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Many low-frequency radio interferometers are aiming to detect very faint spectral signatures from
structures at cosmological redshifts, particularly of neutral Hydrogen using its characteristic 21 cm spectral
line. Due to the very high dynamic range needed to isolate these faint spectral fluctuations from the very
bright foregrounds, spectral systematics from the instrument or the analysis, rather than thermal noise, are
currently limiting their sensitivity. Failure to achieve a spectral calibration of the instrument with fractional
inaccuracy <1073 will make the detection of the critical cosmic signal unlikely. The bispectrum phase from
interferometric measurements is largely immune to this calibration issue. We present a basis to explore the
nature of the bispectrum phase in the limit of small spectral fluctuations. We establish that these
fluctuations measure the intrinsic dissimilarity in the transverse structure of the cosmic signal relative to the
foregrounds, expressed as rotations in the underlying phase angle. Their magnitude is related to the strength
of the cosmic signal relative to the foregrounds. Using a range of sky models, we detail the behavior of the
bispectrum phase fluctuations using standard Fourier-domain techniques and find it comparable to existing
approaches, with a few key differences. Foreground contamination from mode-mixing between the
transverse and line-of-sight dimensions is more pronounced than in existing approaches because the
bispectrum phase is a product of three individual interferometric phases. The multiplicative coupling of
foregrounds in the bispectrum phase fluctuations results in the mixing of foreground signatures with that of
the cosmic signal. We briefly outline a variation of this approach to avoid extensive mode-mixing. Despite
its limitations, the interpretation of results using the bispectrum phase is possible with forward-modeling.

Importantly, it is an independent and a viable alternative to existing approaches.

DOI: 10.1103/PhysRevD.102.022001

I. INTRODUCTION

The formation and evolution of large-scale structure in
the high-redshift Universe (1 < z < 100) has been largely
underexplored. Probing the early Universe using spectral
line tracers on cosmological scales appears promising and
could be very rewarding scientifically to both understand
these processes and their effects on shaping the astrophysi-
cal evolution of the Universe (see e.g., [1-14]). Examples
include tomographic mapping of the neutral hydrogen (H 1)
using the redshifted 21 cm spectral line from the electron
spin-flip transition during the Cosmic Dark Ages (z 2 30),
the Cosmic Dawn (15 < z < 30), the Epoch of Reionization
(EoR; 6 <z <15), and the periods when dark energy
started becoming significant (1 <z < 3) and eventually
dominant (z < 1).

Rapid advances in low radio frequency instrumentation
has made it possible for a number of experiments including
the Murchison Widefield Array [15-18], the Donald C.
Backer Precision Array for Probing the Epoch of
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Reionization [19], the Low Frequency Array [20], the
Giant Metrewave Radio Telescope EoR experiment [21],
the Hydrogen Epoch of Reionization Array [22], the Square
Kilometre Array [23], the Canadian Hydrogen Intensity
Mapping Experiment [24], and the Hydrogen Intensity and
Real-time Analysis Experiment [25] to attempt detecting
the cosmic HT1 structures in these epochs using the
redshifted 21 cm spectral line with sufficient sensitivity
(see e.g., [26,27]).

With the requirement to isolate very weak spectral
signatures in the presence of very bright foreground
objects, these experiments are faced with a tremendous
challenge of requiring extreme-fidelity spectral calibration
[28-31] with fractional inaccuracy typically under <1073,
failing which the miscalibration will leak sufficient power
from the bright foregrounds and contaminate the spectral
signatures of the cosmic signal, thereby rendering this
critical detection impossible. While advanced calibration
methods are being investigated to address the calibration
challenge (see e.g., [32-35]), a new and independent
approach to detecting the spectral signatures from cosmic
structures using the bispectrum phase was presented
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recently [36], which has the distinct advantage that it is
largely impervious to antenna-based calibration and the
errors therein. This property has been investigated in detail
[37-41]. The bispectrum phase intrinsically measures the
symmetry about a point and is invariant to translation [41].
Indeed, the bispectrum phase has been exploited success-
fully in interferometric imaging experiments where cali-
bration is extremely challenging, such as in deciphering
complex structures on stellar surfaces and their surround-
ings (see [42,43] and references therein), and in the Event
Horizon Telescope (EHT) imaging of the shadow of the
supermassive black hole at the center of M87 [44-49].

Most of the aforementioned applications of bispectrum
phase were used for imaging which is restricted to the
transverse plane of the sky. Following up on the idea
presented in [36], we explore and exploit new properties of
the bispectrum phase while applying it to the spectral (or
the frequency) axis, which in cosmological spectral line
observations is typically the line-of-sight dimension of the
sky. This paper is one in a series of related papers, the
others being [36,50-52], and lays the mathematical foun-
dations for our understanding and application of the
bispectrum phase approach for spectral line observations
where information about the desired signal can be extracted
through its distinct spectral signatures. In a companion
paper [52], we present the first results from applying this
technique to a small sample of data obtained with the
HERA telescope.

This paper is organized as follows. In Sec. II, we present
a basis using simple complex algebra to simplify the
mathematical understanding of phase fluctuations in the
limit of small perturbations. We apply this simplification
first to phases in the interferometric two-point correlations
(or visibilities) in Sec. III. We then extend this formalism to
the bispectrum phase in Sec. IV. In Sec. V, we use a range of
purely hypothetical to realistic examples to identify and
illustrate the relationship and correspondence, and the
benefits and limitations, of using our bispectrum phase
approach relative to other existing approaches that use
visibilities in distinguishing the spectral signatures from the
cosmic signal. In Sec. VI, we demonstrate the presence and
effects of mode-mixing (the coupling of spatial modes
along the line-of-sight direction with those in the transverse
plane) in our approach similar to that in existing
approaches. In the Appendix, we briefly outline an alternate
approach that could potentially mitigate contamination
from mode-mixing effects. In Sec. VII, we discuss the
impact of the intrinsic spectral characteristics of the fore-
grounds on the spectral signatures of the cosmic spectral
line signal and contrast it with existing approaches. We
provide a summary of the mathematical formalism of this
approach along with its benefits and limitations in
Sec. VIII. While we use examples relating to the detection
of HI in the intergalactic medium during the EoR, the
formalism and the conclusions presented here are

generically applicable to other experiments and science
cases as well.

II. LINEAR ORDER FLUCTUATIONS ON
COMPLEX VECTORS

Consider complex numbers Z;, with amplitudes |Z;| and
arguments ¢; in the complex plane, C, such that
Z;=|z;|e", for j =0,1,2,...n. The real and imaginary
parts are denoted by R{-} and 3{-} respectively. Z denotes
the complex conjugate of Z.

In this paper, we denote Z, as the reference complex
vector, and Z; for 1 < j<n as perturbations over Z,.
Let Zs = 27=0 Z; denote the resultant complex vector.
Throughout this paper, we will often invoke that |Z;[/
|Zo| < 1 for j>1, so that only linear-order terms in
|Z;|/1Zy| will be retained while neglecting higher-order
terms.

A. Small perturbations from a single cause

For a small perturbation arising from a single cause
(n =1), say only one of thermal noise or spectral line
fluctuations, Zy = Z; + Z;. The amplitude and argument
of the resultant are

|Zs? =12 + 12, + 2%{ZZ, }, (1)
Os = 0 + 66, (2)
where,
tan 60, — |Zy|sin(6, — ) . 3)
|Zo| + |1Z1] cos(6; — 6)
Assuming the perturbation is small, |Z;| < |Z,|, using

Taylor-series expansion and small-angle approximation,
and retaining only up to linear-order terms in |Z,|/|Z,

>

Z
zx )14 P eosor-00) @
Z
=|Z,| (1 + ‘)t{z—;}> (5)
and
Z| . [z
tan 50, ~ 66, ~ %sm(@l —0,) = s{z—;} (6)

Equation (6) establishes that the fluctuation in the angle of
the reference complex vector depends on |Z,|/|Z,| and on
the relative angle between the two, 8, — 0,. Hence, if the
fluctuation has zero magnitude (|Z;| = 0) or if its angle is
exactly aligned with the reference vector (6, = 6,), it will
cause no perturbation in angle. Thus, perturbations in
the underlying phase angle are an intrinsic measure of
the dissimilarity of the perturbing signal relative to the
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underlying signal, and the magnitude of the phase angle
perturbation depends on the ratio between the two.

B. Small perturbations from multiple causes

The relationships can be generalized and extended in
case of multiple causes of perturbations such as simulta-
neous presence of thermal noise and spectral line fluctua-
tions. In the presence of multiple sources of perturbations,
the same small-angle and linear-order approximation yields

|Zs| “Z|Zj|005(‘9j—90) (7)
=0
_ |z Z%(e _ o) ®)
Jx=Z;
|mzw{} wmioz} (9)

and

(10)

A7)

5 Zo
It may be noted that when these perturbations arise from

Gaussian noise and are small, wherein |Z;|/|Zy| < 1, the

distribution of 60, can also be well approximated by a
Gaussian distribution [53].

(11)

III. SPECTRAL LINE FLUCTUATIONS IN
VISIBILITY PHASE

In this section, we develop the mathematical formalism
on the interferometric visibility phases that will be later
extended to the bispectrum phase. Let V,(f) denote the
spectrum of visibilities of a triad of a baseline (antenna
spacing) vectors, b,, where, p = {1,2,3} indexes the
baselines comprising the triad. Then, a measured visibility
(after calibration) can be written as

V() = VE() + V(). (12)
where superscripts m, T, and N denote the measured, true
sky, and noise components respectively. The true sky
visibility can be further decomposed as

V() = VE() + VE(). (13)
where F denotes the foregrounds and L denotes the
cosmological spectral line signal of interest. Hence,

VR(F) = VB 4 VB + V(). (14)

In these visibilities, let ¢})(f) be the measured inter-
ferometric phase angle, ¢,(f) be the uncorrupted inter-
ferometric phase angle relating to the true sky, gz’)l; (f) be
the uncorrupted interferometric phase angle from fore-
grounds, 8¢%(f) be the perturbation caused by cosmic
structures of interest probed by the spectral line to the
uncorrupted foreground interferometric phase angle, and
8¢ (f) be the perturbation to the uncorrupted interfero-
metric phase angle caused by thermal noise. If the pertur-
bations to visibility are small, |V}(f)| < |V} (f)| and
VI < [VE(A)], in Sec. IIB
can be employed. Identifying V%, V%, and VI to be
respectively Z,, Z;, and Z, in Sec. II B, the perturbations
to the visibility phase angle from the cosmic structures and
noise are, respectively,

L
stn=a{PE0h oy
wd. sg(r) ~ {0 (16)

Thus fluctuations in the visibility phase angles are
roughly linearly proportional to the fluctuations in the
visibilities themselves and inversely proportional to the
foreground component of the visibilities under a first-
order approximation. Then,

PP () = iy ()40 () +605(f)) (17)
~ e U1+ i(6P5(f) + 64N (f))] (18)
i, 1 (VE(f) W(f))
~ l¢p(f) 1 — P __[7
‘ [+ (VF(f) VE(f)
1 (VN(f) Tmﬂ
4= )4 )4 , 19
2<V‘;(f) VE(f) (19)

where we have used |5¢%(f)] < 1 and |64} (f)| < 1, and
3{Z} =(Z-Z)/2i, in Egs. (15) and (16). Thus the
visibility phase angle fluctuations 5¢%(f) and 6¢}(f)
are indicators of the spectral line strength to the fore-
ground continuum ratio and the noise to foreground
continuum ratio respectively.

If a model for |VE(f)] is available, it can be used to
extract partial information about VL(f). Let |[VE(f)]
denote some empirical model of the true sky-based fore-
ground visibility amplitude, [V} (f)|. Then, we can recon-
struct an estimate of the measured (calibrated) visibility as
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. OF P 1BE) — (DF( Lot LVE) VRO, 1 (V) _ Vi)
VR0 = 19510 = P10 145 (D 220 o (e - 2 )
! g ! Vi) VE(r))  2\VR() VE(p)
:vmﬁp+£(vﬂﬁ_vﬂﬂ)+l( NV }
! 2\VL(f) VE(R))  2\Vi(f) VE()
= Vo) + V() + V(). (20)
|
where where Gy(f) denotes the lumped product of the various
o direction-independent antenna-based gains associated with
. VE(F) (VE(F)  VE() the triad, and |Bg(f)| and ¢J(f) denote the amplitude and
Vilf) = D) <VF (f) - VE ( f)> (21) the phase angle of the measured bispectrum, respectively.
r r The measured bispectrum phase angle, which is inde-
" ‘A/E f) Vy () V_I;I () p3e;1dent of the direction-independent antenna-based gains
and, V) (f) = P L . (22) [37], is
2 \Vp() VE(p)

This will not yield a perfect recovery of the fluctuating
components because the phase angle fluctuations are
related by the imaginary portion of the ratio of the
fluctuating component to the foreground and hence only
yields a partial recovery, statistically ~50% of the spatial
information content. Nevertheless, it can be useful in
recovering roughly half the power in the fluctuations.

Note that the use of calibrated interferometric phase
angle ¢ (f) is required in Eq. (20) and could not have been
substituted by the uncalibrated interferometric phase angle
because the latter will result in partial to complete loss of
recovery of the visibilities if the measured interferometric
phase is uncorrected for the phase corruption of the
wavefront introduced by the antenna and the ionosphere.
On the other hand, the use of corrected phase carries the
burden of having performed extremely accurate calibration,
typically with fractional inaccuracy required to be <107.
However, the bispectrum phase has the interesting property
that it is independent of direction-independent antenna-
based calibration and errors therein. The following sections
extend this treatment of interferometric phase on visibilities
to examine the usefulness of the bispectrum phase while
using the raw uncalibrated measurements.

IV. SPECTRAL LINE FLUCTUATIONS IN
THE BISPECTRUM PHASE

The measured complex bispectrum is written as the
product (over index p) of the measured visibilities (may or
may not be calibrated):

— Gu(A) [TIVE) + VE(H) + VXL (23)

3

3
SN AGED D AGEL AR NI

p=1
(24)
3 3 3
=D G5+ D85 + D N (29)
p=1 = p=1
= Py(f) + 5¢% (f) + 845 (f). (26)
where @5 (f) = L @5(f) is the brspectrum phase angle

from the foreground structures SPG(f) =D 0_ 645 (f) is
the perturbation to the bispectrum phase angle caused by the
presence of cosmic structures, and ¢ (f) = >3 _; 69} (f)
is the perturbation to the bispectrum phase angle caused by
the presence of thermal noise.

We assume throughout the paper that during an obser-
vation the phase center coincides with the pointing center
(boresight) of the antenna. For a transit array like HERA,
this is typically the zenith. However, the discussion and
examples presented here can be generalized to a tracking
telescope with arbitrary pointing and phase centers as well.

The following section relates these phase fluctuations to
the spatial coherence function corresponding to the cosmic
structures and thermal noise. For convenience throughout,
we drop the explicit dependence on f unless specified.

A. Bispectrum phase in the limit of small perturbations

The measured bispectrum in Eq. (23) can be expanded as

3
B[ = [ V5 + VIVEVE + VIVEVE + VEVEVE
p=1
+ VIVEVE + VIVEVY + VEVEVY
+ higher-order terms in V% and VN. (27)
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Here, we have neglected the gain terms lumped into Gy (f)
as they multiply across all the terms and are irrelevant for
the phase angles and the fluctuations therein.

By keeping terms only up to linear order in VY and V7,
we can infer the first-order perturbation to the foreground
bispectrum, BY, = ;:1 VF, arising from cosmic structures
and thermal noise, respectively, as

BY ~ VEVEVE 4 VEVEVL L VEVEVL  (28)

and, BN~ VEVEVY + VEVEVY 4 VEVEVI.  (29)
Identifying BY, B, and BY to be respectively Zy, Z,,
and Z, in Sec. II B, the perturbations to the foreground
bispectrum phase from the cosmic structures and noise are,

respectively,

3 VL

Sk z%{zv—;’} (30)
p=1"7P
3 VN

and, 5¢§zs{va} (31)

This suggests that fluctuations in the bispectrum phase are

approximately linearly proportional to the fluctuations in

visibilities under a first-order approximation.
Alternatively, from Eqgs. (25) and (26),

3 VL
SPE(f) = 25¢L ~y %{V—g} (32)
p=1 P
and
3 3 VN
RIOEDSAGEDD N{V—'F’} (33)
p=1 p=1 P

which are identical to Egs. (30) and (31). Effectively, these
bispectrum phase fluctuations are a reasonable instrument-
independent, and a robust true-sky measure of the dissimi-
larity of the cosmic structures relative to the foregrounds in
the transverse plane of the sky, whose magnitude depends
on the ratio between the two.

B. Relation between bispectrum phase
fluctuations and visibilities

In the limit of small fluctuations, |5¢%|, [6¢5| < 1, the
bispectrum phase can be expressed using Taylor-series
expansion to linear-order terms in 54’]6 and 5¢§ as

oty — ei(¢§+&¢§+5¢§) (3 4)

e [1+ i(5hk + 5pY)]. (35)

Thus, the perturbed angles, ¢ and 543, and also /v
contain terms up to linear order in V5/VE and VY /VE.
From Egs. (30) and (31), Eq. (35) can be expressed as
VL VL
l¢'“ ~ i¢
. v[sz( v VF)

(36)

Hence, the bispectrum phase angle fluctuations, 545% and
5(}5@, measure the dissimilarity relative to the foregrounds
with magnitudes given by the spectral line to foreground
continuum ratio, and noise-to-foreground continuum ratio,
respectively. This is very similar to the nature of the
visibility phase angle fluctuations.

In principle, we could simply use ¢y as the mathe-
matical quantity of interest instead of the complex Eulerian
representation ¢V, that will be delay-transformed as we
have in the rest of the paper. However, in practice ¢y will
be noisy and may contain discontinuities at £z due to
phase angle wrapping. Including such discontinuities in a
Fourier transform will lead to the classical ringing and
associated artefacts. The robust removal of such disconti-
nuities especially in the presence of noise and other
fluctuations is not straightforward and is a subject of
ongoing research (see e.g., [54-58]). Though we do not
explore this variant approach in detail in this paper, we
present an outline (see Appendix) of the potential advan-
tages using ¢y could hold in comparison to using ey,

Figure 1 corresponds to a hypothetical example that will
be discussed in detail later as example(i)(b) in Sec. VA 1
with a slight modification. Briefly, the foreground model is
a point source of true flux density 100 Jy, which is ~5° off-
boresight and has a spectral index o = 0 in contrast with
the example in Sec. V A 1. The spectral signal comes from a
point source at boresight with a cosine-shaped spectrum of
characteristic frequency scale, f; = 1 MHz, and amplitude
10 mly. Such a model for the foreground, and especially
the EoR H1 signal, is purely hypothetical and unrealistic.
The antenna spacings correspond to a 50.6 m equilateral triad
(antenna layout discussed in Sec. V and illustrated in Fig. 5).
The antennas are assumed to be uniformly illuminated dishes
of diameter 14 m and have a corresponding Airy angular
power pattern whose transverse angular structure does not
change with frequency. The top subpanel shows the visibility
amplitude of the off-boresight foreground point source on
“the three differently oriented 50.6 m antenna spacings (red,
blue, and black). The off-axis location lowers the apparent
flux density as shown due to the power pattern assumed.
The fluctuation in amplitude due to the spectral line
point source, 3|V, (f)| = [VE(f) + V5(£)| = [VE(S)| for
the same antenna spacings is shown in the bottom subpanel.
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Vv (8,11,18)

7
‘\H” \“HHHHW

FIG. 1. The amplitude of the visibilities from the foregrounds,
VE(f) (top) and the fluctuations therein due to the cosmic H1
signal (bottom) given by 8|V, (f)| = [V}, (f) + Vi (f)] = [V},(f)]
on three antenna spacings (red, blue, and black) comprising the
50.6 m equilateral triad, V = (8,11, 18) (refer to the antenna
layout in Fig. 5). The foreground model is a point source of true
flux density 100 Jy with spectral index, a = 0, located off-
boresight by ~5°. The power pattern at this location is the cause of
the reduced strength of the apparent foreground visibilities in the
top panel. The cosmic H1 signal is a purely hypothetical but an
unrealistic model consisting of a point source located at boresight
and has a cosine-shaped frequency spectrum of characteristic
frequency scale, 6f;, = 1/7; = 1 MHz. The envelope of the
fluctuations in amplitude obtained using a Hilbert transform is
shown to gauge the overall magnitudes of these fluctuations
relative to the foreground amplitudes.

The maximum of the envelope of the fluctuations in
amplitude is ~10 mJy as expected.

Figure 2 shows the actual and predicted (from first-
order approximation) values of the fluctuations in the
phase angles of the visibilities and the bispectrum for
the above example. The visibility phase angle fluctua-
tions predicted after retaining only the first-order pertur-
bations using Eq. (16) for the three antenna spacings (red,
blue, and black) are shown in the top subpanel. The
middle subpanel shows the actual fluctuations in the
bispectrum phase angle (black) and that predicted from
Eq. (30) (gray). The envelope of the fluctuations derived
using a Hilbert transform shows the overall amplitude of
the phase angle fluctuations. The residuals between
the predicted and actual bispectrum phase angle fluctua-
tions is shown in the bottom subpanel. The higher-than-
linear-order terms are typically ~10~* smaller fractionally

% Zj m ,. l ﬂ‘wl‘ “” L I"”' | . ”H W J'l"""l.
. W

©c o o
o = N

| |
e ©
N R

|
N
o

|
N
o
1

err(6¢%(f) [nano-radian] 6¢5(f) [milli-radian]
|
[e)]

120 140 160 180
f [MHz]

FIG. 2. Predicted and actual values of phase angle fluctuations
of the visibility and bispectrum for the sky model considered in
Fig. 1. Top: predicted fluctuations in the three visibility phase
angles of a 50.6 m equilateral triad in red, blue, and black using
Eq. (16). Middle: fluctuations in the actual bispectrum phase
angle (black) and the first-order approximation (gray) predicted
using Eq. (30). The envelope of these phase angle fluctuations
are at a level ~0.1-0.2 milli-radians, which is similar to and
identifiable with the ratio ~5|V ,(f)|/|V5(f)| in Fig. 1. Bottom:
bispectrum phase angle residuals from the difference of the first-
order prediction and the actual values. These higher-than-linear-
order residuals not captured by the first-order approximation are
~ few tens of nano-radians indicating the approximation to linear-
order terms has a fractional inaccuracy of only <10~ relative to
true values.

compared to both the predicted linear-order terms as well
as the actual values indicating that the fractional inaccur-
acy of the linear-order approximation is only <107
relative to true values.

Figures 3 and 4 are the same as Figs. 1 and 2, respectively,
but use a spectral index @ = —0.8 for the foreground point
source. This same example is presented in more detail
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Vv (8,11,18)
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{
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120 140 160 180
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FIG. 3. Same as Fig. 1 but the foreground model has a spectral
index, a = —0.8.

in Sec. V A 1. The phase angle fluctuations in visibility and
bispectrum (Fig. 4) are seen to be correspondingly
increased at higher frequencies, and vice versa, relative
to that in the previous example illustrated in Fig. 2. This is
also in agreement with the predictions in Egs. (16) and (30)
and arises due to the relative decrease of foreground
amplitude at higher frequencies and vice versa. The
deviation between the predicted and actual values also
follows a similar trend where it is higher at higher
frequencies and vice versa relative to the previous example.
In other words, the first-order approximation is still valid at
all frequencies but the prediction is slightly better at lower
frequencies than at higher frequencies.

If a model of the foreground visibilities, VI;, is available,
the spectral line strength from cosmic structures can be
approximately estimated from this ratio. We construct the
quantity

Vy(f) = Vige 5V, (37)
where VI, is designed to be an empirical estimate of V5 (f).
Note that the explicit dependence on f has been re-
introduced to emphasize that VE; is not a function of
frequency but only provides an overall amplitude scaling
that corresponds to the frequency band of interest. The
multiplication by VI that is empirically representative of
the effective foreground visibility amplitude from the triads
converts the complex bispectrum phase term to an effective
flux density. Vy(f) has units of Jy but since it is purely

|||1\‘HU il .‘W\ ““‘M

NEN
“ .,.»'«'fﬁ“""Hnmwww:w
o lll l

" i Ui |

I
r

() [milli-radian]

L
P

'u
l

6¢

err(6¢5(f) [nano-radian] 0%s(f [milli-radian]

140 160 180

f[MHz]

120

FIG. 4. Same as Fig. 2 but the foreground model has a spectral
index, @ = —0.8 corresponding to that shown in Fig. 3. The
visibility and bispectrum phase angle fluctuations are higher at
higher frequencies and vice versa when compared to the case with
a =0 shown in Fig. 2. This is because the fluctuations in
visibility amplitudes remain the same whereas the foreground
amplitudes are lower at higher frequencies and vice versa due to
the spectral index, a < 0. Thus, the deviation between the actual
and first-order approximation of the bispectrum phase also
becomes higher at higher frequencies and vice versa relative
to that when a = 0 in Fig. 2. The approximation is still accurate
overall, but is slightly better at lower frequencies than at higher
frequencies essentially following the ratio ~8|V ,(f)|/|V5(f)].

mathematical rather than a physically valid flux density, we
refer to its units by “pseudo Jy” to distinguish it from
physical flux density. VL, a scalar, will not be able to fully
capture the exact spatial coherence information in V% (f)
because the latter consists of independent information on
possibly three different spatial modes in addition to con-
taining spectral information. This will introduce an error in
the final result but one that appears as a simple scaling error
and does not introduce any spectral errors or systematics.
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Using Eq. (36),

3 L L
xwuv—vga@mp+é§:<%%ﬁ_ygﬁ>

p=1 v f ) VE (f )
IS (V) V()
+£2Qﬂﬂ @UQ}
= VE(f) + V() + Vi), (38)
where
VE(f) = Vige %1, (39)
VE(f) = idgls () VEge'®5 ), (40)
and
VN(f) = i8N (f)VEe'tst). (41)

Equation (38) takes a familiar form where the measured
visibilities comprise of an additive combination of
foregrounds, the cosmological spectral line signal, and
measurement noise. For convenience, we define yl; (f) =
Veer/ Vi (f). Then,

VE() = 50 S BEVEL) - VAL (42
VR =540 S BV - OVED: (4

However, differing from the standard approach, Egs. (42)
and (43) show that the effective visibilities denoting
contributions of the spectral line signal and noise to the
bispectrum phase are now weighted by the foreground
spectra. This is expected because the bispectrum phase is a
measure of the ratio of the fluctuating signal to the
foregrounds as noted earlier. It must also be noted that
e %) and y5 (f) (with |y5(f)| ~ 1) are expected to exhibit
only slow spectral variations. Thus, the excess spectral
variance from rapid fluctuations such as from the cosmic
line signal will still be distinguishable as will be demon-
strated later through examples.

The process of determining Vy, as presented here, is
empirical and has the following reasoning. We note that the
variance due to cosmic line signal and noise fluctuations is
approximately the sum of the variances in the fluctuations
in the individual interferometric phases. Assuming that the
cosmic line signal strength and the noise rms measured on
each of the baselines forming the triad do not differ
significantly between the baselines, the fluctuations are
inversely dependent on the foreground visibility measured

on the respective baselines. The weakest visibility ampli-
tude among the baselines in the triad will induce the
maximum fluctuations which will dominate the overall
budget of fluctuations in the measured bispectrum phase.
Therefore, we obtain VE, by averaging in inverse quad-
rature as

eff Z | VF (44)

where

F
\A/E = —f WOV f)df. (45)

Twir)
f/f, (f) denotes a reliable visibility model (obtained either
through calibration or modeling), which is then averaged
over the frequency sub-band of interest, with the same
optional spectral window weighting, W(f), that may get
used in the further processing as described below. It must
be noted that the choice of VI, above is not entirely
rigorous and could be substituted with any other reasonable
estimate.

It must be emphasized that the model or calibrated Vf, (f)
does not need to be fractionally as accurate as ~107>, for
example, as in other standard approaches for detecting faint
spectral lines. It is simply used to obtain an average scalar
to scale the bispectrum phase to be in the same units as flux
density. This procedure does not introduce any potential
spectral artefact except for an overall uniform but minor
error in the scaling because the choice of the scalar may not
have been rigorous.

C. Delay spectrum of the bispectrum phase

Since the context of this paper is the detection of
distinctive spectral features, we employ the delay spectrum
technique [59,60], which is essentially a Fourier domain
method for spectral discrimination. We define the delay
transform, which is simply a Fourier transform, of a
complex-valued spectrum, Z(f), as

zﬂ:/aﬁwmq: (46)

Consider the delay transform of V&(f), denoted by
V(7). From Eq. (42), it can be seen that V(z) is formed
from a convolution of Ey(z), 75(z), and VL( ), which are

. 7p(f). and Vi(f),
respectively. Vp( 7) contains the structural information
about the cosmic spectral line signal. However, because
of the weighting from foregrounds, it gets convolved by the
predominantly smooth spectral structure response from the
foregrounds within the sub-band in which the delay trans-
form is computed,

the delay-domain duals of ()
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TABLE I. Description of symbols.

Symbol Description Section
Z,Z A complex number and its conjugate 1I
P Index of antenna spacing (baseline) vector I
b, Antenna spacing (baseline) vector indexed by p 1
f Frequency I
T Delay, the Fourier dual of frequency, f IvC
K| Pseudo line-of-sight wavenumber modes corresponding to 7 IVD
V; (f) True sky visibility spectrum on b, I
Vi(f) Measured visibility spectrum on b, I
VE(f) \7‘;(1) True foreground visibility spectrum and its delay transform on b, L 1v C
VE(f) ‘7‘5(1) True spectral line visibility spectrum and its delay transform on b, L 1vC
V(f) \71;(1) Noise visibility spectrum and its delay transform on b, I, IV C
»(f) Spectrum of interferometric phase angle on measured visibility, V}'(f) I
qﬁ;( 1) Spectrum of interferometric phase angle on true visibility, V() I
#5(f) Spectrum of interferometric phase angle on foreground visibility, V() I
S5 (f) Spectrum of perturbed interferometric phase angle due to Vj(f) I
PN (f) Spectrum of perturbed interferometric phase angle due to V(f) I
A[FJ( 1) Model of foreground visibility spectrum, VE(f) I
\7‘;; (f) Estimate of measured visibility spectrum, V}(f), using ¢} (f) and V? (f) I
A'[;( f) Estimate of spectrum of spectral line visibility, V% (f) 111
\A/i‘j (f) Estimate of noise visibility spectrum, VII‘,I (f) 1T
BY(f) Spectrum of measured visibility bispectrum v
BE(f) Spectrum of foreground visibility bispectrum IVA
BY(f) Spectrum of perturbation to BY(f) due to the cosmic spectral line signal IVA
BY(f) Spectrum of perturbation to BS(f) due to noise IVA
3 (f) Spectrum of phase angle on measured bispectrum, BY(f) v
PE(S) Spectrum of phase angle on foreground bispectrum, BE(f) v
3% (f) Spectrum of perturbation to ¢ (f) due to the cosmic spectral line signal I\%
PS5 (f) Spectrum of perturbation to ¢&(f) due to noise v
VE: A scalar estimate of Vf, (f) obtained empirically over the sub-band IVB
Ve(f) \7V(1) Representation of ¢/%() in flux density units IVB, IVC
VE(S) Vh(7) Representation of ¢/?v/) in flux density units and its delay transform IVB,IVC
VE(S) VE(7) Representation of e’:‘s‘[’i(f ) in flux density units and its delay transform IVB, IVC
VS (f) Vi (7) Representation of ¢'*#v\/) in flux density units and its delay transform IVB, IVC
W(f) W(7) Spectral window function and its delay transform IvC
75 (f) 75(2) Normalized true foreground response in visibility and its delay transform on b, IVB,IVC
et (f) &5 (1) Complex Eulerian representation of ¢%(f) and its delay transform IV, IVC
Ve (H)W(f) Yy(r) Windowed Vy(f) and its delay transform IvC
Py(x)) Delay-domain power spectrum of windowed bispectrum phase, Vy (f)W(f) IVD
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VE(7) ) * i ) * VL
—ﬁ<—r> * Vi (=7, (47)

T (1) = V() * W(z) = / Volf)W(f)eedf.
= W(e) * [VE(e) + Vh(0) + (). (48)

which can be further expanded as

where W(f) is an optional spectral window weighting
usually chosen to control the quality of the delay spectrum

[27,61] and has an effective bandwidth, AB. W(z) is its
delay-domain dual. §(z) is a delta function at 7 =0 in

the delay domain. ‘Aliv(r) has units of “pseudo Jy Hz” for
reasons explained earlier.

D. Delay power spectrum

We obtain the analogous power spectrum of the bispec-
trum phase in the delay domain as [59,62]

ot = 50 () (Z) ()« 50

with

‘= 2m'frH0E§z) ’ (51)
c(1+2)

where A, is the effective area of the antenna, AB is the
effective bandwidth, 4 is the wavelength of the band center,
kg is the Boltzmann constant, ¢ is the speed of light in
vacuum, f is the rest-frame frequency of the cosmic spectral
line signal, z is the redshift, D = D(z) is the transverse
comoving distance, and AD is the comoving depth along
the line of sight corresponding to AB at redshift z. H, A,
and E(z) = [Qu(1 +2)* + Q (1 + 2)> + Q4]"/? are stan-
dard terms in cosmology. In this paper, we use cosmological
parameters from [63] with H, = 100k kms~' Mpc~!

Py(xk)) is in units of “pseudo mK*(Mpc/h)>” Note that
we use k| to explicitly distinguish it from the line-of-sight
wavenumber k| as the two are very similarly defined
mathematically but are not exactly related because the
origin of fluctuations in the bispectrum phase are not

identical to those in standard visibilities. x| has units of
“pseudo h Mpc

In a scenario that includes noise, the noise bias can be
avoided by estimating the delay cross-power spectrum by
replacing |Py(z)|* in Eq. (50) with R{Py(r)¥ ()},
where, Wy(r) is another independent realization of
‘i‘v(r). The cross term, Eﬁ{q’v (T)li}lv (7)}, serves the pur-
pose of removing the noise bias or systematics in case of
nonredundancy, etc. assuming the cosmic signal compo-

—1 9

nent remains fully correlated in both Wy (7) and ¥y (7). In a
noiseless and an ideal scenario, the cross-power spectrum
reduces to the auto-power spectrum given in Eq. (50).

Table I lists the symbols most relevant in this formalism
along with their descriptions. Column 1 contains the
symbols. Subcolumns in column 1 separated by a vertical
delimiter denote Fourier domain duals of each other with
the first subcolumn representing the spectral (frequency)
domain, and the second its Fourier dual in the delay
domain. The second column provides a brief description
of the symbol(s). The third column points to the section in
the text in which the symbol is primarily introduced.

V. DEMONSTRATION WITH EXAMPLES
OF SKY MODELS

For purposes of demonstration, we assume ideal cases
without noise or other systematics. Only foregrounds and
fluctuations from the cosmic spectral line signal will be
considered. Hence, the noise terms can be ignored, and the
use of auto-power spectrum will suffice. We consider the
redshifted 21 cm signal from H1 from the EoR as our target
cosmic signal, and foregrounds in the corresponding 100—
200 MHz frequency band. Note that some of the examples
where the foregrounds and the HT signal from the EoR,
especially the latter, are modeled as point sources are purely
hypothetical and unrealistic. The purpose of such examples
is to progressively build an intuition for the behavior of the
bispectrum phase from simple to intermediate scenarios,
eventually culminating in a more realistic example towards
the end.

Four examples of sky models are considered, which
are hereafter denoted as (i), (ii), (iii), and (iv). In all
these examples, the boresight points to RA(J2000) =
05"32m39:32, Dec(J2000) = —30°44'05”1. In example
(i), the foreground model is a point source of strength
VE(f) = AB)VE(f/ fr)%e 27U/t with spectral index
a, and a pivot frequency for reference fr, from a location §g
where the angular power pattern of the antenna is given by
A(S). The cosmic signal is also a point source of strength
VE(f) = A(SL)VE cos (2zfry + 0y)e~ 219y which is
a cosine-shaped spectral ripple of characteristic frequency
scale §f;. = 1/, and an arbitrary angle 0,, at location §_.
Both the foreground and the spectral line signal appear as
point sources in the transverse plane with |VI(f)| <
|[VE(f)|. Specifically, we adopt the values V¥ = 100 Jy,

022001-10



DETECTION OF COSMIC STRUCTURES USING THE ...

PHYS. REV. D 102, 022001 (2020)

TABLE II. Description of examples of sky models.
Sky model
Example Foregrounds Cosmic HT signal
()(a) Point source® at boresightb of strength Point source” at boresight with cosine-shaped spectrum
100 Jy at 150 MHz and o = —0.8 of amplitude 10 mJy and characteristic frequency
scale of 1 MHz
>i)(b) Same as example (i)(a)" but ~5° Same as example (i)(a)*
off-boresight
(ii) Objects from the GLEAM catalog Same as example (i)(a)®
within 15° of boresight
(ii1) Same as example (i)(a)" FAINT GALAXIES model from 21cmFAST simulations
centered on boresight
(@iv) Same as example (ii) Same as example (iii)

A point source model for the foregrounds and the EoR H1 signal, especially the latter, is unrealistic and purely

hypothetical.

"Boresight points to RA(J2000) = 05"32m39¢32, Dec(J2000) = —30°44'05"1.

fr =150 MHz, a=-0.8, V:=10mly, and &f =
1/7, = 1 MHz. This example is further subdivided into
two cases: (a) the location of the foreground and the cosmic
signal point sources are colocated, §g = §;, and exactly
at boresight, and (b) the foreground and the cosmic signal
locations are not colocated, §g #§;, § points to the
boresight, and §g points to ~5° off-boresight.

In example (ii), the foreground consists of objects from
the GLEAM catalog [64] within a circle of 30° diameter
around boresight. The cosmic HT signal is modeled as a
point source at boresight with a cosine-shaped spectrum,
the same as in the previous example. In example (iii), the
foreground consists of a point source of flux density 100 Jy
at 150 MHz, located at boresight and spectral index a =
—0.8 for the foreground model [as in example (i)(a)]. As
our fiducial EoR HI model, we use the FAINT GALAXIES
model [65,66] publicly available' from 21cmFAST simu-
lations [67] centered on boresight. In example (iv), the
foreground model consists of objects from the GLEAM
catalog of radio sources [as in example (ii) and the fiducial
21cmFAST EoR H1 model from example (iii)].

The examples are briefly summarized in Table II. We
reiterate that the hypothetical models of the foregrounds
and the cosmic spectral line signal, especially the latter,
being point sources in examples (i), (ii), and (iii), are
unrealistic. However, having a point source for the sky
model results in the vanishing of the bispectrum phase
angle which serves as a useful point of reference. And the
cosine-shaped spectrum having a single characteristic
frequency scale (correspondingly an impulse in the
Fourier domain) serves the very useful purpose of under-
standing the response (also referred to as the impulse
response or the transfer function) of the bispectrum phase

lhttp://homepage.sns.it/mesinger/EOS.html.

statistic towards a single impulse input. Example (iv) presents
a realistic realization of both foregrounds and the cosmic
EoR HI signal.

Figure 5 shows the antenna layout used in simulating
visibilities, which is shown in local eastward and northward
coordinates along the x and y axes respectively. The array is
assumed to be coplanar and located at a latitude of —30°.7224
and a longitude of +21°.4278. The circles denote dish-

30 _ @
20 A
E o

=

—30 -

-20 0 20

E [m]
FIG. 5. Redundantly spaced antenna layout used in the sim-

ulations. They are assumed to be located at a latitude of
—30°.7224 and a longitude of +21°.4278. The circles denote
dish-shaped antennas, each of diameter 14 m. The numerals
denote the antenna numbering. The x and y axes denote the local
eastward and northward coordinates respectively. The array is
assumed to be coplanar. The shortest spacing between antennas is
14.6 m. The specific triad classes chosen in this study are the
14.6 m [for example, V = (0, 1, 8)] and 50.6 m equilateral triads
[for example, V = (8,11, 18)].
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shaped antennas each of diameter 14 m. The numerals denote
the antenna numbering. The shortest antenna spacing is
14.6 m. The two classes of antenna triads frequently used in
this paper are the 14.6 m and 50.6 m equilateral triads.
Specific triads in each class are V = (0,1,8) and V =
(8,11, 18) respectively.

Though the antenna placements are redundant, neither the
mathematical formalism nor the results derived in this paper
assume or require such a redundancy. The power patterns are
also assumed to be identical between all the antennas with a
uniform circular illumination of the aperture corresponding
to an Airy angular power pattern. In order to clearly isolate
the findings reported in this paper from the spectral
characteristics of the power pattern, we have further assumed
that the power patterns are achromatic. The angular structure
of the power pattern is identical at all frequencies in the 100—
200 MHz band and is derived from the analytical expression
evaluated at 150 MHz.

We choose our spectral window function, W(f) to be the
“modified” Blackman-Harris window [61] with an effective
bandwidth of AB =42 MHz centered at 150 MHz.
Although this choice of AB may include significant evolu-
tion of the properties of the cosmic signal within the sub-
band, our aim in this paper is to demonstrate the spectral
properties of bispectrum phase with highest resolution in
Fourier space, 6t, = 1/AB ~0.024 pus. This choice of AB
is also the maximum that can fit inside the 100-200 MHz
band without abrupt truncation of the window function at
the edges. The effective area of the antennas is chosen to be
A, = 100 m? and is assumed to remain constant across the
sub-band. Visibilities of the sky models in these examples
were simulated using the Precision Radio Interferometry
Simulator [PRISimz; [68]].
|

=
w>

(

7h(r) =

EE-

| >

©>

F

L

ViW(z )*7F Yeilo 23:

*

~— | —

A(SF

p=l

Without loss of generality, we can choose 6, = 0.
Example (i)(a): Spectral line signal transversally colo-
cated with the foreground.— When the cosmic signal
and the foreground object both modeled as point sources
are colocated, §r = § = §, then 5¢%(f) =0, and thus
5¢%(f) = 0. This can be qualitatively reasoned as follows.
Regardless of the spectral structure, in any given frequency
channel, the sky appears as a point source in the transverse
sky plane. Therefore, ¢%(f) = 5¢(f) = 0. This can be
understood mathematically as well. The visibilities from

*PRISim is publicly available for use under the MIT license at
https://github.com/nithyanandan/PRISim.

L) VLW (7) %75 (1)e o 1 [5(7 o) +8(t+ 1))

—(t,+7)) +6(r=(z,

A. Frequency-domain view of the sky models

The spectra of phases in the visibilities and the bispec-
trum are investigated to gain an understanding of their
behavior in the frequency domain for each of the sky model
examples.

1. Example (i): Unresolved foreground and unresolved
spectral line signal

From Eq. (15), the perturbation in the interferometric
phase angle is given by

A8y )Vt cos(2mfr + 6p)
ABe)VF(H)"

x 3{ e—izﬁgbpv@-sp)}

~ A(Sp)VEcos(2nfr, + 6p)

T AV

X sin (Znébp - (S —§F)>. (52)

5P (f) =

We define 7,($..8¢) =7, =b, - (§, —8g)/c.

For a point source foreground, regardless of a,
PE(f) =0, ) =1, and thus, Ey(r) = &(z). With
VE: = VE, we get yF(f) = (f/fr)™® which is a smooth
function of frequency. Thus 7% (z), the delay-domain dual of
yF(f), is a sharply peaked function in 7. From Eq. (47), the
delay spectrum of the spectral line fluctuations in the
bispectrum phase is given by

1 3
2—12 T— Tp

p=1

S(t+1,)]

—1)) =8t +(7p+71)) =6(z + (7, 7). (53)

|
the foregrounds and the cosmic spectral line signal are such
that J{V%(f)/V},(f)} =0. Therefore, from Eq. (30),
5¢%(f) = 0. This will also be true even without the linear-
order approximation. Thus, even though the spectral struc-
tures are very different between the foreground and the
hypothetical cosmic spectral line model, the spectral fluc-
tuations from the latter will be indistinguishable from the
foregrounds in ¢y (f) because of the perfect relative
symmetry in the transverse sky structure between the fore-
grounds and the cosmic signal (equivalent to the vanishing of
the imaginary part in the visibility ratios).

Figure 6(a) shows for example (i)(a) the amplitude of
the visibilities on the three baselines comprising the 50.6 m
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(a) Foreground and H1

visibility amplitudes

(b) Phase angle fluctuations in
visibilities and bispectrum

FIG. 6. Left: foreground visibility amplitudes for a point source
with a spectral index, @ = —0.8 (top) and the fluctuations therein
(botiom), 8|V, (/)] = [VE(f) + VE(f)| = [VE(f)]. for example
(i)(a) measured on three antenna spacings (red, blue, and black)
comprising the 50.6 m equilateral triad. Right: perturbations due
to the fluctuating H1 spectrum in the three visibility phase angles,
8¢5 (f), in red, blue, and black (top) and the bispectrum phase
angle (bottom) with the foreground component ¢&(f) =0
(dashed brown curve to be read off the y axis placed on the
right) and the fluctuations caused by the cosmic HI component
8¢t (f) (solid gray, y axis on the left). Phase angle fluctuations in
both the visibilities and the bispectrum are absent because of the
colocation and symmetry in the transverse structure of the cosmic
H1 signal relative to the point source foreground model. The
frequency ranges in the x-axis are restricted only to enhance
readability.

equilateral triad due to the foreground (top), and the
perturbations in visibility amplitudes (bottom) obtained
as 5|V, ()] = [VE(H) + V(A - [VE(A)| due to the
hypothetical HT spectral line signal. Figure 6(b) shows
the fluctuations in the phase angles of the visibility on
the three antenna spacings, éqﬁ']; (f) (top) and the bispec-
trum, 8¢ (f) (bottom). They are both identically zero as
expected even without any linear-order approximation.

Although this example is unrealistic and the spectral
structure of HT fluctuations does not manifest at all in the
bispectrum phase in a manner useful towards its detection,
it nevertheless reveals an important property of the spec-
trum of bispectrum phase fluctuations. If the transverse
structure of the fluctuating signal is in perfect relative
symmetry with respect to the underlying foreground trans-
verse structures, then regardless of their inherently distinct
spectral structures, no spectral signatures from the fluctuat-
ing cosmic spectral line signal will manifest in the bispec-
trum phase.

Next, the frequency-domain behavior of the sky model
examples (i)(b), (ii), (iii), and (iv) are discussed below in
detail and illustrated collectively in Figs. 7 and 8, which
characterize the amplitudes and phases, respectively.

Example (i)(b): Spectral line signal transversally displaced
from the foreground.— In contrast to example (i)(a) in
Sec. VA1, usually 3b, such that b,-(§, —§p) =cz, #0.
Under such conditions, Egs. (52) and (53) yield a nonzero
response, at a minimum of 4 and possibly up to 12 sharply
peaked distinct delays (four foreach p)atz = 4(z,, — 7, ) and
7 = £(7,, + 71,). The delay spectrum of spectral line visibility

. b,
can be expressed as delta functions at 7 = ’TSL + 170

A(§L)VL€i90
2

*5<T—b" '§L> « W(7)

Vi(r) = [6(r —7) + (7 +71)]

Cc

R
ofe-(2-0))

Mathematically, the delay spectrum of the bispectrum
phase using the linear approximation is expected to differ
from the standard delay spectrum in the following ways:

(1) The former is sharply peaked but broader than the
latter because of the convolution with the delay
response of the foreground spectrum term, 7 (z).
This broadening behavior is more clearly illustrated
in other examples that follow.

(2) The former peaks at four distinct delays correspond-
ing for each antenna spacing because the bispectrum
phase fluctuations are a product of the cosine-shaped
spectrum with the sine of the phase angle from the
displacement of the cosmic H1 source relative to the
foreground object, whereas the latter has only a pair
of peaks for each visibility from the cosine-shaped
spectrum.

(3) The spatial position (and the spatial structure, in
general) of the foreground influences where the delays
are in the bispectrum phase delay spectrum. This
reaffirms that the bispectrum phase fluctuations are a
measure of the relative transverse-plane asymmetry
(or dissimilarity) between the cosmic fluctuations and
the dominant foregrounds, whose magnitude depends
on the ratio between the two as predicted to first order
by Eqgs. (30) and (32).

Figure 7(a) shows that the positional displacement
between the HT and the foreground models causes a slow
variation in the envelope of the visibility fluctuations with a
maximum amplitude of 10 mJy and fastest spectral varia-
tions are on scales of §f; = 1/7;, = 1 MHz. Figure 8(a)
shows the fluctuations in the phase angles of the visibility
(top subpanel) and the bispectrum (bottom subpanel). In
contrast with example (i)(a) [see Fig. 6(a)], the phase angle
fluctuations in both the visibilities and bispectrum phase
are nonzero because of the relative asymmetry in the

(54)
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(a) Example (i)(b)
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(b) Example (ii) (c) Example (iii)
FIG. 7. Frequency spectra of amplitudes of visibilities due to foregrounds (top subpanels) and fluctuations therein caused by the
cosmic HT spectral line signal (bottom subpanels) for the examples specified. The 50.6 m equilateral triad used in these panels is
specified at the top of the top subpanels. The three visibilities are shown in red, blue, and black. (a) Example (i)(b): the foreground
visibility amplitudes are smaller than in Fig. 6(a) by a factor equal to the power pattern of the Airy disk at its angular separation from
boresight. The visibility amplitude fluctuations are seen to have an envelope of amplitude ~10 mJy with the fastest spectral variation on
scales of 8f; = 1/7 = 1 MHz. The slower variation of the envelope is determined by the location of the cosmic HT1 relative to the
foreground point source. (b) Example (ii): the foreground visibilities obtained from the GLEAM catalog have a richer spectra owing to
the wide-field distribution of foregrounds in the transverse direction, and yet exhibit smooth spectra. The broadband changes in the
amplitude of the fluctuations are also due to the wide-field spatial distribution of the foreground objects. (c) Example (iii): the point
source foreground has an extremely smooth spectrum, while the realistic H 1 model exhibits rich spectral fluctuations on a wide range of
scales. (d) Example (iv): although the foregrounds from the GLEAM catalog show a rich foreground structure, they are still much

smoother compared to the cosmic HT spectral line signal obtained from the 21cmFAST simulations.

transverse structure between the foreground and the
H1 model, and increase in amplitude towards higher
frequencies due to the lowered foreground visibility ampli-
tudes caused by a < 0.

2. Example (ii): Realistic foreground and unresolved
spectral line signal

Here, we consider a foreground model determined by
the GLEAM catalog [64]. Visibilities were modeled for
sources in the GLEAM catalog within a circle of 30°
diameter around boresight. The cosmic HI signal is
modeled as the same unrealistic point source at boresight
with a cosine-shaped spectrum as in the previous example.

Figure 7(b) shows the amplitude of the foreground
visibilities and the fluctuations in the amplitude due to
the H1 fluctuations. The fastest spectral fluctuations are on
scales of §f; = 1/7;, = 1 MHz while the broadband fluc-
tuations in the amplitude are determined by the locations
of the various GLEAM catalog objects relative to the HI
point source at boresight. Figure 8(b) shows the phase angle
fluctuations in the visibility (top) and the bispectrum
(bottom). The broadband changes in the amplitude of
the phase angle fluctuations are due to the changing
amplitudes of the foreground visibility spectra. Although
the foregrounds have richer spectral structure they are still
relatively smooth.

3. Example (iii): Unresolved foreground and fiducial
cosmic spectral signal

This example consists of a point source of flux density
100 Jy at 150 MHz, located at boresight and spectral index
a = —0.8 for the foreground model. As our fiducial EoR
H1model, we use the FAINT GALAXIES model [65,66] from
21cmFAST simulations [67] centered on boresight.

Figure 7(c) shows the foreground visibility amplitude (top
subpanel) and the fluctuations in the amplitude caused by the
cosmic H 1fluctuations (bottom subpanel). Figure 8(c) shows
the phase angle fluctuations in the visibilities (top subpanel)
and the bispectrum (bottom subpanel). The phase angle
fluctuations span a wide range of frequency scales. They are
seen to be at a level <107* radians (which depends on the
foreground visibility amplitudes) that is consistent with
Egs. (30) and (32), and have coherent structures on frequency
scales that approximately correspond to those in Fig. 7(c).

4. Example (iv): Realistic foreground and fiducial
cosmic spectral line signal

We consider the GLEAM catalog of radio sources for our
foreground model and the fiducial 21cmFAST EoR HI
model from the example above. This represents a realistic
realization of both foregrounds and the cosmic EoR H1
signal. Figure 7(d) shows the foreground visibility ampli-
tudes and the fluctuations therein for a 50.6 m equilateral
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FIG. 8. Frequency spectra of the phase angle fluctuations on the visibilities (top subpanels) and the bispectrum due to the cosmic H1
spectral line fluctuations. The top subpanel shows the nonvanishing visibility phase fluctuations on the three antenna spacings (red, blue,
and black). The bottom subpanels show the component of bispectrum phase from the foreground (dashed brown curve to be read off the
y axis placed on the right) and the bispectrum phase angle fluctuations (gray curves). The 50.6 m equilateral triad used in these panels is
specified at the top of the top subpanels. (a) Example (i)(b): As the foreground visibility amplitude decreases at higher frequencies due to
the spectral index [see Fig. 7(a)], the amplitude of the phase angle fluctuations increases. Both these phase angle fluctuations are nonzero
unlike when the cosmic H1 and foreground models were perfectly colocated with respect to each other in example (i)(a) [see Fig. 6(b)].
(b) Example (ii): The foreground component of the bispectrum phase angle is nonzero and has smooth spectral structure which is
unwrapped to remove discontinuities at odd multiples of +z. The envelope of phase fluctuations in both the visibilities (top subpanel)
and the bispectrum (bottom subpanel) has amplitudes inversely proportional to the foreground visibility amplitudes [see Fig. 7(b)].
(c) Example (iii): The point source foreground yields ¢€ (f) = 0 (dashed brown curve with its y axis placed on the right). There is a
significant correspondence between the shape and scale of these phase angle fluctuations in visibilities and the bispectrum to those in the
visibility amplitudes in the bottom subpanel of Fig. 7(c). (d) Example (iv): The cosmic HT spectral line signal from the 21cmFAST
simulations shows a lot more spectral structure in the phase angle fluctuations of the visibilities and the bispectrum relative to the smooth
spectral structure from the GLEAM foregrounds. There is a significant correspondence between the phase angle fluctuations shown here
and the amplitude fluctuations in Fig. 7(d). The sharp spikes in the spectra of phase angle fluctuations are generally regions with low
foreground amplitudes (for example, near 140 and 187 MHz). The frequency ranges in the x-axis are restricted only to enhance
readability.

triad. Figure 8(d) shows the phase angle fluctuations of
the visibilities and the bispectrum. The sharp spikes, for
example at ~186 MHz, are due to low foreground ampli-
tudes and thus reaffirm that they are a function of the ratio
of the HI fluctuations to the foreground strength. Although
the foreground model from the GLEAM catalog exhibits
a relatively rich spectral structure, they are still much
smoother compared to the cosmic H1 spectral line fluctua-
tions from the EoR obtained using 21cmFAST simulations.
Redshifted 21 cm interferometer experiments aim to detect
this spectral distinction.

B. Delay- (Fourier-)domain view of the sky models

The Fourier-domain view into the visibilities and the
bispectrum phases of these examples are explored using
their delay spectra.

1. Example (i): Unresolved foreground and unresolved
spectral line signal

Spectral line signal transversally colocated with the
foreground.— As discussed in Sec. VA 1, despite the

cosmic spectral line signal having a cosine-shaped spectral
structure, its signatures are completely absent in the
bispectrum phase angle. Therefore, the delay spectrum
of the bispectrum phase considered in example (i)(a) is not
expected to show any signatures in the Fourier domain
as well.

The delay spectra of the rest of the sky model examples
(i)(b), (ii), (iii), and (iv) are discussed below in detail and
illustrated in Fig. 9.

Spectral line signal transversally displaced from fore-
ground.— Figure 9(a) shows the delay spectra of the
visibilities (left subpanel) and the bispectrum phase (right
subpanel) for example (i)(b). The region shaded in yellow
in the left subpanel denotes the modes expected to be
contaminated by the foregrounds, namely, the foreground
wedge [27,28,60-62,69-81], whose boundaries are deter-
mined by the horizon delay limit, z,, = |b,|/c. Since we
use equilateral triads in these examples, 7, = |b,|/c is
identical for all p. The foreground delay spectra (solid
lines) are seen to be the result of a convolution of a delta
function at 7 =0 with the spectral window function’s

delay-domain response, W(z). The location of the peak
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FIG. 9. Standard delay spectrum of the three visibilities, Vp (7) (red-, blue-, and green-colored curves in the left subpanels) and the

bispectrum phase delay spectrum, Wy(7) (right subpanel) for the specified examples. The foreground and the cosmic H1 signatures in
both subpanels are shown in solid and dotted curves, respectively. The 50.6 m equilateral triad used in these panels is specified at the top
of the left subpanels. The yellow-shaded region denotes the foreground-dominated modes (foreground wedge) in the delay spectra of the
visibilities (left subpanels) and the bispectrum phase (right subpanels). The latter is wider due to triple convolution resulting from the
multiplicative combination of the three visibility phases. In examples (i)(b) and (ii) that contain a point source cosmic H1 signal with a
cosine-shaped spectrum, the downward arrows at 7 = 71 where the principal harmonic mode of the cosmic H1 signal is expected. The
other downward arrows at 7 = £1 us, 7 = +2 us, 7 = +3 us in the right subpanels denote the higher-order harmonics. Even higher-
order harmonics are expected to be present but at negligible levels and are not shown. The pink dotted curves in examples (i)(b) and
(ii) denote the difference between the delay spectra of the actual and the linear-order approximation of the bispectrum phase indicating
that practically all the power in the second and third harmonics at 7 = 2 us and 7 = £3 ps is entirely absent in the linear-order
approximation. The second- and third-order terms also contribute at 7 = 0 us and 7 = %1 us respectively but are much smaller (by 10
and 7 orders of magnitude respectively) than that from the linear-order approximation at these harmonics. The cyan region denotes the
possible range of offsets (same width as the foreground wedge) that the expected delay mode the H1 signal could be subject to, i.e.,
(7L = 7pn) < |r§’}"ﬁ| < (71 + 7, instead of being precisely centered at ri’}?ﬁ = 47;. The detailed analysis of these results for each of the
examples is presented in the corresponding section in the text. In general, the foreground-dominated modes are wider in the bispectrum
phase relative to the visibility delay spectra. Nevertheless, the cosmic spectral line signal is still detectable with a similar dynamic range
and shape in the higher-order Fourier modes of the bispectrum phase compared to that in standard visibilities.

of the foreground visibility delay spectra are displaced from  width of the response of the window function (67, < é7y,),

7 =0 us by a small amount 6z, =b,-8g/c <0.013 us.  the displacement is not discernible. The H1 spectrum which
Since this displacement is smaller than the resolution or the  is cosine shaped in this hypothetical example manifests as
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two delta functions at 7 = +7;, = £1 us (expected at the
locations of the downward arrows). Because the delay-
domain response depends both on the transverse location
and the frequency spectrum of the signal, the location of the
delta functions of the cosine-shaped H1 spectrum in general
could be subject to a delay offset that could be as large as
the horizon delay limit, z, ;. Thus, in general, depending on
the location of the H I signal, the delta functions correspond-
ing to the cosmic H1 signal could be located anywhere in the
cyan-shaded regions with (7 — 7, 4) < [29%| < (7L + 7))

instead of being precisely centered at Tgl?ﬁ =+

The foreground component of the delay spectrum of the
bispectrum phase, Wy (7), in the right subpanel of Fig. 9(a)
is very similar in magnitude, shape, and dynamic range to
its counterpart in the standard delay spectrum, V »(7) in the
left subpanel. The general expectation for the foreground-
contaminated modes is that they will be wider because the

term, Ey (1), is derived from the convolution of the delay
transforms of the three visibility phase terms that appear as
a product in the frequency spectrum. This triple product of
visibility phase terms will, in general, widen the analogous
foreground wedge through the aforementioned convolu-
tion. Hence, the foreground wedge in the delay spectrum of
the bispectrum phase is determined by the sum of the three
horizon limits in delay (Fourier) domain, |zg| < )2, 7,1,
and is shown by the yellow-shaded region. The three shades
of cyan denote the expected delay-offset locations of the H1
signal from the first- and higher-order harmonics of the
cosine-shaped spectrum. The bright cyan shade denotes the
range of delay offset around the expected location of the
first harmonic centered around (nz, — Y, 7,4) < |29} | <
(nty + >, 7pn) With n = 1 and primarily arises from the
linear-order terms discussed in Sec. IVA.

The actual bispectrum phase will contain higher-order
perturbations ~cos” (27 f; ), and will not be captured by the
linear-order approximation. The medium and pale shades of
cyan regions correspond to the second and third harmonics
(n = 2, 3 respectively) expected from the second- and third-
order perturbations respectively. The second-order terms are
expected to contribute to both the zeroth and second
harmonics since cos*d ~ 1 + cos 26 (yellow and medium-
cyan regions respectively) while the third-order terms will
contribute to the first and third harmonics since cos® 6 ~
3 cos 8 + cos 36 (dark- and pale-cyan regions respectively).
There will be harmonics of even higher orders which have not
been shown here because of their rapidly diminishing
strengths. The width of each of these regions is the same
as that of the yellow-shaded region.

Unlike when the H I and foreground models are colocated
and symmetric relative to each other in the transverse plane,
the presence of nonzero phase angle fluctuations manifests
prominently in the delay spectrum of the bispectrum phase
(right subpanel) as sharply peaked functions (gray dotted
lines) at 7 ~ +7; = £1 us with small displacements around

these locations ~ + 7,, where 7, < 0.013 ps. These dis-
placements are also indiscernible because 67, < é7,, and
hence the 12 delta functions predicted in Eq. (53) have
blended into two sharply peaked functions one each on either
side of 7 =0 us. Besides the principal first harmonics at
7~ +77, sharp peaks are also seen as indicated by the
downward arrows at t ~ +nr; withn =1,2,...and n =1
being the principal (or first) harmonic. The pink dotted curve
shows the difference between the delay spectrum of the
actual bispectrum phase and that obtained with the linear-
order approximation. The second and third harmonic com-
ponents that arise from second- and third-order terms in the
expansion of the bispectrum phase are lower relative to the
first harmonic by factors ~10~* and ~10~7 respectively
which agree well with the fractional inaccuracy of the first-
order prediction illustrated earlier in Sec. IV A. The second-
and third-order terms also contribute to the zeroth and first
harmonics that are not entirely represented by the linear-
order approximation as indicated by the pink dotted curves
around 7~ 0 us and 7~ 477 respectively, but these are
negligible contributions (fractionally ~10~%) compared to
the linear-order or actual values of the bispectrum phase
delay spectra. There will be even higher-order harmonics in
the actual bispectrum phase angles missed by the linear-order
expansion but these contributions are expected to be even
more increasingly negligible and are not shown.

2. Example (ii): Realistic foreground and unresolved
spectral line signal

Relative to the standard visibility delay spectra, V »(7)in
Fig. 9(a), the visibility delay spectra for the GLEAM
foreground model [left subpanel in Fig. 9(b)] appear wider
and fill the foreground wedge (central yellow region) as
expected. The delay spectrum of the foreground component
in the bispectrum phase [right subpanel of Fig. 9(b)] is
much wider filling the correspondingly wider yellow

central region due to £y(7) which is formed by the triple
convolution of the delay spectra of the visibility phase
terms arising from the foregrounds as predicted by
Egs. (47) and (49). The cosmic H1 signatures (gray dotted
curves) are centered on the expected delays 7 = 7 but as in
the previous case, there are fainter copies at higher delay
harmonics. As seen earlier, the higher-order harmonics that
are not fully represented in the linear-order approximation
contribute negligibly (by few to many orders of magnitude)
to the zeroth and first harmonics (pink dotted curves).

The most notable observation is that the cosmic HI
signatures appear to have the shape of the foreground
signatures indicating they resulted from a convolution of a
delta function with the foreground terms £% () and 7,(7) as
detailed in Eqs. (47) and (49). The previous example also
had these effects but the foreground spectral signatures
were not as rich to be clearly visible as in the present
example.
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3. Example (iii): Unresolved foreground and fiducial
cosmic spectral line signal

The left subpanel of Fig. 9(c) shows the standard visibility
delay spectrum for the baselines comprising the 50.6 m
equilateral triad (left subpanel) of the point source fore-
ground and the fiducial EoR H1model from the 21cmFAST
simulations. On the right subpanel, the delay spectrum of the
corresponding bispectrum phase is shown—the foregrounds
in solid black, and the combined foregrounds and EoR H1
fluctuations in dotted gray. Because of the simple spectral
structure of the foregrounds, the delay spectra from either
approach look remarkably similar to each other in their
overall characteristics.

4. Example (iv): Realistic foreground and fiducial cosmic
spectral line signal

Figure 9(d) shows the delay spectra of the visibilities and
the bispectrum phase. The foreground (solid red, green, and
blue curves) and the fluctuating HI components in the
standard delay spectrum (left subpanel) are found to occupy
the foreground wedge (yellow shaded region) and extend
beyond into the EoR window respectively. The delay
spectrum of the bispectrum phase (right subpanel) shows
the foreground component (solid black curve) significantly
wider due to the presence of significant spectral modes in

the &y (7) term arising out of the GLEAM foregrounds.
This is in significant contrast to example (iii) [see Fig. 9(c)]
because the visibilities from the GLEAM foregrounds
intrinsically contain more spectral structure than a single
point source. The extent of this widening decreases with
decreasing antenna spacings in the triad as will be shown in
Sec. VI and thus will be less severe for a 14.6 m equilateral
triad. The H1 component (dotted gray) does separate from
the foregrounds at a level and shape similar to that in the
standard delay spectrum. However, because the foreground
component is significantly wider, the number of modes in
which the HT is detectable in the bispectrum phase
approach is reduced to |z| 2 1 us relative to |z] 2
0.12 us in the standard delay spectrum of the visibilities.

In summary, the foregrounds occupy a larger range of
inner spectral modes and hence the range of detectable
cosmic spectral line signal modes are reduced but it is still
significantly detectable in the remainder of the higher-order
spectral modes. An alternate approach using the bispectrum
phase angle is briefly outlined in the Appendix that could
potentially avoid the widening of foreground contamination
into larger spectral modes significantly.

VI. MODE-MIXING IN BISPECTRUM PHASE

Mode-mixing in the context of spectral line experiments
in the presence of foregrounds refers to the dependence of
the line-of-sight spatial modes on the transverse spatial
modes [27,28,60-62,69-81] and is now commonly referred
to as the foreground wedge. To examine this effect in our
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FIG. 10. Top: delay spectra of a 14.6 m equilateral triad. The
left subpanel shows delay spectra of the three visibilities (red,
green, and blue) comprising the triad for the foregrounds (solid
curves) and the EoR H1 signal (dotted). The right subpanel shows
the delay spectra of the bispectrum phase with foregrounds only
(solid black curve), and with the EoR H1 fluctuations also present
(gray dotted curve). Bottom: same as Fig. 10(a) (top) but for a
50.6 m equilateral triad, and thus identical to Fig. 9(d). Both the
delay spectra of the visibilities (left subpanel) and the bispectrum
phase (right subpanel) are wider in the case of the 50.6 m
equilateral relative to the 14.6 m equilateral triad. This indicates
that in the bispectrum phase, the transverse foreground modes
also contaminate the line-of-sight foreground modes, as is the
case in a standard delay spectrum approach using visibilities.
Although cosmic signal-dominated modes are still accessible
with a 50.6 m equilateral triad, they are much more accessible
with a 14.6 m triad where the foreground contamination is much
more tightly restricted.
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bispectrum phase approach, we consider the 14.6 and
50.6 m equilateral triads. The former samples lower order
transverse spatial modes relative to the latter. In both cases,
the foreground model is drawn from the GLEAM catalog,
and the EoR HI model from the fiducial 21cmFAST
simulation of the EoR.

Figure 10(a) shows the delay spectra of the three (red,
blue, green) visibilities (left subpanel) and of the bispec-
trum phase (right subpanel) corresponding to the 14.6 m
equilateral triad. The solid curves correspond to the fore-
ground component while the dotted curves represent
the case when the cosmic HT fluctuations are present.
Figure 10(b) is the same but for a 50.6 m equilateral triad
and is identical to Fig. 9(d). In both the delay spectra (left and
right subpanels), the foreground component widens for the
50.6 m equilateral triad relative to the 14.6 m equilateral
triad. This conclusively proves that the delay spectrum of the
bispectrum phase is also subject to mode-mixing effects in
general, wherein the transverse spatial modes contaminate
the line-of-sight spatial modes, similar to the standard delay

spectrum. However, the foreground wedge is still limited in
extent and the cosmic signal is detectable in the line-of-sight
modes even for the 50.6 m equilateral triad. The foreground
contamination is found to be much more limited and a wider
range of cosmic signal-dominated modes are accessible with
the usage of smaller triads such as the 14.6 m equilateral
triad. The Appendix presents an outline of a variant to this
approach using the bispectrum phase angle ¢ ( f) instead of

¢v() which is expected to be not as susceptible to mode-
mixing as the latter is.

VIL. IMPACT OF FOREGROUND SPECTRAL
CHARACTERISTICS

Here, we compare the effects of the foreground spectral
characteristics, such as the spectral index, on the delay
spectra of the bispectrum phase and that of the visibilities.
The example is similar to that in Sec. VA 1. It consists of a
100 Jy point-source foreground model ~5° off-boresight
and an unrealistic point-source HI model at boresight of
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Top panels correspond to the delay spectrum of the visibilities on a 50.6 m equilateral triad. Bottom panels correspond to the

delay spectrum of the bispectrum phase on the same triad. The sky model used is similar to the hypothetical and unrealistic example
(1)(b) with minor differences. The left and middle panels in both rows are derived using @ = —0.8 and a = 0 respectively for the point
source foreground. The right panels show the absolute value of the difference in the two delay spectra from these sky models. The
downward arrows in the top panel indicate the expected location of the cosmic H1 signal at 7 = 477, whereas the downward arrows in
the bottom panels show the location of the nth harmonics 7 = £nz; as discussed in previous examples. The difference of the visibility
delay spectra (top right subpanel) shows a residual that is reduced in magnitude but is purely foreground-based due to the differences in
the spectral index of the two foreground models used and a complete absence of the H1 signatures at r = £z . The difference between
the delay spectra of the bispectrum phase using the different spectral indices in the foreground models is shown in the bottom right
subpanel. In contrast with the differenced visibility delay spectra (top-right subpanel), the H I signatures do not vanish and the residuals
have foregroundlike signatures even at the harmonics where the H 1 signatures are expected. This implies there is a mixing of the spectral
characteristics of the foregrounds into the HT signatures.
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amplitude 10 mJy with a cosine-shaped spectrum of
characteristic scale §f; = 1/7; =1 MHz. The 50.6 m
equilateral triad is used.

The left panels of Fig. 11 use a spectral index, @ = —0.8,
for the foreground model while the middle panels use
a = 0. The right panels denote the absolute value of the
difference between the delay spectra in the middle and the
left panels. The top and bottom panels apply to the delay
spectrum of the visibilities and the bispectrum phase
respectively. In case of the latter, since different scalings
to obtain the “pseudo” flux densities may have been
applied, we normalized their peaks to be equal before
the differencing. The downward arrows indicate where the
H1 signatures are expected as sharply peaked functions. In
the case of the bispectrum phase, the multiple downward
arrows on each side of 7 =0 us denote the different
harmonics of the 7;, = 1/6f;, = 1 us spectral mode as
discussed in the examples above.

In the case of the standard visibility delay spectrum (top
panels), the HI signatures are completely absent in the
difference (right subpanel) and the peak of the foreground
component has reduced by more than an order of magni-
tude. The difference still has a finite width around 7 =0
which can be attributed to the spectral index being different
between the foreground models. This shows that the H1
signatures were not affected by the spectral characteristics
of the foreground component and resulted in a perfect
subtraction because of their additive behavior. The residual
purely arises from the spectral characteristics of the two
foreground models.

In the case of the delay spectrum of the bispectrum phase
(bottom panels), the differencing reduces the amplitude of
the H1 signatures at the indicated harmonics but they do not
vanish (right subpanel). Around each of these harmonics,
the convolving effect of the foreground delay spectrum
shapes can be seen. The fact that the HTI signatures at
he harmonics do not vanish and the residuals at these
harmonics contain the foregroundlike signatures support
the findings of Eq. (49) wherein the spectral characteristics
of the foregrounds are mixed with those of the cosmic H1
signal multiplicatively.

VIII. SUMMARY

Numerous low-frequency radio interferometric measure-
ments are underway to detect the large-scale distribution of
baryons in the early Universe. This includes the detection
of HI using its 21 cm spectral line signature from high
redshifts such as that from the Dark Ages, the Cosmic
Dawn, the Epoch of Reionization, and the dark energy-
dominated epoch in the Universe. These are expected to be
extremely faint spectral signatures where the uncertainties
are likely to be dominated by systematic uncertainties
(especially of a spectral nature) from the instrument
compounded by overwhelmingly bright and undesirable
foreground emission from the Galaxy and extragalactic

objects, rather than thermal noise in the detectors. One of
the key challenges is the high-accuracy spectral calibration
of the instrument which is typically required to have a
fractional inaccuracy <107>. The use of the bispectrum
phase, which is independent of direction-independent
antenna-based calibration and errors therein, has been
presented as a viable alternative to statistically detect the
presence of spectral line fluctuations. In this paper, we lay
the foundational steps toward understanding the bispectrum
phase in the context of the detection of faint cosmic spectral
line fluctuations and examine its potential benefits and
limitations.

The principal quantity investigated here for detection—
the bispectrum phase—intrinsically measures the asymme-
try (or dissimilarity) of the spatial distribution of the cosmic
spectral line signal relative to the foregrounds in the
transverse sky plane and is expressed as a rotation or
fluctuation of the dominant phase angle from the bright
foregrounds. In this paper, we focus on using the bispec-
trum phase to distinguish the faint cosmic spectral line
fluctuations from the bright but spectrally smooth fore-
grounds along the spectral dimension, or equivalently along
the line of sight. In the limit of small spectral fluctuations
relative to the foregrounds, an approximate correspondence
has been established between the approaches using the
standard spatial coherence (visibilities) and that using the
bispectrum phase. Specifically, the exact mathematical
description for the spectral fluctuations in phase angles
of both the visibilities and bispectrum have been estab-
lished using a linear-order approximation (purely for
analytical tractability) as being related to the ratio of the
strength of the fluctuating signal to that of the foregrounds.
Thus, existing Fourier domain techniques (e.g., delay
transform) can be readily employed to isolate these
fluctuating spectral signatures of the cosmic signal.

We have demonstrated that the linear-order approxima-
tion is a valid and useful handle to understand the
bispectrum phase in the context of detecting faint spectral
line fluctuations from cosmic structures. Although the
linear-order approximation neglects the effects from the
higher-order perturbation terms which manifest in actual
measurements at higher harmonic modes in the delay
spectrum, they are found to be negligible, typically by at
least a few orders of magnitude.

Except in virtually impossible scenarios where there is
perfect symmetry of structure in the transverse sky plane
between the source of spectral fluctuations and the fore-
grounds, the delay spectrum of the bispectrum phase
corresponds well with that from the visibilities especially
in aspects such as the foreground peak, the magnitude and
shape of spectral line signatures, and the dynamic range
between the two. This is confirmed using a wide variety
of examples which ranged from simple point source
models for foregrounds with zero or nonzero spectral index
placed at boresight or off-boresight and a hypothetical and
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unrealistic point source HI signal with a cosine-shaped
spectrum to a realistic wide-area model of the foregrounds
using the GLEAM catalog and a fiducial EoR model from
21cmFAST simulations.

In the nearly impossible scenario that the transverse
portion of the structures sourcing the spectral line fluctua-
tions are perfectly symmetric relative to the foregrounds,
the fluctuations in the bispectrum phase vanish and are
undetectable even though there are clear spectral structures
in the visibilities that will be detected in a standard delay
spectrum. One of the key limitations of this approach stems
from the fact that in the bispectrum phase, the foreground
component contains a triple-product of the three interfero-
metric visibility phase terms and this leads to a triply
convolved and a wider response in the delay spectrum
leading to higher levels of contamination in the low-order
spectral modes thereby affecting detectability of the cosmic
spectral line signal in these modes. In spite of this, the
cosmic signal is still detectable on a wide range of
Fourier modes of the bispectrum phase. A slightly modi-
fied approach using the bispectrum phase angles is also
briefly presented in the Appendix that could potentially
avoid this disadvantage to a significant extent. Further,
since the bispectrum phase angle fluctuations depend on
the foregrounds which are coupled multiplicatively, rather
than additively, the spectral line signatures in a delay
spectrum appear convolved with the delay response of
the foreground spectral characteristics. Therefore, a
straightforward interpretation of the spectral signatures
seen in the delay spectrum is difficult and requires either
a deconvolution approach to decouple the foreground
effects or a detailed forward-modeling.

Despite the limitations, the bispectrum phase approach is
an intrinsic measure of the dissimilarity between the cosmic
and the contaminating foreground structures and appears to
be a viable, independent, and powerful tool to detect faint
cosmic spectral line signatures in experiments where
calibration of the instrument without corrupting the sig-
natures of the cosmic signal is challenging. In a companion
paper [52], we present the first results from applying this
technique to a small sample of data from the HERA
telescope.
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APPENDIX: AN ALTERNATE APPROACH WITH
BISPECTRUM PHASE ANGLES

We briefly outline an alternate approach wherein the
bispectrum phase angle, ¢g(f), is used as the primary
physical quantity of interest in deriving the results rather
than using the complex Eulerian version, /%), as was
done in the main text. We assume that the measured
bispectrum phase angles are unwrapped accurately without
introducing artefacts. In analogy to the complex Eulerian
counterparts in Sec. IVA, we define

Vy(f) = VSffd’g(f )
= Veldo () + 605 (f) + 695 (f)] (A1)
L~ (Vi) _ Vi)
_ yFE | 4F 2 _'p
_Vett|: V(f)+21;(VF(f) V_E(f))
15~ (V) _ V)
+2i; <V5(f) VE(f) ]
= Vo (f) + Vs (f) + V(). (A2)
where
Vo(f) = 9 (f) Ve (A3)
Vs (f) = 85 (f) V. (A4)
and  VY(f) = 8¢5 (f) Vi (AS)
Combining the equations above,
N =53 BNV =RV (46)
=R LBV -V 4

Comparing Eq. (A6) above with its analog, Eq. (42), we
notice that the key difference (disregarding some constants
of proportionality) is the absence of the foreground
bispectrum phase term, %) in Eq. (A6). Since this is
the term that is a triple-product of the visibility phases in the
triad that leads to a triple-convolution in the delay spectrum
resulting in a significant widening of the foreground wedge
discussed in Secs. V and VI, its absence in this alternate
approach with bispectrum phase angles could potentially
mitigate the contamination from mode-mixing presented
earlier to a substantial extent. This will be explored in detail
in future work.
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