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The stability of “visible” electroweak-type cosmic strings is investigated in an extension of the Standard
Model by a minimal dark sector, consisting of a U(1) gauge field, broken spontaneously by a scalar. The
visible and dark sectors are coupled through a Higgs-portal and a gauge-kinetic mixing term. It is found that
strings whose core is “filled” with a dark scalar condensate exhibit better stability properties than their
analogues in the Standard Model, when the electroweak mixing angle is close to 6y, = z/2. They become
unstable as one lets Oy, approach its physical value. The instability mechanism appears to be a W-boson
condensation mechanism found in previous studies on the stability of electroweak strings.

DOI: 10.1103/PhysRevD.102.023009

I. INTRODUCTION

Cosmic strings are expected to form due to spontaneous
symmetry breaking, and have been the subject of vigorous
research ever since their first proposition [1-5]. Since
cosmic strings are relics of the phase transitions in the
early Universe, they may be viewed as a link between high
energy physics and cosmology. They are expected to
contribute to the anisotropy of the cosmic microwave
background [2,4-6] and structure formation [2,7,8]. At a
lower energy scale, electroweak strings may also manifest
themselves observationally by creating a primordial mag-
netic field and play a role in baryogenesis [9]. Cosmic
strings exist generically in spontaneously broken gauge
theories, the prototype being the Abrikosov-Nielsen-
Olesen (ANO) string in the Abelian Higgs model
[10,11]. ANO strings can be embedded in the Glashow-
Salam-Weinberg (GSW) theory [GSW theory, with its
parameters assuming their physical values is the electro-
weak sector of the Standard Model (SM)] [9,12,13].

An important criterion for the relevance of such objects
is their stability. In the electroweak theory, embedded
cosmic Z strings are known to have a domain of stability
[9,12,13]. However, it has been found [9,14-17] that for
physical values of the parameters (more specifically, the
electroweak scale, W, Z and Higgs masses), embedded

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020/102(2)/023009(17)

023009-1

ANO string solutions are unstable. The mechanism of the
instability is rather transparent in the 6y — /2 limit
(semilocal model) [18-20], in which the Z boson and
the Higgs doublet decouple from the rest of the electroweak
theory. The “extra” Higgs component condenses into the
false vacuum, and thus the string unwinds, the flux is
pushed away to infinity.

In theories extending the Standard Model, the possibility
arises to “fill up” the core of the string, thus preventing the
formation of condensates therein. In Ref. [21], this pos-
sibility has been considered in the case of the semilocal
model coupled to a dark sector, and a significant enhance-
ment of the stability properties of the string solutions has
been found due to the Higgs-portal coupling [22,23] and to
gauge-kinetic mixing (GKM) [24]. In the present paper, we
shall extend this study to the full GSW model coupled to a
dark sector.

At this point the following mechanisms for the stabili-
zation of electroweak strings should be mentioned: addi-
tional scalar fields bound in the string [25], the interplay of
quantum fluctuations of neutrinos and deformations of the
string [26—-30], quantum fluctuations of an additional heavy
fermion doublet coupled to the string [31,32], interaction
with a thermal photon bath [33], and special couplings (of
the dilatonic type) [34].

The model of dark matter we shall consider here is the
unified dark matter model put forward in Refs. [35,36], in
which it is assumed that in the dark sector there are gauge
interactions, the gauge group contains a U(1) factor, which
is broken by a dark Higgs field. The dark and the visible
sectors interact via the Higgs-portal coupling [22,23] and
the GKM [24]. A subset of this model is the scalar phantom
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dark matter [22,23], in which dark matter is scalar, and
there is no dark sector gauge field; in this case the dark
scalar may have a zero vacuum expectation value. The
parameters of the latter model are strongly restricted by
observations [37-39]. In the present paper, we consider the
case of a nonzero dark scalar vacuum expectation value.
For information on experimental constraints on dark matter,
see Ref. [40], and, in particular, for constraints on the GKM
and additional scalar fields, see Refs. [41,42], respectively.

In the model considered, there exist dark string solutions,
i.e., string solutions where the flux is of the dark U(1)
interaction, and the dark scalar has a nonzero winding
[43-51]. Similar solutions in a U(1) x U(1) theory for
higher windings have been considered in Refs. [52,53], and
an earlier work on string solutions in a portal-type theory is
Ref. [54]. In these works, the strings have a nonzero
winding in the dark sector. Dark strings in these models
are stable, however, their interactions with the visible sector
and their string tension is determined by the (yet unknown)
parameters of the dark sector.

The complementary case, in which the flux is in the
visible sector, and the role of the dark matter is to stabilize
the string, yields a string tension determined by the
electroweak scale, and interactions mostly determined by
the electroweak parameters.

The semilocal limit of the theory is a generalization of
the Witten model [55], and the string solutions considered
in Ref. [21] are embeddings of the solutions previously
found in Refs. [56-59]. (Similar and quite interesting string
solutions were found in a condensed matter setting, in
Refs. [60,61].)

In the present paper, we consider the stability of
electroweak-dark strings. We find that the enhanced sta-
bility due to the Higgs portal and the GKM couplings found
in Ref. [21] in the full GSW theory coupled to a dark sector
only persists to a parameter range of the full theory rather
close to the semilocal limit, there extending the domain of
stability to My /M, > 1 (up to My /M, ~ 1.4), in contrast
to electroweak strings. However, this occurs for parameters
disfavored by experiment, when the dark scalar and the
dark Abelian gauge boson are not heavier than their visible
counterparts. We obtain the domain of stability of electro-
weak-dark strings for various parameter combinations, as
well as the dependence of the strength of the instability on
the parameters of the dark sector and the strength of the
couplings between the visible and the dark sectors. Our
analysis builds upon the results of Refs. [17,44].

The plan of the paper is as follows: we summarize the
main characteristics of the model considered in Sec. II,
including the particle content of the model, and the relation
among the parameters and the particle properties, based on
Ref. [44]. Electroweak-dark strings are introduced in
Sec. III, their stability analysis is performed in Sec. 1V,
and we conclude in Sec. V. Some details of the calculations
are relegated to Appendix A.

II. THE MODEL CONSIDERED

We shall consider here string solutions in the GSW
model coupled via gauge-kinetic mixing [24] and the
Higgs portal [22,23] to a dark sector. The dark sector shall
be considered in the unified dark matter model of
Refs. [35,36,43]. From the full SM Lagrangian, the terms
corresponding to the field that assume nontrivial values in
the solutions considered are the electroweak (GSW) and
dark sector Abelian gauge terms,

1 1 1 sine
EG:—fW}wW” _ZY’”Yﬂ --Cc, ,C"+—C

4 4 2 W Y,

(1)

where W, Y, and C denote the visible sector non-Abelian,
Abelian, and the dark sector gauge field strengths,
expressed with their respective gauge vector potential as
Wi, = 0,Wi —o,Wj + ge“bCW,’jW,f, Y, =09,Y,-9,Y,
and C,, = 9,C, - 0,C,. The fields Wy, Y,, and C, are
referred to as visible SU(2), U(1), and dark U(1) gauge
fields. In the gauge field part of the Lagrangian, Eq. (1), € is
the gauge-kinetic mixing [24,47]. Its sign is chosen in
agreement with Ref. [21] (and opposite to that of Ref. [44]).

Space-time (greek) indices assume values y,v =0, ...,3
whereas the internal [SU(2)] indices a, b, ¢ = 1, 2, 3. We
shall consider the metric (4, —, —, —) and &%*¢ is the Levi-
Civita symbol.

The scalar sector of the theory consists of the electro-
weak and the dark Higgs scalars, coupled to their respective
gauge fields,

Ls=D,® D'®+ D,y D'y -V, (2)

where D, and Dﬂ denote the gauge covariant derivatives,
D,® = (0, -4 Wjz* =4Y,)® and D,y = (0, -5 C,)x,
1 denotes adjoint (transposed complex conjugate) and *
complex conjugate, and ¢ are the Pauli matrices in internal
(isospin) space. The potential is

V= 2(®'® —n7)* + h(lr]* —m)?
+ (D70 — 1) (ly]* — m3). (3)

The Lagrangians (1) and (2) reflect the symmetries of the
model in a manifest form. On the other hand, the particle
content of the theory is better expressed with the so-called
physical fields, for which, see Sec. I A.

A. Particle content and physical parameters

Let us briefly consider the particle content and the para-
meters of the theory, following the analysis in Ref. [44].

To identify physical degrees of freedom, one needs to
introduce new fields with the transformation

023009-2



ELECTROWEAK STRINGS WITH DARK SCALAR ...

PHYS. REV. D 102, 023009 (2020)

Yﬂ Aﬂ
W; - M Z " ) (4)
c, X,

where the (nonunitary) matrix of the transformation is

Cw  —SwCr  SwS¢tl.Cce
M = Sw chg —cws§ , (5)
0  sg/c. ce/ce

where cyw = cosfy, s, = sinfy, and where Oy is the
Weinberg angle, tanfy = ¢'/g, ¢, = cose, s, = sine,
te = 58./Ce, cc=cos(, and s, =sin{. The angle { is
defined by

2 sin @y, sinecos €
R?* =1 +sin®e(1 +sin?Oy)’

and R = gno/(gm) and g = \/¢* + ¢
In what follows, we shall denote the middle line of the
matrix M by a, i.e.,

tan2{ = (6)

W134 = alAM + a2Zﬂ + a3X s
) = Sy, O = CyCs, Q3 = —CyS¢. (7)
In the new variables, the gauge Lagrangian can be recast as

L= 1F Fuv 12 Vi lX XHv 1W Whv
G__Z uv _1 uv _Z uv _Z uv

— gW3, WHIW?2 — gW! WE2 WS + g2 WHIW®3
2

_g_(WaWﬂa)Z_g_zw3W/43WtzWL/a
4 2 v
2 2
+ gz WaWEWre > — % WAW; Wraw, (8)

where in Eq. (8) a = 1, 2 and W4, = 9,W¢ — 9,W¢ (i.e.,
the linear part of the field strength tensor). Equation (8)
shows that the transformation (4) results in decoupled
kinetic and mass terms for the new vector fields A,, Z,,
and X,.

In the scalar sector, the particles correspond to amplitude
fluctuations of the Higgs field assuming a vacuum expect-
ation value (¢h,) and, similarly, amplitude fluctuations of the
dark scalar y [44]. Here we convert the formulas of
Ref. [44] to our notations for convenience. The scalar

mass matrix in the basis of the fields & = v2(|¢;| — ;)
and s = v/2(|y| = 17,) in the Lagrangian (2) is

"

( (O = i9ag+ Ay = 19242, — igxy X, )1 — Wb )
D,® = )

(0u —i9anA, —i9zuZ, —igxuX,)$> — %W;le

( my 22X )
24 nymy m% ’

where m% = 44,7 and m3 = 41,n3. The physical fields
¢u, ¢ are rotated at an angle ¢,

<h> B < cos 0, sin6s><¢H> )
s)  \—sin 0, cosd, ds
and the scalar mixing angle is given as

4
tan 20, = i

= 10
4/12’1% - 411’7% (10)

The corresponding eigenvalues (squared scalar masses) are

2
sin” 6,
My = iy = (= i) S
sin® 0,
M3 = i+ (=) S (1)

For more details, see Ref. [44].

The couplings of the physical fields are calculated in
Ref. [44]; which are reproduced here with the replacement
e — —e¢ (for agreement with Ref. [21]):

Japr = €,

e (1
Jzp+ = €t 5 a—lw +Sc5—,

e t, e (1 ;
=Crz— =S¢z | —— ,
gX¢+ CZCW Z;2 tw w

gAH:O’
e 1 et,
= —Cyr—— -,
9z é'2.5\;\/6'\;\/ é‘2CW
. e t, +s e 1
gXH_ Z"/2C\)V §2Swa
gas =0,
g1
=S -,
9zs C2c5
g1
= 2— 12
9xs §2c£ ( )

The gauge covariant derivatives of the scalars expressed
with the physical gauge fields and the couplings from
Eq. (12) are

(13)
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where Wi = \/LE(W; F iW2), gany =0, and

Dy)( = (814 —igasA, — 19252, — igng”)}{- (14)

Note, that g4 = 0, i.e., the dark scalar is indeed dark.
The vector boson masses are

g
My === Mz =2g3m; + 29555,
M5 = 2g3m; + 29% /13- (15)

For more details, see Ref. [44].

The g — 0 (O — x/2) limit is referred to as the semi-
local limit; in particular, that limit of the model is the
semilocal-dark model. In this limit, the non-Abelian gauge
field decouples, and the SU(2) symmetry becomes global.

B. Values of model parameters considered

The parameters of the visible sector, the electroweak
parameters, have been determined to a high accuracy [40].
In what follows, for a solution to be considered physical,
setting electroweak parameters (W and Z masses, electric
charge, and Weinberg angle) to their physical value is
considered necessary.

The dark sector gauge My and scalar My masses are
experimentally bound to be larger than their visible
sector counterparts to avoid abundant dark decays, unless
the coupling between the visible and dark sectors is
extremely weak. The scalar mixing angle 6, is largely
unconstrained as long as the dark sector particles are heavy
enough [35,36].

For observational bounds on the model parameters, see
Ref. [41] for those on the GKM, Ref. [42] for those on the
scalar sector, and Ref. [40] for a review. For our purposes,
it shall be sufficient to know that for My < 200 GeV, |¢| S
0.03 (and for a large part of the dark gauge boson mass
range, |¢| < 107%), and that |0,| < /2. For heavy dark
sector particles, the model is largely unconstrained [44].

C. Rescaling

For simplicity sake, we shall also rescale the coordinates
and the fields as ® — @, y — 5y and X* = x*/(gzun1 ).
All gauge couplings will be rescaled by a factor of gy,
i.e., one shall perform the replacement 7; — 1,1, — 17y, =
m/m, 9zu = 1. 9xg = 9xus = 9xu/9zn. etc. We shall
introduce the notation f;, = 24;,/g%y and ' = A /g%y,
the analogues of the Ginzburg-Landau parameter f =
My/M, in the GSW model. When no confusion is
possible, the subscript “s” shall be dropped.

The rescaled parameters f3,, and ' (coefficients of the
quartic terms in the rescaled potential) play somewhat
analogous roles in the radial equations of cylindrically

symmetric strings as the ratio of the scalar and the vector
masses in the Abelian Higgs and semilocal models, and the
ratio of the Higgs and Z-boson masses in the GSW model,
p = My/M,, which we shall refer to as the Ginzburg-
Landau parameter. For the coupled electroweak-dark sec-
tor, no such simple relation between the mass ratio and the
rescaled potential parameters is known.

III. ELECTROWEAK-DARK STRINGS

The ANO string [10,11] is a well-known cylindrically
symmetric solution of the Abelian Higgs model, in which
the scalar field has a winding number 7, the gauge field has
a nonvanishing radial component, and the resulting string
or flux tube contains n flux quanta.

The ANO string can be embedded in the GSW theory by
assuming that the component of the Higgs field having
nonzero expectation value in the vacuum has a winding,
and the flux is in the Z field. Using cylindrical coordinates
r, 9, z, the ansatz

by =f(r)e",  Zy=ng(r), (16)
describes a cylindrically symmetric vortex string (or flux
tube) centred on the z axis, with n flux quanta [2,3,9].

The unified dark matter model [35,36] extends the
GSW model with a dark sector, containing a Higgs
field y and an additional U(1) gauge field. The ansatz
(16) 1is accordingly extended, preserving cylindrical
symmetry, as

x = fa(r),

where the fields Z and X are the physical fields obtained
from a combination of Y and X.

Xy = nx(r), (17)

A. Radial equations of the vortex solutions

Plugging in the ansatz, (16) and (17), into the field
equations yields the radial equations,

2 1—2— 2
}(rf’)/—f[” ( iﬁ”’” (=145 ( 3,—77%)}

2 _ 2
Y =4 {sz(ﬁ—n@w’(ﬁ—l)}

r(8'/r) =2f*(3+gxux—1) +29z5f 7(9zs3 + 9xs%),

r(x' /1) =29xuf* (34 gxux—1) +29xsf3(9z58 + gxs%),
(18)

where a prime on the radial functions (but not on the

constant ') denotes d/dr and r denotes the (rescaled)
radial coordinate. Note that without the dark sector,
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one would get the ANO vortex [10,11] embedded in the
Z field.

The energy density of a field configuration within the
ansatz, (16) and (17) is

e=2(B)+ (E) ]+ e+

n2(1 — 2 — B2F2 2 — avex)2 F2
+ ( 5r29x11 )2 f i (9253 rzgxs )fd+V,

(19)

where V =, (f* = 1)*/2+ By (f5=m)* /2 + B (f* = 1) x
(fa—m) with B;=24/gzy and p' =2/gzy is the
(rescaled) potential. The energy within a given radius
is E(r) =2x [§ Erdr.

B. Electroweak, semilocal, and dark strings

In the Abelian Higgs model, ANO strings are topo-
logically stable. Note that for embeddings of ANO
strings to an enlarged model, new instabilities may arise
which excite the additional fields, therefore embedded
ANO vortices, may become unstable. Semilocal strings
given with ansatz (16) in the semilocal model correspond
to embedded ANO strings. Their stability depends now
on the Ginzburg-Landau parameter. For f < 1, the
simplest n = 1 semilocal strings are stable, and become
unstable for g >1 [9,19,20]. The mechanism of the
instability is that a condensate of the other Higgs
component ¢, forms in the core of the string and
eventually dilutes the flux.

In the GSW model, strings within the ansatz (16) are
referred to as electroweak strings or Z strings. Their
stability depends on the parameters of the model. They
are stable for = My/M, <1 and for values of the
Weinberg angle 8y, close to z/2; i.e., they are only stable
close to the semilocal limit [14—17]. The mechanism of the
instability is unwinding through the condensation of Higgs
and W bosons in the string core.

In the model outlined above and its semilocal
(@w — =/2) limit, string solutions with winding in the
dark sector have been considered in Refs. [43,49-51].
These strings are topologically stable. Their energy scale is
determined by the scale of the symmetry breaking in the
dark sector, which is presently to a large extent uncon-
strained by measurement.

The scale of strings in the visible sector, within the ansatz
(16) and (17), is the electroweak scale. This is the main
motivation behind the search for mechanisms stabilizing
electroweak strings. Besides, as the mechanism behind
the instability is the formation of condensates in the string
core, the idea arises naturally to look for other fields which
may fill up the core, thus preventing the instability. In

%
e —
Rd
1.0 ;S
s
0.8 /
0.6
I
oay I - L)
.I — f)
024 I :. ceee3(r)
N = xz(r)
I —- B(r)/(2m)
0.0 4= T T T T T T
0 1 2 3 4 5 6 7
r
FIG. 1. Radial profile functions of an electroweak-dark string.

The visible sector parameters are set to their physical values,
M;=80.4GeV, My =91.2GeV, My =125.1GeV, e = 0.3086,
the dark sector parameters are Mg = 132.8 GeV, gys = 0.3086,
and the scalar mixing angle is 8, = 0.51. The dark sector charge
of the Higgs is gyg+ = 0 (no GKM, & = 0). For these parameter
values, x(r) = 0.

Ref. [21], this idea has been considered in the semilocal
limit of the model considered here, i.e., in the semilocal
model extended with a scalar and another U(1) gauge field
in the dark sector. There, two cases have been considered,
depending on whether only the visible Higgs or both
the visible and the dark scalar field obtain a vacuum
expectation value. Relevant to the dark matter model of
Refs. [35,36] is the latter case. In both cases it has been
found in Ref. [21] that the stabilizing effect is signifi-
cant, semilocal-dark strings may exist for # significantly
above unity.

The semilocal-dark strings of Ref. [21] in the case with
no GKM may be considered embeddings of string solutions
in nonsymmetric extended Abelian Higgs models consid-
ered in Refs. [57,58]. Also, in the case where only the
visible sector scalar obtains a vacuum expectation value,
semilocal and semilocal-dark strings may coexist, and their
stability is considered separately. The energy of semilocal-
dark strings is lower, and they are stable for a larger set of
parameters.

Here, we consider electroweak-dark strings, i.e., solu-
tions within the ansatz, (16) and (17), within the full GSW
model coupled to a dark sector containing an U(1) gauge
field and a scalar. The resulting radial equations are given in
Sect. IIT A. The solutions are found using the shooting to a
fitting point method [62], and an example is displayed in
Fig. 1. SM parameters are set to physical values, and dark
sector parameters are set to such values, that they are
heavier than their visible counterparts. In addition to the
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profile functions f, f;, 3, and x, the energy within a radius
is shown. (For SM parameter values, see Ref. [40].)

IV. STABILITY ANALYSIS

We analyze the stability of the electroweak-dark strings
by linearizing the field equations around them. The linear
perturbations added to the fields are denoted by

W = (54, 6WE, 6Z,, 6X 1. 86as 7). (20)

Since the string is electrically neutral, the electromagnetic
field perturbations 6A, decouple and satisfy a free wave
equation, i.e., they play no role in the stability of the string.
The string possesses a global direction in internal space
[¢; =0 in Eqgs. (16) and (17)], which results in further
decouplings. It turns out that there are four decoupled
blocks:

()W = (54,),  (ii)Wil = (5W;, 54},
(ii) P = (5W,;. 6¢h1),
(V)WY = (5Z,,,8X,,, 8¢, 63, S, 8°). (21)

each block satisfying an equation of the form

DYl =0, I=i,...iv, (22)
where D! is a matrix with differential operators in the
diagonal and coupling terms in the remaining elements. Of
the four blocks, (iii) is the conjugate of (ii) and, therefore,
admits the same (real) eigenvalues.

To ensure that the linearized equations (22) have proper-
ties suitable for our numerical solution procedure, we find
that an appropriate gauge choice for the perturbations is the
background field gauge [17,63], which is defined as

ig
V2

o _ g
Fy = 0,6WH + igW3sWH™ + ==, 6¢* = 0,
2 u 1AL \/§¢2 ¢l

Fy = 0,02V +igz(26¢5 — §36¢,)
+igzs(rox™ —x*ox) =0,
Fy = 0,6X" + igxy (2045 — §56¢,)
+igxs(xdy* —x*ox) = 0. (23)

Fy = 8,6Wr —igWisWH — —=¢36¢; =0,

Gauge conditions (23) are imposed by adding the gauge
fixing terms ;| F;|>/2 to the second order terms of the
Lagrangian. In the fluctuation equations, they cancel the
first order derivative terms, and the time derivatives are
readily isolated [17,63]. (Note, that some gauge degrees of
freedom still remain, satisfying “ghost” equations, which
all have positive eigenvalues.)

We shall now  follow the treatment of
Refs. [17,21,57,58,63,64] to bring the perturbation equa-
tions to a form suitable for numerical solutions. For more
details, as well as for the full set of linearized equations, we
refer to Appendix A.

Because of the time- and z-coordinate independence of
the string solution, the corresponding fluctuation equations
of the gauge fields decouple further. The equations of the
temporal and the z components of the gauge fields do not
contribute to the instabilities (see Appendix A for details).

This ¢, z independence of the background solution can be
further exploited by separating harmonic components of
the perturbations, i.e., assuming a time dependence of the
form W! = exp|i(Qr — kz)]®!, transforming Eq. (22) into

D'®! = (@7 - K*)®!, (24)

where an eigenvalue Q> < 0 signals instability, and D is a
matrix of differential operators (the spatial part of D'). The
lowest eigenvalue corresponds to k = 0, therefore, in what
follows, this k = 0 is considered.

Because of the cylindrical symmetry of the string,
Eq. (24) can be reduced to ordinary differential equations
by the Fourier transformation in the angular coordinate 9,
reducing Eq. (24) to

MLOL = Q2L (25)

The known instabilities of the electroweak strings are in
the sector of the perturbations consisting of the fields W+
and 6¢; (or equivalently W~ and 6¢7) [2,3,17]. The
remaining sectors are deformations of their counterparts
in the case of ANO strings, and thus not expected to contain
further instabilities (as the corresponding blocks for the
ANO string have large positive eigenvalues).

In sector (ii) ¥ = (6W,, 8¢ ). The Fourier transforma-
tion singles out a mode of the form

5y = 5, 4(r)ec0e,
SWE = iw, ,(r)eilC-1-m9ei0n
SWE = —iw_ (r)el“H1-mdeier (26)
where SW= = exp(—i9) (Wi —i6W5 /r), SWE = sWE,

ie, W,=(s;s,wysw' ). The matrix operator of
Eq. (25) in this block is

Dy, By By
Mf = Bl+.f D+,f 0 B (27)
B_, O D_,

where
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TABLE L

Some points on the boundary of the domain of stability; for comparison, we also show data read off of

Fig. 1 of Ref. [17]. The other parameters are € = 0 and 8, = 0.75 and O (electroweak), and g = 0.7416, 1, =
173.4 GeV (physical values), § = 0.6172, n, = 217.4 GeV.

VB sin? @y, Ref. [17] Electroweak Mg/My = 0.9339 Mg/My = 1.0620
1 1.0 0.9996 0.9995 0.9996
0.9 0.9910 0.9933 0.9933 0.9933
0.8 0.9836 0.9850 0.9849 0.9849
0.7 0.9756 0.9758 0.9758 0.9758
0.6 0.9666 0.9664 0.9664 0.9664
0.5 0.9576 0.9568 0.9568 0.9568
0.4 0.9486 0.9472 0.9472 0.9472
1d d  ([n(gzp s+ gxpx) =€) g
D, = 2 _ R N )
=1+ ‘. R RE - L),

}"2

1 —1-n(1 2 2
e (L L

gn
5 fr- 27 (23 + a3x’)>,

}"2

and
nf
By ,= —g<f/ - (1 =973 — QXHX)> )

B, = g(f' + g (1= 9zn3 - QXHX))- (29)
The negative eigenvalue for the unit flux n =1 string
considered here is found in the # = 0 sector.

In Eq. (27) in the semilocal limit, the components
decouple, and for the scalar component, the stability
equation of semilocal strings is recovered. The dark sector
affects the relevant sector of the perturbation equations
through the appearance of the field f,; in the scalar, and x in
the W components, and through the deformation of the
background solution in the functions f and 3.

The radial equations (25) have been solved with the
shooting to a fitting point method [62], as were the radial
equations of the background vortex, Eq. (18). Our numeri-
cal methods were found to be stable for Mg ~ M.

The details of the calculations in this section are
relegated to Appendix A 1.

A. Domain of stability

As a validation of our code we have reproduced the
domain of the stability of Z strings in the Salam-Weinberg
model (electroweak strings) and compared it to the data of
Ref. [17]. In our model, e = 8; = 0 corresponds to the case
of the electroweak strings (with the dark sector decoupled).

Our method was as follows: we set M, My, and e to
their physical values [40], and initially, My as well, and
M?% = M2, £ 2000 GeV?. Then we first lowered My and
Mg keeping Ms/My fixed, and then approached the

([f +1=n(1+ glarg + azx))]

2 2
T2 (g azX’)) , (28)

semilocal limit, i.e., increased 6y towards z/2 while
keeping g, g, €, and the scalar potential parameters fixed,
until Q% =0 was reached (i.e., as long as there was a
negative eigenvalue).

Our results for the case of no GKM are summarized in
Table I, with data from Ref. [17] added for comparison.1
There is an excellent agreement between our data and that
of Ref. [17].

The stability of electroweak strings is restricted to #; < 1
(i.e., a Higgs mass smaller than the Z-boson mass) and
close to the semilocal limit, 8y, — 7/2.

In Fig. 2, the effect of the Higgs-portal coupling is
shown. The motivation for this was the results for semi-
local-dark strings in Ref. [21]. We have found that the
Higgs-portal coupling indeed has a stabilizing effect, how-
ever, in the experimentally undesirable parameter range,
when the dark scalar is lighter than the Higgs. In the Mg >
My case, we actually found that adding the dark sector
lowers the (already negative) eigenvalue, and narrows the
domain of stability on, e.g., the M, /M ,—sin? @y, plane.

For an explanation, let us consider the potential for the
perturbation function §¢p;, which is most relevant in the
semilocal limit [see Eq. (28)],

U=p(fP-1)+B(f5-m,) - af*/2.

and estimate its value at the origin. Here £(0) = 0, and we
approximate the value of f, such that it minimizes the

(30)

'The data of Ref. [17] has been reconstructed from its
Fig. 1, using the data points in the postscript version of the
figure in the arXiv.org version of the paper, [65], and trans-
forming back to physical quantities from postscript coordinates,
as the original data was not available any more.

023009-7



PETER FORGACS and ARPAD LUKACS

PHYS. REV. D 102, 023009 (2020)
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FIG. 2. The boundary of the domain of stability, for ¢ = 0,
g=0.7416, g = 0.6172,n;, = 173.4 GeV, n, = 217.4 GeV, and
6, = 0.75 compared to that of electroweak strings (6, = 0). The
domain of stability is as indicated on the figure.

potential V of the theory when f =0, with fZ~p/
By + 13, yielding U=~ —p; + (B')?/B,. Expressing this
with p3 ; = M3,/ (29%,m7) yields

(1 — c0828,) — 4]
ur(1 + cos26,) — u% (1 —cos26,)

U(0) ~ (31)

In the case of My < Mg, and 6, close to n/2, this is a
negative contribution.

It is found, that, quite remarkably, if the boundary curve
of the domain of stability is plotted on the /B, — sin’@y,
plane (Fig. 3), the curves for different values of Mg/ My
coincide. We have verified this coincidence numerically for
093 < Mg/My <1.06and 0 < 8, <0.75. The differences

between the value of /f; corresponding to the onset of

1.04 o Ms/M,; =09339
+ 0,=0
0.4 * Me/My=10620
0.8 #
unstable ’x“
0.7
S ‘,ﬁ" d
- #
0.6 o
o stable
*&
0.5 #’*,*
I
0.4 el
o«
at
*t
0'3 h T T T T T T T
0.94 0.95 0.96 0.97 0.98 0.99 1.00
sin? Oy
FIG. 3. Same as Fig. 2, parametrized with /f, and sin’ 8.

instability between the cases considered is comparable to
the numerical errors. The coincidence does not hold any
more for Mg/My = 0.7852 (closer to Mg¢/My = 0.5,
where h — SS dark decays would contradict measure-
ments, see Fig. 4). Because of this coincidence, in what
follows, when we consider the effects of other parameters,
and the Higgs and dark scalar masses are close enough, we
shall only plot one curve in this parametrization.

An explanation for the coincidence of the curves in Fig. 3
is that the principal role in the instability is played by W
condensation. This is the case for electroweak strings
(see Refs. [16,17] and Fig. 5). The dark sector part of
the background can be considered a perturbation for the
allowed (small) values of the couplings between the visible
and the dark sector. The allowed value of ¢ is already rather
small, and /3, appears directly in the equation for the upper
Higgs component, which is suppressed for 6y < z/2: at
the semilocal limit, s, (0)/w_(0) = 3 (and w_ (0) <w_(0)),
and at physical parameters s;(0)/w_(0) ~ 0.8, which, in
first order perturbation theory, would account for a sup-
pression of the dark sector effects by a factor of ~0.07,
which makes plausible both the coincidence of the curves
in Fig. 3 and the suppression of the stabilization effect upon
leaving the semilocal limit.

In Table I, we have collected some numerical data for
reproducibility, and, for comparison, we have added the
data points read off Fig. 1 of Ref. [17].

Another interaction, which is known to have a stabilizing
effect in the semilocal case is the GKM (see Ref. [21],
where it is shown to lower the energy of semilocal-dark
strings). Figure 6 shows the effect of the GKM on the
domain of stability. We have found that at the semilocal
limit, the enhancement in the value of the quartic potential
coefficient f; corresponding to zero eigenvalue (the upper
edge of the domain of stability) is significant for a large
GKM; however, this is rapidly reduced by tuning 8y, away
from z/2. Also, experimental bounds do not allow the

® M./M, =0.7852
L0 o arar, = 0.9330 ‘./
+ 0,=0 unstable ..“‘
0.99 * Ms/My = 10620 000 at”
.
“M
i o*® .
0.8 Py ® [ ] ‘_*
° «*
*® _‘.4,"’
p (g o
§0.7 . [ -~
.
q *P
067 L, »*
* stable
0.5
0.4
0.3 1

0965 0970 0975 0.980 0985 0990 0.995  1.000
sin? Oy

FIG. 4. Same as Fig. 3, with a lighter dark scalar.
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. s(r)
1.2 ‘._‘ —— wy(r)

= w_(r)

FIG. 5.

The W and ¢, profile functions [w. (r) and s(r), respectively] of the unstable eigenfunction (a) for physical parameters and

(b) close to the semilocal limit. In both cases, 0, = 0, gy,+ = 0, My = 94.87 GeV, Mg = 132.8 GeV.

GKM to be large unless the dark gauge boson is heavy. For
values of & consistent with experiment (Fig. 6 is for a value
of ¢ that is already at the limit), GKM results merely in an
O(&?) correction.

In Fig. 7, the effect of the mass of the dark gauge boson
is shown. The sensitivity to the dark gauge boson mass is in
contrast to the insensitivity in the case of stabilization by
the scalar potential (i.e., no GKM, Fig. 8).

In Fig. 9, the combined effect of the GKM & and the
scalar mixing (for both the dark scalar lighter than the

+ gxyr = —0.001
o gyor =—0.0309
1.0 x  gx,+ = —0.0619

7

0.8
unstable

VB
%

0.6 +

stable

0.4 + + o X
L]

029 =

094 095 096 097 098 099  1.00

sin? Oy

FIG. 6. The effect of gauge-kinetic mixing on vortex stability.
The starting parameters (My,, M,, e, My physical and gyg = e,
M3 = M3 + 2000 GeV?, 6, = 0, My = 94.87 GeV and gy, =
—0.001 and -0.0619) yield the parameters g= 0.7416, § =
0.6172, &=7.37x1075, 5, =173.9 GeV, 1, =217.4 GeV
and g =0.7362, §=0.6406, €= 0.0446, n, = 175.7 GeV,
1, = 208.6 GeV.

Higgs, and slightly heavier) is considered. The stabilizing
effect is still restricted close to the semilocal limit.

B. The behavior of the eigenvalue

In order to assess the significance of the parameters,
we have chosen a typical point, My = 80.4 GeV,
Mz =91.2 GeV, e = 0.3086, M;; = 125.1 GeV (physical
values), My = 94.87 GeV, Mg = 132.8 GeV, gx4+ =0,
gxs = 0.3086 and 6; = 0.75, and obtained the derivatives
of the eigenvalue with respect to the parameters. These are
collected in Table II. We have concluded that the param-
eters with the largest influence are Mg and 6,.

1.2
o gypt = 0,My =94.87CeV 4+
4+ Ggxot = —0.052, My = 83.67 GeV o
* gyt = —0.052, My = 94.87 GeV + .
104 ¥ 9xer =—0.052, My =1049GeV PR
: + * J
+ * »*
+ * 'o°
+ * q’.
+ *.#'
+
0.84 + et
g unstable + e
+.oi(
Pl
.'_.
.
0.6 . % &
L]
o o stable
AR
L]
0.4 . . y*
.
. y *t
0.94 0.95 0.96 0.97 0.98 0.99 1.00
sin® Oy,

FIG. 7. The effect of different dark gauge boson masses on the
stability in the case of large GKM. The starting parameters are
My, Mz, e, My physical, M?% = M%, + 2000 GeV?, 0, =0, and
9xs+ = 0 (electroweak), respectively, gx,s+ = —0.052 and differ-
ent values of My.
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+
+
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+
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FIG. 8. The effect of the dark gauge boson mass in the case of
no GKM, gyg4+ = 0. The starting parameters are My, Mz, e, My
physical, M3 = M3 + 2000 GeV?, §; = 0, and gy,+ = 0.

We have next varied Mg > My (so that dark Higgs
decays do not exclude the considered parameter values) and
0,, in the range M% < M2 <2M?% and 0 < 6, < 1.5. We
have found no stable solutions. The eigenvalue seems to
depend most strongly on the parameters M% and 6,.

In Fig. 10 we present numerical data of the eigenvalue
Q? as a function of the two parameters that seem most
relevant (i.e., they parametrize the scalar sector most
directly), Mg and 6,. Note, that the eigenvalue is always
negative (signalling instability), and becomes more neg-
ative with larger values of the dark scalar mass M.

In Fig. 11 a typical Q> — Mg curve is shown for M,
My, e and My physical, My = 94.868 GeV, and gyg =
e = 0.3086, 0, = 0.75, gx4+ = —0.002, and —0.032. The
eigenvalues are clearly negative and descending as a func-

+  0,=075, Ms/My = 1.0620 y,
o 0,=0.75,Ms/My = 0.6991 ...033
e
1o X 0-=0 .0':.*.'++:><><>2<
o0k
...;1'+;XX 5%
(]
o“‘:;:‘s(‘s(‘&xx
.
0.84 unstable .';(“kt(t(
. o;('b(
2 ¥
= X
k x5 £<'
0.6+ x Xoof
X (3
o X S
X I stable
° L]

0.44
0.2

0965 0970 0975 0980 0985 0990 0.995 1.000

sin? Oy

FIG. 9. The combined effects of the GKM and the scalar
mixing; parameters as in Fig. 6, gx,+ = 0.0619

TABLE 1II. Derivatives of the eigenvalue of the stability
equation (25) with respect to model parameters at My =
80.4 GeV, M, =912 GeV, e =0.3086, My = 125.1 GeV
(physical values), My =94.87 GeV, Mg=132.8 GeV, 9x¢+ =0,
gxs = 0.3086, and 6, = 0.75. Note that —Q? is the squared
growth rate corresponding to rescaled time or, equivalently,
lgz5m1Q| is a growth rate in unscaled time. Here |gzy|n =
64.49 GeV.

Parameter Derivative

x4 0 (parabolic maximum)
My —9.02 x 1078 GeV~!
9xs 2.77 x 1073

Mg —5.57 x 1073 GeV~!
0, -9.87 x 1072

tion of M. Similarly, Fig. 12 shows a typical Q> — 6, curve
in the parameter range studied. The curves in Fig. 11 and in
Fig. 12 are cross sections of the surfaces in Fig. 10. In
Fig. 12, we have added an additional curve for Mg < M.
One interesting feature of Fig. 12 is that the eigenvalue has
aminimum for Mg > My (and maximum for Mg < My) at
0, =0 (and thus also for f/ =0, /' = 0), i.e., for small
values of the GKM its sign is not important.

The data indicate clearly that in the physically relevant
parameter range where the dark gauge boson mass is
My 2 M,, the scalar mass is My/2 < Mg < My, the
scalar mixing angle is |0,| <1, and the dark charge is
gxs ~ €, no stable solutions exist. In this parameter range,
we have found that a larger dark scalar mass corresponds to
stronger instability. On the other hand, for My < M, the
addition of the dark sector (nonzero scalar mixing angle 6,
and, similarly, GKM e¢) results in stability properties of

—_— gxs+ = —0.002
— et = —0.032

0.0

0.7 120

FIG. 10. The eigenvalue of the stability equation (25) as a
function of Mg and 6,, at M;, My, e and My physical,
My =94.87 GeV, and gxs = ¢ = 0.3086, gx4+ = —0.002 and
—0.032.
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FIG. 11. Typical Q>-My curves at M,, My, e and My
physical, My = 94.868 GeV, and gys = e =0.3086, 6, =
0.75, gy = —0.002, and —0.032.
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FIG. 12. A typical Q>-6, curves at M,, My, e and My
physical, My = 94.868 GeV, and gyg = ¢ = 0.3086, 0, = 0.75,
gxg+ = —0.002, and —0.032.

electroweak strings (although still not reaching the physical
parameter values) that are significantly better.

The fact that the stabilizing effects are rather strong in
the semilocal limit, and much weaker for smaller values of
the Weinberg angle, is explained by the nature of the
instability. In the semilocal model, the instability is due to
the possibility of unwinding in the scalar (®) sector
[19,20]; however, in the full non-Abelian theory, the
instability also involves the condensation of W bosons
in the string core [14—17] (see also Fig. 5). In the present
model, the dark sector only couples to the Higgs scalar
and the weak hypercharge U(1) fields, and the dark part of
the background vortex does not influence the W fields
other than slightly distorting the visible sector part of the
background.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a study of electro-
weak-dark strings, complementing those of dark strings
in Higgs-portal models [43-46,49,50]. We have demon-
strated the main properties of the equations describing
these strings and their numerical solutions. We have
shown that these strings exists at the well-known scale of
electroweak strings, in contrast to the unknown scale of
dark strings.

We have also examined the stability of the electroweak-
dark strings. Close to the semilocal limit, we have dem-
onstrated that the stabilizing effect of the dark sector found
in the semilocal case in Ref. [21], persists in the electro-
weak-dark case, i.e., the stability of electroweak strings is
enhanced to My /M, > 1; however, this happens for values
of the parameters of the model excluded by experimental
bounds: for large gauge-kinetic mixing ¢ with the light dark
sector Abelian gauge boson (Myx < M ) or large scalar
mixing (Higgs-portal coupling) and light dark scalar
Mg < My. For Mg > My, we have considered the param-
eter range experimentally allowed and found instabilities.
Complemented with the fact that in the limit Mg — oo, the
instabilities in the electroweak case are recovered, one can
conclude that in the model considered, there is no stabi-
lization due to the interaction with dark sector fields.

The properties of the eigenfunction of the linearized
equation corresponding to the instability sheds light on the
reasons why the stabilizing effects do not persist to lower
values of the Weinberg angle. For those values, the
components corresponding to the W fields are large, the
mechanism of the instability is W condensation, and
the couplings considered here affect primarily the Higgs
and the Z fields.

In future studies, the analysis may be supplemented by
considering fermionic fields. In the electroweak case, the
topological consequences of fermionic zero modes have
been considered in Refs. [26-30], suggesting that an
interplay of fermionic modes and the deformations corre-
sponding to the unstable modes results in new, stable
electroweak strings. The effect of the Dirac sea has also
been considered for electroweak strings; Ref. [66] finds
instabilities due to light fields, which may be stabilized by
filled fermionic states, whereas Refs. [31,32] find stabili-
zation due to heavy fermions. Another line of research may
be the consideration of models with couplings to the W
fields. It should be emphasized, however, that LEP electro-
weak measurements put stringent bounds on not-too-heavy
fields coupled to the electroweak model.
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APPENDIX A: DETAILS OF THE CALCULATIONS

To obtain the solutions and assess their stability, we start with the field equations derived from the gauge and scalar

Lagrangians (8) and (2),

D,D'® = 21, (@70 — n3)® — 2 (¢"y — n3) D,
D,D'y = =20 (x'y —m)y — X (®T® —n)y,

OuF = J4 + Jae

_ galaﬂ(WﬂIWI/Z _ Wul W/lz)’

D2 = Iy + 1y, — g0, (WH WY — W W),
XM = T4 + T4 , — 90, (WH W2 — Wi We?),

9 WH = J4i + I

(A1)

where Wt = W 1 ge® (WHEWP3 — WP WH3), ¢ is antisymmetric and e'> = 1, the Abelian currents are given by

Ja= i9A¢1((DD¢)T¢1 -1 (D*D),)),

The = g W Wi — goy WH2W + g o Wi WHW? — oy W WHEW™e,
JY =igz4,((D*®) b, — (D" D), ) + i925((D*x)*x — x*(D*x)),
Iy g = 9O W Wi — gy WH2W + Fay W WHWS — P, Wi WHe W™,

I = igxga(D*®@)ib — (D' ®@),) +igxs (D)7 — 1
J% g = g WHIW5 — gas WHEW), + GPas WEWH WY — gras WiWraw»,

and the non-Abelian one as

v = %(D@ch — O D),

JI‘J)‘?’g _ _gW/wS 8ab WIZ; _ gg“b W;wb W;
_ gZ WZ W}lb wrae 4 92 W; W/A3 Wwvra

_ QZWZW”hW”“ _ g2w3ywiw;m, (A3)
where 7¢ denote the Pauli matrices. In Eqgs. (A2) and (A3),
a=1, 2, and the notation gzy = gxs,» Ixu = Ix¢,
924+ = 9xp,» a0d gxs+ = gy, 1S used (see Ref. [44]).

1. Linearized equations

Let us add perturbations to the vortex solution,
Aﬂ - 6A”, Wy, — 5W;j, Z,—>7Z,+ 5Zw X, X, +5X”,
¢a = P, + 6¢p,, and y — y + Jy. In the analysis of vortex
perturbations, we follow the lines of Refs. [17,63]; see also
Refs. [21,64,67,68].

To obtain simple linear equations, a gauge choice is of
utmost importance. In the Abelian sector, we shall use the
background field gauge of Refs. [63,69], whereas for the
non-Abelian gauge fields, we prescribe the background
field gauge used in Ref. [17]. This gauge choice, shown in
Eq. (23), cancels linear first order derivatives of the gauge
field perturbations, and in this way makes the separation of
time derivatives possible. Note that F, = F7.

(D*2)).
(A2)

Let ¥ = (6A,.6W,.6W,.6Z,.6X,.0¢,.6¢;. 6. 0r")
denote the components of the linear perturbations added
to the fields.

Because of the background solution possessing a global
direction in internal space (i.e., ¢; = 0) in the gauge used
for the ansatz (16) and (17), the equations separate into
decoupled blocks: (i) A,, (ii) (SW,T and 6¢, (iii) oW, and
oy, and (iv) 6Z,,, 6X,, 6¢b5, O¢p5, Oy, and 5™, in each block
satisfying an equation of the form

DY =0, I=1i,...iv, (A4)
where D! is a matrix with differential operators in the
diagonal and coupling terms in the remaining elements.

The field A, is completely decoupled, ‘P}l = 0A,, and

D =0, (A5)

diagonal in the Lorentz index. As the electromagnetic field
is decoupled, it does not influence the stability of the string.
In what follows, it is not considered further.

In block (ii), the fields are Wi = (5W,7,5¢,) Gi.e., W!
contains all Lorentz vector components of the SW™ field
and the upper scalar perturbations d¢;), and the operator
acting on it is

Dii,ﬂ Dii
- 1,1v 1.2,v

e (46)
Dyy Dy,
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with the matrix elements

In block (iv), WV = (6Z,.56X,.5¢,,5¢5.5x.5¢*), and

) 1 the operator acting on it is
Dit, = |02 (500 - wpwe )
- igapwfﬁ —2igWw?’ 8/,} S+ 2igW, Dt Dllvzﬂy Dilv,&y D11V.4,p Dilv,s,u Dilv,s,y
Dii — _2iuD D;va D;Ygfu Di2\f3,1/ Di2\i4.1/ DiZYS,u D12V6u
T DI DY DL, DL D, D
11/4__\/_19Dﬂ¢2’ DV — > > " .- \ ’
1211 B , ) 5 Dy Dy Dyis Diu Dis Dis
Dy, = (0, =924+ Z, = igxp+ X,)> + B1(|2|* = 1) T Div Div Div
2 . . . , 5 6
B U - 3) + L il (7 i
AR Dei Dgy Dgs Dy Des Deg
This is the block that is known to yield the negative (A8)
eigenvalues corresponding to instabilities in the case of
the electroweak string. Block (iii) is merely the complex
conjugate of block (ii). with the matrix elements
|
Dllv,’lﬂ,y = [D + Z(Q%H@sz + 9%5)(*)()]‘%’ D13V,1M = DW = 2igzy D¥ s,
Dllvzﬂy - Dlzv,'lﬂ.y = 2(9XH|¢2|2 + 9zs9xs |)(|2)5’zfv D13V2” = DW 3 = 2igxy D" s,
Dilv.s,y = Dilv,z,u = —2igzy (Dy¢2)*7 Di3v,4 = Dﬁ - (ﬁl - gZH - gXH)QS%’
Dis, =Dy}, =—2igzs(Dur)", Dy, = DY, (A9)
Dy3, =0+ 2gxud3ds + g3t 1)1, DS =Dy = —2igzsD'y.
Disz = Diz‘ij = 2igyxu(D,p,)*, Dlsvzﬂ = Dgg‘* = —2igXSD”)(,
Dlzvs v Dizv,gu = —2igxs(D,x)", Disv,é = D15V§
and
Di3v,3 = (0, —igznZ, - igXHXy)z + 512> = 1) + B (x> = m3) + (921 + Gxn) 2|
Di3V.,5 =Dy, = DZE = D%V,Zi = (B + 9zu9zs + 9xu9xs)bx"*s
Di3ve = Disvj = Ditv,g = Dis‘fz = (ﬁ/ — 971925 — Ixu9xs)P2x"
DY = (0, = 19z5Z, — igxsX,)* + Pl = n3) + B(|h2* = 1) + (975 + gxs) X |*- (A10)

Note that in Eq. (A10), in the first bracketed term of Dit\:zt’ the square represents a contraction over the index p.

In order to bring Eq. (A4) to a form tractable numerically, we shall consider the Fourier transform in the coordinated
z and ¢, and note that Fourier components are decoupled, apart from ones corresponding to k and —k, Q, and —Q,

P(x;,2,1)

where i =1, 2, and the components of the Fourier transformed field are ®(x,Q, k) =

5¢ha. 0. 87, 87", depending on the variables (r, 9, Q, k).

= @ (x, Q, k) exp[i(Qr — kz)],

(A11)

(8A,,8W;,6W;.6Z,,6X,,

We also apply a partial wave decomposition in the angular coordinate 9 to the components of ®(x, Q, k),

51 =€y .(r),
597’2 = ei("+f)’9sz,f(”>v
&y =¢e"s;34(r),

023009-

5J)T = eiflgsjlﬁ.—f(r)’
oy = "™
5)( _ elfg * f(},.)7

)9

55 (1),
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67, =Dz, (r),
oX. =€l Ddix,(r),
S = el ()
6234 =23, (r),
W3, =ewyg(r),

where 6Z, = exp(—id)(6Z, —i6Zy/r), and analogously
for the other gauge fields. On the radial functions, the
variables € and k have been suppressed. In all equations
these appear as Q> — k2, and therefore, the lowest eigen-
value corresponds to k = 0; for this reason, k is dropped in
what follows.

In addition to the block structure of the time-dependent
linearized equations (A4), there is a further decoupling
due to the time and z independence of the background
solution, (16) and (17), resulting in a further decoupling
of the z and ¢ (0 and 3) components of the vector fields.
The following blocks decouple and can be solved separately:
(1) 8A; (i = 1,2); (i) SW*, 8¢, ; (iii) SW**, 5¢b% [conjugate of
GiD]: (V) 6Zi 6., Sba, 865 S, 62" (V) Ass (Vi) GAo;
(vii) 6Z3, 5X3; (viii) 6Zy, 6Xp; (ix) Wx; and (x) Wi.

Eigenvectors and eigenvalues in each block can be
considered separately; therefore, we shall write the radial
equations in block I =i, ..., x separately, in the form

|

8X34 =€0x344(r),
(

T it
W34 =¢e""w3y _»

r),

MLOL = Q0 (A13)

with the block containing the known instabilities of
electroweak strings consisting of ®% = (s; ., wi ,.wl ).
In this sector, the radial equations (27) are obtained, with
the index 7 = ii dropped, and this block is considered in
detail in Sec. IV, where its numerical solution is also
discussed. Block (iii) contains the same equations for the
complex conjugates sj_f, w:f_f, wj:_f, with the replace-
ment £ — —Z, as block (ii).

Of the remaining blocks, (i), (v), and (vi) merely
contain the radial Laplacian. Block (iv) contains a defor-
mation of the eigenvalue problem of the ANO string
(or equivalently, that of the semilocal-dark string [21]),
and possesses only positive eigenvalues: @Y = (5,4, S5 _¢»
§3.0 s;_f, 2¢,2" ;. X, x* ), and the elements of the corre-
sponding operator MY are

iv > 1d  [[£+n(l-3—gxux)]?
LT T2 e | ;" /=) + B —m) + (1 + gz f? ]
iv a2 1d | [[€—n(gzss+ gxsx)]
P33 =T 42 v ar 5 + 6215 —m) + B (P = 1)+ (925 + 935)f 5] -
v @ 1d [(£-1)
f,s,sz_@_;a‘l' ) +2(f* + g5sf2) |-
. 2 1d (¢ —1)?
=T a2 T 2(gxuf? + gisf%})} : (A14)
and
ifv,z,z = Mi—vf.l,l’ Mity,4.4 = Mi—vf,3,3’
ify,6,6 = Mi—vf,s.s’ ?.8,8 = Mi—vmm (A15)
with the couplings
iﬂv,l,z = ify,2,1 = -1- g%(H)fzv

iv _ iv _ iv _
13 — Mf.?),l - Mf,2,4 -

Yao = (B + 9zs + 9xn9xs)f fa

Pra =My = My = M5, = (B = 925 — 9xudxs)f f o>

iv _ iv _ iv
2,15 51 26

— iv

62 — _\/E<f/ _ﬂ(l -3 QXHX)>,

r
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The eguations in blocks (vii) and (viii) are identical. Let
now ®Y' = (z3,, x3,), and

iv i i i nf
£16 — va.e,l = va,z,s = va,s,z = 2<f/ + 7(1 -3 QXHX)),

iv _ iv _ iv _ iv _ iv
17 = Megr = Meoag = Mf,&z = gXSMf.l,S’
iv _ iv _ iv _ iv _ iv
18 = Myeg1 = Meoag = Mm,l = gXSMt’,lﬁ’

v Agiv P 2\ 2
Paa=MYys = (Pr— 975 — 9xs)f o

i i i i nfy
pas = Mpsy = Miue = Miea= —\/E(fZ T (9xs3 + gxsx)>gzs,

. . . . nfd
r36 = Moy =Miss = Miss = \/§<fﬁ, == (gxss + gxsx)>9257

i i i i nfa

Par = MPas = Miyy=Mig, = —\/§<f/d + T (9xs3 + gxsx))gxs,
Vo= MY = MY, = MY = \/E 1 _Lfd( + x)

38 — Veg3s = Mear = Mega = a= ", 9xsd T gxsx) | 9xs>

ify,5,7 = M?’J,S = Mify,as = Mi;,g,e =2(gxuf* + gzsgxsfﬁ)-

(A16)

[

The remaining gauge freedom is characterized by ghost
equations: an infinitesimal gauge transformation substi-

tuted into Eq. (A4). The general form of an infinitesimal

, & 1d [7 gauge transformation is
Y=ot |5 2+ 205500 | _
dr rdr r ) ig
2 2 6y = i(9z24+ &2 + gxprEx)h1 + = ET o,
vii & 1d 4 2 2 ) 2
f,z,zz_@—;a+ p+2gx11f +29xsfa) |- . ig
. . X 5 8¢y =1(&7 + gxuéx)Pr + 55 o1,
Pio =My = 2(9xuf” + 9zs9xs2)- (A17) .
Sy = i(9z5&7 + 9xséx )1
In block (ix), w; , and wg_f decouple, the equation for 67, = aﬂfz,
the former is
5X” - aﬂgx,
— l (rW' )/ + |:[l’ﬂ - gn(azé + a3x)2] + gf2:| .y (SW;J{ = ayéJr - igW;éJrv
3.6 3, _ . _
r r 2 SW;, = 8,6 +igWie,
= Q%wy (A1B)

and the equation for w3 _, is obtained by the replacement

(A19)

where the functions &, £y, and £* are generators of the

infinitesimal gauge transformations. The radial ghost equa-

= =0, W30 = W3 _g. follows:

1 2
p (réz.) + {_ +2(f* + gésffz)} &z + 2(9xnf* + 92s9xsf3)Exe = Q&4

r2

1 2
s (réy,) + {7 +2(gkuf? + gisfﬁ)} Exe + 2(gxuf? + 9zs9xsf2)Eze = QExe,

_ 2

() + [["p nolog owrll gﬂ] & =,
I % :

- gy + [Ermte el fpl s org

tions for the Fourier coefficients of these functions are as

(A20)

which are all deformations of the ghost equation for ANO, semilocal, or semilocal-dark vortex ghost equations, which all

have relatively large positive eigenvalues [21,57,58,63]; therefore, they are not required for stability analysis.
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