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Several sources of noise limit the sensitivity of current gravitational wave detectors. Currently, dominant
noise sources include quantum noise and thermal Brownian noise, but future detectors will also be limited
by other thermal noise channels. In this paper, we study a thermal noise source which is caused by spatial
charge carrier density variations in semiconductor materials. We provide an analytical model for the
understanding of charge carrier fluctuations under the presence of screening effects and show that charge
carrier noise will not be a limiting noise source for third-generation gravitational wave detectors.
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I. INTRODUCTION

Gravitational wave detection [1,2] is an exciting and
growing field in the realm of high-precision metrology. For
the first detection of a gravitational wave, complex infra-
structure was built, taking huge care to reduce all of the
possible noise sources. In particular, the fascinating accu-
racy of a displacement measurement of a macroscopic test
mass is demonstrated on a level of about ∼10−18 m [3–8].
A third generation of gravitational wave detectors is

planned in order to access gravitational waves as a new
channel of information into the Universe, addressing
fundamental questions such as the nature of dark matter,
the inner structure of black holes, and the origin of the
Universe itself [9]. For third-generation gravitational wave
detectors (Einstein Telescope in Europe or Voyager and
Cosmic Explorer in USA), the use of crystalline materials is
considered [10]. Third-generation gravitational wave detec-
tors are severely limited by thermal noise. Therefore, there
is a high probability that they will be run at cryogenic
temperatures. At these temperatures, crystalline materials
have superior mechanical quality factors compared to
conventional amorphous materials, thus being less suscep-
tible to thermal Brownian noise [11–16]. Therefore, semi-
conductors such as silicon are considered as possible
substrate materials. This class of materials is potentially
susceptible to novel noise channels.
In this paper, we study thermal carrier noise in semi-

conductor materials. Similarly to thermochemical noise
[17], which is caused by the diffusion of optical impurities,
this source of noise originates from the thermal motion of
free charge carriers in the transmissive optical elements.

The Brownian motion of charge carriers leads to spatial
variations of the free carrier density, thus creating local
fluctuations of the refractive index. These fluctuations will
be probed by any beam of light transmitted through the
optical element. Below, we refer to this noise as thermal
charge carrier refractive (TCCR) noise. For free charge
carriers, screening effects have to be considered which
distinguish TCCR noise from thermochemical noise.
A quantitative analysis of TCCR noise is presented, taking
into accountDebye screeningwhich depresses TCCRnoise.

II. PROBLEM STATEMENT

Earthbound gravitational wave detectors consist of a
large-scale Michelson interferometer with Fabry-Perot (FP)
cavities in the arms for signal enhancement [18]. An
incoming gravitational wave with the strain h displaces
the end mirrors of the FP cavities by a length of δl:

δl ¼ L0h
2

: ð1Þ

Here, L0 denotes the undisturbed arm length. In order to
measure the variation of the gravitational metric h, the
displacement of the end mirrors is probed with a laser
beam. The displacement of the end mirrors causes a phase
shift between the interferometer arms which is enhanced by
the FP cavities and read out via interference of the laser
light of the two arm cavities.
In this paper, we investigate transmissive optics made of

semiconductor materials which is particularly important
for third-generation gravitational wave detectors such as the
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Einstein Telescope (ET). In semiconductor optics such as
silicon [19], free charge carriers are present. These charge
carriers move thermally akin to Brownian motion, thus
creating local charge carrier density fluctuations η. As
stated by Soref and Bennett [20], the refractive index n is
dependent on the charge carrier concentration as an effect
of the free carrier dispersion:

δn ¼ βη; β ¼ −e2

2ϵ0nω2
l me

; ð2Þ

with ωl the laser frequency, n the refractive index of the
semiconductor, e the elementary charge, and me the
effective mass of majority charge carriers. That is why
the local charge carrier fluctuations η cause fluctuations of
the refractive index δn. These fluctuations are probed by
any laser beam propagating through the optical element.
When a Gaussian laser beam propagates a distance L

along the z axis inside of, e.g., the input mirror (test mass)
of a FP cavity (see Fig. 1), it reads out the information on
the variation of the refractive index inside the input test
mass weighted by the light intensity distribution in the
cross section. Hence, the optical path length of the laser
beam is shifted by a value of ξ:

ξðtÞ ¼ β

Z
ηðr⃗; tÞ ·Ψðr⃗Þdr⃗; ð3Þ

Ψðr⃗Þ ¼
(

e
−ðx2þy2Þ=r2

0

πr2
0

; if jzj ≤ L
2
;

0; if jzj > L
2
;

ð4Þ

where L is the length of the mirror substrate, r0 is the
Gaussian radius of the light beam (referring to the length
where the amplitude falls off by e−1), x and y are the
transversal coordinates, and

R
dr⃗ is an integration over the

volume of the input test mass. In the measurement, we
cannot distinguish between a fluctuation of the optical path
length caused by noise or a length shift of the mirror caused

by a gravitational wave. In this way, carrier density
fluctuations η inside transmissive semiconductor optics
contribute to the measured strain as hξ:

η → ξ → hξ:

We call this noise TCCR noise. In order to quantify TCCR
noise, we have to model the carrier density fluctuations
under consideration of screening effects that occur for free
charge carriers (Sec. II B). Furthermore, we have to under-
stand how a change in the optical path length ξ is related to
the strain h caused by the gravitational wave (Sec. II A) and
combine both to get an expression for the amplitude of
TCCR noise (Sec. II C). Finally, we use this to explicitly
compute the TCCR noise of ET input test masses (Sec. III).

A. Coupling of noise-induced changes in
the path length and the measured strain

For simplicity reasons, we consider a Michelson con-
figuration with interferometer arms perpendicular to each
other. To establish our model for TCCR noise, we examine
a FP cavity with mirrors as free test masses as shown in
Fig. 1. TCCR noise in the input test mass disturbs the
optical path length nL by a value of ξ. From input-output
relations, we can see that the reflected amplitude B (see
notations in Fig. 1) contains an additional fluctuation term
in the frequency domain:

bξ ¼
γ þ iΩ
γ − iΩ

· Aikξþ Aikξ ¼ Aikξ ·
2γ

γ − iΩ
; ð5Þ

where Ω is a spectral frequency, A is the amplitude of the
incoming light, γ ¼ T2=2τ is the amplitude relaxation rate
of the FP cavity, τ ¼ 2L0=c is the round trip time (usually
Ωτ ≪ 1), and T and R are the amplitude transmittance
and reflectance, respectively, of the input test masses
(R2 þ T2 ¼ 1; we assume T ≪ 1). The two terms in the
first equation of (5) describe the perturbation created in
the incident wave (after circulation inside the cavity) and
the directly reflected one, respectively. Effectively, the
cavity acts as a low-pass Lorentz filter.
The fluctuation term should be compared with the signal

term bs produced by the displacement δL ¼ L0hs=2 (hs is
the perturbation of the metric caused by the gravitational
wave):

bs ¼ T ·
2A
T

·
2ikδL

1 − ReiΩτ
¼ 2A · ikL0

τðγ − iΩÞ · hs: ð6Þ

In gravitational wave detectors of the third generation,
there are FP cavities in the east and north arms, and the light
from them interferes on a 50=50 beam splitter. Thus, the
signal bs (6) of the gravitational wave is increased by a
factor of

ffiffiffi
2

p
:

FIG. 1. Fabry-Perot cavity. The surfaces of the input test mass
are covered by antireflecting (AR) and high-reflecting (HR)
coatings. The thermal motion of carriers in the input test mass
produces additional fluctuations of the refractive index which are
probed by the transmitted beams. The position of the coordinate
system has been shifted for better visibility. Its center is actually
at the center of mass of the input mirror.

F. BRUNS et al. PHYS. REV. D 102, 022006 (2020)

022006-2



bETs ⇒ bs
ffiffiffi
2

p
: ð7Þ

On the other hand, there are fluctuations ξn and ξe in the
input test masses of the north and east arm cavities.
As follows,

bETξ ¼ Aik ·
2γ

γ − iΩ
· ξET; ξET ¼ ξe þ ξnffiffiffi

2
p : ð8Þ

Note that the fluctuations ξe and ξn do not depend on each
other and have equal power spectral densities. The power
spectral density of ξET is equal to the power spectral density
of ξe (or ξn). Comparing (5) and (6) by taking into account
(7) and (8), one can find that the variation of the
gravitational metric h and the optical path fluctuations ξ
are related as

h ¼ hs þ hξ; hξ ¼
γτffiffiffi
2

p ·
ξET
L0

¼ πffiffiffi
2

p
F
·
ξET
L0

; ð9Þ

with F the finesse of the Fabry-Perot cavity.

B. Thermal charge carrier density fluctuations

As suggested by the fluctuation-dissipation theorem, we
have to understand the dissipation mechanism (in our case,
that is diffusion) to describe fluctuations of charge carriers.
For this reason, we derive a diffusion equation including
screening effects. We expect Debye screening to suppress
diffusion processes, thus reducing the fluctuations in the
optical elements. Because of the residual doping in the
large test mass substrates required for gravitational wave
(GW) detection, a majority charge carrier is present [21].
Without loss of generality, we assume electrons to be the
majority charge carriers. We start with the continuity
equation for the carrier concentration ncc [22]:

∂ncc
∂t ¼ −∇⃗ · J⃗; ð10Þ

where J⃗ is the current density described by [22]

J⃗ ¼ −D∇⃗ncc þ nccμE⃗; ð11Þ

μ ¼ eD
kBT

: ð12Þ

Here D is the diffusion coefficient, μ the carrier mobility, e
the carrier charge, kB the Boltzmann constant, and T the
temperature. The last term in (11), which is proportional to
a small electric field E⃗, is introduced to account for Debye
screening. The carrier concentration ncc can be described as
a sum of a large constant n0 and a small fluctuating part η:

ncc ¼ n0 þ η; n0 ¼
1

eμρe
; ð13Þ

with the electrical resistivity ρe. The screening electric field
E⃗ is given by the Poisson equation [22]:

∇⃗ · E⃗ ¼ encc
ϵϵ0

≃
eη
ϵϵ0

: ð14Þ

Here ϵ ¼ n2 with n the refractive index and ϵ0 the vacuum
permittivity. After substituting (11) into (10) while using
(13), we get

∂η
∂t ¼ DΔη − n0μ∇⃗ · E⃗: ð15Þ

Since η is a small deviation from thermal equilibrium (i.e., a
fluctuation), we have neglected any quadratic term of η.
Finally, we get a diffusion equation utilizing (14):

∂η
∂t ¼ D

�
Δη −

1

l2
D
η

�
; lD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵϵ0kBT
n0e2

s
: ð16Þ

HereΔ ¼ ð∇⃗Þ2 is the Laplace operator and lD is the Debye
length. Compared to conventional diffusion equations there
is an additional term, −Dη=l2

D, which is a direct conse-
quence of screening effects under the assumption of only
having small deviations from thermal equilibrium η.
Next we want to include fluctuations. In the frame of the

Langevin approach [23,24], we introduce the Langevin
forces Fðr⃗; tÞ into the right part of (16):

∂η
∂t ¼ D

�
Δη −

1

l2
D
η

�
þ Fðr⃗; tÞ: ð17Þ

These Langevin forces Fðr⃗; tÞ cause the Brownian move-
ment of the charge carriers. They are uncorrelated repre-
senting white Gaussian noise:

hFðk⃗;ωÞF�ðk⃗0;ω0Þi ¼ ð2πÞ4F2
0ðk2 þ l−2

D Þ
× δðk⃗ − k⃗0Þδðω − ω0Þ: ð18Þ

The correlators of the fluctuation forces and the constant F0

should be chosen to fulfill the equation

hη2i ¼ n0
V
; ð19Þ

which corresponds to the well-known requirement (of a
Poisson process) that the variation hΔN2i of the particle
number in a volume V is equal to the mean particle number:
hΔN2i ¼ hNi [25]. From (19), one can find

F2
0 ¼ 2Dn0: ð20Þ

Now we can calculate the autocorrelation function of
density fluctuations:
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Bðρ⃗; τÞ≡ hηðr⃗; tÞηðr⃗ − ρ⃗; t − τÞi

¼ 2Dn0
ð2πÞ4

Z
dk⃗dω

ðk2 þ 1
l2D
Þeiωτþik⃗ ρ⃗

D2ðk2 þ 1
l2D
Þ2 þ ω2

: ð21Þ

From that, the double-sided power spectral density (PSD)
Sηηðk⃗;ωÞ can be found using the Wiener-Khinchin
theorem [26]:

Sηηðk⃗;ωÞ ¼
Z

Bðρ⃗; τÞe−iωτ−ik⃗ ρ⃗dρ⃗dτ

¼ n0 ·
2Dðk2 þ 1

l2D
Þ

D2ðk2 þ 1
l2
D
Þ2 þ ω2

: ð22Þ

C. Variations of the optical path length

Now that we know the spectral noise density of charge
carrier fluctuation (22) and how a shift of the optical change
of path length relates to the gravitational strain (9), we can
combine these two results with the readout of the Gaussian
beam (3) to get the measurable TCCR noise in a gravita-
tional wave detector. The readout of the Gaussian beam,
Eq. (3), can be rewritten as

ξðtÞ ¼ β

Z
dk⃗dω
ð2πÞ4 ηðk⃗;ωÞΨðk⃗Þe

iωt; ð23Þ

where ηðk⃗;ωÞ and Ψðk⃗Þ are Fourier transforms of ηðr⃗; tÞ
andΨðr⃗Þ, respectively. To get the PSD of ξ we calculate the
autocorrelation function of ξ:

hξðtÞξðt− τÞi¼ β2
Z

dk⃗dω
ð2πÞ4

dk⃗0dω0

ð2πÞ4
× hηðk⃗;ωÞη�ðk⃗0;ω0ÞiΨðk⃗ÞΨ�ðk⃗0Þeiωt−iω0ðt−τÞ:

ð24Þ

Using (18), we can express the correlator as

hηðk⃗;ωÞη�ðk⃗0;ω0Þi ¼
ðk2þ 1

l2D
Þ

ω2þD2ðk2þ 1
l2
D
Þ2

× ð2πÞ4F2
0 ·δðk⃗− k⃗0Þδðω−ω0Þ; ð25Þ

and substituting into (24) and using the Wiener-Khinchin
theorem and the normalization (20), we write down the
double-sided PSD SξξðωÞ:

SξξðωÞ ¼ 2Dn0β2
Z

dk⃗
ð2πÞ3 ·

ðk2 þ 1
l2D
ÞjΨðk⃗Þj2

ω2 þD2ðk2 þ 1
l2D
Þ2 : ð26Þ

With the results of Sec. II A, we can rewrite (26) in terms of
the GW metric using (9):

ShξξðωÞ ¼
n0β2ðγτÞ2

L2
0

Z
dk⃗

ð2πÞ3 ·
Dðk2 þ 1

l2D
ÞjΨðk⃗Þj2

ω2 þD2ðk2 þ 1
l2D
Þ2 : ð27Þ

In the usual case, when the Debye length is much smaller
than the physical dimensions of the systems, i.e., the
Gaussian radius and the length of the substrate (see
Table II), lD ≪ r0, L this expression can be simplified:

ShξξðωÞ ¼
n0β2ðγτÞ2

L2
0

·
L

2πr20
·

τm
1þ ω2τ2m

; ð28Þ

τm ¼ l2
D

D
¼ ϵϵ0ρ; ð29Þ

where τm is the Maxwell relaxation time. Here we used the
normalization

Z
dk⃗

ð2πÞ3 jΨðk⃗Þj
2 ¼

Z
dr⃗jΨðr⃗Þj2 ¼ L

2πr20
: ð30Þ

The PSD can be converted into the amplitude spectral
density (ASD):

ShξðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ShξξðωÞ

q
: ð31Þ

Note that formula (27) for the spectral noise density is valid
for frequencies smaller than the inverse diffusion time,
because the equation of motion (15) does not account for
retardation effects. The diffusion time is determined by
either the Maxwell relaxation time or the electron lifetime,
whatever is smaller [27]. In silicon, which is an indirect
semiconductor, the diffusion time is given by the Maxwell
relaxation time (29), which is around 10−8 s for pure silicon
at room temperature. The limiting frequency is, therefore,
around 108 Hz, which is much larger than the frequency
range of third-generation gravitational wave detectors of
1–104 Hz [19].

III. COMPUTATION OF TCCR NOISE

To quantify the magnitude of TCCR noise, we are going
to use the low-frequency interferometer of the Einstein
Telescope [19] as an example for a cryogenically operated
third-generation gravitational wave detector, where the use
of crystalline substrate materials is considered. Since we are
examining transmissive TCCR noise, the HR and AR
coatings do not contribute significantly because of their
small thickness. In amorphous coatings, TCCR noise is
even further reduced due to the low amount of free charge
carriers.
TCCR noise is dependent on the diffusion coefficient D

and the Debye length lD (see Table II for numerical values
of D and lD). This is why it is indirectly also a function of
temperature T and doping density nD. At this time, large
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high-purity silicon samples can be produced with the
magnetically assisted Czochralski technique with a resis-
tivity of up to 10 kΩ cm. To account for production
difficulties, we are looking at n-type silicon with a worse
resistivity of 1 kΩ cm, which corresponds to a doping
density of around 4.4 × 1012 1

cm3, which is equivalent to a
resistivity of 1 kΩ cm at room temperature [21]. In order to
calculate the mean carrier density n0 as a function of the
doping density, a model for semiconductors with no
compensation (no acceptors) has been used [28]:

n0 ¼
2nD

1þ ½1þ 4gD
nD
nC
expðEb

D
kBT

Þ�1=2
: ð32Þ

Here gD is the donor degeneracy, nD is the donor concen-
tration, Eb

D is the energy gap between donor level and the

conduction band, and nc is the conduction band edge
density:

nc ¼ 2

�
m�

e;bkBT

2πℏ2

�
3=2

; ð33Þ

with m�
d;e the effective density-of-states mass of the con-

duction band electrons. As dopants, we considered shallow
phosphorous donors which have a degeneracy of gD ¼ 2

and an energy gap of Eb
D ¼ 45 meV.

Additionally, we want to be able to model the diffusion
coefficientD. For this, we used the Einstein-Smoluchowski
equation in order to replace the diffusion coefficientD with
the well-investigated charge carrier mobility μ [28]:

D ¼ kBT
e

μ: ð34Þ

A more precise expression for D can be obtained from
taking into account the carrier band curvature. In our case,
though, the Fermi level is several eV deep within the band

FIG. 2. ASD of TCCR noise in the input test mass substrates of
ET at 10 K for pure Si, nD ¼ 5 × 1012 1

cm3. The ASD falls off
with f−1 akin to a Brownian noise source. The frequency-
independent, approximated formula (28) cannot be used in this
case because of the freeze-out of charge carriers enabling the
Debye length to become of the order of the Gaussian beam radius
(see Table II).

TABLE I. Parameters of the input test masses of the Einstein
Telescope (p. 347 in Ref. [19]).

Parameter Symbol Value

Finesse of FP cavity F 880
Mirror thickness L 0.5 m
Gaussian radius r0 0.09 m
Laser wavelength λL 1550 nm
Arm length L0 104 m
Refractive index Si [32] n 3.487
Effective electron mass Si me 0.260m0

Electron rest mass m0 9.109 × 10−31 kg
Boltzmann constant kB 1.380 × 10−23 J=K
Vacuum permittivity ϵ0 8.854 × 10−12 AS=Vm

TABLE II. Electron mobility μ, diffusion coefficient D, and
Debye length lD of Si at different temperatures. The mobility
data of Si at 126 K have been approximated by taking the mean of
the mobilities at 100 and 150 K from Li and Thurber [30].

Silicon

T½K� nD ½1=cm3� μ ½m2=Vs� D ½m2=s� lD ½m�
10 5 × 1012 38.8 [29] 3.34 × 10−2 9.38 × 10−2

77 1014 2.04 [30] 1.35 × 10−2 6.84 × 10−7

77 5 × 1014 1.55 [30] 1.03 × 10−2 4.51 × 10−7

77 1015 1.31 [30] 8.67 × 10−3 3.78 × 10−7

77 5 × 1015 0.845 [30] 5.61 × 10−3 2.52 × 10−7

77 1016 0.655 [30] 4.35 × 10−3 2.12 × 10−7

77 5 × 1016 0.287 [30] 1.90 × 10−3 1.41 × 10−7

77 1017 0.184 [30] 1.22 × 10−3 1.19 × 10−7

77 5 × 1017 0.050 [30] 3.32 × 10−4 7.94 × 10−8

77 1018 0.027 [30] 1.82 × 10−4 6.67 × 10−8

126 1014 1.09 1.19 × 10−2 4.19 × 10−7

126 5 × 1014 0.895 9.72 × 10−3 2.61 × 10−7

126 1015 0.795 8.63 × 10−3 2.15 × 10−7

126 5 × 1015 0.557 6.05 × 10−3 1.41 × 10−7

126 1016 0.456 4.95 × 10−3 1.18 × 10−7

126 5 × 1016 0.224 2.43 × 10−3 7.81 × 10−8

126 1017 0.150 1.63 × 10−3 6.55 × 10−8

300 1014 0.146 [30] 3.76 × 10−3 4.33 × 10−7

300 5 × 1014 0.138 [30] 3.56 × 10−3 2.14 × 10−7

300 1015 0.137 [30] 3.54 × 10−3 1.64 × 10−7

300 5 × 1015 0.129 [30] 3.32 × 10−3 9.52 × 10−8

300 1016 0.121 [30] 3.13 × 10−3 7.73 × 10−8

300 5 × 1016 0.092 [30] 2.38 × 10−3 4.93 × 10−8

300 1017 0.075 [30] 1.93 × 10−3 4.10 × 10−8

300 5 × 1017 0.043 [30] 1.11 × 10−3 2.70 × 10−8

300 1018 0.030 [30] 7.74 × 10−4 2.26 × 10−8

THERMAL CHARGE CARRIER DRIVEN NOISE IN … PHYS. REV. D 102, 022006 (2020)

022006-5



gap. Thus, the deviations from the Einstein-Smoluchowski
equation are negligibly small. The mobility data for
modeling D have been obtained from Jacoboni et al.
[29] and Li and Thurber [30].
In Fig. 2, we have plotted the ASD of TCCR noise of the

ET input test masses at its operation temperature of 10 K for
pure Si, nD ≈ 5 × 1012 1

cm3 using the parameters shown in
Tables I and II. All numerical calculations shown have been
performed withMathematica 11.3 [31]. We can see that the
ASD of TCCR noise at 10 K reaches 5.3 × 10−30=

ffiffiffiffiffiffi
Hz

p
in

Si. This noise amplitude is well below the sensitivity goal
of the ET of 3 × 10−25

ffiffiffiffiffiffi
Hz

p
. Therefore, we can come to the

important conclusion that TCCR noise is not a limiting
noise source for the ET and third-generation gravitational
wave detection, in general.
Like all thermal noise sources, TCCR noise scales with

the temperature; additionally, it also increases with the
doping concentration. In Fig. 3, we are showing the ASD of
TCCR noise in dependence of the doping density for
different temperatures. Because of the temperature range
shown (77–300 K), the Debye length of Si (see Table II)
is small enough to use the approximation given by

formula (28), thus obtaining a frequency-independent
ASD up to at least 104 Hz.
The doping dependence can be explained in the following

way: An increase in the doping concentration increases
the mean carrier concentration n0 and decreases the
Debye length lD. These effects compensate each other as
can be seen in Eq. (28). Furthermore, in doped silicon
(nD > 1014 1

cm3), an increase in the doping density nD also
decreases the charge carrier mobility μ [30] and the diffusion
coefficientD, respectively (see Table II), thus increasing the
TCCR noise amplitude. Overall, even for room temperature
(compared to cryogenic operation) and high doping den-
sities, TCCR noise stays below the sensitivity targets of
third-generation wave detectors. Calculations with other
III-V semiconductors with a smaller band gap (such as
gallium arsenide) have shown that the TCCR noise ampli-
tude does not increase significantly.

IV. CONCLUSION

We show a detailed analysis of TCCR noise in metals
and semiconductors from first principles especially taking
into account screening effects. We show that Debye
screening practically blocks diffusion processes, hence
dramatically reducing TCCR noise. We apply our approach
to the input masses of the Einstein Telescope and show that
TCCR noise is not a limiting noise source. Furthermore, it
can be seen that TCCR noise does not increase significantly
at room temperature (compared to cryogenic operation) and
high levels of doping of the material. For instance, for
silicon input test masses of ET at room temperature and a
rather high doping density of nD ¼ 1016 1

cm3, the TCCR
noise amplitude is 3 orders of magnitude below the design
sensitivity. Before this paper, the driver for ultrapure silicon
has been optical absorption and TCCR noise. With our
derivation, we show that TCCR noise is not a limiting noise
source for substrate materials of third-generation gravita-
tional wave detectors. Nevertheless, there is still a need for
ultrapure substrate materials due to limits set by the optical
absorption [21,33].
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FIG. 3. Doping dependency of the ASD of TCCR noise Sξh. At
the shown temperatures, the ASD is a constant of frequency in the
frequency interval of 1–104 Hz for Si. Because of a lack of data
for the charge carrier mobility μ of doped materials at cryogenic
temperatures, we show the temperatures 77, 126, and 300 K. The
temperature of 126 K is interesting, because at this temperature
the thermoelastic coefficient of Si vanishes, immensely reducing
the thermoelastic noise. The ASD of Si at 77 and 300 K cross due
to a crossing of the charge carrier mobility at high levels of
doping (see Table II).
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