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Recently the renormalization of the band gap m, in both tungsten diselenide (WSe2) and molybdenumm
disulfide (MoS2), has been experimentally measured as a function of the carrier concentration n. The main
result establishes a decreasing of hundreds of meV, in comparison with the bare band gap, as the carrier
concentration increases. These materials are known as transition metal dichalcogenides and their low-
energy excitations are, approximately, described by the massive Dirac equation. Using pseudo–quantum
electrodynamics (PQED) to describe the electromagnetic interaction between these quasiparticles and from
renormalization group analysis at the large-N limit, we obtain that the renormalized mass describes the
band gap renormalization with a function given bymðnÞ=m0 ¼ ðn=n0ÞCλ=2, where m0 ¼ mðn0Þ and Cλ is a
function of the coupling constant λ ¼ πα=4, where α is the fine-structure constant. We compare our
theoretical results with the experimental findings for WSe2 and MoS2, and we conclude that our approach
is in agreement with these experimental results for reasonable values of λ. Thereafter, we consider the
coupling of massless Dirac particles with the Gross-Neveu interaction, which generates a mass for the Dirac
field through the gap equation, and PQED. In this case, we show that there exists a critical coupling
constant, namely, λc ≈ 0, 66 in which the beta function of the mass vanishes, providing a stable fixed point
in the ultraviolet limit. For λ > λc, the renormalized mass decreases while for λ < λc it increases with the
carrier concentration.
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I. INTRODUCTION

The interest in two-dimensional materials has been
increased due to several new applications, in particular,
the control of charge, spin, and valley of electrons in the
honeycomb lattice. The understanding of the material
properties and its fundamental interactions have been
discussed in several experimental and theoretical studies,

aiming to applications and development of electronic
devices with these materials, in particular, for graphene
[1], silicene [2], and transition metal dichalcogenides [3].
Although a full description of the material properties

would require the inclusion of several microscopic inter-
actions, such as the lattice and impurities, it is possible to
focus on a low-energy description of the electrons close to
the Dirac points, also called the valleys of the honeycomb
lattice. In this case, a quantum-electrodynamical approach
is derived, which is expected to describe electronic proper-
ties at low temperatures [4–6]. Within this regime, electrons
obey a Dirac-like equation with two main parameters,
namely, the Fermi velocity vF and the mass (band gap) m.
In graphene, for instance, the energy gap vanishes and the
Fermi velocity reads vF ≈ c=300 where c is the light
velocity. In other materials, like silicene and TMDs, the
breaking of sublattice symmetry yields a nonzero energy
gap of the order 1–2 eV. Effects of interactions, never-
theless, may renormalize these quantities yielding results
that are dependent on the coupling constants and the
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electron density, as it has been shown in the case of the
renormalization of the Fermi velocity in clean graphene due
to a static Coulomb potential [6–9].
As it is well-known, the renormalization of vF in

graphene shows that, at very low densities, one finds an
ultrarelativistic regime where vF → c, recovering the so-
called Lorentz symmetry [10]. Despite the experimental
difficulty to actually reach this regime, it is remarkable that
the effect of interactions yields a possible realization of
massless Dirac fermions in a two-dimensional crystal. It is
worthwhile to mention that pseudo–quantum electrody-
namics (PQED) [11] applied to graphene yields a suitable
description for both cases either for vF ≪ c or for vF ≈ c
[12]. Therefore, the renormalization of vF is straightfor-
ward within this quantum-electrodynamical approach.
Indeed, in similar systems, the use of quantum field theory
techniques has been shown very useful for describing
electronic properties in both perturbative [4,5,13–21] and
nonperturbative [6–8,22–26] approaches. In particular, the
random phase approximation (RPA), which is equivalent to
leading order in the 1=N approximation [6], has been used
in the description of some properties of suspended [8,26]
and doped [25,27,28] graphene.
In this work, we shall investigate the effect of electro-

magnetic interaction on the quasiparticle mass renormaliza-
tion of two-dimensional (2D) systems via analysis of the
renormalization group in the leading order at 1/N (or RPA).
We shall use PQED, sometimes called reduced quantum
electrodynamics [29], to describe the interaction between
these quasiparticles through the gauge field, complementing
previous studies done for massless fermions [6,8,20,23–
25,28]. We compare our theoretical results with the recent
experimental findings for tungsten diselenide (WSe2) [30]
and molybdenumm disulfide (MoS2) [31]. Next, using the
Gross-Neveu (GN)–type interaction to simulate some impu-
rity/disorder present in the sample of a 2D-Dirac material
[32], we shall investigate the influence of this interaction on
the PQED renormalization group functions.
This paper is organized as follows. In Sec. II, we present

the model, Feynman’s rules, and obtain photon propagator
and electron self-energy both in the dominant order of 1/N.
In Sec. III, we analyze the renormalization group functions,
we obtain the renormalized mass which describes the
band gap renormalization, and we compare our theoretical
results with the experimental findings for WSe2 and MoS2.
In Sec. IV we investigate the influence of GN interaction in
large-N expansion in the renormalization group functions
obtained in the previous section. In Sec. V, we review the
main results obtained in this paper, and in Appendixes A–C
we show some details of the calculations.

II. ELECTROMAGNETIC INTERACTIONS FOR
MASSIVE ELECTRONS IN TWO DIMENSIONS

In this section, we calculate some effects of the electro-
magnetic interactions for two-dimensional materials with a

band gap. This band gap may be described as a mass term at
the level of Dirac equation. This is a consequence of the
tight-binding approximation for electrons in the honey-
comb lattice at low energies. (See Ref. [4] for a full
derivation in the supplementary material.)
Let us consider a Lagrangian in Euclidean space

given by

L ¼ 1

2

FμνFμν

ð−□Þ12 þ iψ̄aðγ0∂0 þ vFγi∂i −mÞψa

−
ξ

2
Aμ

∂μ∂ν

ð−□Þ12 Aν þ eψ̄aγ
μψaAμ; ð1Þ

where vF is the bare Fermi velocity, e is the electromagnetic
coupling constant, ðγ0; γiÞ denote Dirac matrices in a four-
dimensional representation [33], and m is the bare mass
of the electron. Aμ is the pseudoelectromagnetic field and
Fμν is its usual field-intensity tensor. ψa is the Dirac field
describing the electrons of the p orbitals in the honeycomb
lattice that are relevant for describing electronic properties.
Furthermore, a ¼ 1;…; N is a flavor label for this matter
field that aims for describing both valley and spin indexes
(or any other internal symmetry). Here, our matter field
reads ψ†

a ¼ ðψ�
A↑;ψ

�
A↓;ψ

�
B↑;ψ

�
B↓Þa, where ðA;BÞ and ð↑;↓Þ

are the sublattices and spin of the honeycomb lattice,
respectively. Therefore, a ¼ K;K0 and N ¼ 2 describe the
valley degeneracy [12,16]. ξ is the gauge fixing parameter.
From Eq. (1), we obtain the energy dispersion E�ðpÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þm2
p

, where the sign � means either the valence
band (−) or the conduction band (þ). Note that we are
using the natural system of units, where ℏ ¼ c ¼ 1.
We may conclude from the Dirac Lagrangian in Eq. (1)

that the characteristic exponent of the spacetime anisotropy
is given by z ¼ 1. This is given by the exponent of the
higher-order derivative term that breaks Lorentz symmetry,
i.e., ðvF∂iÞz. Therefore, as it has been shown in Ref. [34],
this means a soft breaking of the Lorentz symmetry.
Higher-order terms would imply higher-order derivatives,
which, in principle, could describe the behavior of electrons
far from the Dirac point.
We consider the large-N expansion at one-loop appro-

ximation [7,8,35–37], and in this case of a trilinear
interaction such as that of Eq. (1) this can be done through
the substitution e → e=

ffiffiffiffi
N

p
for fixed e. Thus, the Feynman

rules, in the Euclidean space, are

SFðp;mÞ ¼ γ0p0 þ vFγipi þm
p2
0 þ v2Fp

2 þm2
; ð2Þ

which is the Fermion propagator,

Δð0Þ
μν ðpÞ ¼ 1

2ϵ
ffiffiffiffiffi
p2

p �
δμν −

�
1 −

1

ξ

�
pμpν

p2

�
; ð3Þ
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for the Gauge-field propagator, where ϵ is the dielectric
constant of the medium,

effiffiffiffi
N

p γμ; and γμ →

�
μ ¼ 0; γ0

μ ¼ i; vFγi
; ð4Þ

describing the electromagnetic interaction.

A. The gauge-field propagator

The full propagator of the gauge field is calculated, in
momentum space, from

ΔμνðpÞ ¼ Δð0Þ
μν ðpÞ þ Δð0Þ

μα ðpÞΠαβðpÞΔð0Þ
βν ðpÞ þ � � � ; ð5Þ

which is a geometric series. In the large-N approximation,
the quantum corrections may be expressed as a sum over
diagrams of the same order in the parameter N, as it is
shown in Fig. 1, since e → e=

ffiffiffiffi
N

p
.

The polarization tensor is

ΠμνðpÞ ¼ −e2Tr
Z

d3k
ð2πÞ3 γ

μSFðkÞγνSFðkþ pÞ: ð6Þ

Next, we assume that the interaction vertex is just given
by γ0 (this means we are assuming a static regime). Using
the dimensional regularization we obtain the time compo-
nent of the polarization tensor, which is given by (see
Appendix A for more details)

Π00ðpÞ ¼ −
e2

8

�
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ v2Fp

2
p −

4p2m2

ðp2
0 þ v2Fp

2Þ32
�
: ð7Þ

Thereafter, we use Eq. (7) and the free photon propagator,
given in Eq. (3), for calculating the full propagator of the
gauge field. This is given by

Δ00ðpÞ ¼
�
2ϵ

ffiffiffiffiffi
p2

q

þ e2

8

�
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ v2Fp

2
p −

4p2m2

ðp2
0 þ v2Fp

2Þ32
��−1

; ð8Þ

where the static approximation has been implemented,
which consists of taking p0 ¼ 0 at the free photon
propagator.

B. The fermion self-energy

The fermion propagator with the self-energy corrections,
in the dominant order of 1/N, is shown in Fig. 2.
Let us first calculate the self-energy of the fermion due to

the electromagnetic interaction, represented in Fig. 2(b).
Using the static approximation, the electron self-energy
reads

ΣAμ
ðpÞ ¼ e2

N

Z
d3k
ð2πÞ3 γ

0SFðp − kÞγ0Δ00ðkÞ: ð9Þ

Because we are interested in the small momentum behavior
of this expression (similar to the approximation used in
Ref. [23]), we can write

ΣAμ
ðpÞ ¼ Σð0Þ

Aμ
þ γ0p0Σ

ð1aÞ
Aμ

þ vFγipiΣ
ð1bÞ
Aμ

; ð10Þ

where Σð0Þ
Aμ
, Σð1aÞ

Aμ
, and Σð1bÞ

Aμ
are the lowest-order terms with

Σð0Þ
Aμ

¼ −
e2

N

Z
d3k
ð2πÞ3

�
m

k20 þ v2Fk
2 þm2

�
Δ00ðkÞ; ð11Þ

Σð1aÞ
Aμ

¼ −
e2

N

Z
d3k
ð2πÞ3

�
v2Fk

2 − k20 þm2

ðk20 þ v2Fk
2 þm2Þ2

�
Δ00ðkÞ; ð12Þ

and

Σð1bÞ
Aμ

¼ e2

N

Z
d3k
ð2πÞ3

�
m2 þ k20

ðk20 þ v2Fk
2 þm2Þ2

�
Δ00ðkÞ: ð13Þ

Next, we perform a variable change vFki → k̄i, and,
using spherical coordinates, the full photon propagator can
be written as

Δ00ðkÞ ¼
vF
2ϵ

1

k sin θ

�
1þ e2

16ϵvF

�
1 −

4m2

k2

�
sin θ

�−1
:

ð14Þ

Using the small-mass limit (m2 ≪ k2) the term 4m2=k2 can
be neglected in Eq. (14). Furthermore, since we are
studying the model in the static approximation, with
λ ¼ e2=16ϵvF < 1, hence, we have

=
μ ν μ ν

+
μ

α β

ν

+
μ

α β δ γ

ν
+ ...

FIG. 1. The full propagator of gauge field in the dominant order
of 1=N.

= +
(a) (b)

FIG. 2. The full fermion propagator. (a) The free fermion
propagator. (b) The one-loop correction due to the full photon
propagator in the dominant order 1=N.
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ΣAμ
ðpÞ ¼ −

2λ

π2N
½mf0ðλÞ þ γ0p0f1ðλÞ

− vFγipif2ðλÞ� ln
�
Λ
Λ0

�
þ FT; ð15Þ

where FT stands for finite terms, Λ and Λ0 are ultraviolet
and infrared cutoffs, respectively. The functions f0ðλÞ,
f1ðλÞ, and f2ðλÞ are given by (see Appendix B for more
details and Ref. [23])

f0ðλÞ ¼
2 cos−1ðλÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p ; ð16Þ

f1ðλÞ ¼ −
2

λ2

�
π − 2λþ ðλ2 − 2Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p cos−1ðλÞ

�
; ð17Þ

and

f2ðλÞ ¼
1

λ2
½π − 2λ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
cos−1ðλÞ�; ð18Þ

where f1ðλÞ and f2ðλÞ were originally obtained in [23] and
f0ðλÞ is the massive fermions effect in theory.

III. RENORMALIZATION GROUP

In principle the renormalization group (RG) equation
presents two anomalous dimensions corresponding to each
field ψ and Aμ. However, since the polarization tensor
for the gauge is finite, within the dimensional regulariza-
tion, we may conclude that γAμ

¼ 0, and, therefore, βe ¼ 0.
Hence, the RG equation reads�
Λ

∂
∂Λþ βvF

∂
∂vF þ βm

∂
∂m − NFγF

�
ΓðNF;NAÞðpiÞ ¼ 0;

ð19Þ

where ΓðNF;NAÞðpi ¼ p1;…; pNÞ means the renorma-
lized vertex functions. NF and NA are the number of
external lines of fermion and gauge fields, respectively.
βvF ¼ Λ ∂vF∂Λ and βm ¼ Λ ∂m

∂Λ are the beta functions of the
parameters vF and m, respectively. The function γF is the
anomalous dimension of the fermion, given by γF ¼
Λ ∂

∂Λ ðln
ffiffiffiffiffiffi
Zψ

p Þ, where Zψ is the wave function renormal-
ization. For our purpose, it is sufficient to consider only the
vertex function for the fermion, i.e., Γð2;0Þ. Therefore, we
can write

Γð2;0Þ ¼ ðγ0p0 þ vFγipi −mÞ þ ΣAμ
ðpÞ: ð20Þ

Now we must replace Eq. (20) in Eq. (19). Note that,
despite our notation, the parameters vF and m inside
Eq. (20) are the renormalized parameters in agreement
with Eq. (19). We write the beta functions as a series, such

that βa ¼ N0βð0Þa þ 1
N β

ð1Þ
a þ � � � for a ¼ vF;m, and

γF ¼ N0γð0ÞF þ 1
N γ

ð1Þ
F þ � � �, and thus, we can write

βvF ¼ −
4

π2N
vF

�
1þ cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
�
þ 2

πN
vF
λ
; ð21Þ

βm ¼ −
2

π2N
m

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
; ð22Þ

and for the anomalous dimension we have

γF ¼ −
2

π2N

�
2þ 2 − λ2

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p cos−1ðλÞ
�
þ 2

πN
1

λ
: ð23Þ

The coupling constant λ is defined as λ≡ e2=16ϵvF ¼
πα=4, where α is the dimensionless fine-structure constant.
Note that, because vF ≠ c, hence α is not equal to 1=137.
Furthermore, the effects of screening also change the value
of α, which shall be an important parameter for our main
result regarding the comparison with experiments.

A. Fermi velocity renormalization and
anomalous dimension

Using the definition of the beta function for vF, namely,
βvF ¼ Λ ∂vF∂Λ in Eq. (21), wemay find the renormalized Fermi
velocity depending on the energy scale Λ [6,8,23]. We may
replace the energy scale by the carrier concentration n by
performing the following transform Λ=Λ0 → ðn=n0Þ1=2.
The reason why we can trade the renormalization group
parameter, which is indeed an energy scale, for the carrier
concentration n, can be understood in the following simple
way. Given a system of Ne electrons at zero temperature,
theywill assemble so as to form a Fermi surfacewith a Fermi
momentum pF. This can be taken as the RG scale. One can
clearly see, however, that pF is proportional to the square
root of the carrier concentration (or density of states), n
[12,38]. Consequently, it follows that we can also use n as
the RG scale. After doing this, it has been shown that
Eq. (21), with an effective dielectric constant, yields a very
good agreement with the experimental data for graphene
[10]. The main effect is that the value of vF increases as we
decrease the value of n. This may be improved by producing
more and more clean samples. Here, we conclude that the
presence of themassdoes not change this result. Therefore, a
similar renormalization of the Fermi velocity, in other two-
dimensional materials, is expected to occur.
In Fig. 3, we plot Eq. (23), which yields the anomalous

dimension of the model at one-loop approximation. Note
that for a very large number of fermionic species, N → ∞,
the anomalous dimension vanishes.

B. Mass renormalization

Using the definition of the beta function for m, namely,
βm ¼ Λ ∂m

∂Λ in Eq. (22), we may find the renormalized mass
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depending on the energy scale Λ. This, nevertheless, may
be described in terms of n as discussed before. After a
simple calculation, we find

mðnÞ ¼ m0

�
n
n0

�
Cλ=2

; ð24Þ

where m0 ≡mðn0Þ is a reference value (which must be
provided by experiments) and

Cλ ¼ −
2

π2N

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
ð25Þ

is a known constant fixed by the coupling constant λ and
N ¼ 2. Within the realm of two-dimensional materials,
Eq. (24) shows that the band gap is tunable by changing the
carrier concentration n. The renormalization of m has been
experimentally measured in Ref. [30], where the authors
have shown that, by changing the carrier concentration
from n ≈ 1.6 × 1012 cm−2 to n ≈ 1.5 × 1013 cm−2, the
energy gap decreases approximately 400 meV of its bare
value for tungsten diselenide (WSe2). Beyond several kinds
of applications, this effect could be useful for studying the
electric-field tuning of energy bands with nontrivial topo-
logical properties. In Ref. [31], a similar result has been
found for molybdenum disulfide (MoS2).
In Fig. 4, we compare our analytical result with the

experimental data for WSe2, using the corresponding error
bars for each point [30]. These experimental data have been
obtained by putting the monolayer of WSe2 above two
different substrates made of boron nitride. It is well-known
that the substrate changes the fine-structure constant α,
because of its effects on the dielectric constant ϵ. Within
our result, in Eq. (24), this may be described by considering
a different value of the constant λ ¼ πα=4 for each sub-
strate. Furthermore, we choose a reference value of m0 ¼
2.05 eV at n0 ¼ 1.58 × 1012 cm−2, which plays the role
of “bare” mass for our purposes. This is a mandatory step
in the renormalization procedure in general. Thereafter, we

choose a best fitting parameter Cλ that, essentially, provides
the value of the coupling constant λ. Using these results,
we conclude that the expected values for α are between
α ≈ ½0.97; 1.22�. This estimative is close to the result used
in Ref. [4] for describing the formation of excitons (pairs of
electrons and holes), where α ≈ 0.65 (the small difference
is due to the use of different substrates for each device).
We obtain that the decreasing of the energy gap, whether
n → 1.5 × 1013 cm−2, is of the order of 400 meV in com-
parison with the bare gap, as expected [30]. Furthermore,
besides one point (red point below the thick line in Fig. 4),
the other experimental data are within our theoretical result.
In particular, all of the black points are described by our
result. In Fig. 5, we repeat the same procedure, but for
MoS2. In this case, the experimental data are within our
theoretical result in Eq. (24).
Although small deviations are expected to occur,

because the experimental data have been obtained at
temperatures of 100 K, nevertheless, this effect is small.
Indeed, note that the activation temperature T� from the
maximum of the valence band to the minimum of the
conduction band is of the order of the bare gap, i.e., ≈1 eV,
which means T� ≈ 104 K roughly speaking. Hence, the
effects of the thermal bath are relevant for temperatures
close to 104 K, far beyond the room temperature. We
believe that either higher-order corrections or inclusion of
more interactions at the one-loop level are likely to improve

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.6

1.7

1.8

1.9

2.

2.1

2.2

n 1012 cm 2

m
eV

FIG. 4. Renormalization of the band gap for WSe2. The thick
line is the plot of Eq. (24) with Cλ ¼ −0.17 (λ ≈ 0.96) and m0 ¼
2.05 eV at n0 ¼ 1.58 × 1012 cm−2. The common line is the plot
of Eq. (24) with Cλ ¼ −0.15 (λ ≈ 0.76) and m0 ¼ 1.81 eV at
n0 ¼ 3.79 × 1012 cm−2. For both curves we have assumedN ¼ 2
(spin degeneracy). The small dots and error bars have been
extracted from Fig. 4 in Ref. [30]. They are the experimental
values of the renormalized band gap at different values of the
carrier concentration n for WSe2 at T ¼ 100 K. The two different
colors are related to the two different devices with different
thicknesses of the boron nitride substrate. The red point is device
1 with dBN ≈ 7.4 nm and the black point is device 2 with
dBN ≈ 4.5 nm. This implies that there exist two different λ
constants in our theoretical result in Eq. (24).

1 2 3 4 5 6

0.5

1

1.5

2

2.5

N

10
2

γ F

FIG. 3. Anomalous dimension. We plot Eq. (23) with λ ¼ 0.9
as a function of N. In the asymptotic limit N → ∞, γF → 0, and
the fermion field recovers its classical dimension.

RENORMALIZATION OF THE BAND GAP IN 2D MATERIALS … PHYS. REV. D 102, 016020 (2020)

016020-5



this comparison. The measurement of more experimental
points are also relevant for a more precise comparison. It is
worthwhile to mention that both materials, WSe2 and
MoS2, have an excitonic spectrum that has been accurately
described by PQED in Eq. (1), in particular, with a good
agreement with the experimental findings [4].

IV. EFFECTS OF FOUR-FERMION
INTERACTIONS

To include a four-fermion interaction in our model given
by Eq. (1), we start with, just for the fermion sector, the
following Lagrangian:

L ¼ _{ψ̄aðγ0∂0 þ vFγi∂iÞψa −
g0
2
ðψ̄aψaÞ2; ð26Þ

where g is the bare coupling constant of the self-interaction
between fermions. Because the GN interaction modifies the
density of states in monolayer graphene [39,40], a more
realistic model for describing transport properties in these
systems should include four-fermion interactions. Notice
that although we have performed m ¼ 0 in Eq. (26), we
know that the GN interaction generates a mass for the
fermion in 1/N expansion through a gap equation, as we
shall shortly describe. Also, it is well-known that the GN
interaction [41] is nonrenormalizable in the coupling
constant g. Nevertheless, it is renormalizable in the context
of the large-N expansion [42]. In this expansion, we must
perform the following transformations g0 → g=N, for fixed
g in Eq. (26).
Next, we introduce an auxiliary field in Eq. (26) in order

to convert the Gross-Neveu interaction into a trilinear one.
Hence,

L ¼ Lþ N
2g

�
σ −

g
N
ψ̄aψa

�
2

¼ Lþ N
2g

σ2 − σψ̄aψa: ð27Þ

This new field σ does not change the dynamics of the
system, because it represents only a constraint that is
derived from the Euler-Lagrange equation as

σ ¼ g
N
ψ̄aψa: ð28Þ

Equation (27) shows that a mass term is generated for the
fermion field whether hσi ≠ 0. This is the reason why we
have assumed m ¼ 0 in Eq. (26). Indeed, we may define
hσi ¼ σ0, and hence, σ0 represents the mass generated for
the electrons [41]. Thereafter, we replace σ → σ0 þ σffiffiffi

N
p to

ensure that the theory has a ground state. Hence, the
Lagrangian reads

L ¼ ψ̄aðiγ0∂0 þ ivFγi∂i − σ0Þψa þ
N
2g

σ20

þ
ffiffiffiffi
N

p

g
σ0σ þ 1

2g
σ2 −

1ffiffiffiffi
N

p σψ̄aψa: ð29Þ

Therefore, in Eq. (29), the auxiliary field obeys the same
properties of the random disorder/impurities interactions
discussed in Refs. [32,43]; i.e., it has zero expectation value
and its propagator is a constant g−1 in the momentum space.
Note, nevertheless, that the full disorder/impurity interac-
tion contains a specific sum over four-fermion interactions,
which is beyond our approximation.
The free propagator of the fermion field is given by the

Eq. (2) where m → σ0, the auxiliary-field propagator reads

Δ0
σ ¼

�
1

g

�
−1
; ð30Þ

and the vertex interaction is given by − 1ffiffiffi
N

p , describing the

GN interaction.

A. The auxiliary-field propagator

The quantum correction for the auxiliary-field propagator
in the lowest order of 1=N can be calculated from the
functional integral method. We can rewrite Eq. (29) and
obtain

L ¼ ψ̄aKψa þ
N
2g

σ20 þ
ffiffiffiffi
N

p

g
σ0σ þ 1

2g
σ2; ð31Þ

where K ¼ _{γ0∂0 þ _{vFγi∂i − σ0 − 1ffiffiffi
N

p σ. Integration over ψ

in Eq. (31) yields the effective action Seff ½σ� for the auxiliary
field, given by Seff ¼ NTr ln K ≈

ffiffiffiffi
N

p
S1 þ N0S2 þ � � �,

where the last equality has been obtained for large N.
Furthermore,

1 5 10 15 20 25 30 35 40 45 50 55 60
1.6

1.7

1.8

1.9

2.

2.1

2.2

2.3

2.4

n 1012 cm 2

m
eV

FIG. 5. Renormalization of the band gap for MoS2. The thick
line is the plot of Eq. (24) with Cλ ¼ −0.13 (λ ≈ 0.63) and m0 ¼
2.19 eV at n0 ¼ 5.01 × 1012 cm−2. We have assumed N ¼ 2
(spin degeneracy). The small dots and error bars have been
extracted from Fig. 4 in Ref. [31]. They are the experimental
values of the renormalized band gap at different values of the
carrier concentration n for MoS2 at T ¼ 295 K.
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S1 ¼ −Tr½ð_{γ0∂0 þ _{vFγi∂i − σ0Þ−1σ� þ
Z

d3x
1

g
σ0σ

ð32Þ

and

S2 ¼ Tr½fð_{γ0∂0 þ _{vFγi∂i − σ0Þ−1σg2� þ
Z

d3x
1

g
σ2:

ð33Þ

Equation (32) yields the so-called gap equation after we
assume S1 ¼ 0 in order to have a finite effective action.
This gap equation reads

1

g
¼ 4

Z
d3p
ð2πÞ3

1

p2
0 þ v2Fp

2 þ σ20
1

g
¼ −

1

πv2F
jσ0j: ð34Þ

This equation shows that we can relate the generated mass
σ0 with the coupling constant g [44,45].
Equation (33) may be written as

S2 ¼
1

2

Z
d3xd3yσðxÞΓσðx − yÞσðyÞ; ð35Þ

where Γσ is the inverse of the full auxiliary-field propagator
and, hence,

ΓσðpÞ ¼
1

g
þ Tr

Z
d3k
ð2πÞ3 ½SFðkþ pÞSFðkÞ�: ð36Þ

Therefore,

Δ−1
σ ðpÞ ¼ ΓσðpÞ ¼ ðΔ0

σÞ−1 þ ΠσðpÞ; ð37Þ

where ΠσðpÞ is the self-energy due to the Gross-Neveu
interaction. Note that Eq. (37) is the well-known
Schwinger-Dyson equation for the σ field. Using
Eq. (34) in Eq. (36) and after some simplifications, we
find that (see Appendix C for more details)

ΠσðpÞ ¼
1

πv2F

"
jσ0j þ

p2
0 þ v2Fp

2 þ 4σ20
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ v2Fp

2
p

×sin−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ v2Fp

2

p2
0 þ v2Fp

2 þ 4σ20

s !#
: ð38Þ

Using Eqs. (30) and (38) we obtain the full auxiliary-
field propagator. We consider that the generated mass is

much smaller than the external momentum, i.e., p2 ≫ σ20.
Therefore, the propagator reads

ΔσðpÞ ¼
4v2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ v2Fp

2
p : ð39Þ

B. The fermion self-energy

The fermion propagator with the self-energy corrections,
in the dominant order of 1=N, is shown in Fig. 6.
This self-energy, due to the interactions with the aux-

iliary field, is given by

ΣσðpÞ ¼
1

N

Z
d3k
ð2πÞ3 SFðp − kÞΔσðkÞ: ð40Þ

Note that Eq. (40) has a similar structure in comparison
with Eq. (9). Therefore, we follow the same steps as before,
yielding the self-energy, namely,

ΣσðpÞ ¼ Σð0Þ
σ þ γ0p0Σ

ð1aÞ
σ þ vFγipiΣ

ð1bÞ
σ ; ð41Þ

where Σð0Þ
σ , Σð1aÞ

σ , and Σð1bÞ
σ are given by

Σð0Þ
σ ¼ 4v2F

N

Z
d3k
ð2πÞ3

σ0
k20 þ v2Fk

2 þ σ20

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
p ; ð42Þ

Σð1aÞ
σ ¼ 4v2F

N

Z
d3k
ð2πÞ3

v2Fk
2 − k20 þ σ20

ðk20 þ v2Fk
2 þ σ20Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
p ;

ð43Þ
and

Σð1bÞ
σ ¼ 4v2F

N

Z
d3k
ð2πÞ3

k20 þ σ20
ðk20 þ v2Fk

2 þ σ20Þ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 þ v2Fk
2

p :

ð44Þ
Using the same variable change that has been made to

obtain Eq. (15), we obtain

Σσðp; σ0Þ ¼
2

3π2N
ðγ0p0 þ vFγipi þ 3σ0Þ ln

�
Λ
Λ0

�
þ FT:

ð45Þ
Note that the divergent part of Eqs. (43) and (44) are

equal because of rotational symmetry, and in view of this,

= +
(a) (b)

FIG. 6. The full fermion propagator. (a) The free fermion
propagator. (b) The one-loop correction due to the Gross-Neveu
interaction, within the auxiliary-field approach, where the double
dashed line represents the full auxiliary-field propagator.
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only the wave function renormalization is sufficient to
renormalize the two points Green function due to the GN
interaction. As a result, GN interaction does not change the
renormalization of the Fermi velocity, as we shall see in the
next section explicitly.

C. Renormalization group function due to GN
and electromagnetic interactions

Since Πμν and Πσ are finite, within the dimensional
regularization, we may conclude that γσ ¼ γAμ

¼ 0, and,
therefore, βe ¼ 0. Hence, the RG equation reads�
Λ

∂
∂Λþ βvF

∂
∂vF þ βσ0

∂
∂σ0 − NFγF

�
ΓðNF;NA;NσÞðpiÞ ¼ 0;

ð46Þ

where ΓðNF;NA;NσÞðpi ¼ p1;…; pNÞ means the renormal-
ized vertex functions. NF, NA, and Nσ are the number of
external lines of fermion, gauge, and sigma fields, respec-
tively. βvF , βσ0 , and γF are defined similarly as in Sec. III.
For our purpose, it is sufficient to consider only the vertex
function for the fermion, i.e., Γð2;0;0Þ. Therefore, we can
write

Γð2;0;0Þ ¼ ðγ0p0 þ vFγipi − σ0Þ þ ΣAμ
ðpÞ þ ΣσðpÞ: ð47Þ

Using Eq. (47) in Eq. (46) and using that βa ¼ N0βð0Þa þ
1
N β

ð1Þ
a þ � � � for a ¼ vF; σ0, and γF ¼ N0γð0ÞF þ 1

N γ
ð1Þ
F þ � � �,

we obtain, after some calculations,

γF ¼ −
2

π2N

�
2þ 2 − λ2

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p cos−1ðλÞ
�

þ 2

πN
1

λ
þ 1

3π2N
; ð48Þ

βvF ¼ −
4

π2N
vF

�
1þ cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
�
þ 2

πN
vF
λ
; ð49Þ

and

βσ0 ¼ −
2

π2N
σ0

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
þ 8σ0
3π2N

: ð50Þ

We may conclude, from Eqs. (48)–(50), that the Gross-
Neveu interaction modifies both the anomalous dimension
of the fermion as well as the beta function of the mass. On
the other hand, it does not modify the beta function of the
Fermi velocity; hence, the Fermi velocity renormalization
is insensitive to this interaction. The results in Eqs. (22) and
(23) are obtained by neglecting the last term in the right-
hand sides (RHSs) of Eqs. (50) and (48), respectively.
These terms are generated by the four-fermion interaction.
Other perturbative approaches, considering this interaction,

reveal similar conclusions; i.e., indeed, the Gross-Neveu
interaction does not change the renormalization of vF [32].

D. The critical coupling constant λc
From Eq. (50) we may calculate the renormalized mass

σR0 as a function of the energy scale Λ. After a simple
calculation, and performing Λ=Λ0 → ðn=n0Þ1=2, we find

σR0 ðnÞ ¼ σ0

�
n
n0

�
CGN
λ =2

; ð51Þ

where σ0 ≡ σðn0Þ and

CGN
λ ¼ −

2

π2N

�
4þ 4cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
þ 8

3π2N
ð52Þ

is a known constant fixed by the coupling constant λ and
N ¼ 2. After solving CGN

λ ¼ 0 for λ, we find our critical
value λc ≈ 0.66. In this case, λ ¼ λc, the value of the mass is
the same for any energy scale. On the other hand, for
λ ≠ λc, the asymptotic behavior of σ is dependent on the
sign of CGN

λ . Indeed, for λ > λc, hence, CGN
λ < 0, and

σ → 0 as Λ goes to infinity. For λ < λc, we have CGN
λ > 0

and σ → ∞ as Λ diverges. These last two cases are a
consequence of the competition between PQED and the
GN interaction, because the second term in the RHS of
Eq. (52) is generated only due to the GN interaction, being
the theoretical prediction with the presence of a consid-
erable disorder. In Fig. 7, we summarize these different
asymptotic regimes.
From Fig. 7, we conclude that the behavior of mðnÞ

remains the same for σR0 ðnÞ whether λ > λc. The behavior
of mðnÞ has been compared with experimental data of both
WSe2 and MoS2 in Sec. II. Nevertheless, considering that
λ ¼ πα=4 and α ¼ e2=4πϵvF, we also conclude that one
would decrease the value of λ whether the factor ϵvF

1 2 3 4 5 6 7 8 9 10
0.95

1.

1.05

n n0 cm 2

σ
0R

σ
0

eV

FIG. 7. Effects of Gross-Neveu interactions in the renormali-
zation of the band gap. The dashed line is the plot of Eq. (51) with
λ < λc ≈ 0.66 and λ ¼ 0.4. The continuous line is the plot of
Eq. (51) with λ > λc ≈ 0.66 and λ ¼ 0.9.
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increases. This could be obtained either by choosing a
proper substrate (with large ϵ) or by increasing the value of
vF which naturally occurs for clean samples [10]. A fine-
tuning of λ close to λc yields a case where the band gap
remains the same at any energy scale. We believe that these
theoretical predictions could be useful for applications in
several two-dimensional materials (which are described by
the massive Dirac equations at low energies), in particular,
for studying electric-field tuning of band energies [30].

V. CONCLUSIONS

In this work, we investigate the renormalization of the
band gap, in both WSe2 and MoS2. Since these materials
have sp2 hybridization, the electromagnetic interaction
between the massive quasiparticles of these systems can
be described by pseudo–quantum electrodynamics. Using
the renormalization group approach, in the dominant order
in 1=N, we show that our results are in excellent agreement
with recent experimental measurements of the band gap
in these materials. A more realistic model for describing
transport properties in these systems should include four-
fermion interactions, once this interaction could simulate a
disorder/impurity–like microscopic interaction. Thus, we
also investigate the influence of a GN-type interaction in
the behavior of the renormalization group function of
PQED, where initially massless fermions acquire mass
by chiral symmetry breaking. We show that the presence of
a GN-type interaction, which can be associated with a
scalar random fluctuations disorder [19], does not change
the behavior of the renormalized Fermi velocity. On the
other hand, the mass function has a richer behavior, which
allows us to recognize a single fixed point at λc ≈ 0.66,
representing an ultraviolet fixed point. This renormalized
mass shows different behaviors whether λ is above or below
the critical point. This result could be relevant for appli-
cations of 2D materials that rely on tunable band gaps.
It is worthwhile to mention that the renormalization

group functions for massless Dirac particles, with both
Coulomb and four-fermion interactions, has been calcu-
lated in Ref. [46]. In particular, the symmetry-broken
phase corresponds to a charge-density wave, where the
order parameter σ0 is a finite staggered density, which is
essentially the same as in our Eq. (28). This approach
applies for graphene, where one has to start with massless
quasiparticles and wish to generate a masslike term (in this
case σ0) through a gap equation. We believe that it is also
possible to include more four-fermion interactions, as in
Ref. [46], in PQED and obtain the renormalization of
this mass.
We hope that our results clarify the relevance and beauty

of applications of quantum field theory in the description of
electrons in 2D materials. Because the fine-structure con-
stant may be increased, it would be relevant to understand
the nonperturbative effects on the renormalization of m as

well as to calculate the higher-temperature effects. We shall
investigate this elsewhere.
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APPENDIX A: SOME DETAILS OF THE
CALCULATIONS

1. Gauge-self Energy

In this Appendix we derive Eq. (6), i.e.,

ΠμνðpÞ ¼ −NTr
Z

d3k
ð2πÞ3 Γ

μSFðkÞΓνSFðkþ pÞ; ðA1Þ

where the interaction vertex should be understood as
Γμ → γ0e=

ffiffiffiffi
N

p
due to the static approximation, where

the trace operation is understood on Lorentz indices and
internal symmetry. Using matrix representation γ as 4 × 4,
we have the following trace properties:

Tr½γμγν� ¼ −4δμν;

Tr½γμγαγν� ¼ 0;

Tr½γμγαγνγβ� ¼ 4ðδμαδνβ − δμνδαβ þ δμβδναÞ: ðA2Þ

Performing the trace operations and using the Feynman
parametrization, we have

Π00ðpÞ ¼ −4e2
Z

1

0

dx
Z

d3k
ð2πÞ3

Num
½Den�2 ; ðA3Þ

where Num ¼ k0ðk0 þ p0Þ − δijv2Fkiðkþ pÞj −m2 and
Den ¼ ðk0 þ xp0Þ2 þ x ð1 − xÞ p2

0 þ v2Fðk þ xpÞ2 þ
xð1 − xÞv2Fp2 þ m2. Solving the integrals over k0 and k,
we obtain

Π00ðpÞ ¼ −
e2μ2ϵ

2πvF

Z
1

0

dx

� ffiffiffiffiffiffi
Δ2

p
−
xð1 − xÞðp2

0 − v2Fp
2Þ

v2F
ffiffiffiffiffiffi
Δ2

p

þ m2

v2F
ffiffiffiffiffiffi
Δ2

p
�
; ðA4Þ
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where Δ2 ¼ 1
v2F
½xð1 − xÞðp2

0 þ v2Fp
2Þ þm2�. Therefore,

after integration in the Feynman parameter, the time
component of the polarization tensor, in the small-mass
limit p2 ≫ m2, is

Π00 ¼ −
e2

8

�
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ v2Fp

2
p −

4p2m2

ðp2
0 þ v2Fp

2Þ32
�
: ðA5Þ

APPENDIX B: LOOP INTEGRAL CALCULATION

The integrals we solve in our model have a particular
feature due to the Lorentz symmetry breaking. For clarify-
ing this point, we show how to obtain the function f0ðλÞ,
given by Eq. (16). First, we made a variable change
vFki → k̄i. Thereafter, for solving the integrals, we use
spherical coordinates; hence,

k0 ¼ k cos θ;

j¯k⃗j ¼ k sin θ;

d3k̄ ¼ k2 sin θ dk dθ dϕ:

Therefore, we write Eq. (16) as

Σð0Þ
Aμ

¼ −
e2σ0

2ð2πÞ2ϵNvF

Z
Λ

0

dk
k

k2 þ σ20

×
Z

π

0

dθ
1

1þ λð1 − 4
σ2
0

k2Þ sin θ
; ðB1Þ

where the term σ20=k
2 ≈ 0, and therebyZ

π

0

dθ
1

1þ λ sin θ
¼ 2 cos−1ðλÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p : ðB2Þ

Because Eq. (B2) does not depend on the momentum of the
loop, we can define it as f0ðλÞ for λ < 1. The other
functions, f1ðλÞ and f2ðλÞ, are similarly obtained from
the angular integrals in Eqs. (17) and (18) as in Ref. [23].

APPENDIX C: AUXILIARY-SELF ENERGY

We start by calculating the auxiliary-self energy, within
Eq. (36), given by

ΠσðpÞ ¼ −
�
−

1ffiffiffiffi
N

p
�

2

NTr
Z

d3k
ð2πÞ3 SFðkÞSFðpþ kÞ;

ðC1Þ

where the trace operation given Eq. (A2), and we use the
dimensional regularization scheme for calculating the
linear divergence of Eq. (C1). Hence,

ΠσðpÞ ¼ 4

Z
1

0

dx
Z

d3k
ð2πÞ3

Num2

½Den�2 ; ðC2Þ

where Num2 ¼ k0ðk0 þ p0Þ þ v2Fδ
ijkiðkþ pÞj − σ20 and

Den ¼ ðk0 þ xp0Þ2 þ xð1 − xÞp2
0 þ v2F ðk þ xpÞ2 þ

xð1 − xÞv2Fp2 þ σ20. Solving the integrals over k0 and k,
we obtain

ΠσðpÞ ¼ −
2μϵ

πv2F

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞðp2

0 þ v2Fp
2Þ þ σ20

q
;

ðC3Þ

where x is a Feynman parameter. Integration over x in
Eq. (C3) yields Eq. (38).
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