high stiffness of the resulting nuclear matter at
large densities. A Skyrme model treatment of nuclear
matter, therefore, allows us to confront these different
assumptions and to scrutinize their consequences for
nuclear matter at high density and for the resulting NS
properties. We remark that one common assumption of the

EoS of [49] and of the Skyrme model is the absence of
additional degrees of freedom (hyperons, quarks, etc.) in
the interior of NS (this was one reason to choose the EoS of
[49] for our comparison, in addition to its rather up-to-date
character).

VI. CONCLUSIONS AND DISCUSSION

It was the main purpose of the present paper to discuss
possible ways to add a crust to skyrmionic NS and, in
particular, to NS described by the BPS Skyrme model. In
the BPS Skyrme model, both an exact and a MFT
calculation of NS are possible and must be distinguished.
For the exact case, we find that the method of [50] can be
applied without problems and leads to the following typical
behavior. The crust contribution to the total NS radius is
significant only for rather low-mass NS (below one solar
mass). This is related to the high stiffness of nuclear matter
described by the BPS Skyrme model. At high density, the
BPS Skyrme model reaches the maximally stiff EoS
ρ ∼ pþ const, and this limit is approached rather soon.
The high stiffness also explains two further results which

FIG. 3. Smooth interpolation (5.1) for the potential U flat, for the three values of the interpolation parameter b ¼ 0 (pure BPS case,
“Flat”), b ¼ 0.1 ðfm3=MeVÞ and b ¼ 0.25 ðfm3=MeVÞ. In addition to theMðRÞ curve (left upper panel) we also show the NS mass as a
function of the central pressure (right upper panel) and the two EoS ρðnbÞ (left lower panel) and ρðpÞ (right lower panel). nb is the
baryon number density. For comparison, we also show the case of the BCPM EoS of Ref. [49].
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can be appreciated in Fig. 1, namely the rather high
maximum NS masses and the fact that the radius increases
with the NS mass in the region between one and two solar
masses. Concretely, we chose the BPS Skyrme model for
the three potentials Uπ , U2

π, and U flat, for the reasons
explained in Sec. IV B. It turns out that the resulting bulk
NS properties are qualitatively similar for the three cases.
NS with 1.5 solar masses have radii between 12 and 14 km,
and NS with 2 solar masses have radii between 13
and 15 km.
In the case of a MFT description of BPS Skyrme NS, a

crust cannot be attached directly to the BPS Skyrme NS
using the method of [50]. Instead, the EoS of the BPS
Skyrme model must be complemented with a standard
nuclear physics EoS at low densities. Concretely, we chose
the BCPM EoS of [49]. Even so, bulk properties like the
MðRÞ curves are not very different between the exact and
MFT cases. We want to emphasize, however, that coor-
dinate-dependent observables like densities differ consid-
erably between MFT and exact calculations [43],
particularly for the potentials Uπ , U2

π considered in this
paper, see footnote [58] below.
A further consequence of the high stiffness of the BPS

Skyrme model is that the baryon densities in the interior of
a NS remain relatively low. Indeed, as can be calculated
easily, for the models Uπ and U flat even in the center r ¼ 0

the baryon density never increases by more than a factor of
about three in comparison with the case without gravity
[58]. For the potential U flat this can be easily inferred from
Fig. 3. The exception is the model U2

π where the baryon
density at the center grows to about 4.5 times the saturation
density n0 for the maximum mass NS [42,43]. This is
related to the fact that U2

π is rather peaked around the
antivacuum, and may imply that potentials which are flatter
there are more realistic. We introduced the potential U flat

(which approaches the vacuum like U2
π but is flat in the

large-field region) precisely for this reason.
Indeed, baryon densities which are not excessively large

in the interior of a skyrmionic NS are important for the
self-consistency of the Skyrme model approach to NS. The
Skyrme model only describes standard nuclear matter, by
construction. There are no contributions from exotic
hadrons, and a dissolution of baryonic matter into quarks
does not occur. But this assumption would be rather
unlikely in an environment of extremely high baryon
density. If, on the other hand, the baryon density never
exceeds several times the density of normal (nongravitat-
ing) nuclear matter, then this assumption is much more
plausible. Within the generalized Skyrme model (1.1), the
sextic term L6 is responsible for this behavior [46], which
underlines its importance. It describes a strong repulsion
acting on compressed nuclear matter as a result of the
strong interaction. In RMF models of nuclear matter, this
repulsive force is induced by the omega meson. In other

words, a stiff EoS, rather low baryon densities and a
description entirely in terms of standard nuclear matter are
characteristic features of a skyrmionic approach to NS,
which distinguishes it from many other approaches. The
observed high-mass NS with M > 2 M⊙, which require
rather stiff nuclear matter, are a strong argument in favor of
this approach, all the more so because the inclusion of
additional degrees of freedom tends to soften the EoS. The
same line of reasoning also explains the preliminary finding
that isospin contributions to the skyrmionic NS may be
ignored in the NS core. It is equivalent to the statement that
for compressed nuclear matter the repulsive force induced
by the strong interactions is much more important than the
degeneracy pressure. Of course, these arguments do not
apply to the NS crust, but the effective crust description of
[50] was introduced precisely with the aim of avoiding a
detailed description of the crust, which does not seem to be
very important for NS bulk properties.
The BPS submodel of the generalized Skyrme models

(1.1) is singled out both because of its simplicity and
because, owing to its stiffness, it provides the leading
contribution for the inner core. As a next step toward a
more complete description of NS, the full model (1.1)
should be considered. In this case, an ansatz leading to a
spherically symmetric energy density is no longer available
(except for baryon number B ¼ 1). A full field theoretic
treatment is, therefore, beyond current possibilities. As to a
MFT approach, we already know two limiting cases,
namely the perfect fluid of the BPS submodel and the
crystal provided by the L2 þ L4 submodel. It follows that
the full generalized model (1.1) will show a rather complex
pattern also in MFT, possibly with several topological
phase transitions, depending both on parameter values and
on baryon density. Taking into account the scaling behavior
of the different terms, however, it is plausible to assume that
the inner core will continue to be described by a fluid,
whereas the outer core will show some type of crystalline
structure. Owing to its slightly softer overall EoS, the full
model will also lead to smaller maximum NS masses and to
slightly smaller NS radii for a given NS mass, which might
be desired features. In particular, recent observations of
gravitational waves emitted from inspiraling NS binaries
seem to imply an upper bound on the maximumNSmass of
about Mmax ∼ 2.3 M⊙ [59] and a value of R ∼ 11 km for a
1.4 M⊙ NS [60]. The pure L2 þ L4 Skyrme crystal leads to
a maximum NS mass of about 1.9 M⊙ and to a maximum
radius of about 11 km [35,41], therefore an appropriate
combination of the standard and BPS Skyrme models
should be able to naturally accommodate these most recent
constraints.
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