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An intense transient magnetic field is produced in high energy heavy-ion collisions mostly due to the
spectator protons inside the two colliding nuclei. The magnetic field introduces anisotropy in the medium,
and hence the isotropic scalar transport coefficients become anisotropic and split into multiple components.
Here, we calculate the anisotropic transport coefficients’ shear, bulk viscosity, and electrical conductivity,
and the thermal diffusion coefficients for a multicomponent hadron resonance gas (HRG) model for a
nonzero magnetic field by using the Boltzmann transport equation in a relaxation time approximation
(RTA). The anisotropic transport coefficient component along the magnetic field remains unaffected by the
magnetic field, while perpendicular dissipation is governed by the interplay of the collisional relaxation
time and the magnetic time scale, which is inverse of the cyclotron frequency. We calculate the anisotropic
transport coefficients as a function of temperature and magnetic field using the HRG model. The neutral
hadrons are unaffected by the Lorentz force and do not contribute to the anisotropic transports, we estimate
within the HRG model the relative contribution of isotropic and anisotropic transports as a function of
magnetic field and temperature. We also give an estimation of these anisotropic transport coefficients for
the hadronic gas at finite baryon chemical potential (μB).

DOI: 10.1103/PhysRevD.102.016016

I. INTRODUCTION

In the initial stage of heavy ion collisions an intense
transient magnetic field eB ∼ ð1–10Þm2

π (for
ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV collisions) is expected to be produced [1–5].
Theoretically, it was also shown that the magnitude of the
magnetic field almost linearly rises with center of mass
energy collisions [2,3].
A general consensus is that the initial large magnetic

field will decay quickly (within a few fm) and become
so weak that its effect may be negligible in any bulk
observables. However, the initial hot and dense phase of
quark gluon plasma (QGP) and later time hadronic phase
both have finite electrical conductivities, this finite
conducting medium will definitely modify the decay of
the magnetic field according to the laws of magnetohy-
drodynamics (MHD) [6–10] or through a transport
simulation [11], a matter which is still under investigation
[3,12,13]. Usually the transport coefficients such as shear,
bulk viscosity, and electrical conductivity are taken as an
input to dynamical models such as relativistic MHD.
Hence, it is important to calculate these transport coef-
ficients in presence of magnetic field. The calculation of
transport coefficients in quark and hadronic matter in the
presence of a magnetic field were carried out in recent
Refs. [14–41], where shear viscosity [14–20], electrical

conductivity [18–32], and bulk viscosity [33–37] were
calculated in the presence of a magnetic field. The
dynamics of heavy quark in the presence of a magnetic
field within the framework of the Fokker-Planck equation
was studied in [39,40]. In the present work, we carry out
a similar investigation where we consider a multi-
component hadron resonance gas and evaluate the shear
viscosity and electrical conductivity in the presence of a
magnetic field. In principle, one can calculate these
transport coefficients in the presence of a magnetic field
by solving QCD on a space-time lattice, but due to the
current computational limitation and some technical
difficulties it is unlikely to obtain the accurate result
of these quantities in the low-temperature regime.
However, it is well known that the hadron resonance
gas (HRG) model successfully reproduces lattice data just
below the crossover temperature (Tc) [42], and it is
expected that at much lower temperatures HRG, as an
effective model, can be reliably used to calculate trans-
port coefficients of hadronic matter. Since the magnetic
field is nonzero in the hadronic phase it motivates us to
calculate the transport coefficients in the presence of the
magnetic field. In Refs. [43,44], thermodynamical proper-
ties of hadron resonance gas in the presence of the
magnetic field has been investigated.
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Here, we would like to mention that recently in
Refs. [20,30,31] transport coefficients (electrical conduc-
tivity and shear viscosity) for a HRG were studied in the
presence of the magnetic field using the relaxation time
approximation. The relaxation time was obtained from the
constant cross section of hadrons. One of the crucial
differences between the present work and the previous
work [20] is that we give a general framework of using
projection tensors [45] consisting of magnetic and hydro-
dynamical tensor degrees of freedom along which the
viscous correction to a single particle distribution function
can be systematically expanded in a Chapman-Enskog
(CE) series. This is unlike the heuristic basis [46] used in
the previous works. Hence, the present formalism can be
used to systematically derive second and higher order
nonresistive MHD equations in the lines of Ref. [38] but
using a general CE series expansion. Apart from this
important technical difference, in the present study we
have calculated all the transport coefficients, which are
available in a Landau frame, i.e., shear viscosity, bulk
viscosity, and baryon diffusion (as well as electrical
conductivity) for hadronic matter. Additionally, we do
not estimate the relaxation time from the hadronic size
but rather treat this as a free parameter. In the present work,
we have separately explored the contributions of neutral
and electrical charged hadrons to shear viscosity, which
might be important phenomenologically. Due to the
Lorentz force, the transport coefficients for electrically
charged hadrons becomes anisotropic, whereas, the neutral
hadrons only contribute to the isotropic transport processes.
We give some estimate of the relative contribution of such
anisotropic and the isotropic transport coefficients within
the HRG model for zero and nonzero μB.
The article is organized as follows: in Sec. II, we briefly

discuss the thermodynamics of the HRG model. In Sec. III,
we introduce the Boltzmann transport equation in relaxation
time approximation and the ansatz for the off-equilibrium
distribution function required to calculate the transport
coefficients. In the same section we discuss the transport
coefficients obtained from relaxation time approximation
with and without the magnetic field. Next, in Sec. IV we
discuss numerical results obtained for HRG. We give a
summary of our work in Sec. V. At the end, detailed
derivation of various transport coefficients are given in
the Appendixes. Throughout the paper we use the natural
unit, the four vectors are denoted by the greek indices and the
three vectors are denoted by the latin indices unless stated
otherwise.

II. FORMALISM

A. Thermodynamics

Here, we start with a brief discussion of the HRG model
to define the thermodynamical quantities like entropy
density s, enthalpy per particle h, etc., which are used

for the calculations of different transport coefficients. All
thermodynamic quantities are derived from the grand
canonical partition function Z of the hadronic matter with
volume V at temperature T and chemical potential of ith
species μi:

lnZ ¼ V
X
i

Z
d3p⃗i

ð2πÞ3 giri ln½1þ rieβðp
0
i−μiÞ�; ð1Þ

where μi ¼ BiμB with Bi as the baryon number of the
hadronic species and μB as the baryon chemical potential.
Note that gi, p0

i ¼ fp⃗i
2 þm2

i g1=2 are degeneracy factors
and energy of the hadrons of species i with mass
mi; ri ¼ � stands for fermion or bosons, respectively.
The total degeneracy factor of a particular species of hadron
is obtained as gi ¼ gsi × gIi , where gsi , g

I
i are the spin and

iso-spin degeneracy factors, respectively.
Once the partition function is defined, the thermo-

dynamic quantities pressure (P), energy density (ϵ), and
net baryon density (ρ) are calculated from the following
standard definitions:

P ¼ T
V
lnZ;

ϵ ¼ T2

V
∂
∂T lnZ;

ρ ¼ T
V

∂
∂μ lnZ: ð2Þ

Using Eq. (2), we can further define the entropy density s
and the enthalpy per particle h by using the relations

s ¼
X
i

ðϵþ P − μiρiÞ=T;

h ¼ ðϵþ PÞ=ρ; ð3Þ

where ρi is the baryon density of hadron species i.

III. BOLTZMANN TRANSPORT EQUATION

The calculation of all the transport coefficients consi-
dered here are based on relaxation time approximation of
the collision kernel of the Boltzmann equation, hence, it is
worthwhile to discuss the method for the sake of complete-
ness. The general form of the Boltzmann equation in the
presence of external fields in the relaxation time approxi-
mation is given by [16,18,19,46],

pμ∂μfi þ qFμνpν
∂fi
∂pμ ¼ −

U · p
τc

δfi; ð4Þ

where Fμν is the electromagnetic field strength tensor.
For our case, only the magnetic field is present, henceFμν¼
−Bμν with Bμν ¼ ϵμνραBρUα. Note that B is the magnetic
field strength and bμ is the unit four vector defined as
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bμ ¼ Bμ

B . So, for a small deviation of the distribution
function from the equilibrium, Eq. (4) can be written as
follows:

pμ∂μfi0 ¼
�
−
U · p
τc

��
1 −

qBτc
U · p

bμνpν
∂

∂pμ

�
δfi: ð5Þ

The equilibrium distribution function for ith hadron species
is fi0 ¼ ðeβðU·p−μiÞ þ rÞ−1, where r ¼ �1 depending on the
statistics. In all proceeding calculations, hydrodynamic
four-velocity uμ is defined in the Landau frame such that
uνTμν ¼ P

i

R
d3ppμ

i fi ¼ ϵuμ, where Tμν is the energy-
momentum tensor, and ϵ is the energy density.
Here, we construct δfi as a linear combination of the

thermodynamic forces times appropriate tensorial coeffi-
cients so that δfi turns out to be a Lorentz scalar,

δfi ¼ AiX þ Bμ
i Xμ þ Cμν

i Xμν; ð6Þ

where Xμν… represents the thermodynamic forces.
Replacing the above form of δfi in the Boltzmann transport
equation and comparing the coefficients of the thermo-
dynamic forces, we get the unknown coefficients Ai; B

μ
i ,

and Cμν
i in the expression for δfi. Using the δfi in the

thermodynamic flows, we obtain the transport coefficients
as discussed in detail in Appendix B.
Subsequently, the dissipative quantities like current

density ðJμDÞ, stress tensor ðπμνÞ, bulk viscous pressure (Π),
and particle diffusion current ðnμÞ can bewritten as follows:

JμD ¼ σμνEν

πμν ¼ ημναβVαβ

Π ¼ ζμν∂μuν

nμ ¼ κμν∇νðμ=TÞ; ð7Þ

where the tensor coefficients σμν is given in Eq. (A11) and
the rest can be written as

ημναβ ¼ 1

15

X
i

gi

Z
d3piðp⃗iÞ4
ð2πÞ3p0

i
CðnÞμναβ
i

ζμν ¼ 1

3

X
i

gi

Z
d3piðp⃗iÞ2
ð2πÞ3p0

i
CðnÞμν
i ;

κμν ¼ −
1

3

Xbaryons
i

gi

Z
d3piðp⃗iÞ2
ð2πÞ3p0

i
KðnÞμν

i ; ð8Þ

where the coefficients CðnÞμναβ; CðnÞμν and KðnÞμν are given
in Eqs. (B6), (B26), and (B37), respectively. Note that here
diffusion current refers to baryon diffusion, and hence the
sum is over all baryons (antibaryons).

A. Transport coefficients without a magnetic field

After the short discussion on the thermodynamical
quantities, we discuss here about the transport coefficients
of a relativistic system of particles in the absence of any
external magnetic fields. The electrical conductivity (σ),
shear viscosity (η), bulk viscosity (ζ), and the diffusion
coefficient (κ) for a HRG are given in terms of the
temperature and the relaxation time of hadrons,

σ ¼
X
i

gsi q
2
i
1

3T

Z
d3pi

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcfi0ð1 − rifi0Þ

η ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
ðp0

i Þ2
τcfi0ð1 − rifi0Þ

ζ ¼
X
i

gi
T

Z
d3p⃗i

ð2πÞ3ðp0
i Þ2

Q2
i τcfi0ð1 − rifi0Þ

κ ¼
X
i

gi
3h

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcðh − p0

i Þfi0ð1 − rifi0Þ; ð9Þ

where qi stands for the electric charge of hadrons type i, τc
is the relaxation time of hadrons, which is taken to be the
same for all hadrons for the sake of simplicity. The Qi is a
function of the speed of sound along with other thermo-
dynamic quantities, the details of which are given in
Appendix B. The derivation of the transport coefficients
given in Eq. (9) can be found in Refs. [47,48] as well as in
Appendix B. Similar expressions can also be obtained in
Kubo relation [49,50].
In the present article, we aim to calculate the transport

coefficients of HRG in the presence of a magnetic field; the
values of these coefficients without the magnetic fields are
obtained by taking the limit of a vanishing magnetic field.
The expression for the transport coefficients in the presence
of magnetic fields are given in the next few subsections,
and the corresponding detailed derivation for the same is
given in Appendix B.

B. Electrical conductivity in a magnetic field

In the presence of a magnetic field, the transport
coefficients involve another time scale, cyclotron time
τiB ¼ p0

i =ðeBÞ, along with the usual relaxation time τc,
which usually depends on the rate of contact collisions
between the constituents. The index i refers to a type of
hadronic species.
The nonzero Lorentz force, due to the magnetic fields,

gives rise to an anisotropic transport phenomenon (as the
force along the magnetic field is zero and nonzero in other
directions). It is obvious that if the collision time τc is much
smaller than the cyclotron time τiB the effect of the
magnetic field is negligible, i.e., the system is almost
isotropic when τc=τiB ≪ 1, and it becomes anisotropic
when τc=τiB ∼ 1 or greater. We also note that along the
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magnetic field the Lorentz force does not work, so the
parallel component of any transport coefficient (denoted
by k) remains the same as without the magnetic field, given
in Eq. (9). Here, we need a little bit more clarification.
In linear theory, any thermodynamic fluxes are proportional
to the corresponding thermodynamic forces, and the
proportionality constants are known as transport coeffi-
cients. If the system is isotropic, the transport coefficients
are scalar, but for an anisotropic medium, the transport
coefficients are components of a tensor. The decomposi-
tions of the transport coefficient tensor in terms of the
available basis (uμ; gμν; bμ; bμν) are not unique, and we
choose here a particular combination such that the decom-
position has a component parallel to the magnetic field,
which is denoted with a subscript k. Whereas, the remain-
ing components can have two or more components usually
denoted with a subscript ⊥ and ×. The ×-component is
basically a Hall component, which was absent for B ¼ 0
while ⊥-component at B ¼ 0 will still exist, and it will be
exactly equal to k-component, which restores the isotropic
property of the medium at B ¼ 0. For electrical conduc-
tivity, the expressions of parallel (σk), perpendicular (σ⊥),
and cross (σ×) components for hadron resonance gas are
given below:

σk ¼
X
i

gsi q
2
i
β

3

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcfi0ð1− rifi0Þ;

σ⊥ ¼
X
i

giq2i
β

3

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τc

1þ ðτc=τiBÞ2
fi0ð1− rifi0Þ;

σ× ¼
X
i

giq2i
β

3

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
ðτ2c=τiBÞ

1þ ðτc=τiBÞ2
fi0ð1− rifi0Þ:

ð10Þ

As mentioned earlier, the detailed derivation is given in
Appendix A. To compare our results for electrical con-
ductivities (10) to some of the earlier findings [18,19,21]
where the conductivities are denoted with σ0;1;2, we found
the following relations hold:

σk ¼ σ0 þ σ2;

σ⊥ ¼ σ0;

σ× ¼ σ1: ð11Þ

C. Shear viscosity in a magnetic field

The most general form of the δfi in the presence
of a magnetic field where only shear stress is present is
given by

δfi ¼
X4
n¼0

cnC
ðnÞ
μναβp

μ
i p

ν
i V

αβ ð12Þ

¼ ½c0P0
hμνiαβ þ c1ðP1

hμνiαβ þ P−1
hμνiαβÞ

þ ic2ðP1
hμνiαβ − P−1

hμνiαβÞ þ c3ðP2
hμνiαβ þ P−2

hμνiαβÞ
þ ic4ðP2

hμνiαβ − P−2
hμνiαβÞ�pμ

i p
ν
i V

αβ; ð13Þ

where Vαβ ¼ 1
2
ð∂Uα∂xβ þ

∂Uβ

∂xα Þ; the form of projectors Pn
hμνiαβ

will be given in Appendix B for n ¼ −2;−1, 0, 1, 2. Using
this expression for δfi, the shear viscous coefficients
turnout to be

ηk ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
p2
i0

τcfi0ð1 − rifi0Þ

η⊥ ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
p2
i0

τc
1þ ðτc=τiBÞ2

fi0ð1 − rifi0Þ

η0⊥ ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
p2
i0

τc
1þ ð2τc=τiBÞ2

fi0ð1 − rifi0Þ

η× ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
p2
i0

τ2c=τiB
1þ ðτc=τiBÞ2

fi0ð1 − rifi0Þ

η0× ¼
X
i

gi
15T

Z
d3p⃗i

ð2πÞ3
jp⃗ij4
p2
i0

τ2c=τiB
1
2
þ 2ðτc=τiBÞ2

fi0ð1 − rifi0Þ:

ð14Þ

The coefficients ηk, η⊥, η0⊥ are even functions of
magnetic field B. The two coefficients η×, η0× may have
either sign, and they are odd functions of B. The later two
coefficients are also called transverse viscosity coefficients
[45]. We note the expressions for shear viscosities given in
Eq. (14) are identical to those given in Refs. [16,18,19,46].

D. Bulk viscosity in a magnetic field

Similarly, for bulk viscosity we restrict ourselves to only
the divergence of the fluid four velocity and neglect the
other thermodynamic forces,

δfi ¼
X3
n¼1

cnC
μν
n ∂μUν: ð15Þ

Using this δfi, the bulk viscous coefficients turn out to be

ζk ¼ ζ⊥ ¼
X
i

giτc
T

Z
d3p⃗i

ð2πÞ3p2
i0
Q2

i fi0ð1 − rifi0Þ; ð16Þ

ζ× ¼ 0: ð17Þ

The bulk viscous coefficients remain unchanged under
the influence of the magnetic field as was also shown in
Ref. [38] using Grad’s 14 moment approximation. The
detailed derivation of Eq. (17) is given in Appendix B.
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E. Net baryon diffusion coefficient
in a magnetic field

For the case of diffusion, we keep only the term
containing the spacial derivative of μ=T in the expression
for δfi,

δfi ¼ Kμνpiμ∂νðμi=TÞ: ð18Þ

Using this δfi the diffusion coefficients turn out to be

κk ¼
Xbaryons
i

gi
3h

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcðh−Bipi0Þfi0ð1−rifi0Þ

κ⊥¼
Xbaryons
i

gi
3h

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcðh−Bipi0Þ
1þð τcτiBÞ2

fi0ð1−rifi0Þ

κ×¼
Xbaryons
i

gi
3h

Z
d3p⃗i

ð2πÞ3
jp⃗ij2
ðp0

i Þ2
τcð τcτiBÞðh−Bipi0Þ

1þð τcτiBÞ2
fi0ð1−rifi0Þ;

ð19Þ

where h is the enthalpy density as defined in Eq. (3), and
the sum runs over baryons only. Due to the anisotropy
induced by the magnetic field, we have three diffusion
coefficients. Here again, the details can be found in
Appendix B.

IV. RESULTS

In the formalism section, we have summarized the
analytic expressions for the anisotropic components of
the shear viscosity, bulk viscosity, thermal diffusion, and
the electrical conductivity for a finite magnetic field. In this
section, we will explore the temperature and magnetic field
dependence of these transport coefficients for HRG model
calculations.
Before discussing the results for HRG with physical

masses of hadrons, let us first consider the simpler massless
case for QGP. Here, we also compare the result obtained
from our numerical implementation of the HRG model to
that of a lattice QCD (LQCD) result for a sanity check. In
the massless limit (also known as the Stefan-Boltzmann
(SB) limit) the thermodynamical quantities like pressure
(P) and energy density (ϵ), varies as T4, and the entropy
density (s) varies as T3, more explicitly,

PSB ¼ g
ζð4Þ
π2

T4;

ϵSB ¼ g
3ζð4Þ
π2

T4;

sSB ¼ g
4ζð4Þ
π2

T3; ð20Þ

where ζð4Þ stands for zeta function. Here, the subscript SB
stands for the SB limit. In this limit the interaction measure

ðϵ − 3PÞ=T4 becomes zero, and we consider the HRG to be
a noninteracting gas. It is clear that in the SB limit
P=T4; ϵ=T4, and s=T3 are constants for a given degeneracy.
For example, a 3 flavor quark gluon plasma with the
degeneracy factor g ¼ 16þ 7

8
ð24þ 12Þ ¼ 47.5 yields

P=T4 ¼ 5.2, ϵ=T4 ¼ 15.6, and s=T3 ¼ 20.8. However,
for the physical masses of hadrons all these thermodynamic
quantities have a smaller value than their corresponding SB
values and approach SB values from below as m=T → ∞.
This is shown in the top panel of Fig. 1(a) for the
normalized entropy density where the result obtained from
the HRG model is shown by the blue dotted line; the
corresponding sSB=T3 is shown by the blue horizontal solid
line. For comparison, we also show the LQCD (shown by
the green band) result from Ref. [51] in the temperature
range of 120–180 MeV. It is clear from Fig. 1(a) that the
normalized entropy density obtained from the Lattice QCD
calculation and HRG matches very well in the temperature
range considered here, also both results approach SB values
as temperature increases.
Now, let us discuss the shear viscosity and the electrical

conductivity of a massless gas without any magnetic field
as given in Eq. (9). In the massless limit the corresponding
expressions are [19]

T (GeV)

0.06 0.08 0.1 0.12 0.14 0.16 0.18
)2

T cτ
/(σ

4−10

3−10

2−10

1−10

QGP

HRG

(c)

)4
T cτ

/(η

2−10

1−10

1

10

QGP

HRG
(b)

3
s/

T

1−10

1

10

QGP
HRG
Lattice (WB)

(a)

FIG. 1. (a) Normalized entropy density s=T3, (b) shear viscosity
η=ðτcT4Þ, and (c) electrical conductivity σ=ðτcT2Þ as functions of
T for massless QGP (horizontal lines) and HRG.
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η ¼ g
4ζð4Þ
5π2

τcT4;

σ ¼ gqq2
ζð2Þ
3π2

τcT2; ð21Þ

where gqq2 ¼ 12 × ð4e2
9
þ e2

9
þ e2

9
Þ ¼ 8e2 for 3 flavor QGP.

We note that similar to the thermodynamic quantities in the
SB limit the normalized shear viscosity and electrical
conductivity η=ðτcT4Þ and σ=ðτcT2Þ are constants. These
normalized SB values ηSB=ðτcT4Þ and σSB=ðτcT2Þ are
shown by the red dash-dotted and black dash horizontal
lines in Figs. 1(b) and 1(c), respectively. For a HRG, both
η=ðτcT4Þ and σ=ðτcT2Þ have smaller values compared to
their corresponding SB values and approach SB values
from below in the large temperature limit as shown by the
red dot and black dash-dotted lines in Figs. 1(b) and 1(c),
respectively.
The striking similarity between the temperature depend-

ence of thermodynamic quantity s=T3 and the transport
coefficients like η=ðτcT4Þ, σ=ðτcT2Þ, clearly shows that we
may gain information about the degrees of freedom of the
system under consideration. Alternatively, we might get
information about relaxation time τc if the temperature
dependence of η and σ are known from other means.
Next, we explore the role of B and T on shear viscosity

as shown in Fig. (2). For reference, we have also shown the
values of η=ðτcT4Þ for a massless QGP (black dotted line)
and that of HRG with B ¼ 0 (shown by the red solid line).
The η⊥=τcT4 of charged hadrons for eB ¼ 10m2

π and τc ¼
5 fm is shown by the dash-dotted line in Fig. 2(a). Since
HRG is composed of both charged and neutral hadrons, it is
interesting to study the relative contribution of the charged
and uncharged hadrons to the total shear viscosity. Neutral
hadrons only contribute to isotropic shear viscosity since,
for neutral hadrons, η has a single component, which is

essentially η ¼ ηk. It is clear from Fig. 2(a) that the
anisotropic shear viscous coefficients from the charged
hadrons contribution is quite smaller than that of the
isotropic shear viscosity, which also contains contributions
from the neutral hadrons. However, the above fact is only
true for large magnetic fields [in Fig. 2(a) B ¼ 10m2

π]. For
smaller magnetic fields, the η⊥=τcT4 becomes comparable
or even larger than the isotropic η=τcT4 as shown in
Fig. 2(b). The k (red solid line) and ⊥ (blue dash-double-
dotted line) components of shear viscosity are plotted
againstB-axis in Fig. 2(b). The neutral hadrons contribution,
which is independent of B, is shown by a dashed line
while the charged hadrons contribution is shown by a dash-
dotted line. The blue dash-double-dotted line is basically a
summation of the dash (neutral hadrons) and dash-dotted
(charge hadrons) lines. To get some numerical estimate, we
note that for B ¼ 0 the charged hadron contribution in the
viscosity is more than 50% than the neutral hadrons. As B
increases, the charge hadron contribution decreases and for
eB ≥ 10m2

π , this contribution reduces to ∼4%–8%.
Let us now consider the electrical conductivity, where

gluons in the QGP phase and the neutral hadrons in the
HRG phase play no role due to the charge neutrality. The
results for the electrical conductivity as a function of T and
B are plotted in Figs. 3(a) and 3(b). For comparison, here
also we show the massless SB limit for QGP (horizontal
black dotted line) and HRG (red solid line) for B ¼ 0. We
found that the T and B dependence of the electrical
conductivity and the shear viscosity are very similar in
nature. They mostly differ due to the different contribution
from the neutral hadrons. For example, the neutral hadrons
do not contribute to the electrical conductivity but play a
role in the transport phenomenon related to the shear
viscosity. At this point, we would like to add a few
comments: (i) we note that both η=ðτcT4Þ and σ=ðτcT2Þ
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FIG. 2. The anisotropic component of the shear viscosities η⊥, ηk for HRG and isotropic value for massless QGP are plotted against the
axes of (a) temperature (T) of the medium and (b) external magnetic field (B).
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have the largest values for massless QGP, (ii) in the
presence of the magnetic field, the transport coefficient
becomes anisotropic and among the various components
the k component is the largest and equal to the correspond-
ing isotropic value of the transport coefficient (i.e., for
B ¼ 0), and (iii) there is a small difference in the temper-
ature dependence of the isotropic and the anisotropic
transport coefficients.
Finally, we discuss the diffusion coefficient κ. Similar to

the electrical conductivity in the presence of a magnetic
field, the thermal diffusion coefficient also has three
components: κk, κ⊥, and κ×. As usual, the κk by con-
struction is independent of the magnetic field, but κ⊥ and
κ× are functions of the magnetic field. In Fig. 4, we show
the diffusion coefficients as a function of temperature for
B ¼ 10m2

π and μB ¼ 300. From Fig. 4, we see that κ⊥ and

κ× are always smaller than κk for the temperature range
considered here. A nonzero Hall diffusion coefficient κ×
can be attributed to the nonzero μB because for finite μB the
particles and the antiparticles flow, due to the Hall effect, do
not cancel out. Similarly, one can get nonzero Hall shear
viscosities η×, η0× and the Hall electrical conductivity for
nonvanishingμB. All of theseHall-like transport coefficients
vanish for a net-baryon free medium because the contribu-
tion from the particles and the antiparticles are exactly equal
and opposite. Figure 5 demonstrate this μB dependent Hall
viscosity (η×), Hall conductivity (σ×), and the Hall diffusion
(κ×) for T ¼ 150 MeV, eB ¼ 10m2

π , and τc ¼ 5 fm. It is
clearly seen that both η× (black dashed line), σ× (blue dash-
dotted line), and κ× (blue dash-double-dotted line) increase
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FIG. 3. Anisotropic component of the electrical conductivity (σ⊥) for eB ¼ 10m2
π and its isotropic value (σk) for B ¼ 0 are plotted as

functions of (a)temperature (T) and (b) the external magnetic field (B).
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monotonically from zero at μB ¼ 0. The growing tendency
can be understood from the μB dependent of the net baryon
density of theHRG system,which is roughly proportional to
sinhðμ=TÞ for the Maxwell-Boltzmann distribution, which
at high temperatures fairly well describes the Fermi-Dirac or
Bose-Einstein distribution functions.
The present methodology is semiclassical (as we con-

sider the quantum statistical distribution function) in nature
and does not include the Landau quantization- a quantum
aspect, which is visible in the strong magnetic field. This
effect is separately addressed in Ref. [52], but the complete
understanding is still missing and we need further theo-
retical research in this direction. The physics of the
anisotropic dissipation of the relativistic fluid in a magnetic
field is also applicable for nonrelativistic fluid, such as
different condensed matter and biological systems.

V. SUMMARY

In high energy heavy-ion collisions, large transient
magnetic fields are produced predominantly in the
perpendicular direction to the reaction plane. This magnetic
field breaks the isotropy of the system and, as a result, the
transport coefficients become anisotropic. We evaluate the
anisotropic transport coefficients of the HRG and massless
QGP by using the relaxation time approximation method.
We use a unique tensorial decomposition of the anisotropic
thermodynamic forces, which reduces the computational
complexity for evaluating anisotropic transport coeffi-
cients. Along with the usual relaxation time, which appears
in the collision kernel of the Boltzmann equation and
controls the rate of reaching equilibrium for systems that
are initially away from the equilibrium in magnetic fields,
we have another timescale equal to the inverse of the
cyclotron frequency. The measure of anisotropy turned out
to be a function of the ratio of these two time scales. It is not
surprising that we found the anisotropy increases with the
magnetic field, and due to the specific choice of tensorial
decomposition the k components of the anisotropic trans-
port coefficients turned out to be the samewith the isotropic
case (i.e., for B ¼ 0). We estimate the relative contribution
of electrically charged and neutral hadrons to the various
transport coefficients using the HRG model. Since the
neutral hadrons are unaffected by the Lorentz force, they do
not contribute in the anisotropic transport phenomenon. We
have shown that the charged hadron contribution in the
viscosity is more than 50% than the neutral hadrons. As B
increases, the charged hadron contribution decreases and
for eB ≥ 10m2

π this contribution reduces to 4%–8%. In case
of diffusion constant, we need to consider a medium
with finite μB. In this study we show the result for
μB ¼ 300 MeV. We also find that nondissipative Hall-like
shear viscosity and conductivity increases monotonically
with μB from zero at μB ¼ 0. It turned out that there are
three diffusion coefficients in nonzero magnetic fields and
among them the k component is the largest one. It is

interesting to note that in calculating the diffusion coef-
ficients we do not explicitly take into account the electric
charge of the hadrons, but we observe the anisotropic
diffusion coefficients due to the imbalance of particle and
antiparticle numbers. We also sketch chemical potential
dependence of Hall transport coefficients- how they grow
from their vanishing values for (net) baryon free matter?
These anisotropic pictures of dissipations might have a
broad implication in other research fields where relevant
impositions of systems might have to be considered.
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APPENDIX A: ELECTRICAL CONDUCTIVITY
IN THE PRESENCE OF A MAGNETIC FIELD

Electrical conductivity in the absence of the magnetic
field for a quasiparticle system having degeneracy g,
electric charge q, and four momentum pμ ≡ ðp0; p⃗Þ is
[21,46,50],

σ ¼ gq2
β

3

Z
d3p⃗
ð2πÞ3

p2

ðp0Þ2 τcf0ð1 − rf0Þ; ðA1Þ

where r ¼ � stands for the fermion/boson, and τc is the
thermal relaxation time. In this section we are dealing with
only one hadron species.
For deriving the expression of the electrical conductivity

in the presence of a magnetic field, let us start with
Ohm’s law,

Ji ¼ σijEj: ðA2Þ

Here, Ji ¼ Ji0 þ JiD with Ji0, JiD are the ideal and the
dissipative parts of the three electric current density,
respectively. Note that σij is the electrical conductivity
tensor, Ej’s are the electric field components in the jth
direction, and i, j runs from 1 to 3.
Now, the dissipative part of the current density according

to the microscopic definition can be expressed as

JiD ¼ gq
Z

d3p⃗
ð2πÞ3

pi

p0
δf: ðA3Þ

Here, δf is a deviation of the distribution function f from
its equilibrium part f0 ¼ 1

eβðp0−μÞþr
.

ASHUTOSH DASH et al. PHYS. REV. D 102, 016016 (2020)

016016-8



Comparing the Ohm’s law and the microscopic defini-
tion of the dissipative current density we get

σijEj ¼ JiD ¼ gq
Z

d3p⃗
ð2πÞ3

pi

p0
δf: ðA4Þ

To find the δf, we use relativistic Boltzmann equation
(RBE) [18,19,21,46],

∂f
∂t þ

pj

p0

∂f
∂xj þ

dpj

dt
∂f
∂pj ¼ I½δf�; ðA5Þ

where I½δf� is the linearized collision integral. Use of the
relaxation time approximation (RTA) corresponds to

I½δf� ¼ − δf
τc
, and we also note that the term dpj

dt on the
lhs of the above equation represents the force due to the
electric E⃗ and the magnetic field B⃗. So, Eq. (A5) can be
written as (assuming vanishing ∂f

∂t and
∂f
∂xj)

−q
�
E⃗þ p⃗

p0
× B⃗

� ∂f
∂p⃗ ¼ −

δf
τc

;

⇒ qE⃗
∂f
∂p⃗þ

�
p⃗
p0

× B⃗

� ∂f
∂p⃗ ¼ δf

τc
;

⇒ qE⃗
p⃗
p0

∂f0
∂p0

þ
�
p⃗
p0

× B⃗

� ∂ðδfÞ
∂p⃗ ¼ δf

τc
: ðA6Þ

Since the second term of lhs is ð p⃗p0 × B⃗Þ p⃗
p0

∂f0
∂p0 ¼ 0, so we

have considered the δf term.
Now, we assume δf ¼ −ϕ ∂f0

∂p0 where ϕ ¼ p⃗ · F⃗with F⃗ ¼
ðlêþmb̂þ nðê × b̂Þ where ê and b̂ are unit vectors along
E⃗ and B⃗.
So, Eq. (A6) becomes

1

p0
½−qEêþ qBb̂ × ðlêþmb̂þ nðê × b̂ÞÞ�

¼ ðlêþmb̂þ nðê × b̂ÞÞ=τc: ðA7Þ

Now, comparing coefficients of ê, b̂, and ðê × b̂Þ and
solving for l, m, and n we get

l ¼
�
−qEτc
p0

�
1

1þ ðτc=τBÞ2

m ¼
�
−qEτc
p0

� ðτc=τBÞ2
1þ ðτc=τBÞ2

ðê · b̂Þ

n ¼
�
−qEτc
p0

� ðτc=τBÞ
1þ ðτc=τBÞ2

; ðA8Þ

where τB ¼ p0=ðeBÞ is inverse of cyclotron frequency.

Hence, ϕ can be expressed as

ϕ¼ qτc
1þðτc=τBÞ2

pi

p0
fδij− ðτc=τBÞϵijkhkþðτc=τBÞ2bibjgEj;

ðA9Þ

and

δf ¼ −ϕ
∂f0
∂p0

¼ ϕβf0ð1 − f0Þ

⇒ δf ¼ qτc
1þ ðτc=τBÞ2

pi

p0
fδij − ðτc=τBÞϵijkbk

þ ðτc=τBÞ2bibjgEjβf0ð1 − f0Þ: ðA10Þ

Now, using the above expression of δf in Eq. (A4),
we get

σij ¼ gq2β
Z

d3p⃗
ð2πÞ3

pipj

ðp0Þ2
τc

1þ ðτc=τBÞ2
fδij − ðτc=τBÞϵijkbk

þ ðτc=τBÞ2bibjgf0ð1 − f0Þ
¼ δijσ0 − ϵijkbkσ1 þ bibjσ2; ðA11Þ

where,

σn ¼ gq2
β

3

Z
d3p⃗
ð2πÞ3

jp⃗j2
ðp0Þ2

τcðτc=τBÞn
1þðτc=τBÞ2

f0ð1−f0Þ; ðA12Þ

and n ¼ 0, 1, 2. One can identify k, ⊥ and × components
from σn by using relations [18,19,21,46],

σk ¼ σ0þσ2 ¼ gq2
β

3

Z
d3p⃗
ð2πÞ3

jp⃗j2
ðp0Þ2 τcf0ð1− rf0Þ

σ⊥¼ σ0¼ gq2
β

3

Z
d3p⃗
ð2πÞ3

jp⃗j2
ðp0Þ2

τc
1þðτc=τBÞ2

f0ð1− rf0Þ

σ×¼ σ1¼ gq2
β

3

Z
d3p⃗
ð2πÞ3

jp⃗j2
ðp0Þ2

ðτ2c=τBÞ
1þðτc=τBÞ2

f0ð1− rf0Þ:

ðA13Þ

APPENDIX B: STRUCTURE OF RBE IN RTA

In the presence of a magnetic field, RBE with RTA can
be written as [16,18,19,46],

pμ∂μf þ qFμνpν
∂f
∂pμ ¼ −

U · p
τc

δf; ðB1Þ

where Fμν is a field strength tensor, which carry only
magnetic field term Fμν ¼ −Bbμν with Bμν ¼ ϵμνραBρUα.
Note that B is the magnetic field strength, and bμ is the unit
four vector. So, for a small deviation of the distribution
function from the equilibrium, Eq. (B1) can be written as
follows:
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pμ∂μf0 ¼
�
−
U · p
τc

��
1 −

qBτc
U · p

bμνpν
∂

∂pμ

�
δf: ðB2Þ

Equilibrium distribution function is f0 ¼ 1
eβðU·p−μÞþr

where
chemical potential μ has space-time dependency.
So, the left hand side of the above equation can be

written as,

pμ∂μf0 ¼ pμUμDf0 þ pμ∇μf0

¼ ∂f0
∂T ððU · pÞDT þ pμ∇μTÞ

þ ∂f0
∂ðμ=TÞ

�
ðU · pÞD

�
μ

T

�
þ pμ∇μ

�
μ

T

��

þ ∂f0
∂Uν ððU · pÞDUν þ pμ∇μUνÞ; ðB3Þ

whereUμ is four velocity of particleD≡Uμ∂μ,∇μ≡Δμν∂μ

with Δμν¼gμν−UμUν, gμν≡diagð1;−1;−1;−1Þ. Now,
using the energy-momentum conservation (∂μT

μν
0 ¼ 0),

current conservation (∂μN
μ
0 ¼ 0) equations, and the Gibbs-

Duhem relation we get

pμ∂μf0¼
f0ð1−rf0Þ

T

�
Q∇σUσ−pμpν

�
∇μUν−

1

3
Δμν∇σUσ

�

þ
�
1−

ðU ·pÞ
h

�
pμT∇μ

�
μ

T

��
; ðB4Þ

where Q ¼ ðU · pÞ2ð4
3
− γ0Þ þ ðU · pÞ½ðγ00 − 1Þh − γ000T� −

1
3
m2 and h ¼ mS13=S

1
2. The expressions for γ0, γ00, γ000, and

Sαn are

γ0 ¼ ðS02=S12Þ2 − ðS03=S12Þ2 þ 4z−1S02S
1
3=ðS12Þ2 þ z−1S03=S

1
2

ðS02=S12Þ2 − ðS03=S12Þ2 þ 3z−1S02S
1
3=ðS12Þ2 þ 2z−1S03=S

1
2 − z−2

γ00 ¼ 1þ z−2

ðS02=S12Þ2 − ðS03=S12Þ2 þ 3z−1S02S
1
3=ðS12Þ2 þ 2z−1S03=S

1
2 − z−2

γ000 ¼ S02=S
1
2 þ 5z−1S13=S

1
2 − S03S

1
3=ðS12Þ2

ðS02=S12Þ2 − ðS03=S12Þ2 þ 3z−1S02S
1
3=ðS12Þ2 þ 2z−1S03=S

1
2 − z−2

; ðB5Þ

where z¼m=T and SαnðzÞ¼
P∞

k¼1ð−rÞk−1ekμ=Tk−αKnðkzÞ,
KnðxÞ denoting the modified Bessel function of order n.

1. Shear Viscosity

In presence of a magnetic field, the general expression of
δf for shear viscosity is considered as

δf ¼
X4
n¼0

cnCðnÞμναβpμpνVαβ ðB6Þ

¼ ½c0P0
hμνiαβ þ c1ðP1

hμνiαβ þ P−1
hμνiαβÞ

þ ic2ðP1
hμνiαβ − P−1

hμνiαβÞ þ c3ðP2
hμνiαβ þ P−2

hμνiαβÞ
þ ic4ðP2

hμνiαβ − P−2
hμνiαβÞ�pμpνVαβ; ðB7Þ

where Vαβ ¼ 1
2
ð∂Uα∂xβ þ

∂Uβ

∂xα Þ and PðmÞ
hμνiαβ ¼ PðmÞ

μναβ þ PðmÞ
νμαβ.

The fourth rank projection tensor is defined in terms of
the second rank projection tensor as [45],

PðmÞ
μν;μ0ν0 ¼

X1
m1¼−1

X1
m2¼−1

Pðm1Þ
μμ0 Pðm2Þ

νν0 δðm;m1 þm2Þ; ðB8Þ

and the second rank projection tensor is defined as

P0
μν ¼ bμbν;

P1
μν ¼

1

2
ðΔμν − bμbν þ ibμνÞ;

P−1
μν ¼ 1

2
ðΔμν − bμbν − ibμνÞ;

whereΔμν ¼ gμν − uμuν. The second rank projection tensor
satisfies the following properties,

PðmÞ
μκ Pðm0Þ

κν ¼ δmm0PðmÞ
μν ; ðB9Þ

ðPðmÞ
μν Þ† ¼ Pð−mÞ

μν ¼ PðmÞ
νμ ; ðB10Þ

X1
m¼−1

PðmÞ
μν ¼ δμν; PðmÞ

μμ ¼ 1: ðB11Þ

Substituting the above expression on the right hand side of
the Boltzmann transport Eq. (B2), we get

�
−
U ·p
τC

��
1−

qBτC
U ·p

bμνpν
∂

∂pμ

�
δf

¼
�
−
U ·p
τC

��
1−

qBτC
U ·p

bμνpν
∂

∂pμ

�X4
n¼0

cnCðnÞαβρσpαpβVρσ

¼
�
−
U ·p
τC

��
pαpβVρσ

X4
n¼0

cnCðnÞαβρσ ðB12Þ
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−
qBτC
U · p

bμνpνðΔα
μpβ þ Δβ

μpαÞVρσ
X4
n¼0

cnCðnÞαβρσ

�
¼ T1 þ T2; ðB13Þ

where

T1 ¼
�
−
U · p
τC

��
pαpβVρσ

X4
n¼0

cnCðnÞαβρσ

�
and; T2 ¼ qBbμνpνðΔα

μpβ þ Δβ
μpαÞVρσ

X4
n¼0

cnCðnÞαβρσ: ðB14Þ

Now,

T1 ¼
�
−
U · p
τC

�
pαpβVρσ½c0P0

hαβiρσ þ c1ðP1
hαβiρσ þ P−1

hαβiρσÞ þ ic2ðP1
hαβiρσ − P−1

hαβiρσÞ þ c3ðP2
hαβiρσ þ P−2

hαβiρσÞ

þ ic4ðP2
hαβiρσ − P−2

hαβiρσÞ�; ðB15Þ
and

T2 ¼ qBbμνpνðΔα
μpβ þ Δβ

μpαÞVρσ
X4
n¼0

cnCðnÞαβρσ ¼ 2qBbμνpνΔα
μpβVρσ

X4
n¼0

cnCðnÞαβρσ: ðB16Þ

Since, CðnÞαβρσ ¼ CðnÞβαρσ.
So,

T2 ¼ 2qBbμνpνΔα
μpβVρσ½c0P0

hαβiρσ þ c1ðP1
hαβiρσ þ P−1

hαβiρσÞ þ ic2ðP1
hαβiρσ − P−1

hαβiρσÞ þ c3ðP2
hαβiρσ þ P−2

hαβiρσÞ
þ ic4ðP2

hαβiρσ − P−2
hαβiρσÞ�: ðB17Þ

T2 ¼ 2qBVρσpμpν½iðP2hμνiαβ − P−2hμνiαβÞ þ i
2
ðP1hμνiαβ − P−1hμνiαβÞ�½c0P0

hαβiρσ þ c1ðP1
hαβiρσ þ P−1

hαβiρσÞ
þ ic2ðP1

hαβiρσ − P−1
hαβiρσÞ þ c3ðP2

hαβiρσ þ P−2
hαβiρσÞ þ ic4ðP2

hαβiρσ − P−2
hαβiρσÞ�:

¼ 2qBVρσpμpν½c0 · 0þ
i
2
c1ðP1hμνi

ρσ − P−1hμνi
ρσ Þ − 1

2
c2ðP1hμνi

ρσ þ P−1hμνi
ρσ Þ þ c3ðP2hμνi

ρσ − P−2hμνi
ρσ Þ − c4ðP2hμνi

ρσ þ P−2hμνi
ρσ Þ�

¼ 2qBVρσpμpν½P1hμνi
ρσ

�
i
2
c1 −

1

2
c2

�
þ P1hμνi

ρσ

�
−
i
2
c1 −

1

2
c2

�
þ P2hμνi

ρσ ðic3 − c4Þ þ P−2hμνi
ρσ ð−ic3 − c4Þ�: ðB18Þ

The left hand side of the RBE equation, neglecting the terms that include the spatial gradients of temperature and chemical
potential in terms of the projection operator Pn

hμνiαβ, turns out to be

T1 þ T2 ¼ −
f0ð1 − rf0Þ

T
pμpνVρσ½P0

hμνiαβ þ P1
hμνiαβ þ P−1

hμνiαβ þ P2
hμνiαβ þ P−2

hμνiαβ�: ðB19Þ

Now, equating the right hand side with the left hand side of
the relativistic Boltzmann Eq. (B2) with the help of
Eqs. (B18), (B17), and (B3) we get

c0 ¼
1

2

f0ð1 − rf0Þτc
TðU · pÞ ;

c1 ¼
1

2

ðU · pÞf0ð1 − rf0Þτc
T½ðU · pÞ2 þ ðqBτcÞ2�

;

c2 ¼
1

2

ðqBÞf0ð1 − rf0Þτ2c
T½ðU · pÞ2 þ ðqBτcÞ2�

;

c3 ¼
1

2

ðU · pÞf0ð1 − rf0Þτc
T½ðU · pÞ2 þ ð2qBτcÞ2�

;

c4 ¼
ðqBÞf0ð1 − rf0Þτ2c

T½ðU · pÞ2 þ ð2qBτcÞ2�
: ðB20Þ

Using the above expressions, the shear viscosities turns out
to be

ηk ¼
2

15

Z
d3p⃗

ð2πÞ3p0

jp⃗j4c0; ðB21Þ

η⊥ ¼ 2

15

Z
d3p⃗

ð2πÞ3p0

jp⃗j4c1; ðB22Þ

η× ¼ 2

15

Z
d3p⃗

ð2πÞ3p0

jp⃗j4c2; ðB23Þ

η0⊥ ¼ 2

15

Z
d3p⃗

ð2πÞ3p0

jp⃗j4c3; ðB24Þ

η0× ¼ 2

15

Z
d3p⃗

ð2πÞ3p0

jp⃗j4c4: ðB25Þ
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2. Bulk viscosity

As mentioned earlier in the text, in the presence
of a magnetic field there are three components of the
bulk viscosity and the form of δf which corresponds to
them is

δf ¼
X3
n¼1

cnCðnÞμν∂μUν

¼ ðc1P0
μν þ c2ðP1

μν þ P−1
μν Þ þ c3ðP1

μν − P−1
μν ÞÞ∂μUν:

ðB26Þ

So, the right hand side of RBE becomes

−
U ·p
τc

�
1−

qBτc
ðU ·pÞb

μνpν
∂

∂pμ

�
δf

¼−
U ·p
τc

�
1−

qBτc
ðU ·pÞb

μνpν
∂

∂pμ

�

×fc1ðbμbνÞþc2ðΔμν−bμbνÞþ ic3bμνg∂μUν

¼−
U ·p
τc

fc1ðbμbνÞþc2ðΔμν−bμbνÞþ ic3bμνg∂μUν

¼−
U ·p
τc

fc2ð∂μUμÞþðc1−c2Þbμbν∂μUνþ ic3bμν∂μUνg:

ðB27Þ

Equating the coefficients of ∂μUμ, bμbν∂μUν and
bμν∂μUν from Eqs. (B27) and (B3) we get

c1 ¼
τCQ

ðU · pÞ
f0ð1 − rf0Þ

T
ðB28Þ

c2 ¼
τCQ

ðU · pÞ
f0ð1 − rf0Þ

T
ðB29Þ

c3 ¼ 0: ðB30Þ

Thus, the bulk viscosity can be derived from the relation

Πμν ¼ ΠΔμν ¼
Z

d3p⃗
ð2πÞ3p0

pμpνδf: ðB31Þ

Note that Π is known as bulk pressure. Therefore,

Π ¼ 1

3

Z
d3p⃗

ð2πÞ3p0
Δμνpμpνfc1ðbαbβÞ

þ c2ðΔαβ − bαbβÞ þ c3bαβg∂αUβ: ðB32Þ

So, the components of bulk viscosity in the presence of a
magnetic field are

ζk ¼ ζ⊥ ¼ τc
T

Z
d3p⃗

ð2πÞ3ðp0Þ2Q
2f0ð1 − rf0Þ ðB33Þ

ζ× ¼ 0; ðB34Þ

whereQ is already addressed in an earlier subsection. Since
without magnetization, there will be no magnetic field
dependent component of bulk viscosity, so its numerical
results have not been explored.

3. Diffusion coefficient

The δf for the thermal diffusion components in presence
of the magnetic field can be written as

δf ¼ Kμνpμ∂να0; ðB35Þ

where α0 ¼ μ
T.

The second order tensorKμν can be broken down into the
new projectors:

Pk
μν ¼ P0

μν ¼ bμbν;

P⊥
μν ¼ ðP1

μν þ P−1
μν Þ ¼ ðΔμν − bμbνÞ;

P×
μν ¼ ðP1

μν − P−1
μν Þ ¼ ibμν: ðB36Þ

Using these projectors the δf becomes

δf ¼ ½KkP0
μν þ K⊥P⊥

μν þ K×P×
μν�pμ∂να0

¼ ½Kkbμbν þ K⊥ðΔμν − bμbνÞ þ K×ðibμνÞ�pμ∂να0:

ðB37Þ

Now, with this δf the right hand side of the Boltzmann
transport equation becomes

−
U ·p
τC

�
1−

qBτC
ðU ·pÞb

μνpν
∂

∂pμ

�
δf

¼−
U ·p
τC

�
1−

qBτC
ðU ·pÞb

μνpν
∂

∂pμ

�

× ½KkbαbβþK⊥ðΔαβ−bαbβÞþK×ðibαβÞ�pα∂βα0

¼−
U ·p
τC

�
pα−

qBτC
ðU ·pÞb

μνpνδ
α
μ

�

× ½KkbαbβþK⊥ðΔαβ−bαbβÞþK×ðibαβÞ�∂βα0

¼−
U ·p
τC

½KkbαbβþK⊥ðΔαβ−bαbβÞþK×ðibαβÞ�pα∂βα0

þqBpν½bανKkbαbβþbανK⊥ðΔαβ−bαbβÞ
þbανK×ðibαβÞ�pα∂βα0: ðB38Þ

Using relation Eq. (B9), we have

bανPk
αβ ¼−iP×ανPk

αβ ¼−i½P1αν−P−1αν�P0
αβ ¼ 0; ðB39Þ
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bανP⊥
αβ ¼ −iP×ανP⊥

αβ ¼ −i½P1αν − P−1αν�½P1
αβ þ P−1

αβ � ¼ −i½P1ν
β − P2ν

β � ¼ −iP×ν
β ; ðB40Þ

bανP×
αβ ¼ −iP×ανP×

αβ ¼ −i½P1αν − P−1αν�½P1
αβ − P−1

αβ � ¼ −i½P1ν
β þ P−1ν

β � ¼ −iP⊥ν
β : ðB41Þ

Using the above expressions in Eq. (B38), the rhs of RBE becomes

−
U ·p
τC

�
1−

qBτC
ðU ·pÞb

μνpν
∂

∂pμ

�
δf¼−

U ·p
τC

½KkP
k
νβp

νþK⊥P⊥
νβp

νþK×P×
νβp

ν�∂βα0þqB½Kk0 ·pν−iK×P⊥
νβp

ν−iK⊥P×
νβp

ν�∂βα0

¼∂βα0

�
Kk

�
−
U ·p
τc

�
Pk
νβp

ν−
�
U ·p
τc

K⊥þiqBK×

�
P⊥
νβp

ν−
�
U ·p
τc

K×þiqBK⊥
�
P×
νβp

ν

�

¼∂βα0

�
Kk

�
−
U ·p
τc

�
bνbβpν−

�
U ·p
τc

K⊥þiqBK×

�
ðΔνβ−bνbβÞpν

−
�
U ·p
τc

K×þiqBK⊥
�
ibνβpν

�

¼∂βα0

��
Kk

�
−
U ·p
τc

�
þ
�
U ·p
τc

K⊥þiqBK×

��
bνbβpν−

�
U ·p
τc

K⊥þiqBK×

�
Δνβpν

−
�
U ·p
τc

K×þiqBK⊥
�
ibνβpν

�
: ðB42Þ

So, from Eqs. (B42) and (B3) the RBE becomes

f0ð1 − rf0Þ
�
1 −

ðU · pÞ
h

�
pμ∇μα0 ¼ ∂βα0

��
Kk

�
−
U · p
τc

�
þ
�
U · p
τc

K⊥ þ iqBK×

��
bνbβpν

−
�
U · p
τc

K× þ iqBK⊥
�
ibνβpν

�
−
�
U · p
τc

K⊥ þ iqBK×

�
pμ∇μα0: ðB43Þ

Equating the coefficients for different tensorial terms, we get�
U · p
τc

K⊥ þ iqBK×

�
¼ f0ð1 − rf0Þ

�
1 −

ðU · pÞ
h

�
;

−
U · p
τc

Kk þ
U · p
τc

K⊥ þ iqBK× ¼ 0;

U · p
τc

K× þ iqBK⊥ ¼ 0: ðB44Þ

Equating the above three equations, we get

Kk ¼ −
τCf0ð1 − rf0Þ

U · p

�
1 −

ðU · pÞ
h

�
; ðB45Þ

K⊥ ¼ −
τCðU · pÞf0ð1 − rf0Þ
ðU · pÞ2 þ ðqBτCÞ2

�
1 −

ðU · pÞ
h

�
; ðB46Þ

K× ¼ −
qBτ2Cf0ð1 − rf0Þ
ðU · pÞ2 þ ðqBτCÞ2

�
1 −

ðU · pÞ
h

�
: ðB47Þ

So, the thermal diffusion coefficient κ’s become

κk ¼−
1

3

Z
d3p⃗

ð2πÞ3p0

jp⃗j2Kk;

¼ 1

3h

Z
d3p⃗
ð2πÞ3

jp⃗j2
p2
0

τcðh−p0Þf0ð1− rf0Þ

κ⊥¼−
1

3

Z
d3p⃗

ð2πÞ3p0

jp⃗j2K⊥;

¼ 1

3h

Z
d3p⃗
ð2πÞ3

jp⃗j2
p2
0

τcðh−p0Þ
1þðτcτBÞ2

f0ð1−rf0Þ

κ×¼−
1

3

Z
d3p⃗

ð2πÞ3p0

jp⃗j2K×

¼ 1

3h

Z
d3p⃗
ð2πÞ3

jp⃗j2
p2
0

τcðτcτBÞðh−p0Þ
1þðτcτBÞ2

f0ð1− rf0Þ: ðB48Þ
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