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Decays D — ntne'v, and D, - 7" n~e™ v, serve as probes that check the existence of constituent ¢g
components in the wave functions of scalar mesons decaying into z*z~. There exists a great deal of
concrete evidence in favor of the exotic four-quark nature of light scalars. At the same time, the further

expansion of the area of the ¢g?> model validity for light scalars on ever new processes seems extremely

interesting and important. We analyze the BESIII and CLEO data on the decays D™ — «

tr7 ey, and

Dy — n"rxeTv, and show that the results of these experiments together can be interpreted in favor of the
four-quark nature of light scalar mesons ¢(500) and f(;,(980). Our approach can also be applied to the
description of other similar decays involving light scalars.

DOI: 10.1103/PhysRevD.102.016022

I. INTRODUCTION

In the works [1,2], a program was proposed for studying
the ¢(500), f1(980), and a,(980) resonances in semi-
leptonic decays of D and B mesons. These decays provide
direct probe of constituent two-quark components in the
wave functions of light scalars [1,2]. So for the decays
of D}, D°, and D' mesons we have: D} — ssetv, —
[(500) + f0(980)]e*v, » ntnetv,, D°—dietv, —
ay(980)e*v, » n netv,, DT —ddetv, — a)(980)e v, —
netv,, and Dt —dde*v, — [6(500)+ f(,(980)]e v, —
ztn~e"v,. The development of this program [1-4] resulted
in evidences in favor of the exotic nature of light scalar
mesons. Certainly, there are many theoretical works in
which the semileptonic decays of D mesons are explored
from many different aspects, see, for example, Refs. [5-9]
and references herein.

The available data on the branching fractions of the
semileptonic decays DY - ntn~etv, and D™ -zt r"eTu,
involving light scalar mesons [10-12] are collected in
Table 1. The CLEO and BESIII collaborations also pre-
sented data on the shapes of the z" 7z~ S-wave mass spectra
in these decays [10,11]. In this paper, in the light of the
program [1,2], we analyze the recent BESIII data [11] on
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the decay D" — zz~e" v, together with the CLEO data
[10] on the decay D] — x*n~e*v,. We show that the
results of these experiments on the 7z~ mass spectra can
be interpreted in favor of the four-quark nature of light
scalar mesons.

This paper is organized as follows. In Sec. II we present
the general formulas for the semileptonic decay widths of
D} and D' mesons into light scalars. In Sec. III we
consider the production of the mixed #(500) — f;,(980)
resonance complex which proceeds via direct couplings
of ¢ and f, with gg pairs created in semileptonic decays
of D' and D} mesons. We find a sharp contradiction of
this production mechanism with the data on the 7z~ mass
spectra in the D™ — 777~ e" v, decay. Section IV is devoted
to an analysis of the four-quark production mechanism of
the ¢ and f states. Within the existing data, this mecha-
nism seems to be the most real. This section also contains
an important remark about the dip/peak manifestation of
the f,(980) resonance.

II. SEMILEPTONIC DECAY WIDTHS

First of all, we write the differential width for the D™ and
Dy decays into z*z~e"v, in the form

dZFquﬁ(SﬁﬂJrﬂ')e*De (S, q2)
dv/sdq?

G%‘lchlz 3 2 L N 2\/5
= 2473 pzz*n‘(mD;,’q ’s)|f+q(q )l ju
D 2
XIFPS o (5)Ppar(9) 1)
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TABLE 1. Branching fractions (8) and widths (I' = B/zp, where 7 is the D lifetime [12]) of semileptonic decays
of the D} and D' mesons.

Decay B (x107) Collaboration I (x108 s71)
D - f,(980)e*v,, f1(980) —» ntx~ 2031 CLEO [10] 39.7£6.3
DT - 6(500)e*v,, 6(500) - xta~ 6.30 £ 0.43 +0.32 BESIII [11] 6.06 £ 0.51
Dt = £,(980)eTv,, [(980) - ntz~ <0.28 BESII [11] <0.27

where the index ¢(g) = d(d),s(5); D), = D*, D5 = D{,
next we use the notation that is convenient; s and g> are
the invariant mass squared of the virtual scalar state S
(or the 7t 7~ system) and the e*v, system, respectively; G
is the Fermi constant, |V, | is a Cabibbo-Kobayshi-
Maskawa matrix element (note that |V |/|V.q4| ~20.92
[12]); p o+ .- 1s the magnitude of the three-momentum of the
#tn~ system in the D meson rest frame,

@ M(mp;, +V/s)* =1/ (2mp. ).

(2)

and  ppop-(s) = (1—4m2,/s)"/>.

o D,
approximation, the form factor f_“(g*

In a simplest pole

) has the form

P l()

2 =1 G)

where my, in principle, can be extracted from the data

by fitting [10]. The amplitude F (s) describes
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FIG. 1. The solid curves show the functions ®(mp-,my, s) at

my =mp: =242 GeV and D(mps,my,s) at my = mp: =
2.46 GeV. The vertical dotted lines indicate the zz~ and the
K+ K~ threshold positions.

the formation and z*z~ decay of the virtual scalar state
S produced in the qu — gtn~ e, decay. For example,
in case of direct production of a single scalar resonance,
D

| qqis_ﬂﬁﬂ- (S) ‘zprﬁﬂ:_ (s):\/EFS—m*n" (s>/|DS(S) |2’ where
[y pip-(s) is the S — 777~ decay width, 1/Dg(s) is the
propagator of S, and the amplitude normalization (in this
case) is hidden in f.“(0). The z*n~
distribution is given by

invariant mass

dFD&—»(S—»n*n’)e*ue (S)
a5
|ch|2

2
72 O LDy iy, 5) 2L

|Fqc,ﬁsﬁ,ﬁ ()PP (5), (4)

where

(. =5 P (mpe 4%, 5)
O(mpr ,my,s) = o dq*. (5
(mD(,Z] ny S) A |1 _ qz/milz q ( )

Figure 1 illustrates the energy dependence of <I>(th_1,

my,s) for D and Dy decays. Note that this function
notably enhances the 7z~ mass spectrum as /s decreases.

I11. ¢4-PROBE IN OPERATION

We now consider the production of the mixed ¢(500) —
f0(980) resonance complex (briefly ¢ and f;) which
proceeds via direct couplings of ¢ and f, with gg pairs
created in semileptonic decays of D and DY mesons (see
Fig. 2). This mechanism is the probe that verifies the
existence of the corresponding constituent gg component
in the wave function of a scalar meson. There exists a great
deal of concrete evidence in favor of the exotic four-quark
nature of light scalars [13], see also Ref. [14]. Reviews of
the current situation can be found, for example, in
Refs. [3,4,15,16]. At the same time, the further expansion
of the area of the ¢g*>g* model validity for light scalars on
ever new processes seems to us extremely interesting and
important.

The transition amplitude gg — S — z 7z~ corresponding

D Jdirect ( )an d

to the indicated mechanismis denoted by F * ‘g
qq—»S >

write it in the form
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FIG. 2. Model of the D™ — (¢/fy = nTn")eTv, and D} — (6/f¢ = nt7n)etv, decays.
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(6)

where r(r') = o, fo; 945, and g,,+,- are the coupling con-
stants, D, is the inverse propagator of the unmixed scalar
resonance r with the mass m,, and Il,, = II., is a non-
diagonal element of the polarization operator. D, has the
form

D,=D,(s) =m}—s+ > [Rellf’(m?) —TIg(s)], (7)
ab

where T1¢%(s) stands for the diagonal matrix element of the
polarization operator of the resonance r corresponding to
|

i7" (s
D direct es ()

the contribution of the ab intermediate state (z7~, %29,

K*K~,K°K°, etc). Rell?(s) is defined by the singly
subtracted at s = 0 dispersion integral of

ImIT (s) = /5T, 05 (8) = N, i%é’;pab(s), (8)

where g, is the coupling constant of r with ab, p,,(s) =

\/s - mgﬂ \/s - miz)z/s, mflf) =m, +my [heres > msbr)z],
and n,, = 1 (1/2) for different (identical) decay particles
ab, respectively. We also have

9ra
I, =0,,(s) = Cp+ Y ZZLI(s),  (9)
ab YGrab

where C,. being the resonance mixing parameter. The
determinant of G, is A = DDy, — Hifo. Thus the ampli-
tudes for the D™ and Dy decays have the form:

Fd[i—»S—m*n_ (S) = m {gdfia [Dfo (S)gzm*n" + Ho‘fo <S)gf0n:+rr’] + gd[ifo [DU(S)gfoﬂJrn:’ + Hafo (s)gzm*ﬂ’]}’ (10)

i7" (s
Dy direct e’s (s)

F.v§—>S—>7z+7r‘(s> = W{gsiv[Dfo (S)gmz*rz‘ + Hafo (S)gfon:*n"] + Yss1, [Da(s)gforﬁn:‘ + Hzrfg (s>gan:+n:‘]}' (11)

Here, we use the expressions and numbers from Ref. [17]
(corresponding to fitting variant 1 from Table I therein)
for propagators 1/D,(s) and 1/Dy (s) of ¢(500) and
f0(980) resonances, the polarization operator matrix
element I, (s), the 63 (s) phase of the elastic background
in the S-wave zz scattering, g,,+,- and g5 .+, coupling
constants, etc.

Note that our principal conclusions are independent of a
concrete fitting variants presented in Refs. [17-19], con-
taining the excellent simultaneous descriptions of the phase
shifts, inelasticity, and mass distributions in the reactions
arw — nr, nn — KK, and ¢ — 72°72%. Also note that the
expressions in square brackets in Egs. (10) and (11) are real
for /s below the K™K~ threshold.

Consider the variant corresponding to the following
simple choice of direct coupling constants ¢ and f,
with ¢g:
9536 = 0, Yade = gO/\/§7

Gaar, = 0, Yssfy = Y0-

(12)

Further, without loss of generality, we put gy = 1. The
normalization constants fﬁ"+ (0) and f27(0) in (3) are
assumed to be equal. Then, substituting (10) and (11) into
(4) and integrating over the intervals 2m, < ./s <
1.4 GeV and 0.6 GeV < /s < 1.2 GeV, respectively,
we get the ratio of the widths
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(a) The points with the error bars are the CLEO data [10] on the z"z~ invariant mass distribution in the decay D] —

atz~etv, dominated by the f((980) resonance production. The dashed curve shows the total contribution from three noncoherent
background processes estimated by CLEO [10]. (b) The dashed curve represents the smoothed BESIII histogram with 0.017-GeV-wide-
step for the ztz~ S-wave distribution extracted by BESIII from the treatment of D™ — z"z~¢™ v, events [11]. Uncertainties in the
BESIII data can range from 10% to 20%. The K (s) veto region around 0.5 GeV [11] is shown by the dotted curve. The solid curves in (a)

and (b) correspond to the model described by Egs. (10)—(12).

Doiontwen o560 (13)
FD*—m*ﬂ’e've
Thus, we have satisfactory agreement with the data given in
Table I, according to which this ratio is equal to 6.55 £ 1.18.
However, Fig. 3 indicates that the joint description of the
#tn~ mass spectra in D} - ztx7ety, and DT —
atn~etv, decays sharply contradicts the BESIII [11] data
at /s <1 GeV. These data demonstrate a smooth and
wide #tz~ spectrum in the decay D™ — ztn~eTv, [see
Fig. 3(b)], due to, according to the authors of Ref. [11], the
6(500) resonance production. It is interesting that this
contradiction is caused by the small mass and large width
of the unshielded o resonance [12,17-21], i.e., its main
features. The factor @ (m D, M §) in (4) more enhances the

#tn~ mass spectrum in the near-threshold region (see
Fig. 1). Note that the fundamental role of the chiral shielding
in the fate of the ¢(500) meson was demonstrated in the
linear ¢ model [22] (which turned out to be a nontrivial
realization of QCD in the low-energy region) using examples
of the reactions zz — zz and yy — zz [20,21].

But what is the sensitivity of the mass spectra shown
in Fig. 3 to possible deviations of g5, and g,z from zero?
Let the values of these constants are in the intervals:

—0.2 < g5, < 0.2, —0.2 < g4z7, <02
[compare with Eq. (12) at gy = 1]. Then the ratio
Cpi—rtaet,/TD*—ztzety, Will be in the range from 5
to 7. From Egs. (10) and (11) it can be seen that the

difference of g, from zero affects only the amplitude
D direct

F -
s§—>S—rtn

(s) and the difference of gz, from zero affects

only the amplitude F 5{; f;ﬁc;+ﬂ_ (s). As a result, it turns out

that the mass spectrum in Fig. 3(b) varies slightly only in
the f,(980) region. In most cases, the expected small peak

from f,(980) resonance appears in it. Thus, a contradiction
with the data presented in Fig. 3(b) remains completely
throughout the entire region /s < 1 GeV. Difference of
Js50 from zero worsens the description of the 7z~ mass
spectrum in the decay D} — ztz"eTv, in the f((980)
region shown in Fig. 3(a). Worsening is associated with a
noticeable rise of the left wing of the f((980) resonance.
But a particularly significant effect of ¢(500) arises near the
#tn~ threshold when the g, ~—0.2. The #tz~ mass
spectrum in the decay D] — ztn~e"y, at /s < 0.5 GeV
turns out to be similar to one in the decay D™ — ztz~ey,
in the same region of /s [see Fig. 3(b)]. Such a manifes-
tation of the ¢(500) resonance in D — ztzety, is
extremely improbable.

So, we discard the above-described model of the crea-
tion of ¢ and f, states due to the presence of dd
and s5 components in their wave functions, respectively.
Figuratively, we can say that the gg probe existing in
semileptonic (D, DY) — ztn~e*v, decays does not find,
to a first approximation, the corresponding gg components.

It was directly shown in Ref. [1] that the transition s§ —
6(500) is negligible compared to the transition s5 —
f0(980). In the work [1], it was also shown that the intensity
of the s3 — f,(980) transition is about thirty percent of the
intensity of the s5 — n, (where n, = 55), g3, /G5y, 0.3,
contrary expected equality of these intensities in the chiral-
symmetric models like the Nambu-Jona-Lasinio one. The
above analysis obviously supports the conclusion made in
Ref. [1] that the decay D} — ztz~eTv, testifies to the
previous conclusions about the dominant role of the four-
quark components in ¢(500) and f;(980) mesons.

IV. FOUR-QUARK PRODUCTION MECHANISM

Let us now consider the four-quark ¢(500) = uitdd and
£0(980) = s5(uit 4+ dd)/+/2 meson production which is
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FIG. 4.

symbolically depicted in the diagrams of Figs. 4 and 5.
(We emphasize that in the processing of the data we use, of
course, the resonance complex of the mixed states ¢ and f,
states [17-19].) These are ideal g>g* states of the MIT bag
with superallowed decays ¢ — zz and f; — KK [13]. On
the contrary, the decays ¢ — KK and f, — zx are sup-
pressed for these states by the Okubo-Zweig-lizuka (OZI)
rule [23-27]. Due to the small mass of o, the OZI
suppressed decay ¢ — KK does not play any role at all.
At the same time, the main decay of f,(980) under the KK
threshold is precisely the decay f,(980) — =z due to a
small ¢ — f, mixing. Thus, the decay Dy — z"x"eTv,,
owing to the OZI-suppression of the ¢ resonance creation
[see Fig. 4(a)], is dominated by the f;(980) resonance
production [see Fig. 4(b)] followed by its decay into
atx™: D - fo(980)eT v, - ntnet,.

In the decay D™ — n"n~e*v,, production of the four-
quark states ¢(500) and f(980) is not suppressed by the
OZI rule, see Fig. 5, and it would seem that both states
should manifest themselves as enhancements in the 7"z~
mass spectrum. However, the remarkable fact confirmed in
many reactions is that when there are no valence s5 pairs
in the generating channel, the f;,(980) resonance manifests
itself (each time) in the zz mass spectrum not in the
form of a peak, but in the form of a sharp dip or sharp ledge,
or a completely insignificant fluctuation. The reason for
this is the destructive interference of the f,(980) contri-
bution with a large and smooth background, which is
present in the zz decay channel and has a phase of ~90°.
Striking examples here are the data on the reactions
ar — nx [28,29], pp — p(zx)p [30], J/w —» wxtn~
[31], T(10860) — Y(1S)z*z~ [32], and, of course, the

ot
Ve
M:;J_» o(500)
> d
c d i
Dt _ |
d d w
> d
(a)

FIG. 5.

et
+ e
W £o(980)
> s
D c S a(d
s 3 3 C: u(d)
> S

Production of the four-quark ¢(500) and f,(980) mesons in Dy decays.

discussed new BESIII data on D" — ztzn~e'v, [11] (see
also in this connection a comment in Ref. [33]).

And vice versa, when valence s5 pairs are present in the
generating channel, such as in the reactions K™ p —
= (AZY) [34], J/y = ¢pntn [35], DY - ntnta
[36], and D} — ntz~etv, [10], then a sharp peak is
observed in the f,(980) resonance region.

The described picture of the creation of four-quark
resonances in the D™ —»zTz"eTv, and D] —» 7tz ey,
decays can be effectively realized in the language of
hadronic states, see Figs. 6 and 7. The mechanisms
indicated in Figs. 6 and 7 imply that the S-wave ztz~
system can be produced via seed four-quark fluctua-
tions dd — =z, dd — KK, and s5 — KK, which are then
dressed by strong interactions in the final state. According
to Figs. 6 and 7, we write the amplitudes F2. (s)

R dd—S—ntn~
and F ?‘_) spin(8) from Eq. (4) in the form

Fl st (8) = Az a1+ Lo (5)TO(5)]

+ dgaxoro I gogo () Tgogozt o~ (8),  (14)

F??Jr—fsqn‘n‘ (S) = j’siKOI_(O [IKJrK* (S) + IKOI_(O (S)]

X TKOI‘(O_)”+”—(S), (15)

where T{(s) = Tyt g —pin-(8) + 3 Tpop0_ 1 (5) is the S-
wave amplitude of the reaction zz — zz in the channel
with isospin / = 0 composed of the amplitudes related to
individual charge channels; T9(s)=[10(s)exp(2i5)(s))—1]/
(2ipy+-(s)), where n)(s) and &)(s) are the corresponding
inelasticity and phase of zz scattering; T gogo_, ,+,-(S) is

6+
+
w £0(980)
> d
c d 3
Dt N |
d d S
> d
(b)

Production of the four-quark ¢(500) and f,(980) mesons in D decays.
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FIG. 7. The semileptonic decay Dy — nn~e'v,.

the amplitude of the S-wave transition K°K* — z%7~;
Tx+k-—nr(8) = Tgogo_z+ - (8) [17-19,37,38]. Functions
1,2(s) (where aa = ntn~, K*K~,K°K®) are the ampli-
tudes of the one-loop two-point diagrams describing aa —
aa — (the scalar state with a mass equaling +/s) transitions
in which initial aa pairs are produced by ¢gg sources
described by coupling constants 4,5, Above the aa
threshold, 7,;(s) has the form [17]

1 n1+pa[1(s)>, (16)

Iat?z(s) :Ctlﬁ +pa&(s)(i p 1-,0 —(S)

17.5
(a)

+ + =+
Di—»nm e ve

—_
]

12.5

Events/(0.025 GeV)
N L
[6)] o

n
[ IS

0
0.6 0.7 0.8 0.9 1
Vs (GeV)

FIG. 8.
Egs. (14)—(16).

The same as in plots (a) and (b) in Fig. 3, but the solid

where p,;(s) = \/1 —4m?/s (we put m = m,+ and take
into account the mass difference of KT and KO); if
\/E < 2mg, then pl(f((s) - i|pKI_((S)|; Cﬂ+ﬂ_ and CK*K‘
Cyogo are subtraction constants in the loops.

For reasons of SU(3) symmetry, we will assume
that all seed coupling constants in Eqgs. (14) and (15) are
the same: A;7,+,- = dgxop = Ak~ = Agaxoio. For rea-

DY +
sons of SU(4) symmetry, f*(0) = f% (0). Then, for
example, the product fﬁ“+ (0)Azx050 will determine the
absolute normalization of the widths I'ps_,;+,-,+, and

20 D'sr'ne’ve  (b)
3
1] 15 )
~ " N\
5 i
2 10 \\
2 \
Y5
\
\
0 Ik S
02 04 06 0.8 1 12 14

Vs (GeV)

theoretical curves correspond to the model describable by
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Cptoptzety, But the ratio Tpeipory /[Tptptzmety,
does not depend on this parameter.

Since the amplitudes 79(s) and Tgogo_,+,-(s) are
known [17-19] from the analysis of the data on the
reactions 7z — zw, 7w — KK, and ¢ — 7°2°, then we
have only two parameters C,+,- and Cgix- to describe
the #tx~ mass spectra in the decays Dt — ztz~etr,
and D} — n7n"eTv, as well as the value of the ration
Upiortaets, /T D watzety, In agreement with experiment.

The choice of C,+,- = 1.8 and Cg+x- = 1.0 provides a
good simultaneous description of the 7z~ mass spectra in
the decays D™ - ntn~e*v, and DY - ntn~etv,, see
Fig. 8, and gives the ratio I'pi_ oty /Tpt gt pmety, =
6.55, which is in excellent agreement with the data. Let us
note that Fig. 3(b) demonstrates a sharp contradiction with
the BESIII data in all region of /s for the ¢g production
mechanism, which is discussed immediately below

Eq. (13). In contrast, Fig. 8(b) shows a good agreement
with the data in the case of the creation of four-quark
resonances.

In summary, in the light of the program [1,2], we have
analyzed the recent BESIII data [11] on the decay Dt —
atn~ ey, together with the CLEO data [10] on the decay
D} — ntn~e'v, and showed that the results on the 7zt 7~
mass spectra of these experiments together can be inter-
preted in favor of the four-quark nature of light scalar
mesons ¢(500) and f((980). Our approach can also be
applied to the description of other similar decays involving
light scalars.
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