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We perform an analysis on the χcJ polarization in the ψ 0 radiative transition and propose to use it to probe
the mechanism of χcJ decay to the baryon-antibaryon pairs in experiment. To start with the unpolarized
eþe− collisions, we follow the polarization transfer to the χcJ states, and estimate the degree of χcJ
polarization. We show that the ΛΛ̄ pair has rich spin configurations, which are beneficial for us to study its
decay asymmetry parameter and measure the helicity amplitudes. The experimental observables to reveal
the χcJ and ΛΛ̄ spin polarization are presented.
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I. INTRODUCTION

With a huge statistics of ψ 0 sample available at eþe−
collisions, the baryonic decays of χcJðJ ¼ 0; 1; 2Þ states are
extensively studied at experiments with a motivation to test
χcJ decay mechanisms [1–4], and their branching fractions
are measured at a few percentage precision [5]. For the
decays to the octet baryon final states, all measurements
have established the fact that χc0 state has larger branching
fraction than other two states. This indicates a significant
deviation from the expectation of helicity selection rule
(HSR) [6], which predicts the vanishing branching fraction
for χc0 decay to baryon antibaryon pairs if one neglects the
quark mass bounded in the baryons.
The measurements put a great challenge to the theoreti-

cal understanding of χcJ property and decay mechanisms.
The earlier investigation on the color singlet contribution
was based on the perturbative QCD (pQCD) theory, and
predicted nonvanishing branching fractions for the χc1,
χc2 → ΛΛ̄ decays, but the values are too small as compared
with the measured ones [7]. The contribution from the high
order of Fock states has been investigated in the pQCD
framework. It was argued that the contribution from the
color octet component is not suppressed as compared to the
color singlet contribution [8]. Nonetheless, the sum of color
singlet and octet contributions only accounts for partial
branching fraction. For example, it predicted about 3% and
18% amount of measured branching fractions for χc1 and
χc2 decaying to ΛΛ̄ final states [8], respectively. To explain
the HSR evasion in χc0 decays, the long distance contri-
bution has also been estimated based on the charm hadron
loop [9,10], and other phenomenological model, such as

the quark creation model and exchange of intermediate
states, were also investigated [11].
In order to test these decay models, we propose to

use the polarization information as a probe to figure out the
χcJ decay mechanism. The possible polarization compo-
nents of χcJ states can be described with a set of multipole
parameters in their spin density matrix, with the highest
rank equal to 2J, here J is the spin of χcJ states. Except
for the χc0 state, the χc1 and χc2 provide us with both the
even and odd polarization. The degree of polarization
carries the dynamical information of χcJ decaying to the
baryon antibaryon pairs. Especially, the subsequent
hyperon weak decay,Λ→pπ−ðΛ̄→ p̄πþÞ, naturally serves
as spin polarimetry, which can be used to express the χcJ
polarization.
The χcJ decays to hyperon antihyperon pair provides a

complementary laboratory to study the hyperon properties.
Compared to the hyperon production from J=ψ decays,
the branching fraction is suppressed by one order of
magnitude in the χcJ decays. But χcJ decay offers more
spin configurations so that the hyperon pair has a rich
degree of freedom of polarization. Employing the polari-
zation transfer in χcJ decays is beneficial to studies of
hyperon properties, such as the measurement of hyperon
decay asymmetry parameters and test of the spin quantum
correlations in hyperon decays [12,13].
We start with construction of a spin density matrix

for ψ 0 in Sec. II, whose form is well known due to the
fact that the particle ψ 0 couples to the virtual photon.
But we would like to recapitulate it for the sake of self-
contained description. A polarization analysis for the
involved particles is performed in Sec. III. We formulate
the ΛΛ̄ polarimetry in Sec. IV, and some polarization
observables are given in Sec. V. The last section is
devoted to some applications, such as the measurements
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of ΛΛ̄ asymmetry parameters and the helicity amplitudes
for χcJ decays.

II. SPIN DENSITY MATRIX

We consider the χcJ particles produced from the ψ 0
radiative transition, ψ 0 → χcJγ, and we restrict ourself to
the case of ψ 0 production from the unpolarized eþe−

collisions. The subsequential decay of χcJ → ΛΛ̄ will
serves as a polarimetry to measure the χcJ polarization
due to the weak decay of Λ → pπ−ðΛ̄ → p̄πþÞ, here
hyperon is characterized with the asymmetry angular
distribution IðθÞ ∝ 1þ PαΛ cos θ, here θ is the polar angle
for proton in the Λ helicity system, and the asymmetry
parameter αΛðαΛ̄Þ is measured with high precision recently
[14], and P measures the ΛðΛ̄Þ polarization.
Studies of spin transfer in the charmonium sequential

decays were once performed with the method of covariant
tensor formalism by using the spin folding law [15–18]. It
is also convenient to employ the method of helicity
amplitude to perform the polarization analysis [19,20],
especially for the decays involving photons. In this way, the
decay amplitude for each step decay can be described with
the helicity angles Ωiðθi;ϕiÞ and helicity amplitude as
shown in Table I. The helicity angles are defined in the
helicity system, which is shown in Fig. 1:

(i) eþe− → ψ 0 → χcJγ: The helicity system of z-axis
for this decay is taken along the eþ flying direction,
and angles ðθ0;ϕ0Þ are taken as the χcJ particle
moving direction in the eþe− center-of-mass (CM)
system.

(ii) χcJ → ΛΛ̄: The azimuthal angle ϕ1 is the angle
between the χcJ decay plane and χcJ production
plane. If the ΛΛ̄ momenta are boosted to the χcJ rest
frame, they are still located in the χcJ decay plane,
and then we take θ1 as the angle between the Λ
momentum in the χcJ rest frame and the χcJ
momentum.

(iii) Λ → pπ−: The azimuthal angle ϕ2 is the angle
between the Λ production and decay planes. The
polar angle θ2 is taken as the angle between the
proton momentum in the Λ rest frame and the Λ
momentum in the χcJ rest frame.

(iv) Λ̄ → p̄πþ: The azimuthal angle ϕ3 is the angle
between the Λ̄ production and decay planes. The
polar angle θ3 is taken as the angle between the
antiproton momentum in the Λ̄ rest frame and the Λ̄
momentum in the χcJ rest frame.

The spin density matrix (SDM) encodes complete polari-
zation information of a particle. Let us consider construction
of a SDM for the final particles of a given decay, e.g.,
AðJmÞ → Bðp⃗; λbÞ þ Cð−p⃗; λcÞ. The dynamical informa-
tion is characterized by the decay matrix elements,

Mλb;λc ¼ hp⃗λb;−p⃗λcjT jJmi; ð1Þ

where J is the spin of parent particlewith magnetic quantum
numberm, and λb, λc denote helicities of two final particles,
and the decay matrix M is defined with the transition
operator T between the final and initial states. The SDM
of final states is defined in the helicity space jλbi ⊗ jλci as
ρf ¼ jλbλcihλbλcj. It relates to the SDMof initial particle, ρi,
by the decay matrix as [21]

ρf ¼ MρiM†: ð2Þ
Hereρf=i is normalized to the unpolarized decay rate, and the
decay matrix is expressed with the helicity amplitude

M ¼ NJDJ�
m;λb−λcðϕ; θ; 0ÞHλb;λc ; ð3Þ

where NJ is a normalization factor, Hλb;λc ¼
4π

ffiffiffi
w
p

q
hJmλbλcjT jJmi is helicity amplitude with mass w

for the parent particle A, and DJ
i;jðϕ; θ; 0Þ is the Wigner

D-function with helcity angles θ and ϕ for final stateB orC.
Here we take the convention of two arguments, since
rotation of helicity system only needs two successive
rotations for the initial particle to overlap with that for the
final state particles. Some symmetry constraints, such as the

FIG. 1. Definition of helicity system and helicity angles for
each decay in the sequential decay ψ 0 → χcJγ, χcJ → ΛΛ̄ →
pp̄πþπ−.

TABLE I. Definition of helicity angles and amplitude for each
decay, and λiði ¼ 1;…; 6Þ denotes the helicity of a given particle
ahead it.

Decays Angles Amplitudes

ψ 0 → χcJðλ1Þγðλ2Þ Ω0 ¼ ðθ0;ϕ0Þ AðJÞ
λ1;λ2

χcJ → Λðλ3ÞΛ̄ðλ4Þ Ω1 ¼ ðθ1;ϕ1Þ BðJÞ
λ3;λ4

Λ → pðλ5Þπ− Ω2 ¼ ðθ2;ϕ2Þ Fλ5

Λ̄ → p̄ðλ6Þπþ Ω3 ¼ ðθ3;ϕ3Þ Gλ5
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parity conservation and identical particle symmetry, will be
imposed on the independent helicity amplitude in the
following analysis.

A. ψ 0 particle

We consider the ψ 0 particle produced from the unpolar-
ized eþe− collisions, so the SDM for eþe− pair is reduced
to an unity matrix, and the quantization axis is chosen as the
z-axis of eþe− CM system, so the helicity angles for ψ 0 are
fixed toΩ ¼ ð0; 0Þ. The eþe− pair couples to the ψ 0 particle
via a virtual photon, which conserves the eþe− helicities.
This requires the helicity λ−ðλþÞ for e−ðeþÞ satisfying
λ ¼ λþ − λ− ¼ �1, and contribution from helicity ampli-
tude with λ ¼ 0 is negligible. The element of ψ 0 SDM is
written as

ρλ;λ0 ðψ 0Þ ¼ 1

2

X
m¼�1

D1�
m;λð0; 0; 0ÞD1

m;λ0 ð0; 0; 0Þ

¼ 1

2
diagf1; 0; 1g: ð4Þ

It is interesting to note here that the SDM deviates from the
unit matrix, which implies some degrees of polarization for
ψ 0 particles produced from the unpolarized eþe− collisions.
In experiments for massive spin-1 particles, it is some-

times convenient to use the spin operator with the 3 × 3
traceless matrix Siði ¼ x; y; zÞ in Cartesian system to
define the vector polarization P⃗ ¼ hS⃗i and the tensor
polarization

Tij ¼
1

2

ffiffiffi
3

2

r �
hSiSj þ SjSii −

4

3
δij

�
; ð5Þ

where h…i denotes taking average in the ψ 0 spin space.
Using the ψ 0 SDM as given by Eq. (4), one has

Px ¼ Py ¼ Pz ¼ 0, Txx ¼ Tyy ¼ − 1

2
ffiffi
6

p , and Tzz ¼ 1ffiffi
6

p .

This suggests that the ψ 0 produced in eþe− collisions be
only the tensor polarized, with polarization degree

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
xx þ T2

yy þ T2
zz

q
¼ 1=2. Of the most interesting is

that this polarization can be transferred to the ψ 0 (or J=ψ)
daughter particles, as having been observed, the ΛðΛ̄Þ
transverse polarization in the ψ → ΛΛ̄ decay [14].

B. χ cJ states

Spin density matrix of χcJ states describing their pro-
duction from the ψ 0ðmÞ → χcJðλ1Þγðλ2Þ decay can be
calculated in a straightforward way using Eq. (2), which
is written as

ρλ1;λ01ð χcJÞ ∝
X

m;m0;λ2

ρm;m0 ðψ 0ÞD1�
m;λ1−λ2ðϕ0; θ0; 0Þ

×D1
m0;λ0

1
−λ2

ðϕ0; θ0; 0ÞAðJÞ
λ1;λ2

AðJÞ�
λ0
1
;λ2
; ð6Þ

with J ¼ 0, 1 and 2 for three χcJ states, respectively. Here

the helicity amplitude AðJÞ
λ1;λ2

contains the dynamical infor-
mation for the transition ψ 0 → χcJγ. It was argued that the
electric dipole dominates this transition, and it was con-
firmed by the BESIII measurement [22]. Hence, the helicity

amplitudes AðJÞ
λ1;λ2

are chosen to satisfy the E1 transition
relations [23], such as

Að1Þ
1;1 ¼ Að1Þ

0;1 for χc1;

Að2Þ
2;1 ¼

ffiffiffi
2

p
Að2Þ
1;1 ¼

ffiffiffi
6

p
Að2Þ
0;1 for χc2: ð7Þ

This charmonium transition conserves the parity, and helicity

amplitudes satisfy the relationsAðJÞ
−λ1;−λ2¼ð−1ÞJAðJÞ

λ1;λ2
. Sowe

haveAð0Þ
0;−1 ¼ Að0Þ

0;1 for the χc0 final state, andA
ð1Þ
−1;−1 ¼ −Að1Þ

1;1,

Að1Þ
0;−1 ¼ −Að1Þ

0;1 for χc1, and Að2Þ
−2;−1 ¼ Að2Þ

2;1, A
ð2Þ
−1;−1 ¼ Að2Þ

1;1,

Að2Þ
0;−1 ¼ Að2Þ

0;1 for χc2 final state.
One can see that the χcJ SDM is independent of ϕ0

angle [see Eq. (6)], which follows from the fact that the ψ 0
SDM restricts the ψ 0 spin projection to two values, i.e.,
m ¼ m0 ¼ �1. Thus if one observes the χcJ azimuthal
angular distribution, it should be flat over full 2π space. An
important result following from this feature is that all
elements of χcJ SDM are real numbers.
If the polarization of χcJ states is not measured, sum-

mation of its helicities is equal to taking trace over the
ρðχcJÞ, and thus gives the χcJ angular distribution. With all
above relations for helicity amplitudes, the angular dis-
tribution parameter, α, can be determined in detecting the
χcJ angular distribution in the ψ 0 rest frame, e.g.,

dN
d cos θ0

∝ 1þ α cos2 θ0; ð8Þ

with

α ¼

8>>>>>>>><
>>>>>>>>:

1 for χc0;

jAð1Þ
0;1j2 − 2jAð1Þ

1;1j2
jAð1Þ

0;1j2 þ 2jAð1Þ
1;1j2

for χc1;

jAð2Þ
0;1j2 − 2jAð2Þ

1;1j2 þ jAð2Þ
2;1j2

jAð2Þ
0;1j2 þ 2jAð2Þ

1;1j2 þ jAð2Þ
2;1j2

for χc2:

ð9Þ

If the E1 transition relations [see Eq. (7)] are used, one
has α ¼ 1;−1=3, and 1=13 for χc0; χc1, and χc2 states,
respectively.

C. ΛΛ̄ pairs

To describe the combined system of ΛΛ̄ produced
from χcJ decays, the joint spin density matrix, ρΛΛ̄, can
be constructed from the individual SDM as ρΛ ⊗ ρΛ̄. It can
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be expressed with a 4 × 4 matrix, and its elements can be
calculated as

ρΛΛ̄λ3λ4;λ03λ04
∝
X
λ1;λ01

ρλ1;λ01ðχcJÞDJ�
λ1;λ3−λ4ðϕ1; θ1; 0Þ

×DJ
λ0
1
;λ0

3
−λ0

4
ðϕ1; θ1; 0ÞBðJÞ

λ3;λ4
BðJÞ�
λ0
3
;λ0

4
; ð10Þ

where ρðχcJÞðJ ¼ 0; 1; 2Þ is the χcJ SDM, and BðJÞ
λ3;λ4

the
helicity amplitudes. The χcJ decays conserve the parity, so

we have the relation BðJÞ
−λ3;−λ4 ¼ ð−1ÞJBðJÞ

λ3;λ4
.

A simple case is the χc0 → ΛΛ̄ decay, for which the
SDM of χc0 is reduced to ρλ1;λ01ðχc0Þ ¼ δλ10δλ010, and this

leads to Bð0Þ
þþ ¼ Bð0Þ

−− (� is short for �1=2), and other

element, Bð0Þ
λ3;λ4

, will vanish if λ3 ≠ λ4. Thus we get the joint

SDM for the ΛΛ̄ system as ρΛΛ̄λ3λ4;λ03λ04
¼ 1

2
δλ3λ4δλ03λ04 , where

the factor 1=2 comes from the normalization requirement.

III. POLARIZATION ANALYSIS

A. χ cJ states

With the obtained SDM for χcJ states, the polarization is
characterized by the real multipole parameter, rLM, which is
determined by

rLM ¼ Tr½ρð χcJÞQL
M�; ð11Þ

where QL
M is a set of Hermitian basis matrices as given in

Ref. [24]. The L-rank index ranges from 1 to 2J, and M is
taken as successive integers within the interval ½−L; L�.
Then the degree of polarization is given by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2J
L¼1

XL
M¼−L

ðrLMÞ2
vuut : ð12Þ

On the other hand, the spin density matrix can be
rewritten generally in terms of the real parameter rLM for
a spin-J particle, e.g.,

ρð χcJÞ ¼
r00

2J þ 1

�
I þ 2J

X2J
L¼1

XL
M¼−L

rLMQ
L
M

�
; ð13Þ

where I denotes unity matrix with dimension 2J þ 1, and
r00 corresponds to the unpolarized decay rate with r

0
0 ¼ Trρ.

Namely we take the convention to normalize the spin
density matrix to r00.
For χc1 and χc2 states produced from the ψ 0 →

χcJðλ1Þγðλ2Þ decay, the rank of their SDM should not be
larger than the rank of ψ 0 SDM, which is known as the rank
condition [25] which follows from Eq. (2). The ψ 0 SDM has
rank 2, so some elements of χcJ SDM will be vanishing,
i.e., ρλ1;λ01 ¼ 0, if jλ1 − λ01j > J with J ¼ 1 and 2 for χc1 and

χc2 states, respectively. We concern only with the χcJ SDM
and the photon helicity λ2 is summed out with λ2 ¼ �1.
Thus the helicity of final states is required within the ranges
jλ1 − λ2j ≤ 1 and jλ01 − λ2j ≤ 1. Either λ2 ¼ 1 or −1 will
lead to the λ1 and λ01 taking the values with the require-
ment jλ1 − λ01j ≤ J.
The independent elements of ρλ1;λ01ðχcJÞ can be largely

reduced if we take consideration of the general properties
for the SDM. For example, the SDM is Hermitian matrix,
and all elements of χcJ SDM are real numbers as we argued
in the previous section, so we have ρλ1;λ01 ¼ ρλ0

1
;λ1 . Another

important property follows from the symmetry relations of
spherical tensor for the parity conserving decays, and it
imposes a strong constraint on the SDM as

ρλ1;λ01ð χcJÞ ¼ ð−1Þλ1−λ01ρ−λ1;−λ01ð χcJÞ: ð14Þ

For the spin-zero of χc0 particle, its SDM is reduced to
the unpolarized decay rate r00, i.e., it is isotropic from the ψ 0

transition.
For χc1 state, the elements ρ1;−1 ¼ ρ−1;1 ¼ 0 due to

the requirement of rank condition in the decay. One has to
choose 5 independent elements to form the real number
of Hermitian matrix. The parity conservation requires
that ρ1;1 ¼ ρ−1;−1, ρ1;0 ¼ −ρ0;1. Thus the χc1 SDM can
be expressed with three independent elements or param-
eters as

ρð χc1Þ ¼ r00

2
6664

1
3
ð1þ r20Þ r2

1ffiffi
6

p 0

r2
1ffiffi
6

p 1
3
ð1 − 2r20Þ − r2

1ffiffi
6

p ;

0 − r2
1ffiffi
6

p 1
3
ð1þ r20Þ

3
7775; ð15Þ

with

r00 ¼ ð3 − cos2 θ0Þa20;1;
r00r

2
0 ¼ −2a20;1 cos2 θ0;

r00r
2
1 ¼

ffiffiffi
3

p
a20;1
2

sinð2θ0Þ; ð16Þ

where a0;1 is the modulus of helicity amplitude A0;1.
The degree of χc1 polarization is solely determined by

the real parameters r20 and r
2
1, which are independent of the

amplitude a0;1 as shown in the above equations. According
to Eq. (12), one has

d1 ¼
jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p

3 − x2
; with x ¼ cos θ0: ð17Þ

The integration over the full space yields an estimation
of χc1 polarization to be about 76%. In Cartesian system,
the polarization of spin-1 particle is classified into the
linear and tensor polarization. The linear polarization is
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determined by themultipole parameters with rank-1 indices,
which are vanishing in the χc1 SDM. This results in the
vanishing of linear polarization. Thus the χc1 polarization is
fully coming from the tensor polarization. Due to the
radiative photon in the ψ 0 → χc1γ transition is tensor polar-
ized, which induces some net degree of χc1 polarization.
The same analysis can be performed to the χc2 SDM.

Elements with jλ1 − λ01j > 2 are vanishing, following from
the rank condition of the decay, i.e., ρ2;−1¼ ρ2;−2¼ ρ1;−2 ¼
ρ−1;2¼ ρ−2;2¼ ρ−2;1 ¼ 0. One needs 12 independent
elements to express the Hermitian matrix with all real
elements. Further consideration of the parity conservation,
one has relations such as ρ2;2 ¼ ρ−2;−2, ρ1;1 ¼ ρ−1;−1,
ρ2;1 ¼ −ρ−1;−2, ρ2;0 ¼ ρ0;−2, and ρ1;0 ¼ −ρ0;−1. Thus the
number of independent elements is reduced to 7, and the
χc2 SDM is written as,

ρð χc2Þ ¼

2
6666664

ρ22 ρ21 ρ20 0 0

ρ21 ρ11 ρ10 ρ1−1 0

ρ20 ρ10 ρ00 −ρ10 ρ20

0 ρ1−1 ρ10 ρ11 −ρ21
0 0 ρ20 −ρ21 ρ22

3
7777775
; ð18Þ

with

ρ22 ¼
1

35
r00ð2

ffiffiffiffiffi
70

p
r20 þ

ffiffiffiffiffi
14

p
r40 þ 7Þ;

ρ21 ¼
r00ð

ffiffiffi
6

p
r21 þ r41Þffiffiffiffiffi
35

p ; ρ20 ¼
r00ð2r22 −

ffiffiffi
3

p
r42Þffiffiffiffiffi

35
p ;

ρ11 ¼ −
1

35
r00ð

ffiffiffiffiffi
70

p
r20 þ 4

ffiffiffiffiffi
14

p
r40 − 7Þ;

ρ10 ¼
r00ðr21 −

ffiffiffi
6

p
r41Þffiffiffiffiffi

35
p ; ρ1−1 ¼

ffiffiffiffiffi
2

35

r
r00ð

ffiffiffi
3

p
r22 − 2r42Þ;

ρ00 ¼
1

35
r00ð−2

ffiffiffiffiffi
70

p
r20 þ 6

ffiffiffiffiffi
14

p
r40 þ 7Þ: ð19Þ

Here the real multipole parameters, rLM, are calculated to be

r00 ¼
1

12
a22;1½cosð2θ0Þ þ 27�;

r00r
2
0 ¼

1

3

ffiffiffiffiffi
5

14

r
a22;1½2 cosð2θ0Þ þ 3�;

r00r
2
1 ¼ −

5

2

ffiffiffiffiffi
5

42

r
a22;1 sinðθ0Þ cosðθ0Þ;

r00r
2
2 ¼

ffiffiffiffiffi
5

42

r
a22;1 sin

2ðθ0Þ; r00r
4
0 ¼

a22;1½3 cosð2θ0Þ þ 1�
2

ffiffiffiffiffi
14

p ;

r00r
4
1 ¼ −

ffiffiffi
5

7

r
a22;1 sinðθ0Þ cosðθ0Þ;

r00r
4
2 ¼

1

2

ffiffiffiffiffi
5

14

r
a22;1 sin

2ðθ0Þ; ð20Þ

where a2;1 is the modulus of the helicity amplitude A2;1.

One can see that the χc2 is even polarization, since the χc2
SDM involves only the even rank of real multipole
parameters. Thus the linear polarization is vanishing, and
the polarization is fully coming from the tensor polarization
with rank equal to 2 and 4. The degree of χc2 polarization is
entirely determined by the parameters r2M and r4M with
M ¼ 0, 1, 2. According to Eq. (12), one has

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x4 þ 67x2 þ 23

p
ffiffiffi
2

p ðx2 þ 13Þ with x ¼ cos θ0: ð21Þ

The integration over the full space yields an estimation of
χc2 polarization to be 70%, in which the ψ 0 transverse
polarization is responsible for most parts in the polarization
transfer.

B. ΛΛ̄ pair

For the spin-1=2 particle of Λ or Λ̄, the SDM can be
expressed with a 2 × 2 matrix, therefore, we need a 4 × 4

matrix to express the SDM for the Λ and Λ̄ system, which
can be decomposed as a direct product of two Pauli
matrices for the Λ and Λ̄ spin representation as

ρΛΛ̄ ¼ C00

4

�
1þ

X4
i;j¼0

Cijσ
Λ
i ⊗ σΛ̄j

�
; ð22Þ

where 1 denotes a unit matrix with dimension 4 × 4,
i; j ¼ 0 denotes the summation with lower bound i, j ¼
0 but excluding ði; jÞ ¼ ð0; 0Þ. Here taking j ¼ 1, 2
and 3 corresponds to the Pauli matrices σx, σy and σz,
and if i, j ¼ 0, σ0 is an unit matrix with dimension
2 × 2. Hence, C00 corresponds to the unpolarized decay
rate for χcJ → ΛΛ̄ with C00 ¼ TrρΛΛ̄. With the obtained
ρΛΛ̄ matrix, the Cij parameters are calculated with

C00Cij¼Tr½σi⊗ σj ·ρΛΛ̄�.
For the decay χc0 → ΛΛ̄, we have Cij ¼ δij. This

indicates that the Λ and Λ̄ have the same component of
helicity correlations, and their helicities are parallel to theΛ
flying direction in the χc0 rest frame.
For the decay χc1 → ΛΛ̄, the unpolarized decay rate is

calculated to be

C00 ¼
r00
24

fb21
2
;−1

2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ

þ 3r20 cosð2θ1Þ þ r20 þ 4�
− 2b21

2
;1
2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ

þ 3r20 cosð2θ1Þ þ r20 − 2�g; ð23Þ

where bλ3;λ4 is the modulus of helicity amplitude Bλ3;λ4 .
The degree of Λ linear polarization is related to the Cij

parameters as Px ¼ C10, Py ¼ C20 and the longitudinal
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polarization Pz ¼ C30 ¼ 0, since the χcJ decays conserve
the parity, which is produced from the unpolarized ψ 0
particle. The transverse polarization is calculated to be

PΛ
x ¼ −PΛ̄

x ¼
r21r

0
0b1

2
;−1

2
b1

2
;1
2
sinðΔ1Þ cosðθ1Þ sinðϕ1Þffiffiffi

6
p

C00

;

PΛ
y ¼ PΛ̄

y ¼
r00b1

2
;−1

2
b1

2
;1
2
sinðΔ1Þ

3
ffiffiffi
2

p
C00

½
ffiffiffi
3

p
r21 cos ð2θ1Þ cosðϕ1Þ

− 3r20 sinðθ1Þ cosðθ1Þ�; ð24Þ

where Δ1 is the phase angle difference between the
amplitudes B−1=2;1=2 and B1=2;1=2. Other parameters Cij

with i, j ≠ 0measure the spin correlation betweenΛ and Λ̄,
e.g., Pxy ¼ C12, which is calculated to be

Pxy ¼ −Pyx ¼
r21r

0
0b

2
1
2
;−1

2

sinðθ1Þ sinðϕ1Þ
2

ffiffiffi
3

p
C00

: ð25Þ

Other correlation parameters Cij are given in the
Appendix A.
For the χc2 → ΛΛ̄ decay, the unpolarized decay rate is

calculated to be

C00 ¼ r00

�
a00 þ

X2
i¼0

ða2ir2i þ a4ir4i Þ
�
; ð26Þ

with parameters a00, a2i, a4i (i ¼ 0, 1, 2) given in
Appendix A.
The unpolarized ψ 0 decay conserves the parity, so the

particles Λ and Λ̄ are not polarized longitudinally. But they
could be transversely polarized, with degree of polarization
being related the C10 or C20 parameters as

PΛ
x ¼ PΛ̄

x ¼ C10; ð27Þ

PΛ
y ¼ −PΛ̄

y ¼ C20: ð28Þ

The full formulas for PΛ
x and PΛ

y are given in Appendix A.
While quantities to measure the polarization correlation are
given by

Pij ¼ Cij;

with i, j ¼ x, y, z, and Cij parameters are given in
Appendix A.

IV. ΛΛ̄ POLARIMETRY

Detection of ΛΛ̄ → ðpπ−Þðp̄πþÞ decay is particular
interesting. In contradiction to the strong decays or radi-
ative transitions, the weak decays of ΛΛ̄ can be used as the
polarimetry, which is able to analyze both even and odd
polarization in the angular distributions. The joint angular

distribution for the decay ΛΛ̄ → pp̄πþπ− can be written in
terms of the ΛΛ̄ SDM, ρΛΛ̄, determined in a given process.
Then we have

IðΩ2;Ω3Þ ¼
X
λi;λ0i

ρΛΛ̄λ3λ4;λ03λ04
D1=2�

λ3;λ5
ðΩ2ÞD1=2

λ0
3
;λ5
ðΩ2Þ

×D1=2�
λ4;λ6

ðΩ3ÞD1=2
λ0
4
;λ6
ðΩ3ÞjFλ5 j2jGλ6 j2; ð29Þ

where the summation is taken over all involved helicities
λi and λ0i (i ¼ 3, 4, 5, 6), and ΛðΛ̄Þ helicity amplitude,
Fλ5ðGλ6Þ can be related to the decay asymmetry param-
eters as

αΛ ¼
jF1=2j2− jF−1=2j2
jF1=2j2þjF−1=2j2

; αΛ̄ ¼
jG1=2j2− jG−1=2j2
jG1=2j2þjG−1=2j2

: ð30Þ

The angular distribution can be written in a compact
matrix form as

IðΩ2;Ω3Þ ¼ ρΛΛ̄ · ðMΛ ⊗ MΛ̄ÞT; ð31Þ

where the Λ and Λ̄ decay matrices are

MΛ ¼ 1

2

�
1þ αΛ cos θ2 eiϕ2αΛ sin θ2
e−iϕ2αΛ sin θ2 1 − αΛ cos θ2

�
; ð32Þ

MΛ̄ ¼ 1

2

�
1þ αΛ̄ cos θ3 eiϕ3αΛ̄ sin θ3
e−iϕ3αΛ̄ sin θ3 1 − αΛ̄ cos θ3

�
: ð33Þ

After some algebra, we have

IðΩ2;Ω3Þ ¼
1

4
ðC00 þ T1αΛ þ T̄1αΛ̄ þ T2αΛαΛ̄Þ; ð34Þ

where C00 is the unpolarized decay rate for χcJ → ΛΛ̄,
and T1 and T̄1 measure the transverse polarization for Λ
and Λ̄, respectively. T2 measures the ΛΛ̄ spin correlations.
They are

T1 ¼ sinθ2 sinϕ2C20þ sinθ2 cosϕ2C10þ cosθ2C30;

T̄1 ¼ sinθ3 sinϕ3C02þ sinθ3 cosϕ3C01þ cosθ3C03;

T2 ¼ sinθ2½sinθ3ðsinϕ2 sinϕ3C22þ cosϕ2 cosϕ3C11

þ sinϕ2 cosϕ3C21þ cosϕ2 sinϕ3C12Þ
þ cosθ3ðsinϕ2C23þ cosϕ2C13Þ�
þ cosθ2½sinθ3ðsinϕ3C32þ cosϕ3C31Þþ cosθ3C33�;

ð35Þ

where Cij measures the ΛΛ̄ polarization or their spin
correlations as given in the previous section.
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A simple case is for the χc0 → ΛΛ̄ decay, in which the
Cij parameter of ΛΛ̄ SDM is reduced to Kronecker delta
function. Thus the angular distribution is reduced to

IðΩ2;Ω3Þ ¼
1

4
f1þ ½sin θ2 sin θ3 cosðϕ2 − ϕ3Þ

þ cos θ2 cos θ3�αΛαΛ̄g: ð36Þ

For χc1, χc2 → ΛΛ̄ decays, the longitudinal polarization
for particles Λ and Λ̄ is vanishing, i.e., C03 ¼ C30 ¼ 0,
other Cij parameters are given in Appendix A. Then
calculation of the joint angular distribution IðΩ2;Ω3Þ is
straightforward.

V. POLARIZATION OBSERVABLE

In experiments, the degree of polarization for a given
particle cannot be always accessible in the modern detector,
except for the dedicated polarization measurement.
Analyzing polarization of a particle is dependent on the
study of its decaying to two or three-body final states. In
this situation, the analysis of the angular distribution serves
as the polarimetry. Generally speaking, the strong, weak, or
radiative decay can be used for this purpose in experiment.
Both χc1 and χc2 particles are of tensor polarization

produced from the ψ 0 radiative transition, which is char-
acterized by the real multipole parameters rLM. The helicity
angles in the χcJ → ΛΛ̄ can be selected to form a
polarization observable to represent its multipole parame-
ters. In experiment, a simple way is to look at the first
moments of Wigner D-function if one has sufficient data
statistics. LetWðθ1;ϕ1Þ be the unpolarization decay rate for
χcJ → ΛΛ̄, the first moments of observable Ôðθ1;ϕ1Þ is
defined by

hÔi ¼
R
Wðθ1;ϕ1ÞÔðθ1;ϕ1Þd cos θ1dϕ1R

Wðθ1;ϕ1Þd cos θ1dϕ1

: ð37Þ

For χc1 → ΛΛ̄ decay, its tensor polarization associated
with r20 and r21 is revealed with observables

hReðD2
0;0ðθ1;ϕ1ÞÞi ¼

3b − 2

5
r20; ð38Þ

hReðD2
1;0ðθ1;ϕ1ÞÞi ¼

3b − 1

5
ffiffiffi
2

p r21; ð39Þ

with b ¼ b21
2
;−1

2

=ðb21
2
;−1

2

þ b21
2
;1
2

Þ.
For χc2 → ΛΛ̄ decay, the six real parameters, r2M,

r4MðM ¼ 0; 1; 2Þ, are related to the moments as

hReðD2
2;0ðθ1;ϕ1ÞÞi ¼ −

1þ bffiffiffi
3

p
5
r22;

hReðD2
1;0ðθ1;ϕ1ÞÞi ¼

1þ bffiffiffi
3

p
5
r21;

hReðD2
0;0ðθ1;ϕ1ÞÞi ¼ −

ffiffiffiffiffi
2

35

r
ð1þ bÞr20;

hReðD4
2;0ðθ1;ϕ1ÞÞi ¼ −

2

9
ffiffiffi
7

p ð2 − 5bÞr42;

hReðD4
1;0ðθ1;ϕ1ÞÞi ¼

2

9
ffiffiffi
7

p ð2 − 5bÞr41;

hReðD4
0;0ðθ1;ϕ1ÞÞi ¼ −

2

9

ffiffiffi
2

7

r
ð2 − 5bÞr40: ð40Þ

The Λ transverse polarization can be represented with
the following moments:

hsin θ2 cosϕ2i ¼
αΛ
3
PΛ

x ; ð41Þ

hsin θ2 sinϕ2i ¼
αΛ
3
PΛ

y : ð42Þ

Similar relations can be obtained for the Λ̄ transverse
polarization with the replacement of ðθ2;ϕ2Þ → ðθ3;ϕ3Þ.
The spin correlation between Λ and Λ̄ can be related to the
moments as follows

hcos θ2 cos θ3i ¼
αΛαΛ̄
9

Pzz; ð43Þ

hsin θ2 sin θ3 cosϕ2 cosϕ3i ¼
αΛαΛ̄
9

Pxx; ð44Þ

hsin θ2 sin θ3 sinϕ2 sinϕ3i ¼
αΛαΛ̄
9

Pyy; ð45Þ

hsin θ2 sin θ3 sinϕ2 cosϕ3i ¼
αΛαΛ̄
9

Pyx; ð46Þ

hsin θ2 sin θ3 cosϕ2 sinϕ3i ¼
αΛαΛ̄
9

Pxy; ð47Þ

hsin θ2 cos θ3 sinϕ2i ¼
αΛαΛ̄
9

Pyz; ð48Þ

hsin θ2 cos θ3 cosϕ2i ¼
αΛαΛ̄
9

Pxz: ð49Þ

VI. APPLICATION

A. Measurement of αΛαΛ̄

The ψ 0 → γχcJ decays are an ideal laboratory to study the
χcJ properties. These radiative transitions have a relatively
large branching fractions, about 9.5–9.7%. Especially at
eþe− colliders, the χcJ states are produced with a very clean
background compared with other experiments, e.g., at the
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hadron colliders. If there will be 3.2 billion ψ 0 events
accumulated at BESIII [26], onewill have about 300million
events for each χcJ state.
Efforts for the precision measurements of the Λ and Λ̄

decay parameters are motivated by the search for evidence
of CP violation in the baryon sector. Recently, the most
precise measurement on αΛ and αΛ̄ came from the J=ψ
decays to ΛΛ̄with a total uncertainty of about 1.6%. It gave
a surprising result that deviates significantly from the PDG
value [5] with a significance larger than 5σ. Measurement
of these parameters in the χcJ decays to ΛΛ̄ will provide an
independent test to confirm the new results.
Decay of χc0 → ΛΛ̄ provides a simple and intuitive way

to measure the product of αΛαΛ̄ parameters. Since the
degrees of polarization are fully correlated in the ΛΛ̄ pair in
the x, y, z-directions, i.e., Pxx ¼ Pyy ¼ Pzz ¼ 1, the joint
angular distribution for proton and antiproton is dependent
on the αΛαΛ̄ product as given in Eq. (36). In this situation,
only the product of the parameter, αΛαΛ̄, can be measured.
If we assume the CP symmetry in the ΛΛ̄ decays to the
final state pp̄πþπ−, then we can get the Λ decay parameter
as αΛ ¼ jαΛ̄j. In experiments, one can observe the distri-
bution of Ô ¼ sin θ2 sin θ3 cosðϕ2 − ϕ3Þ þ cos θ2 cos θ3,
which should distribute as a line with slope equal to
αΛαΛ̄ according Eq. (36). Actually, the observable Ô is
equal to the cosine angle, cosðθðn̂1; n̂2ÞÞ, spanned by the
unit momenta of proton (n̂1) and antiproton (n̂2), which
are defined in the Λ and Λ̄ rest frames, respectively. A
Monte-Carlo (MC) simulation shows the cosðθðn̂1; n̂2ÞÞ
distribution as displayed in Fig. 2, and a linear fit to
this distribution will yield the slope equal to −α2Λ, with
a sensitivity δαΛ

αΛ
∝ 1ffiffiffi

N
p , where N is the statistics of the MC

events.
In contrast to the χc0 decay, the χc1 particle is tensor

polarized and this leads to the Λ and Λ̄ being transversely
polarized in the χc1 → ΛΛ̄ decay. This is essential in the
measurements of the decay asymmetry parameters for Λ
and Λ̄ simultaneously. From Eq. (34), one can see that the

analyzing power of extraction of the αΛðαΛ̄Þ parameter is
dependent on the factor T1ðT̄1Þ, which are related to the
ΛðΛ̄Þ transverse polarization, as given by Eq. (24).
Observation of χc1 transverse polarization in experiment
is equivalent to displaying the first moments distribution
of hcosð2θ1Þi for r20 and hsinð2θ1Þ cosðϕ1Þi for r21. We
perform a MC simulation of χc1 decay. Without loss of
generality, we naively set the helicity amplitude of χc1
decay as b1=2;1=2 ¼ b1=2;−1=2 ¼ 1. The two moments for
illustration of the χc1 tensor polarization are shown in
Fig. 3. One can see that the MC events (dots with error bars)
are well distributed according the χc1 tensor polarization
(curve) as given by Eq. (16).
To reveal the ΛðΛ̄Þ transverse polarization, one can use

the helicity angles θ1 and ϕ1 to form the moments as given
by Eq. (38). It follows from Eq. (24) that the nonvanishing
transverse polarization left isPy in the overall 2π-azimuthal
space, which lies along the normal to the χc1 → ΛΛ̄
decay plane. This is the consequence of the parity con-
servation in the decay. The moments of hsin θ2 sinϕ2i and
hsin θ3 sinϕ3i are shown in Fig. 4; they show significantly
the Λ and Λ̄ transverse polarization of Py component.
In experiments, extraction of the ΛΛ̄ decay asymmetry

parameters in the χc1 decay can make use of the global
experimental information by using the maximum like-
lihood method to fit the joint angular distribution to the

θ

FIG. 2. Distribution of cosðθðn̂1; n̂2ÞÞ, where n̂1ðn̂2Þ is the unit
momentum of proton (antiproton) defined in the ΛðΛ̄Þ rest frame.
In MC simulation, we set αΛ ¼ −αΛ̄ ¼ 0.75 [5].

(a)

φ

(b)

FIG. 3. Moments for showing χc1 tensor polarizations.
(a) cosð2θ1Þ, (b) sinð2θ1Þ cosðϕ1Þ. Here, the dots with error bars
are MC events, and the curves are the expected tensor polar-
izations.
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pp̄πþπ− final states. The existence of the ΛðΛ̄Þ transverse
polarization allows to access the αΛ and αΛ̄ simultaneously.
This method continues to hold for the χc2 decay.

B. Measurement of helicity amplitudes

The helicity amplitudes are accessible by examining the
helicity angular distribution of Λ or Λ̄ particle in the χcJ
decays. But this method works only for χc1 and χc2 decays,
since χc0 is a spin-0 particle, and its decay yields a flat
angular distribution. For χc1 → ΛΛ̄ decay, the Λ angular
distribution reads

dN
d cos θ1

∝ 1þ α1 cos2 θ1; ð50Þ

with the angular distribution parameter α1 ¼
3r2

0
ðb2þ−−2b

2
þþÞ

2ð1þr2
0
Þb2þþþð2−r2

0
Þb2þ−

, where the sign þð−Þ is short for the

helicity value þ 1
2
ð− 1

2
Þ. The tensor polarization r20 is well

known for the E1 transition ψ 0 → γχc1, thus the parameter
α1 is solely determined by the ratio of bþþ=bþ−. In the
viewpoint of perturbative QCD theory, the helicity bþþ is
suppressed due to the helicity conservation of strong
decays. To show the dependence of angular distribution
on the ratio bþþ=bþ−, we perform a MC simulation by

setting the amplitude ratio as 0, 0.7, and 1. As shown in
Fig. 5, the angular distribution is sensitive to this ratio.
For χc2 → ΛΛ̄ decay, it receives contribution of rank-4

tensor polarization besides the r20 component. So the
angular distribution shows up the cos4 θ1 term. It reads

dN
d cos θ1

∝ 1þ α2 cos2 θ1 þ β cos4 θ1; ð51Þ

with α2 ¼ C2=C0 and β ¼ C4=C0, where

C0¼ 224ð1þxÞþ16
ffiffiffiffiffi
70

p
r20ð1þ2xÞþ24

ffiffiffiffiffi
14

p
ð3xr40−2Þr40;

C2¼
ffiffiffiffiffi
70

p
r20ð−48−96xÞþ240

ffiffiffiffiffi
14

p
r40ð2−3xÞ;

C4¼ 280
ffiffiffiffiffi
14

p
r40ð3x−2Þ; ð52Þ

with x ¼ b2þþ=b2þ−. The tensor polarization r20 and r40 is
well determined in the E1 transition, and then both of α2
and β parameters are determined with the single parameter
x. To check the dependence of these two parameters on the
helicity ratio, we perform a MC simulation with a naive
setting

ffiffiffi
x

p ¼ 0, 0.7, and 1. From the pattern of angular
distribution as shown in Fig. 5, one can see that either
setting

ffiffiffi
s

p ¼ 0.7 or 1, it yields almost the same pattern. The
parameters α2 and β are insensitive to the helicity ratio in
χc2 → ΛΛ̄ decay.

(a)

(b)

FIG. 4. Moments sin θ2 sinϕ2 for showing Λ transverse polar-
izations Py (a), and sin θ3 sinϕ3 for Λ̄ transverse polarization (b),
where the dots with error bars are MC events, and the curves are
the expected Py distribution.

(a)

(b)

FIG. 5. Angular distributions of Λ particle in the χc1 (a) and χc2
(b) decays. In plots, the dots with full circle, square, and triangle
markers represent the MC simulations with setting of ratio
bþþ=bþ− to 0, 0.7 and 1, respectively.
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VII. SUMMARY AND CONCLUSION

We perform an analysis of χcJ polarization in the ψ 0
radiative transition and propose to use it to probe the
mechanism of χcJ decays to the baryon-antibaryon pairs in
experiment. We have shown an interesting phenomenon
that unpolarized eþe− collisions can yield the tensor
polarized ψ 0 resonance, and further transfer the polarization
to χcJ states. The analysis shows that the χcJ states are
even-tensor polarized. The degrees of polarization are
determined to be about 76% and 70% for χc1 and χc2,
respectively. In the decays χcJ → ΛΛ̄, the baryons are
transversely polarized along the direction normal to the χcJ
decay plane, and they also get the correlated polarizations,
which are essential to make the αΛ and αΛ̄ parameters
accessible simultaneously. The experimental observables to
reveal the χcJ and ΛΛ̄ polarization are presented.
We performed a MC simulation to show that this

polarization can be used to measure the ΛΛ̄ decay asym-
metry parameters αΛαΛ̄. In the χc0 decay, this parameter
product can be measured as the slope of the linear distri-
bution of observable Ô¼ sinθ2 sinθ3 cosðϕ2 −ϕ3Þ þ
cosθ2 cosθ3, with the precision comparable to that mea-
sured in the J=ψ → ΛΛ̄ with the same statistics. Using the

tensor polarization in the χc1 and χc2 decays, the asymmetry
parameters for the individual Λ and Λ̄ particles can be
measured by performing a maximum likelihood fit to the
joint angular distribution of the data events. A simpleway to
measure the helicity amplitude ratio for the χc1 and χc2 →
ΛΛ̄ decays is also demonstrated with a MC simulation.
Although the analysis is performed based on the decays

χcJ → ΛΛ̄, all formalisms are applicable to the case in
which the χcJ decays to the octet baryon antibaryon pairs,
e.g., χcJ → pp̄, ΣΣ̄ and ΞΞ̄.

ACKNOWLEDGMENTS

The work is partly supported by the National Natural
Science Foundation of China under Grants No. 11875262
and No. 11875226.

APPENDIX: REAL MULTIPOLE PARAMETERS
Cij OF ΛΛ̄ PAIRS IN THE χ c1, χ c2 → ΛΛ̄ DECAY

For the decay χc1 → ΛΛ̄, the nonvanishing Cij param-
eters are calculated to be

C00 ¼
r00
24

fb21
2
;−1

2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 þ 4�

− 2b21
2
;1
2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 − 2�g;

C00C11 ¼
r00
12

fb21
2
;−1

2

½
ffiffiffi
3

p
r21 sin ð2θ1Þ cosðϕ1Þ − 3r20sin

2ðθ1Þ�
þ b21

2
;1
2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 − 2�g;

C00C12 ¼ −C00C21 ¼
r21r

0
0b

2
1
2
;−1

2

sinðθ1Þ sinðϕ1Þ
2

ffiffiffi
3

p ;

C00C13 ¼ C00C31 ¼
r00b1

2
;−1

2
b1

2
;1
2
cosðΔ1Þ½

ffiffiffi
3

p
r21 cos ð2θ1Þ cosðϕ1Þ − 3r20 sinðθ1Þ cosðθ1Þ�

3
ffiffiffi
2

p ;

C00C22 ¼
r00
12

fb21
2
;−1

2

½
ffiffiffi
3

p
r21 sin ð2θ1Þ cosðϕ1Þ − 3r20sin

2ðθ1Þ�
− b21

2
;1
2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 − 2�g;

C00C23 ¼ −C00C32 ¼ −
r21r

0
0b1

2
;−1

2
b1

2
;1
2
cosðΔ1Þ cosðθ1Þ sinðϕ1Þffiffiffi

6
p ;

C00C33 ¼ −
r00
24

fb21
2
;−1

2

ð4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 þ 4Þ;

þ 2b21
2
;1
2

½4
ffiffiffi
3

p
r21 sinðθ1Þ cosðθ1Þ cosðϕ1Þ þ 3r20 cos ð2θ1Þ þ r20 − 2�g; ðA1Þ

where bλ3;λ4 is the modulus of the amplitude Bλ3;λ4 for χc1 → ΛΛ̄, and Δ1 is the phase angle difference between the
amplitudes B−1=2;1=2 and B1=2;1=2.
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For χc2 → ΛΛ̄, the unpolarized decay rate, C00, is given by Eq. (26) with nonzero aij parameters as
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To get a compact expression, we integrate out the angle ϕ1, and then the nonvanishing Cij parameters read
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where bλ3;λ4 is the modulus of the amplitude Bλ3;λ4 for χc2 → ΛΛ̄, and Δ2 is the phase angle difference between the
amplitude B−1=2;1=2 and B1=2;1=2.
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