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Higher-order tree-level processes in strong laser fields, i.e., cascades, are in general extremely difficult to
calculate, but in some regimes the dominant contribution comes from a sequence of first-order processes,
i.e., nonlinear Compton scattering and nonlinear Breit-Wheeler pair production. At high intensity the field
can be treated as locally constant, which is the basis for standard particle-in-cell codes. However, the
locally-constant-field (LCF) approximation and these particle-in-cell codes cannot be used when the
intensity is only moderately high, which is a regime that is experimentally relevant. We have shown that
one can still use a sequence of first-order processes to estimate higher orders at moderate intensities
provided the field is sufficiently long. An important aspect of our new “gluing” approach is the role of the
spin and polarization of intermediate particles, which is more nontrivial compared to the LCF regime.
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I. INTRODUCTION

Consider a single high-energy electron that collides with
a high-intensity laser field. Many electrons, positrons and
photons can be produced in such collisions [1–3]. One can
approximate the laser by a pulsed plane wave, and, thanks
to the simplicity of the Volkov solution to the Dirac
equation in such fields, one can derive compact expressions
for e.g., nonlinear Compton scattering e− → e− þ γ for
arbitrary pulse shapes and parameter values. After the first
photon emission the photon can decay via nonlinear Breit-
Wheeler pair production [4,5] γ → e− þ eþ or the electron
can emit a second photon. The first gives one part of the
nonlinear trident process [6–18] e− → e− þ e− þ eþ, and
the second gives one part of double nonlinear Compton
scattering [19–26] e− → e− þ γ þ γ. Since all the proc-
esses we consider here are in general nonlinear in the
interaction with the laser, we will drop “nonlinear” from
here on. These two second-order processes are significantly
harder to calculate than the first-order processes. In fact,
even in a plane wave, it is a challenge to calculate all

contributions to the total or integrated probability e.g., for a
long pulse. So, at third and higher orders one definitely
needs some way to approximate the exact result.
One regime that allows for such an approximation is the

high-intensity regime. More precisely, the classical non-
linearity parameter a0 ¼ E=ω should be large.1 Exactly
how large it has to be depends on the values of the other
parameters in the system [27–30], but assuming it is large
enough, then one can make an expansion in 1=a0. The
formation length is small in this regime, so the field can be
treated as approximately constant during particle produc-
tion. So, in for example trident, photon emission would
happen at one constant value of the field strength, and the
photon would propagate a macroscopic distance and then
decay into a pair at another constant field strength. We call
this the two-step part and refer to the rest as one-step terms.
In the production of N particles we use “N-step” to refer to
the corresponding cascade part. This is the basis of particle-
in-cell (PIC) codes [31–34].
In most of the standard PIC codes so far, whether or not

to produce a particle is determined based on probabilities
or rates that are summed or averaged over the spin or
polarization at each step. However, it is known (see
[13,17,18]) how the spin and polarization of intermediate
particles in trident and double Compton can be included.
For constant fields this is achieved with single sums for
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each intermediate particle. For example, in trident one
would have a single sum over two different polarization
vectors of the intermediate photon. Recently, spin effects
have started to be included in PIC codes [35,35–38]. See
also [39,40] for further improvements on standard locally-
constant-field (LCF) and PIC methods.
However, if a0 is not large, then one cannot use this LCF

approach. In this paper we provide a generalization of the
LCF approach to a0 ∼ 1. For a0 ∼ 1 one can in general
expect important corrections to the N-step. However, if the
field has a0 ∼ 1 and a sufficiently long pulse length, then
the N-step again gives the dominant contribution, because
the intermediate particles can propagate macroscopic dis-
tances, while in the corrections to the N-step at least some
of the particles are forced to stay close. So, the pulse-length
scaling favors the N-step, because the corrections have
subleading scaling. Note that what we here (with a0 ∼ 1)
mean by the N-step is different from its LCF approxima-
tion, and its relation to the product of nonlinear Compton
and Breit-Wheeler is more complicated than in the LCF
regime and what is put into standard PIC codes. Thus,
while things are simpler for a long pulse, we still have new
features compared to the LCF regime. For arbitrarily
polarized fields the role of the spin and polarization of
intermediate particles is significantly different from the
LCF case. Our motivation for considering long pulses with
moderately high intensity comes from upcoming experi-
ments such as LUXE [41,42] and FACET-II [43].
This paper is organized as follows. In Sec. II we

introduce some notation and basic definitions. In Sec. III
we first study the relation between the dominant contri-
bution to trident for long pulses and the incoherent product
of nonlinear Compton scattering and Breit-Wheeler pair
production. Then we study how this generalizes to other
higher-order processes. We present two equivalent formu-
lations of the gluing approach. In Sec. IV we test the gluing
approach on trident in a circularly polarized field. In Sec. V
we show how higher-order processes can be approximated
with a saddle-point method; we show in particular how
the intricate pattern in the spectrum at low energy can be
understood in terms of a large number of complex saddle
points.

II. FORMALISM

In order to introduce notation we present the dominant
contribution to the trident probability P. The vector
potential is given by a⊥ðϕÞ, where ϕ ¼ kx ¼ ωxþ ¼
ωðx0 þ x3Þ and a⊥ ¼ fa1; a2g. We also use the notation
v� ¼ 2v∓ ¼ v0 � v3. The initial electron has momentum
pμ, the two electrons in the final state have momenta p1μ

and p2μ, and the positron has p3μ. Because the field only
depends on one space-time coordinate, xþ, we have a delta
function δ2⊥ðp − p1 − p2 − p3Þδðk½p − p1 − p2 − p3�Þ,
which can be used to perform e.g., the integral over the

positron momentum components. In Sec. III we will show
how to approximate higher-order processes by incoherently
gluing together a sequence of nonlinear Compton and
Breit-Wheeler steps. To do that we need the spin, polari-
zation and longitudinal momentum dependence of these
first-order building blocks. However, we can integrate the
first-order building blocks over the transverse momenta
(P⊥) without losing necessary information for building
higher orders. This is related to the fact that after integrating
over the transverse momenta of the final-state particles, the
probability no longer depends on the transverse momentum
of the initial particle.
So, we perform the integrals over p1⊥ and p2⊥ and we

are left with the longitudinal momentum spectrum

P ¼
Z

1

0

ds1ds2θðs3ÞPðsÞ; ð1Þ

where si ¼ kpi=kp is the ratio of the longitudinal momen-
tum of particle i and the initial electron. For the initial
electron we use b0 ¼ kp and for the intermediate photon
q1 ¼ 1 − s1. In this paper we are interested in the two-step
part of P. This comes from a term that on the amplitude
level has two light-front time xþ integrals, so on the
probability level we have four light-front time integrals.
We use ϕ1 and ϕ2 for the photon emission step and ϕ3 and
ϕ4 for the pair production step. We find

P22
dirðsÞ ¼ −

α2

8π2b20

Z
d4ϕ

θðθ42Þθðθ31Þ
q21θ21θ43

ei½r1Θ21þr2Θ43�=ð2b0Þ

×

�
κ01κ23
4

W12W34 þW13W24 þW14W23

þ
�
κ01
2

�
2ib0
r1θ21

þ 1þD1

�
− 1

�

×

�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1

�
−D1D2

�

þ ðs1 ↔ s2Þ; ð2Þ
where d4ϕ ¼ dϕ1…dϕ4, θij ≔ ϕi − ϕj, r1 ≔ ð1=s1Þ−
ð1=s0Þ, r2 ≔ ð1=s2Þ þ ð1=s3Þ, κij ¼ ðsi=sjÞ þ ðsj=siÞ, and
where s0 ¼ 1 is inserted for symmetry reasons. The sin-
gularities at θ21 ¼ 0 and θ43 ¼ 0 are regulated by ϕ2;4 →
ϕ2;4 þ iϵ and ϕ1;3 → ϕ1;3 − iϵ with ϵ > 0 or equivalent
integration contours. The field enters the exponent in
Θij ≔ θijM2

ij via the “effective mass” [44] M, which is
obtained from the light-front time average of the Lorentz
momentum as

M2 ≔ hπi2; ð3Þ
where

πμ ¼ pμ − aμ þ
2ap − a2

2kp
kμ ð4Þ
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and

hFiij ≔
1

θij

Z
ϕi

ϕj

dϕFðϕÞ: ð5Þ

The prefactor depends on the field through

Δij ≔ aðϕiÞ − haiij; ð6Þ

which enters via D1 ¼ Δ12 · Δ21, D2 ¼ Δ34 · Δ43, and

Wij ≔
1

b0
εμνρσpμkνwiρwjσ

¼ wi1wj2 − wi2wj1 ¼ ẑ · ðwi × wjÞ; ð7Þ

where

w1 ¼ Δ12; w2 ¼ Δ21; w3 ¼ Δ34; w4 ¼ Δ43 ð8Þ

and where ε is the Levi-Civita tensor. Note thatWij ¼ 0 for
linear polarization.
The step function combination can be expressed as

θðθ42Þθðθ31Þ

¼ θðσ43 − σ21Þ
�
1 − θ

�jθ43 − θ21j
2

− ½σ43 − σ21�
��

; ð9Þ

where σij ¼ ðϕi þ ϕjÞ=2. Replacing θðθ42Þθðθ31Þ with
θðσ43 − σ21Þ gives the same result to leading order in the
pulse length or in a 1=a0 expansion. It is natural to make
this replacement because the second term in (9) scales
linearly in the volume and is therefore naturally combined
with the other one-step terms.
Note that we derived (2) in [6] without reference to

the first-order processes, nonlinear Compton and Breit-
Wheeler. We showed in [6] that for linear polarization (2)
can be obtained from the incoherent product of these first-
order processes with a single sum over the polarization of
the intermediate photon. In Sec. III we will consider
arbitrary polarization, where things are more nontrivial.

III. GLUING APPROACH

In this section we present our new gluing approach,
where higher-order processes are approximated by linking
together the spin- and polarization-dependent probabilities
of nonlinear Compton scattering and Breit-Wheeler pair
production. This is a generalization of the case in [25],
where we considered processes with only intermediate
electrons. We expect this to give a good approximation for
sufficiently long pulses and/or large a0. To treat the spin
and polarization we use the following basis. For fermions
we choose

γ0 ¼

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA; γ1 ¼

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA;

γ2 ¼

0
BBB@

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0;

1
CCCA γ3 ¼

0
BBB@

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA

ð10Þ

and (cf. [45,46])

u↑ ¼ 1ffiffiffiffiffiffiffiffi
2p−

p

0
BBB@

1

0

2p−

−p1 − ip2

1
CCCA; u↓ ¼ 1ffiffiffiffiffiffiffiffi

2p−
p

0
BBB@

p1 − ip2

2p−

0

1

1
CCCA;

ð11Þ

v↑ ¼ 1ffiffiffiffiffiffiffiffi
2p−

p

0
BBB@

1

0

−2p−

p1 þ ip2

1
CCCA; v↓ ¼ 1ffiffiffiffiffiffiffiffi

2p−
p

0
BBB@

p1 − ip2

2p−

0

−1

1
CCCA:

ð12Þ

These spinors are convenient because of their simple
dependence on p⊥,2 so all integrals over p1;2;⊥ are
Gaussian. A general spin state can be expressed as

u ¼ cos

�
ρ

2

�
u↑ þ sin

�
ρ

2

�
eiλu↓; ð13Þ

v ¼ cos

�
ρ

2

�
v↑ þ sin

�
ρ

2

�
eiλv↓: ð14Þ

We assume that ρ and λ do not depend on the momentum p,
and then we integrate over all the transverse momentum
components. It turns out that the results can be expressed
neatly in terms of the following vector:

n ≔
1

2
u†Σuðp ¼ 0Þ ¼ 1

2
v†Σvðp ¼ 0Þ

¼ fcos λ sin ρ; sin λ sin ρ; cos ρg; ð15Þ

where the spin matrix is given by

2Recall that p− is independent on p⊥ while pþ ¼ ð1þ p2⊥Þ=ð4p−Þ, which also means that factors of p0 ¼ p− þ pþ could
lead to more complicated expressions.
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Σ ¼ ifγ2γ3; γ3γ1; γ1γ2g: ð16Þ

We also have

uū ¼ 1

2
ðpþ 1Þð1þ γ5=αÞ; ð17Þ

where γ5 ¼ iγ0γ1γ2γ3 and the spin 4-vector αμ is a linear
combination of three basis vectors αðiÞp ¼ 0 with the
components of n as coefficients:

αμ ¼
X3
i¼1

niα
ðiÞ
μ ð18Þ

with (cf. [35])

αð1Þμ ¼ x̂μ −
p1

kp
kμ;

αð2Þμ ¼ ŷμ −
p2

kp
kμ;

αð3Þμ ¼ pμ −
1

kp
kμ; ð19Þ

where x̂v ¼ v1, ŷv ¼ v2 and αðiÞαðjÞ ¼ −δij. Thus, n is the
Stokes vector with respect to the spin basis given by αðiÞ.
For a photon with momentum lμ we choose a polariza-

tion vector with ϵ− ¼ 0, ϵþ ¼ l⊥ϵ⊥=ð2l−Þ and

ϵ⊥ ¼
�
cos

�
ρ

2

�
; sin

�
ρ

2

�
eiλ

�
: ð20Þ

We again keep ρ and λ constant while integrating over the
transverse momenta. Similar to the fermion case, we find
that the polarization dependence can be expressed in terms
of another three-dimensional unit vector:

n ¼ ϵ�i fσ1; σ2; σ3gijϵj
¼ fcos λ sin ρ; sin λ sin ρ; cos ρg; ð21Þ

where the Pauli matrices are as usual given by

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ð22Þ

The meaning of this vector is of course different from the
fermion case and it transforms differently under e.g., a
rotation of the transverse coordinates. However, the role
this vector plays in linking together the first-order processes
is basically the same as in the fermion case. n is the Stokes

vector with respect to the two polarizations given by ϵð1Þ⊥ ¼
f1; 0g and ϵð2Þ⊥ ¼ f0; 1g. Spin and polarization effects have

been studied in many papers; see for example [35,35–38,
47–56].

A. Averaging approach

With these vectors we find that the probability of
nonlinear Compton scattering and Breit-Wheeler pair
production can be expressed as

P ¼ hPi þ n0 · P0 þ n1 · P1 þ n2 · P2

þ n0 · P01 · n1 þ n0 · P02 · n2 þ n1 · P12 · n2

þ P012;ijkn0in1jn2k; ð23Þ

with two ni’s for the fermions and one for the photon
(cf. Sec. 87 in [57] for ordinary Compton scattering). hPi
gives the spin and polarization averaged probability, Pi
gives the dependence on the spin or polarization of one
particle when averaging over the spin or polarization of the
other two particles, Pij describes the correlation between
the spin or polarization of two particles, and Pijk describes
the correlation between the spin and polarization of all three
particles.
For Compton scattering we find that the probability that

an electron with longitudinal momentum s0 and spin vector
n0 scatters into a state with s1 and n1 by emitting a photon
with momentum q1 and polarization nγ is given by

PC ≕
iα

8πb0s20

Z
dϕ12

θ21
exp

n ir
2b0

Θ21

o
RC; ð24Þ

where RC is given, with the same notation as in (23), by

hRCi ¼ κ

2

�
2ib0
rθ

þ 1þD1

�
− 1; ð25Þ

RC
0 ¼ q1

s0

�
1þ

�
1þ s0

s1

�
k̂X

�
· V; ð26Þ

RC
1 ¼ q1

s1

�
1þ

�
1þ s1

s0

�
k̂X

�
· V; ð27Þ

RC
γ;k ¼ w1 ·

�
Sk þ

κ

2
δk2σ2

�
· w2; ð28Þ

RC
01 ¼

q1
s0s1

�
s0k̂X − s1Xk̂ −

q1
2
k̂ k̂

�

þ
�
2ib0
rθ

þD1

��
12 þ

κ

2
k̂ k̂

�
; ð29Þ

RC
γ0;k ¼

q1
s0s1

�
−s0Sk · V þ s1δk2

�
X

þ
�
1

2

�
1þ s0

s1

��
2ib0
rθ

þD1 þ 1

�
− 1

�
k̂

��
; ð30Þ
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RC
γ1;k ¼

q1
s0s1

�
−s1Sk · V þ s0δk2

�
X

þ
�
1

2

�
1þ s1

s0

��
2ib0
rθ

þD1 þ 1

�
− 1

�
k̂

��
; ð31Þ

RC
γ01;kij ¼

q1
s0s1

�
s1k̂Sk ·X − s0Sk ·Xk̂ −

q1
2
Sk

þ δk2½s0k̂V − s1Vk̂�
�

ij

þ w1 ·

�
δk2σ2

�
12;ij þ

κ

2
k̂ik̂j

�

þ Sk

�
κ

2
12;ij þ k̂ik̂j

�
þ κ̃

2
σ2 · Skσ2ij

�
· w2;

ð32Þ
where r ¼ ð1=s1Þ − ð1=s0Þ, κ ¼ ðs0=s1Þ þ ðs1=s0Þ, κ̃ ¼
ðs0=s1Þ − ðs1=s0Þ, k̂ ¼ f0; 0; 1g, Skij ¼ δk1σ1ij þ δk3σ3ij,
σn;3i ¼ σn;i3 ¼ 0,

12 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; ð33Þ

and

X ¼ 1

2
ðw2 þ w1Þ; V ¼ 1

2
σ2 · ðw2 − w1Þ: ð34Þ

The corresponding expressions for Compton scattering by a
positron can be obtained either (i) by replacing a → −a and
n → −n for the two spin vectors or (ii) by replacing s0 ↔
−s1 [except in the overall factor of 1=s20 in (24)], n03 ↔ n13

and n0⊥ ↔ −n1⊥.
For Breit-Wheeler we find that the probability that a

photon with q1 and nγ decays into an electron with s2 and
n2 and a positron with s3 and n3 is given by

PBW≕
iα

8πb0q21

Z
dϕ12

θ21
exp

�
ir
2b0

Θ21

�
RBW; ð35Þ

where

hRBWi ¼ κ

2

�
2ib0
rθ

þ 1þD1

�
þ 1; ð36Þ

RBW
2 ¼ q1

s2

�
1þ

�
1 −

s2
s3

�
k̂X

�
· V; ð37Þ

RBW
3 ¼ q1

s3

�
1 −

�
1 −

s3
s2

�
k̂X

�
· V; ð38Þ

RBW
γ;k ¼ −w1 ·

�
Sk þ

κ

2
δk2σ2

�
· w2; ð39Þ

RBW
23 ¼ q1

s2s3

�
−s2k̂Xþ s3Xk̂ −

q1
2
k̂ k̂

�

þ
�
2ib0
rθ

þD1

��
12 þ

κ

2
k̂ k̂

�
; ð40Þ

RBW
γ2;k ¼

q1
s2s3

�
s2Sk · V − s3δk2

�
X

þ
�
1

2

�
1 −

s2
s3

��
2ib0
rθ

þD1 þ 1

�
− 1

�
k̂

��
; ð41Þ

RBW
γ3;k ¼

q1
s2s3

�
s3Sk · V − s2δk2

�
X

þ
�
−
1

2

�
1 −

s3
s2

��
2ib0
rθ

þD1 þ 1

�
þ 1

�
k̂

��
;

ð42Þ

RBW
γ23;kij ¼

q1
s2s3

�
s3k̂Sk ·X − s2Sk ·Xk̂þ q1

2
Sk

þ δk2½s2k̂V − s3Vk̂�
�

ij

− w1 ·

�
δk2σ2

�
12;ij þ

κ

2
k̂ik̂j

�

þ Sk

�
κ

2
12;ij þ k̂ik̂j

�
þ κ̃

2
σ2 · Skσ2ij

�
· w2;

ð43Þ

where r ¼ ð1=s2Þ þ ð1=s3Þ, κ ¼ ðs2=s3Þ þ ðs3=s2Þ, and
κ̃ ¼ ðs2=s3Þ − ðs3=s2Þ. These expressions for PBW can
be obtained from (24)–(32) by replacing s0 → −s3,
s1 → s2, q1 → −q1, n03 → n33, n0⊥ → −n3⊥, n1 → n2,
nγ2 → −nγ2 and nγ1;3 → nγ1;3, and finally multiplying with
an overall −1. The sign change for one of the components
of nγ can be understood as a consequence of the fact that,
when changing an incoming photon to an outgoing one,
one takes the complex conjugate of the polarization vector
ϵμ, which in (20) corresponds to λ → −λ, which in turn
changes the sign of nγ2 in (21).
The goal is now to link together these first-order terms to

approximate higher-order processes for sufficiently long
pulses or large a0. It might seem like we have a quite large
number of terms compared to the familiar LCF case, but
note that the idea is that these are all the terms we need
to construct the Nth step for any higher-order process for
a0 ≳ 1 and arbitrary field polarization.
We start with trident. In this case we only have an

intermediate photon, but no intermediate fermions, which
means that to obtain the probability summed and averaged
over the spins of initial- and final-state particles we only
need to consider four terms, namely (25), (28), (36) and
(39). It turns out to be convenient to write all spin and
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polarization sums as averages, so as our initial ansatz
we take

Pglue ¼
24

2
hPCPBWi þ ð1 ↔ 2Þ; ð44Þ

where we have a factor of 23 because we have replaced
sums with averages over the spins for the three particles in
the final state, we have similarly included a factor of 2
for the intermediate photon, the factor of 1=2 is because
we have two identical particles in the final state and the
ð1 ↔ 2Þ term makes the probability symmetric with respect
to these two particles. Here and in the following we have, to
avoid clutter, omitted the arguments of PC andPBW in h…i,
which are of course different. Apart from the different
momenta and n we have chosen ϕ1 and ϕ2 for the first
factor/step in h…i, ϕ3 and ϕ4 for the second factor, etc. In
this gluing approach we also include step functions, e.g.,
θðσ43 − σ21Þ, so the different steps happen in the right
chronological order, but this is done in exactly the same
way as in [6] so we leave it implicit in the following. The
average or sum over the spins (and polarization in the
general case) of initial- and final-state particles simply
corresponds to sums over two antiparallel vectors, e.g.,
n1 ¼ �nr

1, where nr
1 is an arbitrary vector. So, we have

h1i ¼ 1 and hni ¼ 0. However, things are nontrivial for the
spins of intermediate particles. We can still use h1i ¼ 1 and
hni ¼ 0 which give

Pglue ¼ 23½hPCihPBWi þ PC
γ · hnni · PBW

γ þ ð1 ↔ 2Þ�;
ð45Þ

where n is the polarization vector of the intermediate
photon. The question now is what to do with hnni. If one
sums over n ¼ �nðrÞ, where nðrÞ is some reference or basis
vector, then the matrix hnni clearly depends on the choice
of nðrÞ. WewantPglue to be equal toP2 in (2), which we can
write as

P2 ¼ 23½hPCihPBWi þ PC
γ · PBW

γ þ ð1 ↔ 2Þ�: ð46Þ

For linear polarization a2ðϕÞ ¼ 0 we have PC;BW
γ;1 ¼

PC;BW
γ;2 ¼ 0 and then we can obtain P2 by summing over

two real polarization vectors with λ ¼ 0 and ρ ¼ 0; π,
which correspond to n ¼ �e3. So, for linear polarization
there is a choice of nðrÞ that gives the desired result.
However, this does not work for more general field
polarization where PC;BW

γ;1 ;PC;BW
γ;2 ≠ 0, because then we

would not be able to obtain e.g., the term with
κ01
2
W12

κ23
2
W43 in P2. If one instead tried to sum over

circular polarizations, with ρ ¼ π=2 and λ ¼ �π=2, then
one would have n3 ¼ 0 and would again be missing terms.
The fact that we in general do not recover all terms in this
way is because we already have a sum over the photon

polarization on the amplitude level, so on the probability
level we have in general a double sum, over ϵ and ϵ0 say,
and the naive gluing approach only takes into account the
two terms where ϵ ¼ ϵ0.
However, by comparing (45) and (46) we immediately

see that by simply replacing hnni → 1 we obtain all terms
in P2 for any polarization. We thus propose the following
improved gluing approach: Include a factor of 2 for each
intermediate particle and then simplify with the rules
h1i ¼ 1, hni ¼ 0 and hnni→ 1. We have showed in [25]
that this procedure also works for double nonlinear
Compton scattering, where we have a vector n for an
intermediate electron rather than a photon. We have in fact
showed [25] that this procedure also works for triple and
quadruple nonlinear Compton scattering, where an electron
interacts nonlinearly with the background field and emits
three and four photons, respectively. These processes
only have intermediate electrons and are hence built from
(25)–(27) and (29). We will consider the general case in the
next section.
As an example of a process that involves both an

intermediate photon and an intermediate fermion we
consider double Breit-Wheeler pair production, i.e., the
decay of an initial photon into two electron-positron pairs
as illustrated in Fig. 1. There are two different contributions
to this process, where the intermediate photon is emitted by
either an electron or a positron. We have checked that both
can be obtained from

P2BW
glue ¼ 26

22
½hPBWPCPBWi þ hPBWP

p
CPBWi�

þ permutations; ð47Þ
where Pp

C is the probability of positron Compton scattering,
we have 26 because we have two intermediate particles and
we sum over the spins of the final-state particles and
average over the initial polarization, and we have a factor
of 1=22 because there are two pairs of identical particles in
the final state. The brackets in (47) are calculated using
h1i ¼ 1, hni ¼ 0 and hnni ¼ 1 for all seven spin or
polarization vectors.
In Fig. 2 we have (one part of) a process with two

cascade branches. (The two photons can of course also be
emitted by the same fermion, but that is another example
of a single-branch cascade.) We have checked that the
absolute squared of the diagram in Fig. 2 can be obtained
from

FIG. 1. These diagrams illustrate double nonlinear Breit-
Wheeler pair production.
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26

2
hPBWPCP

p
Ci: ð48Þ

So, our gluing approach is not restricted to single-branch
cascades.

B. Matrix approach

Consider higher-order nonlinear Compton scattering
(emission of more than one photon with nonlinear inter-
action with the background field). For this single-branch
cascade we can replace the h…i “operator” with a matrix
formulation. From the 3D spin unit vector n we define a
4D vector

N ¼ f1;ng: ð49Þ

Summing over the photon polarization we find that
the probability of single Compton scattering can be
expressed as

PC ¼ hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1

¼ N1 ·M10 ·N0; ð50Þ

with N0 and N1 for the initial- and final-state electron,
respectively, and where P is defined in [25]. The last
step defines a 4 × 4 matrix M in terms of P0, P1 and P01.
As an illustration of this matrix formulation, consider
triple nonlinear Compton scattering. The h…i approach
described in [25] can be expressed in terms of the 4D
approach according to

h½hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1�
½hPi þ n1 · P0 þ P1 · n2 þ n1 · P01 · n2�
½hPi þ n2 · P0 þ P1 · n3 þ n2 · P01 · n3�i
¼ f1; 0g ·M10ð3Þ ·M10ð2Þ ·M10ð1Þ · f1; 0g; ð51Þ

where N0 ¼ N1 ¼ f1; 0g means that we are averaging and
summing over the spin of the initial- and final-state
electron, and M10ðiÞ depends on the light-front time
integration variables and longitudinal momenta associated
with the emission of photon i. This seems like a simple
formulation for a single-branch cascade, and it is similar to

the Müller-matrix formulation of the evolution of Stokes
vectors in optics; see also [50] for perturbative QED with
no background field. However, in cascades with more than
one branch, a 4 × 4 matrix would not describe the most
general spin and polarization dependence; instead the
dimensionality increases with the number of branches.
We will now demonstrate that these two formulations

are equivalent. The spin- and polarization-dependent parts
factorize because for a fermion propagator we can express

pþ 1 ¼
X

ρ¼ρ0;ρ0þπ

uū ð52Þ

and

p − 1 ¼
X

ρ¼ρ0;ρ0þπ

vv̄; ð53Þ

where the spinors u and v are given by (13) and (14). And
for the photon propagator we have

Lμν ¼ gμν −
1

kl
ðkμlν þ lμkνÞ ¼ −

X
ρ¼ρ0;ρ0þπ

ϵμϵ̄ν; ð54Þ

where the polarization vector ϵμ is given by (20). Consider a
Compton scattering step, where a photon is emitted by an
electron. From the amplitude we have, regardless of
whether or not the particles come from the initial, some
intermediate or the final state,

X ≔ ψ̄ðpn; ρn; λn;ϕnÞ=̄ϵðl; ρl; λlÞψðpm; ρm; λm;ϕnÞ; ð55Þ

where

ψðp; ρ; λ;ϕÞ ¼ Kðp;ϕÞuðp; ρ; λÞφðp;ϕÞ; ð56Þ

K ¼ 1þ =k=a
2kp

; ð57Þ

and

φ ¼ exp
�
−i
�
pxþ

Z
ϕ 2ap − a2

2kp

��
: ð58Þ

From the complex conjugate of the amplitude we have

Y ≔ ψ̄ðpm; ρcm; λcm;ϕmÞ=ϵðl; ρcl ; λcl Þψðpn; ρcn; λcn;ϕmÞ; ð59Þ

where ρci and λci can be different from ρi and λi for
intermediate particles. We will integrate XY over the
transverse momenta. Assume first that we are dealing with
a final-state step, where no more particles are produced by
these particles (but more particles can be produced at a later
light-front time by a different cascade branch). We have
three cases: (i) We use the overall momentum conservation

FIG. 2. This diagram illustrates one part of the process where
one photon is emitted by the electron and another photon is
emitted by the positron. This is an example with two cascade
branches.
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delta function to perform the p⊥
n integral, which means

p⊥
n ¼ p⊥

m − l⊥, where p⊥
m depends on the other, indepen-

dent momenta. Only this step depends on l⊥, so we have

Z ¼ N
Z

d2l⊥XY; ð60Þ

where N is a normalization factor, which we will come
back to. (ii) If we have already used the overall delta
function for a different step, then we have integrals over
both l⊥ and p⊥

n . These momenta also appear in some other
step(s) because of the momentum conservation, but only
via their sum p⊥

m ¼ p⊥
n þ l⊥. So, we change variable from

p⊥
n to p⊥

m, and then l⊥ only appears in this step and we
again have (60). (iii) If we initially have an integral over p⊥

n
and where the photon momentum is fixed by momentum
conservation l⊥ ¼ p⊥

m − p⊥
n , then we just change variable

from p⊥
n to l⊥. So, in all cases we have (60). After

performing the integral over l⊥ we find that the result is
independent of all the other transverse momenta. This
means that this step factors out and we can treat the step that
produced the pm electron as if it were a final step. After
performing all the transverse momentum integrals we find
that all steps have factorized. The different steps are linked
via matrix multiplication. For an initial electron we have
uαðρ; λÞūβðρ; λÞ, with u from the amplitude and ū from its
complex conjugate, which we can write in terms of the
basis spinors as (omitting the spinor indices)

uū ¼ Nð0Þ · ðu↑ū↑; u↑ū↓; u↓ū↑; u↓ū↓Þ; ð61Þ

where

Nð0Þ ¼
�
cos2

ρ

2
; cos

ρ

2
sin

ρ

2
e−iλ; cos

ρ

2
sin

ρ

2
eiλ; sin2

ρ

2

�
:

ð62Þ

For an outgoing electron we have ūαðρ; λÞuβðρ; λÞ, with ū
from the amplitude and u from its complex conjugate, so

ūu ¼ N̄ð0Þ · ðū↑u↑; ū↑u↓; ū↓u↑; ū↓u↓Þ: ð63Þ

Similarly, for an outgoing photon we have ϵ̄μϵν, with the
first term from the amplitude and the second term from its
complex conjugate:

ϵ̄ϵ ¼ N̄ð0Þ · ðϵ̄↑ϵ↑; ϵ̄↑ϵ↓; ϵ̄↓ϵ↑; ϵ̄↓ϵ↓Þ; ð64Þ

where ϵμ↑ is given by ðρ ¼ 0; λ ¼ 0Þ and ϵμ↓ by
ðρ ¼ π; λ ¼ 0Þ. For an intermediate particle we have a
double spin sum, one for the amplitude and a second
for its complex conjugate. We can without loss of general-
ity sum over the spin basis with λ ¼ 0, i.e.,

P
r;s¼↑;↓ urūs.

We can make this a single sum by summing over

ðu↑ū↑; u↑ū↓; u↓ū↑; u↓ū↓Þ. We order the sums for the other
two particles also as ð↑↑;↑↓;↓↑;↓↓Þ. The most general
case is thus given by a 4 × 4 × 4 matrix Zilimin , where
ij ¼ 1;…; 4 and the ffirst; second; thirdg index for the
fphoton; incoming electron; outgoing electrong. We want
to express the spin and polarization of the particles in
terms of their Stokes vectors (as above) rather than Nð0Þ,
and for this it is natural to transform the indices using

T ≔
1

2

0
BBB@

1 0 0 1

0 1 −i 0

0 1 i 0

1 0 0 −1

1
CCCA; ð65Þ

which obeys 2T T † ¼ 1 (T † is the conjugate transpose).
Using this matrix we define

Milimin ¼ T †
iljl
T †

injn
ZjljmjnT jmim : ð66Þ

If one of these particles is in the initial or final state, then
we have

2T †Nð0Þ ¼ ð1; cos λ sin ρ; sin λ sin ρ; cos ρÞ ¼ N ð67Þ

and N̄ð0Þ2T ¼ N, which is the Stokes vector as defined
above. For single Compton scattering we have

Nl
il
Nn

in
MiliminN

m
im
; ð68Þ

where Nl, Nm and Nn are the Stokes vectors for the photon
and the initial- and final-state electron, respectively. So, the
building block M for constructing the gluing estimate of
higher orders is naturally interpreted in terms of the Stokes-
vector-dependent first-order process. For double Compton
scattering, for example, we would have

Nl2
il2
Nl1

il1
Nn

in
Mil2 im1

inMil1 im0
im1
Nm

im0
: ð69Þ

We can find similar expressions for photon emission
by a positron and pair production. Because an incoming
positron has v̄ instead of v in the amplitude, for the
positron spin sums we order the terms according to
ð↑↑;↓↑;↑↓;↓↓Þ instead of ð↑↑;↑↓;↓↑;↓↓Þ, so that
we have the same Nð0Þ and T for all particles.
To show that this matrix formulation is equivalent to the

average h…i approach, start with the gluing ansatz

h…M · NN ·M…i; ð70Þ

where N is the Stokes vector of some intermediate particle.
Using the prescription h1i ¼ 1, hni ¼ 0 and hnni ¼ 1 we
also have hNαNβi ¼ δαβ, so the h…i approach reduces to
the matrix formulation.

VICTOR DINU and GREGER TORGRIMSSON PHYS. REV. D 102, 016018 (2020)

016018-8



We now return to the normalization factor N in (60).
We use the same normalization as in [6]. So, in particular,
the amplitude is given by

1

kþ
δ̄ðPin − PoutÞM ≔ h0j

Y
e−
b
Y
eþ

d
Y
γ

aUb†j0i; ð71Þ

where b, d and a are the mode operators (with the
momentum and spin arguments suppressed) for electrons,
positrons and photons, respectively, and U is the evolution
operator. The delta function is given by δ̄ðPÞ ¼ ð2πÞ3 ×
δðP−Þδ2ðP⊥Þ. Pin is the momentum of the initial particle
and Pout is the sum of the (− and ⊥ components of the)
momenta of all the final-state particles. The initial state is
given by

jini ¼
Z

dP̃infðPinÞB†j0i; ð72Þ

where B is the mode operator for an electron, a positron or a
photon, and dP̃in ¼ θðPin

−ÞdPin
−d2Pin⊥=ð2Pin

−ð2πÞ3Þ (which is
Lorentz invariant). The mode operators are normalized
such that hinjini ¼ 1 implies

Z
dP̃injfj2 ¼ 1: ð73Þ

We assume for simplicity that the wave packet is sharply
peaked, which means

Z
dp̃0

				
Z

dP̃inf
1

kþ
M

				
2

¼ θðkp0Þ
kPinkp0 jMj2; ð74Þ

where p0 is the momentum of one of the final-state
particles. For each of the rest of the outgoing particles
we have a momentum integral

R
dP̃. For each intermediate

particle we have i
R
d4xd4P ¼ i

R
dϕ dPþ

2πkþ
d3x−;⊥d3P−;⊥.

The integral over x−;⊥ gives a delta function which we
use to perform the integral over P−;⊥. The Pþ integral is
elementary and independent of the field:

i
kþ

Z
dPþ
2π

ð1; PþÞ
P2 −m2 þ iϵ

e−iPΔx
þ
; ð75Þ

where Δxþ is the difference between two xþ variables and
ð1; PþÞ means that the numerator is either independent of
or linear in Pþ. Using P2 ¼ 4P−Pþ − P2⊥, the integral
either gives a term with an “instantaneous” δðΔxþÞ or one
with a time-ordering θðΔxþÞ; cf. [22]. Only the step-
function term contributes to the cascade or gluing estimate.
Apart from the terms that we have already included in X
and Y, each propagator gives a factor of 1=ð2kPÞ. There is
one xμ integral more than there are propagators and, since

d4x ¼ dxþdx−d2x⊥=2, it gives an overall factor of 1=4,
which we combine with 1=ðkPinkp0Þ in (74). Thus, each
external and intermediate particle gives a factor of 1=ð2kPÞ.
So, in order for

P ¼
Z Y

dkPiθðkp0Þ
Y

dϕi“time ordering”
Y

all steps

Zi

ð76Þ

to give the probability with the correct normalization,
where kPi ¼ b0si are all the independent longitudinal
momentum variables of the outgoing particles and time
ordering denotes the product of step functions that give
light-front time ordering, we need

N ¼ e2

ð2πÞ3
1

2kpm

1

2kpn

1

2kl
: ð77Þ

The fundamental matrix for a Compton-scattering step
can be expressed compactly as

MC ¼ iα
8πb20s

2
mθnm

M̂C; ð78Þ

M̂C
1imin ¼

q2σ033
2smsn

þ C1 −
κ̃

2
wn · σ2 · wmσ

03
1

þ
�
2ib0
rθnm

þ wn · wm

��
κ

2
σ030 þ σ120

�
;

M̂C
2imin ¼ −

q2σ121
2smsn

þ C2 −
κ̃

2
wn · σ3 · wmiσ122

þ wn · σ1 · wm

�
σ030 þ κ

2
σ120

�
;

M̂C
3imin ¼ −

q2iσ032
2smsn

þ C3 þ
κ̃

2

�
2ib0
rθnm

þ wn · wm

�
σ031

− wn · σ2 · wm

�
κ

2
σ030 þ σ120

�
;

M̂C
4imin ¼ −

q2σ123
2smsn

þ C4 þ
κ̃

2
wn · σ1 · wmiσ122

þ wn · σ3 · wm

�
σ030 þ κ

2
σ120

�
; ð79Þ

where r ¼ ð1=snÞ − ð1=smÞ, κ ¼ ðsm=snÞ þ ðsn=smÞ, κ̃ ¼
ðsm=snÞ − ðsn=smÞ,

σ030 ¼

0
BBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCCA; σ031 ¼

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA; etc:;

ð80Þ
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σ120 ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA; σ121 ¼

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA; etc:;

ð81Þ

C1 ¼

0
BBBBB@

0 q
sn
V1

q
sn
V2 0

q
sm
V1 0 0 − q

sm
X1

q
sm
V2 0 0 − q

sm
X2

0 q
sn
X1

q
sn
X2 0

1
CCCCCA
; ð82Þ

C2 ¼ −

0
BBBBB@

0 q
sm
V2

q
sm
V1 0

q
sn
V2 0 0 q

sn
X2

q
sn
V1 0 0 q

sn
X1

0 − q
sm
X2 − q

sm
X1 0

1
CCCCCA
; ð83Þ

C3 ¼

0
BBBBB@

0 q
sn
X1

q
sn
X2 0

q
sm
X1 0 0 − q

sm
V1

q
sm
X2 0 0 − q

sm
V2

0 q
sn
V1

q
sn
V2 0

1
CCCCCA
; ð84Þ

C4 ¼

0
BBBBB@

0 − q
sm
V1

q
sm
V2 0

− q
sn
V1 0 0 − q

sn
X1

q
sn
V2 0 0 q

sn
X2

0 q
sm
X1 − q

sm
X2 0

1
CCCCCA
; ð85Þ

withX andV obtained from (34) by replacingw1 → wm and
w2 → wn. For single Compton scattering,Nl

il
Nn

in
MC

ilimin
Nm

im
is equivalent to (23)–(32). The corresponding matrices for
positron Compton and Breit-Wheeler,MpC andMBW, can
be obtained from MC using the same replacement rules as
explained for (24)–(32).

C. Spin dependence

The spin and polarization treatment above is needed in
order to sum over the intermediate particles. The same
treatment can also be used in order to study the dependence
on the spin or polarization of initial- and final-state
particles. In this section we consider the dependence of
the two-step part of trident on the spin of the initial electron,
described by the vector n as in Sec. III. Spin effects in
single and double nonlinear Compton scattering have been
studied in e.g., [24,35,36]. By either a direct calculation or
by simply omitting the average over n in hPCPBWi, i.e., by
using the expressions presented in Sec. III A, we find

Ptwo ¼ hPi þ n · P; ð86Þ

where the first term gives the spin average, which we
calculated in [6], and the second term gives the spin
dependence, where P ¼ P⊥ þ Pk,

P⊥ ¼ iα2

8π2b20

Z
d4ϕ

θðθ31Þθðθ42Þ
q1θ21θ43

ei½r1Θ21þr2Θ43�=ð2b0Þ

×
�
−
κ23
2

W34Xþ
�
σ1

H2

s1
− σ3

C2

s1

þ iσ2

�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1

��
· Y

�

þ ðs1 ↔ s2Þ; ð87Þ

and

Pk ¼
iα2

8π2b20

Z
d4ϕ

θðθ31Þθðθ42Þ
q1θ21θ43

ei½r1Θ21þr2Θ43�=ð2b0Þ

×

�
1

2

�
1

s1
þ 1

�
W12

�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1

�

−
�
1

2

�
1

s1
þ 1

��
2ib0
r1θ21

þ 1þD1

�
− 1

�
κ23
2

W34

�
k̂

þ ðs1 ↔ s2Þ; ð88Þ

where X ¼ 1
2
ðw2 þ w1Þ, Y ¼ 1

2
ðw2 − w1Þ,

H2 ¼ w3 · σ3 · w4 ¼ w31w41 − w32w42; ð89Þ

C2 ¼ w3 · σ1 · w4 ¼ w31w42 þ w32w41; ð90Þ

and W34 ¼ w3 · iσ2 · w4. Note that only the photon emis-
sion part of the integrand depends on the spin.
Consider a constant field aμ ¼ δ1μa0ϕ. To obtain

the dominant contribution we replace θðθ42Þθðθ31Þ →
θðσ43 − σ21Þ. We find

PðsÞ ¼ e2
α2ða0ΔϕÞ2

2χ2q1

Aiðξ1Þffiffiffiffiffi
ξ1

p

×

��
κ23 −

1

s1

�
Ai0ðξ2Þ
ξ2

− Ai1ðξ2Þ
�
; ð91Þ

where ξi ¼ ½ri=χ�2=3. So the maximum and minimum
probability is obtained with spin orthogonal to the field
and the propagation direction. For χ ≪ 1 we find

P ¼ −
χ

27
e2
α2ða0ΔϕÞ2

64
exp

�
−
16

3χ

�
; ð92Þ

so the spin dependence is smaller than the average by a
factor of χ=27 ≪ 1 in this regime. We recognize this factor
from Eq. (24) in [18].
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Thus, while our spin or polarization treatment is par-
ticularly suitable for summing over spin and polarization
states of intermediate particles, we can also consider initial-
and final-state particles.

IV. TRIDENT IN A CIRCULARLY
POLARIZED FIELD

In [7] we demonstrated that our gluing method indeed
gives a good approximation for trident in a long pulse with
a0 ∼ 1 and linear polarization. Since the expressions
presented above are valid for any field polarization, we
will demonstrate this fact here for trident in a circularly
polarized field,

aðϕÞ ¼ a0ffiffiffi
2

p fsinðϕÞ; cosðϕÞ; 0ge−ðϕ=T Þ2 : ð93Þ

For linear polarization the two-step part can be obtained by
summing over a certain polarization basis for the inter-
mediate photon, which means that the polarization aspect
of the gluing approach is similar to the standard LCF case.
For other field polarizations it is in general not possible to
obtain the two-step by such a simple sum over two constant
polarization vectors, and for such cases our gluing approach
is indispensable.
In the following we compare the two-step part with the

one-step terms, i.e., the rest of the probability. All the
relevant definitions are given in [7]. As shown in [7], for a
very short pulse (T ∼ 1), low to moderate intensity
(a0 ≲ 1), and “low” energy (b0 ≲ 1), the exchange part
of the one-step (i.e., the cross term between the two terms
on the amplitude level that are related by exchanging the
two identical particles in the final state) can be comparable
to the other terms. This is in fact what one should expect if
all parameters are on the order of one. This provides a
numerical challenge as the exchange term is numerically
difficult to compute. Fortunately, the exchange term
becomes comparably small for long pulses (T ≫ 1) and/
or high intensity (a0 ≫ 1). So, since we focus on a
relatively long pulse with T ¼ 80, we have approximated
the exchange term by its LCF version. We expect this to be
good enough for a0 ¼ 1 and very good for higher a0.
In Figs. 3 and 4 we show the two sections s1 ¼ s2 and

s2 ¼ s3 for different values of a0 and χ and for a long pulse
with T ¼ 80. These plots contain curves for the six
different contributions to the one-step part, as defined in
[6,7]. However, here it is enough to note that Pex is the
exchange term, which is negligible, and P22→1

dir is a part of
the one-step that can be obtained with our gluing method.
These plots show that our gluing method (which gives the
two-step part of this process) gives indeed a good approxi-
mation. The one-step terms have some oscillations in the
momentum spectrum, making the two-step approximation
better for the integrated probability. Note that, while the
LCF version breaks down when a0 is not large, here we see

that our generalized two-step is good also at moderate
intensities, a0 ∼ 1. Comparing the exact result and the LCF
approximation, we note that at low b0 the LCF approxi-
mation is significantly smaller, then as b0 increases it
temporarily becomes much larger, and finally for large b0 it
again becomes smaller. This is because at large b0, the LCF
approximation is much larger than the exact result for the
two-step term but smaller than the exact value for the one-
step terms. At moderately large b0 this makes the total
probability larger in the LCF approximation, but above a
certain b0 value, due to the dominance of the one-step, the
exact total probability surpasses its LCF approximation. Of
course, this happens sooner for lower a0, where the two-
step loses importance faster. So, our gluing approach works
in a significantly larger region of parameter space com-
pared to LCF. These results also confirm the fact that our
gluing method works for arbitrary field polarization.
At high energies, b0 ≫ 1, we enter a different regime,

where the dominant contribution to trident comes from the
one-step part. Interestingly, the dominant contribution in
this regime comes from a one-step term (P22→1

dir ) that can be
obtained with the gluing method3; it is obtained in the same
way as the two-step but by including the second step-
function combination in (9) rather than the first. So, at least
for trident we can greatly increase the parameter region
where the gluing approximation works by including all of
θðθ42Þθðθ31Þ in (9) rather than just the θðσ43 − σ21Þ term. If
we compare plots in Fig. 4 with equal b0 (not χ), that is
diagonally in Fig. 4, we see that b0 determines the ratio of
the one-step (∼P22→1

dir ) and the two-step peaks and that the
width of this peak decreases with a0.
A comparison of the distributions in Figs. 3 and 4 with

the corresponding ones in [7] shows that, at larger b0 the
distributions look very similar for linear and circular
polarization (apart from the spikes in the linear case coming
from the saddle points or fast variations in the effective
mass), while for low b0 they are quite different. To
understand this, note that we have defined a0 in the circular
case (93) such that the integral of a02ðϕÞ over one period is
the same as in the linear case (neglecting the variation of the
pulse envelope). This means that, given a value of a0,
the maximum field strength is lower in the circular case. At
low b0 this means a stronger exponential suppression for
circular polarization and a higher discrepancy from LCF. At
large b0, on the other hand, the formation length is large
and the average intensity is more relevant, which explains
why the linear and circular cases are more similar. Note also
that the shape of the dominant one-step term (P22→1

dir ) in
Figs. 3 and 4 looks remarkably similar to the linear case,
even for low b0.

3There is another one-step term (P11
dir) which is also visible in

the high-b0 plots. This term happens to be quite small compared
to P22→1

dir , but it does remain also for larger b0. Unlike P22
dir, P

11
dir

stays quite close to its LCF approximation.
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For completeness, in Figs. 5 and 6 we show the full 3D
spectrum for different values of a0 and χ. The overall
shapes resemble those for linear polarization in [7], except
that the circular ones are much smoother. This is what one
can expect, e.g., because the (ϕ-dependent) effective mass

varies more slowly in a circularly polarized field. At low χ
the distribution is significant in a limited region at the
center of the si triangle. As χ increases, the peak grows and
starts to fill a large part of the triangle. As we reach high
values of b0, the distribution starts again to concentrate, this

FIG. 3. Sections of the spectrum for a0 ¼ 1, 2, 4, χ ¼ 1=2; 1; 2; 4; 8 and T ¼ 80. Solid lines are exact and dashed lines show LCF.
P11
dir þ P12

dir þ P22→1
dir þ P11

ex þ P12
dir þ P22

dir gives the one-step part, i.e., the difference between the exact result and the two-step part. The
dominant one-step term P22→1

dir can in fact be obtained in the same way as the two-step, but by including the second rather than the first
step-function combination in (9).
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time into two sharp peaks located close to the s1 ¼ 1 and
s2 ¼ 1 corners. These peaks become progressively taller,
but also thinner, so the total probability will grow, but only
slowly, as seen in Fig. 7. Note also the peak close to s3 ¼ 1
for a0 ¼ 1 and χ ¼ 8, where the positron takes most of the
initial longitudinal momentum (compared to the peaks at
s1 ¼ 1 and s2 ¼ 1 where one of the electrons takes most of
the momentum).

An important question is how the probability scales
with a0 and what b0 values allow us to maximize it.
Scaling the integrated probability by 1=a20 allows us to
compare the probabilities for a0 ¼ 1, 2, 4, 8 in Fig. 7. It
shows that the probability reaches a maximum at a finite
b0 (cf. similar plots for nonlinear Breit-Wheeler pair
production in [58]). Even with the LCF-inspired scaling
P=a20, the height increases with a0. The position of the

FIG. 4. Sections of the spectrum for a0 ¼ 1, 2, 4, χ ¼ 16, 32, 64, 128, 256 and T ¼ 80.
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peak can be seen in the two insets. The a0 ¼ 8 peak
corresponds to the smallest b0 value but to the largest χ.
Increasing b0 above this value will not help in achieving

a greater or comparable probability, unless we increase b0
to an extremely high value. However, for low a0 or a
shorter pulse, one can beat the peak by going into the

FIG. 5. The spectrum for T ¼ 80, a0 ¼ 1, 2, 4, 8 from left to right, and χ ¼ 1=2; 1; 2; 4; 8 from top to bottom.
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slow-growth region of higher b0. This can be seen
explicitly in Fig. 7 for a0 ¼ 1. If the pulse energy is
small, at even moderately high b0 values, the growth

in the one-step will be able to provide us with a much
larger probability than the peak we find in the two-
step term.

FIG. 6. The same as Fig. 5 but with χ ¼ 16, 32, 64, 128, 256 from top to bottom.

APPROXIMATING HIGHER-ORDER NONLINEAR QED … PHYS. REV. D 102, 016018 (2020)

016018-15



V. SADDLE-POINT APPROXIMATION

In this section we will present a method that can be used
for a first approximation of the higher-order processes
considered above. In [25] we used a saddle-point approach
to obtain an approximation for χ < 1 of the spectrum for
Compton scattering with a remarkably good agreement
with the exact numerical result, including small and fast
oscillations. In this section we use the same method for
trident. Saddle-point and semiclassical methods are of
course often used for various strong-field processes; see
[59,60] for two recent studies of Breit-Wheeler pair
production. For the field we consider here

aðϕÞ ¼ a0 sinðϕÞe−ðϕ=T Þ2 ; ð94Þ

we can perform the integrals in Θij and Δ analytically in
terms of error functions. We consider linear polarization
which is simpler in this approach and also leads to a richer
spectrum. The saddle points are determined by these two
equations

∂Θ21

∂σ21 ¼ ∂Θ21

∂θ21 ¼ 0 ð95Þ

and similar for σ43 and θ43. Note that these are exactly
the same saddle-point equations as in [25] for Compton
scattering. So, we can reuse the saddle points we already
have, and we refer to [25] for the details on how to obtain
them. For a field with many oscillations there is a large
number of saddle points to include, which all lie in the
complex plane. For one-dimensional integrals one can
deform the original integration contour to a sum over
steepest descent contours that go through some saddle
points but not necessarily all saddle points. For multidi-
mensional integrals like the ones we have here, it is much
more nontrivial to construct the higher-dimensional version
of steepest descent contours and it is in general a nontrivial
question which saddle points one should actually include.
(These questions are also considered in Monte Carlo and
Lefschetz thimble approaches to e.g., the sign problem in

QCD [61].) We should of course not include the saddle
points that give exponentially large contributions, but by
including the other saddle points we have found a good
agreement with the exact numerical result. For a pulsed
oscillating field we in general have to obtain these saddle
points numerically. To do so we need starting points. As
explained in [25] we obtain the saddle points by using the
corresponding ones for a monochromatic field (which are
easier to find) as starting points. The saddle points move
continuously through the complex plane as we decrease the
pulse length T (or change a0), and in some cases it can be
useful to consider a couple of intermediate values of T
between the monochromatic case T ¼ ∞ and the actual
value of T . As explained in [25], each pair of σ and θ have a
set of saddle points which are characterized by two
integers, n and m, where increasing n and m correspond,
respectively, to increasing Reσ and Reθ (see [25] for the
exact definition of n and m). There are two sets of saddle
points. Here the dominant contribution comes from the
ones that are continuously connected to

fσ; θg ¼
�
nπ; 2iarcsinh

�
1

a0

�
þ 2mπ

�
ð96Þ

in the monochromatic limit T → ∞.
A new aspect compared to the first-order processes is

that now we have step functions for the ϕ integrals, which
lead to restrictions on which saddle points to include. For
P22→2
dir we have θðσ43 − σ21Þ and therefore we should only

include saddle points with n43 ≥ n21. For n43 ¼ n21 the step
function removes one-half of a Gaussian integral, which
gives an overall factor of 1=2 compared to the cases with
n43 > n21. For P22

dir we have a more complicated step

function, θðσ43 − σ21 −
jθ43−θ21j

2
Þ. For saddle points with

σ43 − σ21 ¼ jθ43−θ21j
2

> 0 one can again diagonalize the
quadratic fluctuations around the saddle point such that
the step functions simply remove one-half of one of the

Gaussian integrals. For saddle points with σ43 − σ21 ¼
jθ43−θ21j

2
¼ 0 the step function restricts two Gaussian inte-

grals and we have integrals on the form

Z
∞

0

dxdye−ax
2−by2−cxy ¼ 1

2π
arccos

c

2
ffiffiffiffiffiffi
ab

p

×
Z

∞

−∞
dxdye−ax

2−by2−cxy; ð97Þ

where the factor in front of the integral in the second line
gives the relative factor compared to the case without a step
function.
Note that to find the saddle points numerically, we only

have to specify a0 and T , so we have

FIG. 7. Integrated probability as a function of energy para-
meter b0.
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PðsÞ ¼ α2
1þ ½1 − κ01�½1þ κ23�

q21r1r2

X
n21;m21;n43;m43

“prefactor”

× exp

�
i

2b0
½r1Θ21 þ r2Θ43�

�
þ ð1 ↔ 2Þ; ð98Þ

where prefactor and Θij depend on a0 and T via the
numerically obtained saddle points (the Gaussian integrals,
obtained from expanding to second order around the saddle
points, are performed analytically and then evaluated by
inserting the numerical saddle points) but not on the
momenta si or b0.
The saddle-point approximation can be expected to be

good when χ is sufficiently small. As can be seen by
comparing Fig. 8 with the corresponding exact results in
[7], this saddle-point approximation captures many of the
features of the exact result even for χ ¼ 0.5, which is not
particularly small. The most easily seen difference is the
slightly higher peak in the saddle-point approximation. For
χ ¼ 1 we start to see a bit larger differences also in the
shape of the spectrum, but the saddle-point result still gives
a good first approximation. Producing the data for the
saddle-point approximation in Fig. 8 is of course much
faster than obtaining the exact results. So, the saddle-point
method can be used to quickly test and find interesting
parameter values, for which one can then produce more
accurate results with an exact integration, e.g., with the
methods described in [7].

VI. CONCLUSIONS

For sufficiently large a0 or a sufficiently long pulse, i.e.,
sufficiently large T , one can expect the dominant contri-
bution to trident to come from the incoherent product of

nonlinear Compton scattering and Breit-Wheeler pair
production. The nontrivial problem is how to treat the
polarization of the intermediate photon. For constant-
crossed fields it was already known [13,17,18] that the
two-step can be obtained by summing the incoherent
product over two suitable polarization vectors. In [6] we
showed that this simple sum can be generalized to
inhomogeneous fields for a0 ∼ 1 (the two-step in LCF
and constant-crossed fields corresponds to the leading-
order term in an expansion in 1=a0 ≪ 1). In this paper we
have studied how to generalize this to general (e.g.,
circular) field polarization. This turns out to be nontrivial.
We have managed to find such a generalization, and it is not
simply a (single) sum over the polarization of the inter-
mediate photon. This gluing generalization involves a 3D
unit (Stokes) vector describing the photon polarization. In
[25] we provided a similar gluing generalization to double
nonlinear Compton scattering, where the intermediate
particle is an electron instead of a photon. In that case
the spin of the intermediate electron enters via another 3D
unit vector (and the two-step is again not simply a sum over
two independent spins). Interestingly, although the 3D unit
vectors for the photon polarization and electron spin are
different objects and transform differently, they enter the
construction of gluing estimate in basically the same way.
Now, if this gluing approach only worked for the second-
order processes, trident and double Compton, it would
perhaps not have been so useful, because we have calcu-
lated all contributions to the probability independently of
this gluing approximation and so we anyway know what
the two-step is and what the gluing approach has to give.
However, in this paper we have generalized to higher orders
and showed that the N-step part of Nth-order processes
with N > 2 (which can be obtained in a spin- and
polarization-basis independent way with Dirac traces of
pþ 1, etc.) can be obtained with the same gluing approach.
Thus we have provided basic building blocks with which to
construct estimates of general higher-order processes, for
sufficiently large T and/or a0.
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