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The Brans-Dicke theory of gravity is one of the oldest ideas to extend general relativity by introducing a
nonminimal coupling between the scalar field and gravity. The Solar System tests put tight constraints on
the theory. In order to evade these constraints, various screening mechanisms have been proposed. These
screening mechanisms allow the scalar field to couple to matter as strongly as gravity in low density
environments while suppressing it in the Solar System. The Vainshtein mechanism, which is found in
various modified gravity models such as massive gravity, braneworld models and scalar tensor theories,
suppresses the scalar field efficiently in the vicinity of a massive object. This makes it difficult to test these
theories from gravitational wave observations. We point out that the recently found scalar gravitational
wave memory effect, which is caused by a permanent change in spacetime geometry due to the collapse of a
star to a back hole can be significantly enhanced in the Brans-Dicke theory of gravity with the Vainshtein
mechanism. This provides a possibility to detect scalar gravitational waves by a network of three or more
gravitational wave detectors.
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I. INTRODUCTION

The detection of gravitational waves has provided new
possibilities to test the theory of gravity [1,2]. Many
modified gravity models introduce additional degrees of
freedom in gravity and the detection of additional polari-
zations of gravitational waves will give a smoking gun for
deviations from general relativity (GR) [3]. In the scalar
tensor theories, we expect the presence of the scalar
gravitational waves [4–6].
However, scalar tensor theories are highly constrained by

the Solar System measurements [7]. These constraints limit
the strength of the coupling between the scalar field and
matter. This makes it difficult to test these theories beyond
the Solar System. Various screening mechanisms have been
proposed to evade the Solar System constraints without
suppressing the coupling [8,9]. There are two main screen-
ing mechanisms. One is to suppress the scalar field gradient
at the vicinity of an object. The representative example is
the Vainshtein mechanism that can be found in various
modified gravity models such as massive gravity, higher-
dimensional braneworld model as well as scalar tensor
theories [10] (see [11] for a review). The other example is
the chameleon mechanism [12,13] (see a review [14]). In
this case, the scalar field mass changes depending on
environments, suppressing the coupling between the scalar
field and matter. The effectiveness of screening is deter-
mined by the spatial curvature of the object in the
Vainshtein mechanism and the gravitational potential of
the object in the chameleon mechanism. These screening

mechanisms have distinct effects on structures in the
Universe [15]. Given the nature of these screening mech-
anisms to suppress deviations from GR in an environment
with a large curvature/gravitational potential, we expect
that deviations from GR will be suppressed further in a
system such as binary black holes or neutron stars. This
makes it difficult to test these models with gravitational
wave observations [16].
Recently, a novel way to test scalar tensor theories was

proposed using the gravitational wave memory [17]. The
gravitational wave memory is a permanent change in
spacetime geometry [18]. In GR, this is caused by a burst
event, which creates a jump in the transverse-traceless part
of the space-time metric [19,20]. In scalar tensor theories,
the scalar mode of metric perturbations leads to a new
scalar gravitational wave memory [17]. Imagine a star that
collapses to a black hole. Initially the scalar field is
supported by the star. After the collapse, due to the no-
hair theorem [21], the black hole does not support the scalar
field. This causes a permanent change in the scalar
component of metric perturbations outside the star, leading
to the gravitational memory. It was shown that using a
network of three or more detectors, it is possible to separate
the scalar component of the gravitational waves [22] as
different gravitational wave detectors on various locations
have distinct responses to the different polarizations. Using
a network of LIGO-Hanford, LIGO-Livingston [23], Virgo
[24] and KAGRA [25], it is possible to detect the scalar
gravitational memory from a collapse of a 10 M⊙ star at the
distance of 10 kpc can be detected in the Brans-Dicke
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theory by the second generation of gravitational wave
detector network even imposing the Solar System constraint
[17]. The memory effect dominates the scalar stochastic
gravitational wave background below 100 Hz [26].
The no-hair theorem applies to the scalar tensor theories

[27] as well as shift-symmetric Galileon theories [28],
which accommodate the Vainshtein mechanism [29].
A number of ways out exist for the black hole no-hair
theorem (see [30,31] for reviews). For example, hairy black
hole solutions can be found in Galileon theories if the scalar
field is allowed to acquire time-dependence [32]. Hairy
black holes can be found also in general relativity coupled
with various matter fields as well as in a theory with a linear
coupling of the scalar with the Gauss-Bonnet invariant [33].
We will come back to this point in the discussion.
In this paper, we show that the scalar memory effect

provides a powerful way to test Brans-Dicke gravity with
the Vainshtein mechanism. The Vainshtein mechanism is
very difficult to test due to its very efficient suppression of
the scalar force. The scalar memory effect will provide
constraints that cannot be reached by the Solar System tests
as well as astrophysical tests [34] and offer a possibility to
discover scalar gravitational waves with high signal-to-
noise ratio from a nearby gravitational collapse with a
network of the second generation of gravitational wave
detectors. We will also show that the scalar memory effect
is suppressed in the chameleon mechanism.

II. BRANS-DICKE THEORY WITH
VAINSHTEIN MECHANISM

As a concrete example, we consider the model described
by the following action [35]

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
ð∂ϕÞ2 þ fðϕÞ□ϕð∂ϕÞ2 þ Lm

�
; ð1Þ

where ω is the Brans-Dicke parameter, ð∂ϕÞ2 ¼ ∂αϕ∂αϕ
and Lm is the matter Lagrangian. The cubic interaction is
the unique form of interactions at this order that keeps the
field equation for ϕ of second-order [29].
We expand the metric and the scalar field as gμν ¼

ημν þ hμν and ϕ ¼ ϕ0ð1þ φÞ. By keeping nonlinear terms
in the second derivative of φ, which are relevant to the
Vainshtein mechanism, the equations of motion become

δGμνðhμνÞ ¼ ð∂μ∂νφ − ημν□φÞ þ 1

2ϕ0

δTμν;

ð3þ 2ωÞ□φ ¼ −2fðϕ0Þϕ2
0½ð∂μ∂νφÞð∂μ∂νφÞ − ð□φÞ2�

þ δTμ
μ

2ϕ0

; ð2Þ

where δGμνðhμνÞ is the linearized Einstein tensor and δTμ;ν

is the linearized energy momentum tensor. Introducing

Hμν ¼ hμν − ημνφ, we can diagonalize the equations for
Hμν and φ: δGμνðHμνÞ ¼ δTμν=2ϕ0.
In the static limit, the scalar field equation becomes

∇2φþ r2c½ð∂ {∂jφÞð∂i∂jφÞ − ð∂2φÞ2� ¼ −8πGα2ρ; ð3Þ

where we defined

ϕ0¼ð16πGÞ−1; α¼ð2ωþ3Þ−1
2; r2c¼

2fðϕ0Þϕ2
0

3þ2ω
: ð4Þ

The parameter α controls the coupling between the scalar
field and matter and rc controls the efficiency of the
Vainshtein mechanism. The spherically symmetric solution
is given by [36]

φðrÞ ¼ r2V
4r2c

g

�
r
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�
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2
;
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3
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��
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where

rV ¼ ð16α2r2cGMÞ1=3 ð6Þ

is the Vainshtein radius and we imposed the condition that
φðrÞ → 0 at r → ∞. Figure 1 shows the profile of the scalar
field. On larger scales r > rV , the solution approaches the
linear solution

φ ¼ 2α2GM
r

ð7Þ

On the other hand, the scalar field is highly suppressed at
r ≪ rV , realizing the Vainshtein mechanism. The important
point is that the Vainshtein mechanism is not a screening
mechanism in the standard sense. Normally the screening
mechanism is a mechanism to reduce a charge. In the case

FIG. 1. The function gðxÞ in Eq. (5). The dotted line shows the
linear solution 2=x for x ≫ 1. Below the Vainshtein radius x < 1
the scalar field is suppressed due to the nonlinear term.
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of the Vainshtein mechanism, the scalar charge is given by
2α2M and this is not suppressed. The Vainshtein mecha-
nism suppresses the scalar field gradient inside the
Vainshtein radius due to the nonlinear derivative interac-
tion. Thanks to this feature, α can be O(1), i.e., the scalar
force is as strong as gravity.

III. SCALAR GRAVITATIONAL
WAVE MEMORY

Now, we consider the gravitational collapse of a star that
forms a black hole. The no hair theorem of black holes
states that black holes only support a trivial scalar field
ϕ ¼ ϕ0 ¼ const. In fact, ϕ ¼ const: is a solution without
matter in our theory. Assuming that the no-hair theorem
holds and the scalar hair is lost, the scalar field solution
becomes ϕ ¼ ϕ0 from ϕ ¼ ϕ0 þ φðrÞ. This causes a
permanent change in the scalar component of the metric
perturbation

ΔhSij ¼ φðrÞeoij; ð8Þ

where eoij is the scalar polarization tensor. As long as the
Solar System is located beyond the Vainshtein radius of the
collapsing star, the scalar field solution is given by Eq. (7).
Figure 2 shows the Vainshtein radius for a star with M ¼
1 M⊙ and 10 M⊙ with α ¼ 1. For rc ¼ 1000 Mpc, the
Vainshtein radius for the Sun is 0.1 kpc and the Solar
system constraint is well satisfied. On the other hand, for
M ¼ 10 M⊙, the Vainshtein radius is still 0.2 kpc and the
linear solution can be used safely in the Solar System. In
order for the Solar System to be inside the Vainshtein radius
of the star with M ¼ 10 M⊙ at the distance of 10 kpc from
the Sun, rc needs to be 3.6 × 105 Mpc, which is well
beyond the current horizon scale of the universe. Thus, for a
reasonable choice of the parameters, we can approximate
φðrÞ on Earth by the linear solution. Figure 3 shows the

change of the scalar component of the metric perturbation
as a function of α assuming the linear solution.
The scalar gravitational wave memory has a frequency

dependence of hðfÞ ∼ 1=f [26]. The maximized signal to
noise ratio (SNR) for the detection of the scalar memory is
given by [17]

ρ ¼ F 1=2
N

2α2GM
πr

�Z
fc

0

df
1

f2SnðfÞ
�
; ð9Þ

where SnðfÞ is the noise spectral density that we assume all
the detectors approximately have and fc is the cutoff
frequency of memory determined by the time scale of
the collapse. For a star withM ¼ 10 M⊙ and R ¼ 100 M⊙,
this is estimated as fc ¼ 500 Hz. FN is the N-detector
effective angular pattern function and it is angular position
dependent [22]. The angular averaged value for 3 (4) detec-
tors is F3ð4Þ ¼ 0.087ð0.240Þ and the peak value is F3ð4Þ ¼
0.511ð0.240Þ. We use the noise spectral density given in
Ref. [37] for the second and third generation detectors.
Note that the detector configurations for the third gener-
ation detector considered in Ref. [37] are outdated but we
used the same specifications that were used in [17] to make
a comparison easier. The scalar overlap reduction function
for the Einstein telescope was computed in Ref. [26].
Figure 4 shows the discovery curve defined as SNR ¼

10 with M ¼ 10 M⊙ as a function of the distance to the
star. As shown in [17], the second generation detectors
could discover the scalar gravitational memory if the star is
10 kpc away even in the Brans-Dicke gravity with no
screening, for which the Solar System constraint imposes
α < 10−2.45. If the distance is larger than 10 kpc, the third
generation detectors would be required. On the other hand,
the Vainshtein mechanism removes the limit on α from the
Solar System constraint. The coupling can be as large as
α ∼Oð1Þ. In this case, the second generation detectors

FIG. 2. The Vainshtein radius rv in the unit of kpc as a function
of rc in the unit of Mpc for α ¼ 1. The cosmological horizon
scale today is 2998h−1 Mpc where h ∼ 0.7. The solid line is for a
star withM ¼ 10 M⊙ and the dashed line is for a solar mass star.

FIG. 3. The change of the scalar component of metric pertur-
bations given by Eq. change as a function of α. The solid line is
for a star with M ¼ 10 M⊙ at 10 kpc and the dashed line is for a
star with M ¼ 10 M⊙ at 60 kpc.
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would discover the scalar gravitational wave memory with
SNR > 105 as shown in Fig. 5.

IV. DISCUSSIONS

We assumed that the Vainshtein mechanism of the Sun
does not affect the scalar field profile generated by the
distant star. This is a valid approximation thanks to the
Galileon symmetry of Eq. (3) [38]. Since the equation
contains only the second derivatives, it is possible to add a
constant gradient. Since the scalar field gradient generated

by the distant star can be approximated as constant at the
vicinity of the Sun, the solution can be written as

∇ϕðrÞ ¼ ∇ϕSunðrÞ þ∇ϕstar: ð10Þ

This is not the case if the Sun is inside the Vainshtein radius
of the star [39], but, in this case, the scalar field generated
by the star is also suppressed.
In this paper we used a weak field limit solution. The

Vainshtein mechanism works also for relativistic stars
[40,41] and the linear solution is recovered beyond the
Vainshtein radius. As discussed in the Introduction, black
holes can have a scalar hair if the scalar field has a time
dependence in Galileon theories [31] although it is not clear
whether hairy solutions can be formed as a result of the
dynamical gravitational collapse or not. Since the existence
of the nontrivial scalar field for a neutron star and the
absence of it for a black hole are central to the scalar
gravitational memory effect, it is important to derive
neutron star solutions and prove the no-hair theorem for
dynamically formed black holes in the theory described by
Eq. (1). This is left for future work.
It is difficult to test the Vainshtein mechanism with rc

close to the horizon scale today. The lunar laser ranging and
the observed precession of planets in the Solar System give
constraints rc > a few hundreds Mpc [42]. A better
constraint is obtained by super massive black holes at
the center of a galaxy [34]. This test shares common ideas
behind the scalar gravitational wave memory test based on
the observation made in [38]. Due to the no-hair theorem of
black holes, if part of a galaxy’s motion is due to an external
scalar field sourced by a cluster where the galaxy is located,
the supermassive black hole that lies at its center does not
feel this. On the other hand, for a galaxy located within a
cluster, the scalar field sourced by the cluster behaves as a
constant-gradient field as in Eq. (10) and the resident stars
and dark matter of the galaxy respond to this cluster-
sourced scalar field. Therefore the black hole lags behind as
the galaxy moves. The absence of this lag put constraint on
rc. Although it is possible to get a better constraint than the
Solar System test, for α ¼ Oð1Þ, the constraint remains to
be rc > several hundreds Mpc. The gravitational memory
effect can prove the regime where rc is close to or even
larger than the horizon scale.
Finally we contrast the Vainshtein mechanism against

another screening mechanism, the chameleon mechanism.
In this model, the scalar charge is suppressed if the thin shell
condition is satisfied, which is determined by the gravita-
tional potential of the object. To satisfy the Solar System
constraint, the Milky Way galaxy with the gravitational
potential 10−5 needs to satisfy the thin shell condition. The
collapsing star has a much larger gravitational potential and
it is fully screened. Thus the scalar field sourced by the star is
highly suppressed. Also the scalar field is screened on Earth.
Unlike the Vainshtein mechanism, the superposition of

FIG. 5. The SNR for the detection of the scalar gravitational
wave memory in Brans-Dicke gravity with the Vainshtein
mechanism from a collapsing star with M ¼ 10 M⊙ at the
distance of 10 kpc (solid line) and 60 kpc (dashed line) with
the 2nd generation of detectors. This is valid as long as the
Vainshtein radius of the star is less than 10 (60) kpc. The vertical
dotted line shows SNR ¼ 10 used in Fig. 4.

FIG. 4. The discovery threshold for the scalar gravitational
memory from a collapsing star withM ¼ 10 M⊙ as a function of
the distance from Earth in the unit of kpc. If α is above the curve,
the signal will be detected with SNR ¼ 10. The solid (dashed)
curve is for the 2nd (3rd) generation of detector network.
The dotted line shows the Cassini bound (upper bound) in the
Solar System as a reference. We emphasize that this bound
does not apply to the theory with the Vainshtein mechanism
and α can be Oð1Þ.
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scalar field gradients does not hold and if the scalar field is
suppressed by Earth, then the external scalar field is also
screened [43]. Thus we do not expect to see the scalar
gravitational wave memory effect in theories with the
chameleon mechanism.
The scalar gravitational wave memory from a collapsing

star has a potential to discover the Brans-Dicke theory of
gravity that is indistinguishable from GR in the Solar
System. In particular, the theory that utilize the Vainshtein
mechanism will give a strong signal with SNR reaching 105

even with the second generation of gravitational wave
detector network. We need some luck with this test given
the expected gravitational collapse rate of 2 events per
100 years within 60 kpc (note that this rate depends on star

formation rates and other factors in the gravitational
collapse [44]). However, if we detect the scalar gravita-
tional waves together with the transverse traceless gravi-
tational waves, this is a smoking gun of the theory beyond
Einstein’s theory of gravity.
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