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Most of the exotic resonances observed in the past decade appear as a peak structure near some
threshold. These near-threshold phenomena can be interpreted as genuine resonant states or enhanced
threshold cusps. Apparently, there is no straightforward way of distinguishing the two structures. In this
work, we employ the strength of deep feed-forward neural network in classifying objects with almost
similar features. We construct a neural network model with scattering amplitude as input and the nature of a
pole causing the enhancement as output. The training data is generated by an S-matrix satisfying the
unitarity and analyticity requirements. Using the separable potential model, we generate a validation data
set to measure the network’s predictive power. We find that our trained neural network model gives high
accuracy when the cutoff parameter of the validation data is within 400–800MeV. As a final test, we use the
Nijmegen partial wave and potential models for nucleon-nucleon scattering and show that the network
gives the correct nature of the pole.
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I. INTRODUCTION

Renewed interest in hadron spectroscopy started after the
discovery of Xð3872Þ in 2003 [1]. Since then, several
candidates of nonstandard exotic hadrons are proposed.
One common feature of these phenomena is that they
manifest as sharp peak structure near some threshold [2].
The proximity of an enhancement to the threshold intro-
duces several possible nature of peak’s origin. One of the
appealing possibilities is a weakly bounded hadronic
molecule composed of two hadrons [3,4] which can be
associated to the presence of a pole near the two-particle
threshold. Other possibilities are purely kinematical in
nature such as cusps or triangle singularities [5]. On one
hand, threshold cusp is always present in s-wave scattering
whenever an inelastic channel opens. However, it has been
shown in [6–9] that threshold cusp can only produce a
significant enhancement provided that there is some near-
threshold pole even if it is not located in the relevant region
of unphysical sheet. On the other hand, triangle singularity
does not need nearby pole to produce a pronounced
enhancement but instead requires that intermediate par-
ticles be simultaneously on-shell [5,10–12].

The purpose of this paper is to address the origin of the
sharp peak observed around the threshold of two-body
hadron scattering problems. We specifically focus on the
case where a near-threshold pole causes the peak structure
and attempt to identify its nature, i.e., whether it is a bound,
resonance, or virtual state pole. Until now, there has not
been a method to distinguish the pole origin of peak
structure around the threshold. In general, this is a difficult
program because of the limited resolution of experimen-
tal data.
Here, we treat the identification of the nature of the pole

causing the enhancement as a classification task [13] and
solve it using supervised machine learning. The machine
learning technique is ubiquitous even in physical sciences
[14] and it is well known that a deep neural network excels
in solving a classification task. In this work we demonstrate
how a deep neural network can be applied to identify the
pole origin of cross section enhancement. This includes
defining the appropriate input-output data, setting up the
network architecture, and generating the training dataset.
As a first effort to apply deep learning in the classification
of pole causing a cross section enhancement, we only
consider here the single-channel scattering.
This paper is organized as follows. In Sec. II we give a

short background on how a neural network works. One of
the crucial parts of deep learning is the preparation of the
dataset. In Sec. III we describe how the training dataset is
generated using the general properties of S-matrix. The
performance of our neural network model using the training
dataset is discussed in Sec. IV. In Sec. V we explore the
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applicability of our trained network using a separable
potential model to generate a validation dataset. We also
use the partial wave and potential models of Nijmegen
group as a final test in the same section. Finally, we
formulate our conclusion in Sec. VI.

II. DEEP NEURAL NETWORK FOR POLE
CLASSIFICATION

We briefly review the basic operation in deep learning
[15] and discuss how it can be applied to pole classification
problem. A neural network consists of an input, hidden
layers and an output layer where each layer contains certain
number of nodes. We use the term deep neural network for
architectures having more than one hidden layers. Figure 1
shows the deep neural network set-up that we used in this
study. The nodes xi’s in the input layer contain numerical
values describing certain features of the input data while
nodes that are not in the input layer are equipped with
activation functions with range (0,1) or ð0;∞Þ, whichever
is applicable. The nodes in (l − 1)th layer are sent to each
lth layer node by putting them in a linear combination

zðlÞi ¼ Σjw
ðlÞ
ij hðl−1Þj þ bðl−1Þ ð1Þ

where zðlÞi is the ith node preactivation value in the lth

layer, hðl−1Þj is the jth node post-activation value of the
(l − 1)th layer, wl

ij is the weight connecting jth node of

(l − 1)th layer to ith node of lth layer and bðl−1Þ is the bias
in (l − 1)th layer. In this notation, input nodes are

represented as xi ¼ hð0Þi . The pre-activation value zðlÞi is
fed to the activation function to get the node’s postactiva-
tion value:

hðlÞi ¼ σðzðlÞi Þ: ð2Þ

This arrangement of layers and nodes together with the
choice of activation functions allows the neural network to

build a nonlinear mapping of input vector x to output
vector y.
The goal of deep learning is to find an optimal mapping

between x and y. To do this, one has to prepare a training
dataset containing inputs with known outputs. Initially,
some random weights and biases are assigned to the neural
network. Then we perform a forward pass, i.e., we feed all
the training inputs and let the network calculate all the
outputs. Now, the average difference between true output
and the network’s output define the cost function Cðŵ; b⃗Þ
where ŵ and b⃗ are the initial weight matrix and bias vector,
respectively. The weights and biases are updated using the
gradient descent method via backpropagation [16]. One
forward pass together with one backpropagation of the
entire training dataset comprise one epoch of training.
Several epochs are normally executed to update the weights
and biases until the cost function reached its global
minimum. The neural network architecture with its updated
weights and biases correspond to the optimal map that
we seek.
In this study, we construct a deep neural network with the

cross section of two-body scattering, jfðEcmÞj2, on a
discretized center-of-mass energy axis [0, 100 MeV] with
0.5 MeV spacing as input and a vector with three elements
as output. One can use smaller spacing but this will increase
the number of input nodes and may result in slow cost
function convergence. Similarly, taking larger spacing with
smaller number of input nodes will most likely converge
fast to a higher cost function minimum. The chosen
0.5 MeV provides an optimal spacing for the current study.
Now, the output nodes correspond to three distinct pole
classifications, i.e., bound state, virtual state or resonance
as shown in Fig. 1. The classification of pole is described as
follows. Suppose p0 represents the pole position on the
complex momentum plane C, then we say that it is a bound
state pole if p0 is positive pure imaginary. If Imp0 < 0 and
jImp0j > jRep0j, then p0 is a virtual state pole. Otherwise,
if jImp0j < jRep0j we call it resonance (see the Appendix
of [17] for detailed explanation).

FIG. 1. Schematic of deep neural network for S-matrix pole classification.

SOMBILLO, IKEDA, SATO, and HOSAKA PHYS. REV. D 102, 016024 (2020)

016024-2



To obtain the optimal values of weights and biases, the
network must be trained using a dataset of cross section
with known enhancement origin. This will be explained in
the next section.

III. DATASET TO TRAIN DEEP
NEURAL NETWORK

A. General properties of S-matrix

Ideally, a reliable neural network model that can dis-
tinguish the nature of the pole responsible for the cross
section enhancement must be optimized using a training
dataset generated from an exact S-matrix. However, such an
S-matrix cannot be derived from the fundamental theory of
strong interaction QCD for hadrons due to its nonpertur-
bative nature. In such a situation, we can still deduce the
general form of S-matrix using the analyticity and unitarity
requirements [18–20].
Consider the s-wave scattering of two particles with

mass m1 and m2, reduced mass μ ¼ m1m2=ðm1 þm2Þ and
relative momentum magnitude of p. The S-matrix can be
parametrized as

SðpÞ ¼ 1 − iμpKðpÞ
1þ iμpKðpÞ ð3Þ

satisfying unitarity provided that KðpÞ is the real-valued
K-matrix [21–23]. At energies near the location of the
K-matrix pole M0, we can write K ¼ g02=ðE −M0Þ þ c
where E ¼ E1 þ E2 with Ei as the energy of particlemi and
g0; c are reals. Analyticity and Kð−pÞ ¼ KðpÞ are satisfied
in the nonrelativistic case, i.e., E ¼ p2=ð2μÞ, by the para-
metrization

KðpÞ ¼ g2

p2 −M
þ c ð4Þ

where g2 ¼ 2μg02 and M ¼ 2μðM0 −m1 −m2Þ. From the
S-matrix in (3), one can obtain the partial wave amplitude
using the relation

SðpÞ ¼ 1þ 2ipfðpÞ: ð5Þ

Consider now how the K-matrix parameters dictate the
singularities of S-matrix in (3). If we substitute KðpÞ into
SðpÞ, we get

SðpÞ ¼ −
iμcp3 − p2 þ iμðg2 − cMÞpþM
iμcp3 þ p2 þ iμðg2 − cMÞp −M

ð6Þ

and the pole position is obtained from

iμcp3 þ p2 þ iμðg2 − cMÞp −M ¼ 0: ð7Þ

Taking the complex conjugate of (7) and knowing that μ; g2

and M are reals, we can recover the same equation as that

for p, i.e., −p� satisfies the same cubic equation. This
means that the denominator of SðpÞ in (6) contains a factor
ðpþ iβÞ2 − α2 which gives a conjugate pair of poles with
real α, β. The third unpaired solution to (7) must have the
property p ¼ −p�. This can only be true if p is pure
imaginary. In fact it is possible that all the solutions of (7)
are pure imaginary. It follows that we can write (6) in
factored form as

SðpÞ ¼
�
−
pþ iγ
p − iγ

��ðp − iβÞ2 − α2

ðpþ iβÞ2 − α2

�
ð8Þ

where α, β, γ are real numbers that are related to g2, M and
c parameters.
For c ¼ 0 we only have a pair of conjugate poles

given by

p0 ¼ −i
μg2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M −

�
μg2

2

�
2

s
ð9Þ

and we readily identified β ¼ μg2=2 and α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − ðμg2=2Þ2

p
. Note that β > 0 is required to avoid

having S-matrix poles on the upper half momentum plane
(other than the imaginary axis), otherwise causality is
violated [18,24]. For c ≠ 0, a third imaginary pole iγ
appears and α, β are modified according to:

α2 ¼ ξM − β2

β ¼ μg2

2
ξ

�
1þ ð1 − ξÞMc

g2

�

γ ¼ 1

ξμc
: ð10Þ

These are obtained by comparing the expansion in the
denominator of (8) with that of (7). A dimensionless
quantity ξ is introduced to facilitate the comparison and
for given values of μ; g2 andM, ξ is an implicit function of c
given by

1 ¼ ξþ cμ2g2ξ2
�
1 − ð1 − ξÞ cM

g2

�
ð11Þ

with ξ → 1 as c → 0 or c → �∞ (see Fig. 2).
The bounded ξ ¼ ξðcÞ implies that the third pole iγ will

originate from �∞i as c becomes nonzero. For c > 0, we
can generate a simple pole at p0 ¼ iγ on the upper half
momentum plane and if we let c → þ∞, this pole gets very
close to the threshold. This corresponds to a bound state in
accordance to the completeness relation in [25]. Now, as we
vary c from zero to some negative value, the poles
redistribute themselves as shown in Fig. 3. Here, we see
an instance when all the three poles are pure imaginary and
at some finite values of c, two of the poles will merge and
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turn into conjugate pair as seen in Fig. 3(a) and (b). The
merging of poles happens at some c < 0 when the slope of
ξ becomes infinite as shown in Fig. 2. This demonstrates
that the constant term in (4) is capable of generating
S-matrix pole and should not be treated as background
(see also [26]).
The conjugate pair of poles in (8) will always have β > 0

for all values of c. For c → 0, ξ approaches unity and we
recover (9) with β > 0. Also, as c → þ∞, (10) gives a
positive β since 0 < ξ < 1. Finally, if c < 0 we see from
Fig. 2 that ð1 − ξÞ < 0 and this still gives a positive β
demonstrating that causality is not violated for all values
of c.
The form of S-matrix in (8) and its relation to K-matrix

in (4) allows us to identify the parenthetical factor as the
generator of pure imaginary momentum pole and the
square-bracket factor as the generator of conjugate poles.
To avoid ambiguity in the classification it is more plausible
to separate these two factors. That is, the first factor will
only be used to generate the bound-virtual dataset while the
second factor will be used to generate conjugate virtual-
resonance dataset. The two datasets will be combined as a
single classification dataset before we use it to optimize the
parameters of our neural network. This will suffice to
assign three distinct outputs in our neural network, i.e.,
bound, virtual and resonance. Note that one can also use the

combined form in (8) but a “bound with resonance” must
be added to the output entry. This additional category is not
yet relevant in the current study.

B. Bound state and virtual state

Let us first consider the threshold-enhancement caused
by a shallow bound state or a virtual state in s-wave
amplitude. From previous discussion, we learned that the
first factor in (8) can be used to generate a near-threshold
bound or virtual state pole. A closer look will reveal that
this gives an identical cross section whatever the sign of γ.
That is, with SðpÞ ¼ −ðpþ iγÞ=ðp − iγÞ we get jfðpÞj2 ¼
1=ðp2 þ γ2Þ and there is no way to distinguish between
virtual and bound state enhancements. In general, there is
background contribution in addition to the pole part of the
S-matrix, making it possible to distinguish the two
enhancements. Thus, it is imperative to include a back-
ground to the S-matrix parametrization for the bound-
virtual dataset, i.e.,

SðpÞ ¼ e2iδbgðpÞ
�
−
pþ iγ
p − iγ

�
; ð12Þ

where δbgðpÞ is the background phase.
The form of δbgðpÞ is restricted by unitarity and analy-

ticity requirements. First, unitarity dictates that δbgðpÞ be a
real-valued function for real momentum p. Second, analy-
ticity requires that there be no poles in the analytically
continued e2iδbgðpÞ on the upper-half momentum plane and
that the reflection principle be satisfied. Here, we introduce
the background phase shift given by

δbgðpÞ ¼ η tan−1
�

p
Λbg

�
: ð13Þ

where η is a real parameter and Λbg > 0 is the training
S-matrix cutoff parameter. If we let η < 0, (13) reduces to a
repulsive hard-core type background used in [27] with
−η=Λbg as the core radius if p is near the threshold.
Also, (13) can simulate the left-hand cut both in the physical

FIG. 2. Behavior of ξ ¼ ξðcÞ.

FIG. 3. Configuration of S-matrix pole as c is varied from zero to some negative value starting with (a) a pair of virtual states,
(b) virtual state with widths and (c) resonance. The red dots represents the pole positions when c ¼ 0, the red line shows the trajectory
and the blue line shows the direction of pole motion as c becomes negative.
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and unphysical sheet even in the nonrelativistic case since
the analytically continued tan−1ðp=ΛbgÞ has branch cuts in
C along the strip ð−i∞;−iΛbgÞ ∪ ðiΛbg; i∞Þ [28].
Using the parameters of background phase in (13), we

prepared three training datasets that will be used in the
subsequent numerical experiments. These are shown in
Table I. The purpose of each dataset is described as follows:
set 0 is used to experiment with different neural network
architecture in Sec. IV while set 1 and set 2 are used to train
two deep neural network models for numerical experiments
in Sec. V. For each dataset, we choose negative values for η
to mimic a repulsive background since the attractive case is
already taken care of by the pole factor in (12). It suffices to
use the integer values shown in the second column of
Table I for the purpose of this study. Then, for each η we
generate 500 random values of Λbg in the range specified in
third column of Table I. The size of each dataset is
determined by the parameters of the pole part.
The parameters for pole part of bound-virtual in (12) is

generated as follows. For each η and Λbg in Table I,
we choose 1,000 random values of γ in the interval
ð−0.9Λbg;−10 MeVÞ ∪ ð10 MeV; 200 MeVÞ. This choice
gives a range of bound state binding energy from
0.106 MeV to 42.55 MeV. We ensure that the range of γ
is cut so that equal numbers of near-threshold virtual and
bound state poles are generated. With the values of η;Λbg

and γ specified, the S-matrix in (12) can now be used to
calculate the input partial wave jfðEÞj2 in (5). For each
input, we assign an output label based on the sign of γ, i.e.,
label 0 if γ > 0 (bound state) and 1 if γ < 0 (virtual state).
The number of parameters used results into a total of
4 × 500 × 1000 ¼ 2; 000; 000 input-output samples for
bound and virtual state.

C. Virtual state and resonance

Using the same background phase in (13) and the second
factor of (8), the S-matrix with conjugate pair of poles is
written as

SðpÞ ¼ e2iδbgðpÞ
ðp − iβÞ2 − α2

ðpþ iβÞ2 − α2
: ð14Þ

The values of η and Λbg are again chosen from Table I but
this time we only choose 50 random values for Λbg. For the
pole parameters, 100 values of β is chosen in the interval
(50 MeV, 200 MeV) and 100 values of α in (1 MeV,

300 MeV). These choice can give us resonance-peaks with
width ranging from 0.12 MeV to 64 MeV. We calculate the
input amplitude jfðEÞj2 using the above parameters and
assign an output label of 1 for virtual state pole (β > α) and
2 for resonance (β < α). This is just a continuation of the
output assignment in the previous subsection. We have a
total of 4 × 50 × 100 × 100 ¼ 2, 000, 000 input-output
samples for resonance-virtual classification.
It is interesting to point out that enhancement due to a

resonance pole is not completely distinguishable from that
of a virtual state pole. Both of these singularities are
capable of producing near-threshold peak structures in
the scattering region as shown in Fig. 4(d). This is true
if we include a background phase in the S-matrix as in (14).
A virtual state pole (β > α) that is far from threshold but
close to the imaginary axis of unphysical sheet, as shown in
Fig. 4(c), will produce a peak above the threshold due to the
distortion caused by the branch point. Normally, if there is
no S-matrix background, the conjugate partner of virtual
state with width is sufficient to suppress the appearance of
peak even if the poles are far from threshold [29]. This is no
longer the case in the presence of background and the
conjugate pole must be near the threshold to suppress the
peak appearance as demonstrated in Fig. 4(b).
A slightly different scenario happens for resonance pole

and its conjugate. If it is close to the threshold, a peak
structure appears close to the real part of the pole. Here, the
conjugate partner is already blocked by the branch cut and
can no longer modify the line shape of amplitude. If the
resonance pole is moved away from threshold but close to
the imaginary axis, the branch point causes the peak
structure to appear farther from the pole’s real part,
resulting in an almost identical line shape as that of the
virtual pole [see Fig. 4(d)]. It is therefore crucial to have a

TABLE I. Dataset generated in this study.

Dataset η Λbg in (MeV) Size

Set 0 ½−4;−3;−2;−1� (100,1100) 2 × 106

Set 1 ½−4;−3;−2;−1� (200,1200) 4 × 106

Set 2 ½−4;−3;−1; 0� (200,1200) 4 × 106

FIG. 4. Virtual (⋄) and resonance (⋆) poles near threshold (a)
and the corresponding line-shape (b). Poles far from the threshold
but close to the imaginary axis of unphysical sheet (c) and the
corresponding line-shape (d).
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neural network trained to distinguish between these two
almost-identical peak structures.

IV. ARCHITECTURE AND TRAINING

Now that we have the classification dataset ready, we
proceed with the construction of neural network. To
determine the optimal architecture for our task, we experi-
ment with different architectures. Chainer framework [30]
is used to build the neural network and to carry out the
training. Here, we only use the set 0 of Table I which
consists only of bound-virtual samples. This dataset is
chosen to deliberately make the classification difficult by
putting some of the relevant pole in the branch cut of
background. We further split the classification data set into
two such that 80% is used for training, which optimizes the
weights and biases, and the remaining 20% for testing.
Four neural network architectures are used in this

experiment. We describe them using the notation

½N0 þ 1;…; Nl þ 1;…; NL þ 1; 3� ð15Þ
where Nl is the number of nodes in the lth layer
(l ¼ 0; 1;…; L), with L as the total number of hidden
layers and (þ1) denotes the added bias. For all architec-
tures, we have N0 ¼ 200 nodes for the input layer and three
nodes for the output. We assign the ReLU as activation
function for hidden-layer nodes

ReLUðzðLþ1Þ
i Þ ¼ max ð0; zðLþ1Þ

i Þ ð16Þ
and use softmax for output nodes

softmaxðzðLþ1Þ
i Þ ¼ expðzðLþ1Þ

i Þ
ΣNLþ1

j expðzðLþ1Þ
j Þ

: ð17Þ

In the classification problem, the cost-function to be
minimized is the softmax cross entropy given by

Cðŵ; b⃗Þ ¼ 1

X

X
x⃗

a⃗ðx⃗Þ · log ½y⃗ŵ;b⃗ðx⃗Þ� ð18Þ

where ŵ is the weight matrix, b⃗ is the bias vector, x⃗ is one of
the training input with a⃗ðx⃗Þ as the correct answer, X is the
size of training sample, and y⃗w;bðx⃗Þ is the network’s output.
We use the standard stochastic gradient descent [31,32] to
optimize the weights and biases with learning rate of 0.01
and batch size of 1600.
The performance of each network architecture is mea-

sured by feeding the testing input to the network and
comparing the network’s output to the correct label. Then,
we count the number of correct predictions. The test
accuracy of each architecture is shown in Fig. 5. The
vertical axis gives the accuracy of neural network’s
predictions using the testing set and the horizontal axis
is the training epoch. Generally, the testing accuracy shows
large fluctuation due to the stochasticity introduced in the

calculation of cost-function. It is interesting to find that the
performance of L ¼ 1 architectures shown in Fig. 5(a) and
Fig. 5(b) did not improve much even if we added more
nodes. After 1000 epochs, the testing accuracies are 94.4%
for the N1 ¼ 100 architecture and 94.5% for the N1 ¼ 150.
This is just a 0.1% improvement in accuracy. However, we
get a significant increase when the additional 50 nodes are
placed in the second hidden layer. For a deep neural
network with L ¼ 2, N1 ¼ 100 and N2 ¼ 50, the perfor-
mance is shown in Fig. 5(c). Here, we get a 97.2% testing
accuracy after 1000 epochs, a significant improvement
compared to L ¼ 1 architecture with the same number of
nodes. We also check if increasing L, while keeping the
total number of nodes fixed, will further improve the
performance. The result of L¼3 with N1¼N2¼N3¼50
is shown Fig. 5(d) giving a testing accuracy of 97.3% after
1000 epochs. The result is almost comparable with the
L ¼ 2 architecture. However, the L ¼ 2 architecture is
more practical to use since it is much faster to train
compared to L ¼ 3. Specifically, for the same number of
epochs, the total elapsed time of training for the two L ¼ 1

architectures are 2.0 × 105 sec and 2.3 × 105 sec, respec-
tively. While for L ¼ 2 and L ¼ 3, we have 2.6 × 105 sec
and 3.1 × 105 sec, respectively. Thus, for the rest of this
study we will use a two-hidden layer neural network
described in Table II.

FIG. 5. Testing accuracy of different neural networks with
architecture (a) ½200þ 1; 100þ 1; 3�, (b) ½200þ 1; 150þ 1; 3�,
(c) ½200þ 1; 100þ 1; 50þ 1; 3� and (d) ½200þ 1; 50þ 1; 50þ
1; 50þ 1; 3�

TABLE II. Our deep neural network architecture.

Layer Number of nodes Activation Function

Input 200þ 1
1st 100þ 1 ReLU
2nd 50þ 1 ReLU
Output 3 Softmax
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We now proceed to train our chosen network architecture
using the classification set 1 and set 2 datasets in Table I.
Each of these datasets contains 4,000,000 training input-
output tuples for bound-virtual and resonance-virtual cases.
The network’s performance with set 1 and set 2 datasets are
shown in Fig. 6 and Fig. 7, respectively. Optimization using
set 1 shows that the accuracy saturates as early as 400
epochs, indicating that the global minimum of the cost-
function is already reached. The network’s accuracy is
99.7% for the testing of set 1 dataset after 1,000 epochs.
The same saturation behavior is observed for set 2.
However, the accuracy after 1,000 epochs is only 97.3%
for testing. The lower accuracy is due to the inclusion of
η ¼ 0 which corresponds to the no-background case. This
gives rise to identical enhancements at threshold whether
the pole is a bound or virtual state. Despite its lower
accuracy, this dataset is still useful in our subsequent
numerical experiment.

We now have two deep neural network models with the
same architecture but trained by two slightly different
datasets, i.e., set 1 and set 2. In the next section we will
study the applicability of these models using an exact
solvable separable potential and then apply this to the
nucleon-nucleon scattering data.

V. VALIDATION OF NEURAL NETWORK MODEL

We now explore if the trained neural network has the
ability to generalize beyond the training dataset. It is
important that the validation set be different to that of
the training set to make a valid conclusion on the network’s
ability to generalize. This is done by generating a validation
data using an exactly solvable model.

A. Separable potential

The simplest model that can give us an exact solution to
the Lippmann-Schwinger equation is a separable potential
[21,22]. Here, we consider the s-wave potential given
by Vðp; p0Þ ¼ λgðp0ÞgðpÞ with Yamaguchi form factor
gðpÞ ¼ Λ2=ðp2 þ Λ2Þ where λ is an energy-independent
coupling strength and Λ is a cutoff parameter [33]. The
single-channel S-matrix for this model is given by

SðpÞ ¼
�
pþ iΛ
p − iΛ

�
2
�
2ðp − iΛÞ2 − λπμΛ3

2ðpþ iΛÞ2 − λπμΛ3

�
: ð19Þ

We can introduce a dimensionless parameter ζ ¼
πμλΛ=2 to rescale the momentum plane with the cutoff
Λ as scaling parameter. Figure 8(a) shows the trajectory of
pole along the imaginary momentum axis as ζ is varied. At
ζ ¼ 0, the pole starts at p ¼ −iΛ and as ζ increases in
negative value, the pole splits into two. One of the pole
moves beyond the cutoff limit while the other one gets
closer to threshold. If − 1 < ζ < 0, the near-threshold pole
p0 ¼ iΛð−1þ ffiffiffi

ζ
p Þ is a virtual state. If we further make the

potential attractive by letting ζ < −1, the near-threshold
pole crosses the threshold and becomes a bound state pole.
The adjustable parameter ζ can be used to produce different
amplitudes to estimate the network’s prediction.

FIG. 6. Testing accuracy of neural network model trained using
set 1 (a) and the cost-function profile (b) in each training epoch.

FIG. 7. Testing accuracy of neural network model trained using
set 2 (a) and the cost-function profile (b) in each training epoch.

FIG. 8. Pole trajectory of separable potential with energy-independent coupling (a), energy-dependent coupling withMsep > 0 (b) and
with Msep < 0 (c). The dashed line shows the pole’s trajectory and the dotted line separates resonances with virtual states.
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S-wave bound and virtual enhancement at the
threshold are possible for separable potential with
energy-independent coupling λ. The absence of a centrifu-
gal barrier makes it impossible to produce resonances with
attractive interaction [7]. This can be modified, however, by
allowing the coupling to be energy dependent [34].
Minimal number of conjugate poles are produced if we
let the energy dependence be

λ → ðE −MsepÞλ ð20Þ
where E ¼ p2=ð2μÞ with threshold at E ¼ 0. The param-
eter Msep is the zero of partial wave amplitude such
that when E ¼ Msep there is no scattering. The energy-
dependent coupling gives an S-matrix

SðpÞ ¼
�
pþ iΛ
p − iΛ

�
2
�
2ðp − iΛÞ2 − λπμΛ3ðE −MsepÞ
2ðpþ iΛÞ2 − λπμΛ3ðE −MsepÞ

�

ð21Þ
with the pole position at

p
Λ
¼ 1

1 − ζ

h
−i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðϵζ − 1 − ϵÞ

p i
ð22Þ

where we introduce a new set of dimensionless parameters
ζ ¼ πΛ3λ=4 and ϵ ¼ 2μMsep=Λ2.
Consider the case when the zero of amplitude is on the

scattering region, i.e., Msep > 0 or ϵ > 0. We get a
conjugate pair of poles provided that ζðϵζ − 1 − ϵÞ > 0.
This is true for the case of attractive potential, i.e., λ < 0 or
ζ < 0 and repulsive case when ζ > ð1þ ϵÞ=ϵ > 0. We
consider only the attractive case which is physically
meaningful for the discussion of resonance. Figure 8(b)
shows the trajectory of poles as ζ is varied. The conjugate
poles start at p ¼ −iΛ when ζ ¼ 0 and moves in the
opposite direction as ζ becomes negative. The pole remains
below the line jRepj ¼ jImpj when ζ > ζcrit where

ζcrit ¼
1

2

"
1þ ϵ

ϵ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ ϵ

ϵ

�
2

þ 4

ϵ

s #
< 0: ð23Þ

Here, we only have virtual state with width. If we further
make ζ negative, such that ζ < ζcrit, the pole will move
above the line and turns into a resonance pole. As ζ → −∞,
the pole approaches the point p ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μMsep
p

on the real
axis. To ensure that the zero will appear in the cross section,
we let the values of Msep to be within [0, 100 MeV].
The pole trajectory for Msep < 0 is more involved

compared to the previous case. Here, the resonance pole
can only be produced provided that −ð3 − ffiffiffi

8
p Þ < ϵ < 0,

otherwise ζ will have to be complex. From Fig. 8(c), we
start producing virtual state with widths when ζþ < ζ < 0
and then resonance when ζ− < ζ < ζþ where

ζ� ¼ 1

2

"
1þ ϵ

ϵ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ ϵ

ϵ

�
2

þ 4

ϵ

s #
< 0: ð24Þ

As ζ becomes more negative, i.e., ζv < ζ < ζ− where
ζv ¼ ð1þ ϵÞ=ϵ, the resonance pole will again cross the
equal-line and turn into virtual state with width. The two
poles will then merge on the zero of amplitude at p ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μMsep

p
and then split, producing one near-threshold

virtual state pole. This near-threshold pole can turn into a
bound state pole if ζ < ζb where

ζb ¼
1

2

"
1þ ϵ

ϵ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ ϵ

ϵ

�
2

−
4

ϵ

s #
: ð25Þ

We separate the validation dataset into three, the first one
is generated using the energy-independent coupling which
gives amplitude enhancement at threshold. The second and
third datasets are generated using the energy-dependent
coupling, one withMsep > 0 and other one withMsep < 0.
The last two datasets are capable of producing peak
structures above the threshold. Also, for convenience, we
restrict the third dataset, i.e., with Msep < 0, to produce
conjugate poles only. In each set, we choose a range of
cutoff parameter ðΛmin;ΛmaxÞ and generated 100, 000
amplitudes using different combinations of parameters.
We must point out that (19) and (21) have no background

branch cuts along the imaginary axis compared to S-matrix
of training data in (12) and (14). Instead, the validation data
has isolated second order pole at p ¼ iΛ. This might have
some repercussions on the predictive power of the trained
neural network when applied to the separable potential.

B. Validation of neural network model trained
using set 1

We now proceed to test our trained neural network using
the validation dataset. In particular, we want to investigate
if the network can generalize beyond the training set, i.e.,
we still get accurate predictions even if the validation set is
different from the training dataset. Note that if the vali-
dation set is just a subset of the training dataset, then we
expect that the accuracy of prediction should be high. We
also want to explore the region of applicability of the
trained neural network. We can asses both the ability of
the network to generalize and its applicability by changing
the value of cutoff Λ since this parameter controls the
position of the background singularity.
Consider first the accuracy of prediction with respect to

the energy-independent coupling set. From Fig. 9(a), we
obtain optimal accuracy in the cutoff region between 400–
1000 MeV despite that the background singularity of the
validation set is different to that of the training set. We can
say that, within this region, the neural network generalizes
beyond the training data in distinguishing bound and virtual
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state enhancements. Below 400 MeV, the difference
between the training and the validation background starts
to manifest as seen from the decrease in accuracy as the
cutoff is decreased. We also observe a decrease in accuracy
in the cutoff region above 1000 MeV. Here, increasing the
cutoff pushes the background far from the scattering
region; consequently, a bound or virtual near-threshold
pole enhancement becomes identical as we have discussed
in Sec. III.
It is interesting to find that the accuracy of prediction is

different in energy-dependent set as shown in Fig. 9(b) and
Fig. 9(c) even if the neural network is just distinguishing
resonance and virtual state with width enhancements for
both cases. This difference is probably due to the position
of the amplitudes zero,Msep. For the case ofMsep > 0, i.e.,
the zero is above the threshold, the second order pole
background in (21) can produce a boundlike enhancement
at the threshold. This is the reason why we get lower
accuracy in Fig. 9(b) below 400 MeV. In fact, the network
gives a bound state prediction even if there is no bound state
in the validation set. This is, however, suppressed in the
Msep < 0 case in Fig. 9(c) where the zero below the
threshold cancels the effect of the isolated background
pole. The absence of extra structure near the threshold
allows the network to distinguish a resonance with that of
virtual state with width.
The situation is reversed as we go to higher cutoff region.

This time, the Msep > 0 gives high accuracy in Λ >
600 MeV as shown in Fig. 9(b) compared to Msep < 0

in Fig. 9(c). If Λ is large, the resonance peak can go beyond
the center-of-mass energy range. For Msep < 0, the zero
below the threshold causes the cross section to monoton-
ically rise from some small value to some maximum at
Ecm ¼ 100 MeV. In the absence of peak, the structure for
resonance and virtual state with width becomes almost
identical. This is the reason why we have decreasing
accuracy in Fig. 9(c) as the cutoff increases. On the other
hand, for Msep > 0, the large Λ means that no boundlike
enhancement will appear at the threshold. The structure
between the threshold and the zero at E ¼ Msep can still be

used by the network to distinguish a resonance with a
virtual state with width even if the relevant peak goes
beyond the range of center-of-mass energy. This is the
reason why we have high accuracy in Msep > 0 validation
set in high Λ region.

C. Validation of neural network model trained
using set 2

For certain values of parameters, the training and
validation backgrounds can have similar forms. That is,
if we set η ¼ −2, the training background e2iδbg reduces
to ðpþ iΛbgÞ2=ðp − iΛbgÞ2 but with domain C=ð−i∞;
−iΛbgÞ ∪ ðiΛbg; i∞Þ. One may attribute the good perfor-
mance of our neural network to this similarity. We can test
this assumption by using the training set 2 in Table I where
η ¼ −2 is replaced with η ¼ 0. The accuracy of the
network trained using set 2 is shown in Fig. 10. Notice
that above 600 MeV, the results are all similar to the
performance of network trained using set 1 in Fig. 9. This
demonstrates that even if the validation dataset is not in the
training set, the neural network can still give high accuracy
of predictions. This also illustrates that the decrease in
accuracy as the cutoff increases as shown in Fig. 10(a) and
Fig. 10(c) is an intrinsic part of pole classification problem.
We pointed out in the previous subsection that the

difference in training and validation background manifests
in the low cutoff region. The presence of second order pole
in the background of validation dataset and the absence of
η ¼ −2 in the training parameter aggravate the situation.
This is seen as a drastic drop in accuracy in Fig. 10(b) and
Fig. 10(c) below 200 MeV. This means that in this region,
the accuracy of the networks prediction is sensitive to the
nature of background singularity.
We give a short comment on the network’s performance

on the shallow bound and virtual state produced by energy-
dependent set with Msep < 0. From the trajectory of poles
in Fig. 8(c), a near-threshold bound state or virtual pole is
always accompanied by another virtual pole. The latter pole
is much closer to the scattering region compared to the

FIG. 9. Accuracy of neural network model trained using set 1 with separable potential amplitude as input for different cutoff
parameters. (a) Performance with energy-independent coupling, (b) for energy-dependent coupling with Msep > 0 and (c) for energy-
dependent coupling with Msep < 0. Each horizontal bar correspond to 100,000 input s-wave cross section.
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accompanying virtual pole of (19) in Fig. 8(a). This makes
the classification difficult, i.e., accuracy is less than
50%, because the training S-matrix in (12) educates the
network only with a single near-threshold pole. This can be
improved by inserting an extra pole factor in (12) to
simulate this background virtual pole.

D. Application to nucleon-nucleon system

As a final validation, we use the partial wave analyses
and potential models of the Nijmegen group [35–38] as
input to our neural network. These models are fitted to the
nucleon-nucleon scattering data published between 1955 to
1992. They give the correct phase shifts at any laboratory
kinetic energy below 350 MeV. The fitting results are
summarized in Table III. Here, PWA93 corresponds to the
analyses of multienergy partial wave on the pp data, the np
data and on the combined pp and np database [36]. All
three analyses give an excellent fit of χ2=N ∼ 1 where N
denotes the number of scattering data. Nijm93 is the
Nijmegen soft-core potential model introduced in [37]
with NijmI as the nonlocal Reid-like and NijmII is the
local version. In the same paper, Reid93 is also introduced
which is a regularized Reid soft-core potential. All of these
contain the charge-dependent one-pion exchange tail.
Lastly, two meson-exchange is included in the extended
soft-core ECS96 model of [38].
Now, using the 1S0 and 3S1 phase-shifts of the mentioned

models, we generate the input amplitude on a center-of-
mass energy interval [0, 100 MeV]. We can say that within
the cutoff range from 400 MeV to 1, 000 MeV, our neural
network model can classify a bound-virtual enhancement
with 98% accuracy based on our analysis with separable
potential model. The resulting amplitude is then fed to the
neural network and the results are shown in Table IV. All
the predictions are correct, i.e., the network was able to
identify that the 1S0 partial wave threshold enhancement is
due to the presence of a virtual state pole while that of 3S1 is
due to a bound state pole. It is interesting to point out that
the small differences among the models do not affect the
network’s prediction. This means that if the input data falls

within some error band, the neural network can still give
consistent classification.

VI. CONCLUSION

This study set out to demonstrate how deep learning can
be applied in classifying the nature of pole causing a cross
section enhancement. The method is straightforward in a
sense that we can use a simple S-matrix parametrization to
generate all the possible line shape that can emerge in the
scattering region. We have shown that our neural network
model gives high accuracy of more than 90% in the
acceptable range of cutoff parameter (400–800 MeV).
This suffices to have an accurate prediction on the
nucleon-nucleon scattering data. Also, the study shows
that a neural network trained using a simple S-matrix
parametrization is able to generalize beyond the training
set. This is demonstrated when we validated our neural
network using separable potential models and the nucleon-
nucleon Nijmegen models. However, there are limitations
in the applicability of deep learning for enhancement
classification. One example is the noticeable decrease in

FIG. 10. Accuracy of neural network model trained using set 2 with separable potential amplitude as input for different cutoff
parameters. (a) Performance with energy-independent coupling, (b) for energy-dependent coupling with Msep > 0 and (c) for energy-
dependent coupling with Msep < 0. Each horizontal bar correspond to 100, 000 input s-wave cross section.

TABLE III. χ2=N for the Nijmegen partial wave and potential
models in the 0–350 MeV laboratory frame energy interval. Data
for PWA93, NijmI, NijmII, Nijm93, and Reid93 are taken from
[37] and ESC96 is from[38].

PWA93 ECS96 NijmI NijmII Nijm93 Reid93

Npar 39 14 41 47 15 50
χ2=N 0.99 1.26 1.03 1.03 1.87 1.03

TABLE IV. Neural network’s prediction with Nijmegen mod-
el’s amplitude as input. We get the same result whether we use the
network trained using either set 1 or set 2.

PWA93 ECS96 NijmI NijmII Nijm93 Reid93
1S0 virtual virtual virtual virtual virtual virtual
3S1 bound bound bound bound bound bound
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accuracy if the cutoff parameter is too large. For the bound-
virtual classification, the effect of background is important
to distinguish the two structures. While for virtual-
resonance classification, the peak structure tend to appear
beyond the center-of-energy range if the cutoff is very
large, making the classification difficult.
It is important to extend our approach to coupled-channel

case since most of the exotic phenomena are believed to be
generated from coupled-channel interactions. Although the
current study deals with single-channel scattering, the
findings can still be used in coupled-channel analysis. In
particular, we found that if the validation cutoff is too small,
then the neural network’s prediction becomes sensitive to the
nature of background singularity. This observation should
extend to the coupled-channel case and it is appropriate to

explore other possible background parametrization such as
the one used in [39,40]. This will be done elsewhere.
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