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For a scalar theory with a global OðNÞ symmetry, when N ¼ 2 a spatially inhomogeneous condensate
arises when the term in the Lagrangian with two spatial derivatives has a negative coefficient. If the
condensate for such a chiral spiral includes only one mode, characterized by a momentum k0ẑ, then in
perturbation theory at nonzero temperature the propagator for the static mode has a double pole when
k2 ¼ k20. We conjecture that since chiral spirals spontaneously break both global and spacetime symmetries,
that such double poles are a universal property of their static transverse modes. Fluctuations from double
poles generate linear infrared divergences in any number of spatial dimensions and disorder the condensate
of chiral spirals, analogous to a type of quantum spin liquid. The characteristic feature of this region is that
over large spatial distances the two point function is the usual exponential times an oscillatory function.
We establish this at large N and suggest that it occurs for all N > 2. Implications for fermion models and
the phase diagram of QCD at nonzero density are discussed.
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I. INTRODUCTION

Scalar field theories with a global OðNÞ symmetry are a
useful paradigm for the study of phase transitions [1,2]. In
vacuum there are two possible phases: symmetric, when the
mass squared is positive, and broken, when it is negative.
The latter spontaneously breaks the OðNÞ symmetry and
generates Goldstone bosons.
At nonzero temperature or net density Lorentz sym-

metry is lost, and a different phase can arise. By
causality, terms with two time derivatives must always
have a positive coefficient. However, for an effective
Lagrangian in a medium the coefficient of the term
quadratic in the spatial derivatives, Z, can be negative. Of
course, stability must be ensured by adding terms with
four or more spatial derivatives with positive coefficients.
When Z < 0, spatially inhomogeneous condensates arise
naturally, as a balance between the negative term with
two spatial derivatives against those with higher powers
[1–3]. These appear in many systems, from smectic
liquid crystals [1,2], to inhomogeneous polymers [4],
to complex fluids [5], to chiral spirals in pions and kaons
[3,6–60].

It is well known that spatially inhomogeneous conden-
sates exhibit a variety of infrared divergences. Due to the
anisotropic propagator of a longitudinal phonon mode,
they are disordered logarithmically over large distances
[1–3,11–15]. Fluctuations also ensure that the transition
between the symmetric and spatially inhomogeneous phase
is of first, and never of second, order [3,61–65]. Lastly, at or
below four spatial dimensions infrared divergences prevent
the appearance of a Lifshitz point, where the mass squared
and Z vanish simultaneously [2–4,66–71].
In the broken phase, the condensate is constant in both

the internal and coordinate space, and generates N − 1

transverse massless modes. When Z < 0 and N ¼ 2 the
condensate consists of the two fields which rotate into one
another as one moves along a fixed direction in space. In
this paper we consider how the N − 2 transverse modes
affect spatially inhomogeneous condensates when N > 2.
In Sec. II we consider a perturbative analysis of the

transverse modes. The effective Lagrangian we consider is
given in Sec. II A. In Sec. II B we consider the ansatz for a
chiral spiral with a single mode, characterized by a
momentum along a given direction, k0ẑ. We show that
for a specific choice of Lagrangian, the static mode has a
double pole at nonzero momentum, for k2 ¼ k20. We
generalize this to a wide class of effective Lagrangians
in Sec. II C. While our analysis is limited to the ansatz of a
single mode for the condensate, we suggest that it is
generic.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 016015 (2020)

2470-0010=2020=102(1)=016015(16) 016015-1 Published by the American Physical Society

https://orcid.org/0000-0002-7862-4759
https://orcid.org/0000-0002-7478-670X
https://orcid.org/0000-0002-4306-1423
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.016015&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1103/PhysRevD.102.016015
https://doi.org/10.1103/PhysRevD.102.016015
https://doi.org/10.1103/PhysRevD.102.016015
https://doi.org/10.1103/PhysRevD.102.016015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Since it occurs at nonzero momentum, such a double
pole produces a severe, linear infrared divergence even in
the simplest tadpole diagram. This suggests that the
theory is in a novel disordered state. This can be
established at large N, where the theory is soluble by
standard techniques [72,73]. We give a general discussion
of the expansion at large N in Sec. III, and an explicit
solution in Sec. IV. This shows that there are only two
phases, broken and symmetric. Even so, there are two
parts to the symmetric phase: one which is ordinary, and
one which we refer to as a type of “quantum spin liquid.”
While there is no phase transition between the ordinary
symmetric phase and the quantum spin liquid, it is easy
to distinguish between the two, as the two point function
in the ordinary symmetric phase is just the usual
exponential(s), while that in the quantum spin liquid is
an exponential times an oscillatory function. The quan-
tum spin liquid includes the entire region where mean
field theory indicates a condensate of chiral spirals, plus a
larger part of the parameter space.
In Sec. V we conjecture that static, transverse modes

produce a quantum spin liquid for all N > 2. This is in
contrast to Kleinert [10], who added a term to the
effective Lagrangian which is nonanalytic in the
momenta. This generates a double pole and so disorder
for all N ≥ 1 [74], in contradiction to numerous systems
in condensed matter which exhibit quasi-long-range order
for N ¼ 1 and 2 [1–5]. Lee, Nakano, Tatsumi, Tsue, and
Friman [32] analyzed an Oð4Þ model, but did not find
double poles for the static transverse modes [78]. The
nature of Goldstone bosons for spatially inhomogeneous
condensates has also been studied by Hidaka, Kamikao,
Kanazawa, and Noumi [31] in a Nambu–Jona-Lasino
(NJL) model [79] and for N ¼ 2 by Gudnason, Nitta,
Sasaki, and Yokokura [75–77].
In Sec. V we also discuss the modifications of the

phase diagram from mean field theory [3], and what
happens when the OðNÞ symmetry is only approximate.
We show that the linear infrared divergences of the
transverse modes only appear at nonzero temperature,
while at zero temperature the infrared divergences are
only logarithmic [3].
Admittedly, the analogy to a quantum spin liquid in

condensed matter systems [2,80–86] is imprecise. Usually,
the disorder in a quantum spin liquid arises due to
frustration, such as for an antiferromagnet on a triangular
lattice in two dimensions. As such, it automatically persists
at zero temperature. In contrast, our model exhibits quasi-
long-range order at zero temperature.
Section VI A proposes a fermion model in 2þ 1

dimensions which could be used to test our predictions
at nonzero chemical potential. Section VI B briefly con-
siders implications for the phase diagram of quantum
chromodynamics (QCD) [87–96].

II. PERTURBATIVE ANALYSIS

A. Effective Lagrangian

Consider the usual form for the effective Lagrangian,

L0 ¼
1

2
ð∂0ϕÞ2 þ

Z
2
ð∂iϕÞ2 − hϕ · ϕb þ

1

2
m2ϕ2 þ 1

4
λðϕ2Þ2

þ 1

6
κðϕ2Þ3: ð1Þ

Here ϕ is an N-component vector, and so the theory has a
global symmetry of OðNÞ. The background field, h,
violates the OðNÞ symmetry; we usually assume it van-
ishes, and comment briefly what happens when it is
nonzero but small. We assume that the theory is applicable
in a medium, and so Euclidean invariance need not apply.
This allows for the coefficient of the term with two spatial
derivatives, Z, to differ from that with two time derivatives.
We not only let Z ≠ 1 in a medium, but allow Z to be

negative. In that case, further terms must be added in order
to stabilize the theory. These are necessarily nonrenorma-
lizable; we add

LNR ¼ 1

2M2
ð∂2

iϕÞ2 þ
1

2M1

ϕ2ð∂iϕÞ2 þ
1

2M2

ð∂iϕ2Þ2: ð2Þ

The first term, with four spatial derivatives, ensures
stability if M2 > 0. The other two terms, with two spatial
derivatives and four ϕ’s, ∼1=M1 and ∼1=M2, can have
either sign, but do not play an essential role in our analysis.
We consider a theory in dþ 1 dimensions at a nonzero

temperature T, so the energy En ¼ 2πTn, n ¼ 0;�1;
�2…. In this case, the most infrared divergent mode is
the static mode with zero energy, En ¼ 0, and the effective
theory is that for the static mode in d dimensions. We
comment later in Sec. V how the infrared divergences are
less severe at zero temperature. This is obvious, as at zero
temperature the integral over a continuous energy, E,
smooths out the infrared divergences from the spatial
momenta of the transverse mode.
In three spatial dimensions, d ¼ 3, ϕ has dimensions of

mass1=2. The terms in Eq. (2) are all nonrenormalizable,
whereM,M1, andM2 are characteristic of some large mass
scale generated by the medium. At zero temperature, such
as in a medium at nonzero density, ϕ has dimensions of
mass, and the analogous couplings are 1=M2, 1=M2

1, and
1=M2

2, respectively.
Most of our analysis is not sensitive to the number of

spatial dimensions. However, we note that in one spatial
dimensions, d ¼ 1, ϕ is dimensionless. In that case, it is
also natural to use a nonlinear Lagrangian, where ϕ2 ¼ 1.
The nonlinear Lagrangian is
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L2 dim ¼ 1

2
ð∂0ϕÞ2 þ

Z
2
ð∂iϕÞ2 þ

1

2M2
ð∂2ϕÞ2

þ 1

2M2
2

ðð∂iϕÞ2Þ2: ð3Þ

Because of the constraint there is no term ∼1=M1, but there
still are two different terms with four spatial derivatives,
∼1=M2 and ∼1=M2

2.

B. Single mode ansatz

Henceforth we concentrate on the static mode at nonzero
temperature, in zero background field, h ¼ 0. The con-
densate we consider arises when two conditions are met:
first, a negative mass squared,m2 < 0. In mean field theory,
a negative mass term is balanced by a positive term for the
quartic coupling (or of higher order, if that is negative).
This balancing generates a nonzero expectation value for
the field hϕi ¼ ϕ0ϕ̂, for some fixed direction ϕ̂. ForN > 1,
the choice of ϕ̂ spontaneously breaks the OðNÞ symmetry.
If N ¼ 1, the only choice is the sign of the condensate,
hϕi ¼ �jϕ0j, which spontaneously breaks a global Zð2Þ
symmetry.
If the coefficient of the term with two spatial derivatives

is negative, Z < 0, a similar balancing occurs. The theory
generates a condensate where hð∂iϕÞ2i is nonzero, the term
in Eq. (2) with four spatial derivatives, ∼1=M2, stabilizes
the theory. If ∂iϕ ≠ 0, this condensate is spatially inho-
mogeneous. We always assume that the inhomogeneity is
always only in one direction. Condensates in several
directions are possible, but typically have higher energy.
The detailed form of the spatially inhomogeneous

condensate depends crucially upon N. The equation of
motion is, from Eqs. (1) and (2),

1

M2
ð−∂2

i Þ2ϕþ 1

M1

ðð∂iϕÞ2ϕ − ∂iðϕ2∂iϕÞÞ

þ 2

M2

∂iðð∂iϕ2ÞϕÞ þ Zð−∂2
i Þϕ

þ ðm2 þ λϕ2 þ κðϕ2Þ2Þϕ ¼ 0: ð4Þ

When Z is positive, the theory generates a constant
condensate, ϕ0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
when κ ¼ 0. When N ¼ 1,

the only way to develop hð∂iϕÞ2i ≠ 0 is for the field to
oscillate between the vacuum values, �jϕ0j, with some
periodicity. This “kink” crystal is a solution of the nonlinear
differential equation in Eq. (4). For the Gross-Neveu model
in 1þ 1 dimensions the precise form of the kink crystal can
be computed analytically at large N, and is not trivial
[18,19,55,56]. By using non-Abelian bosonization and the
truncated conformal spectrum approach, a generalized
Gross-Neveu model, with two flavors and three colors,
is also exactly soluble in 1þ 1 dimensions [38,43].

When N ≥ 2, however, there is a much simpler ansatz
which generates a condensate for both ϕ and its spatial
derivatives. The magnitude of ϕ is kept constant, with the
spatial derivative generated by a rotation in the internal
space:

ϕ0ðxÞ ¼ ϕ0ðcosðk0zÞ; sinðk0zÞ; 0Þ: ð5Þ

This is periodic is some fixed direction, z, with period
2π=k0. This choice of the direction z spontaneously breaks
the rotation symmetry.
More general solutions are certainly possible. That of

Eq. (5) involves only a single mode. The most general
solution with this periodicity involves an infinite number of
modes:

ϕ0ðxÞ ¼
�X∞

n¼1

cn cosðnk0zÞ;
X∞
n¼1

sn sinðnk0zÞ; 0
�
: ð6Þ

The great advantage of the single mode ansatz of Eq. (5) is
that ϕ2 is a constant, which makes solving the equations of
motion trivial. In contrast, for the multimode solution of
Eq. (6) ϕ2 is not constant, and there are an infinite number
of parameters which need to be determined, the coefficients
cn and sn. We only analyze the single mode solution of
Eq. (5), assuming that it is the vacuum of our model. Even
if a multimode solution has a lower energy classically, we
suggest that as for the single mode solution, quantum
fluctuations nevertheless disorder the system into a quan-
tum spin liquid.
With the single mode ansatz of Eq. (5), the Lagrangian

equals

L ¼ 1

2M2
k40ϕ

2
0 þ

1

2M1

k20ϕ
4
0 þ

Z
2
k20ϕ

2
0 þ

m2

2
ϕ2
0

þ λ

4
ϕ4
0 þ

κ

6
ϕ6
0: ð7Þ

We first vary with respect to k0,

∂
∂k0 L ¼ 0: ð8Þ

This is equivalent to minimizing the energy per period of
the condensate [31]. Because our ansatz has constant ϕ2, it
is independent of M2. The solution is

k20 ¼
�
−Z −

ϕ2
0

M1

�
M2

2
: ð9Þ

k20 has to be positive, so this equation can be satisfied if Z is
sufficiently large and negative. Under this condition,
substituting k0 back into the Lagrangian gives
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Lðk0;ϕ0Þ ¼
1

2

�
m2 −

Z2

4
M2

�
ϕ2
0 þ

1

4

�
λ − Z

M2

M1

�
ϕ4
0

þ 1

6

�
κ −

3

4

M2

M2
1

�
ϕ6
0: ð10Þ

The equation of motion for the vacuum expectation value is
then determined by the solution of

∂L
∂ϕ0

¼
�
m2 −

Z2

4
M2

�
ϕ0 þ

�
λ − Z

M2

M1

�
ϕ3
0

þ
�
κ −

3

4

M2
2

M2
1

�
ϕ5
0 ¼ 0: ð11Þ

When a spatially inhomogeneous condensate develops,
Z < 0 and k0 ≠ 0, this affects the couplings of the scalar
potential, including both the mass squared, and the quartic
and hexatic couplings.
The propagator for the longitudinal modes is involved,

and involves a phonon mode associated with the sponta-
neous breaking of translational symmetry, along z, by the
condensate [1–3,31,32,75–77].
The propagator for the transverse modes is easy to

compute, though

ϕ ¼ ðσ; χ Þ: ð12Þ

Then the inverse propagator for a static χ field is

Δ−1
χ ðE ¼ 0; kÞ ¼ 1

M2
ðk2Þ2 þ

�
Z þ ϕ2

0

M1

�
k2

þ 1

M1

k20ϕ
2
0 þm2 þ λϕ2

0 þ κϕ4
0: ð13Þ

Using the expression for k0, Eq. (9),

Δ−1
χ ð0; kÞ ¼ 1

M2
ðk2 − k20Þ2 þM2: ð14Þ

After some algebra, we find that

M2 ¼ 1

ϕ0

∂L
∂ϕ0

¼ 0: ð15Þ

By direct computation it is not obvious that the mass
squared, about k0, is proportional to the equation of motion,
and so vanishes. We show this for a very general model in
the next section, Eq. (21).
That the mass squared vanishes at zero momentum for

the transverse modes is simply an expression of
Goldstone’s theorem. That it does so for a chiral spiral
with a single mode, about the characteristic momentum k0
of the condensate, is not obvious.
Further, while the transverse modes in Eq. (14) are

massless at k0, they do so through a double pole, which

generates severe infrared divergences. Any tadpole diagram
involving the transverse field is proportional to

Z
ddk

1

ðk2 − k20Þ2=M2 þM2
∼
M2

k20

Z
k∼k0

dk
ðk − k0Þ2

: ð16Þ

In any number of dimensions, including d ¼ 1, this is a
linear infrared divergence about k0. Consequently, the
tadpole diagram blows up, and the ansatz is certainly
destabilized once quantum fluctuations are included.
We find a linear infrared divergence from the double pole

in the transverse fluctuations again when we analyze the
model at large N in Sec. III. The advantage of analyzing the
model at large N is that then we can be sure that this
infrared divergence is not cut off by other diagrams, or
other effects which we might miss in a perturbative
analysis.

C. General Lagrangian for the single mode ansatz

This result can be generalized to the following
Lagrangian:

L ¼ 1

2
ð∂0ϕÞ2 þ

X∞
n¼1

Zn

2
ϕð−∂2Þnϕþ vn

2
ðϕ2Þn: ð17Þ

This assumes arbitrary powers of spatial derivatives and
of ϕ2 in the potential. We do assume that terms with spatial
derivatives only include two powers of ϕ, and not higher
powers of ϕ, such as ϕ2ð∂iϕÞ2 and ð∂iϕ2Þ2 in Eq. (2). We
suspect that such terms could be included, but as the
number of spatial derivatives increases so does the number
of such terms, and so we simply ignore these to emphasize
the physics.
What is essential is that our ansatz involves only a single

mode in momentum space, Eq. (5), so that ϕ2 is of constant
magnitude. With this ansatz, for static fields the Lagrangian
becomes

Lðk0;ϕ0Þ ¼
1

2

X∞
n¼1

Znk2n0 ϕ2
0 þ vnϕ2n

0 : ð18Þ

Varying with respect to ϕ0 gives

∂L
∂ϕ0

¼
X∞
n¼1

ðZnk2n0 þ nvnϕ2n−2
0 Þϕ0 ¼ 0: ð19Þ

The solution is either ϕ0 ¼ 0 or a nonzero value of ϕ0.
The solutions to Eqs. (8) and (19) are, in general, involved.
However, if the only thing we wish to do is to calculate

the transverse propagator, we do not require the explicit
form of the solution. This depends crucially upon the point
that with a single mode ansatz, ϕ2 is constant. The inverse
propagator for the transverse modes is just
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Δ−1ðkÞ ¼
X∞
n¼1

Znðk2Þn þ nvnϕ2n−2
0 : ð20Þ

Consider the value of this propagator at a point k ¼ k̂k0,
where k̂2 ¼ 1 is a unit vector. That is, the momentum must
have magnitude k0, but need not lie along the z direction of
the condensate. Then

Δ−1ðk0k̂Þ ¼
X∞
n¼1

Znk2n0 þ nvnϕ2n−2
0 : ð21Þ

By the equation of motion for ϕ, Eq. (19), this vanishes.
Thus the transverse modes have a zero at k ¼ k0k̂. Next,
expand the inverse transverse propagator about this point:

∂
∂kΔ

−1ðkÞ
����
k¼k̂k0

¼ 2
X∞
n¼1

nZnðk0Þ2n−1k̂: ð22Þ

But by the stationary point condition with respect to k0,
Eq. (8), this also vanishes.
The second derivative of the inverse transverse propa-

gator about k0k̂ is

∂2

∂k2Δ
−1ðkÞ

����
k¼k0k̂

¼ 2
X∞
n¼1

nð2n − 1ÞZnðk0Þ2n−2: ð23Þ

There is no reason for this quantity to vanish. Indeed,
neither can we be certain that it is positive. However,
because of the coefficient ∼nð2n − 1Þ, the terms with the
highest n dominate, and it is reasonable to assume so. The
positivity of Eq. (23) is, in any case, a necessary condition
for stability of the theory.
Since the first derivative of the propagator vanishes at

k̂k0, and the second does not, this establishes the existence
of a double zero, at nonzero momentum, for an extremely
general form of the effective Lagrangian.
It is possible that the infrared divergence of the single

mode solution is eliminated by going to a multimode
solution, Eq. (6). As mentioned previously, we expect that
the vacuum with the lowest energy is that with a single
mode. Even if this is not true, we suggest that the
appearance of double poles in the static, transverse propa-
gator is generic, following from the spontaneous breaking
of both the internal and spacetime symmetries. Presumably
the double pole is about the smallest periodic momen-
tum, k0.

III. GENERAL ANALYSIS AT LARGE N

A. Positive Z

We treat both symmetric and broken phases simulta-
neously. For a large N expansion [72,73], we take

ϕ ¼ ðσ; χ Þ: ð24Þ

When the symmetry breaks, we assume that hσi ≠ 0. We
integrate out the N − 1 component field χ by introducing a
constraint field,

Lcons ¼
iϵ
2
ðω − σ2 − χ 2Þ: ð25Þ

Integrating out the χ field, the effective action is

S ¼
Z

d3x

�
1

2M2
ð∂2σÞ2 þZ

2
ð∂iσÞ2 þVðωÞ þ iϵ

2
ðω− σ2Þ

�

þ ðN − 1Þ
2

tr log

�
1

M2
ð−∂2Þ2 þZð−∂2Þ þ iϵ

�
: ð26Þ

Using the constraint, in the potential of Eq. (1) we replace
ϕ2 by ω, to define

VðωÞ ¼ þ 1

2
m2ωþ 1

4
λω2 þ 1

6
κω3: ð27Þ

For simplicity we assume that M1 ¼ M2 ¼ ∞ and h ¼ 0.
Assume that the stationary point for σ is constant.

Denoting the stationary points by σ0, ϵ0, and ω0, the
equations of motion give

ϵ0σ0 ¼ 0 ð28Þ

for σ,

i
2
ϵ0 þ

∂
∂ωVðωÞ

����
ω¼ω0

¼ 0 ð29Þ

for ω, and

1

2
ðω0 − σ20Þ þ

ðN − 1Þ
2

tr
1

ð−∂2Þ2=M2 þ Zð−∂2Þ þ iϵ0
¼ 0

ð30Þ
for ϵ.
The equation of motion in Eq. (28) is especially useful.

In the broken phase σ0 ≠ 0, and so ϵ0 vanishes. From
Eq. (30), this ensures that the transverse modes are
Goldstone bosons. Equation (29) determines ω0, which
necessarily has a nonzero value.
Conversely, in the symmetric phase σ0 vanishes, and so

ϵ0 is nonzero, determined by Eq. (29). From Eq. (30), the
transverse modes are massive. With some computation, it
can be shown that they are degenerate with the longi-
tudinal mode.

B. Z < 0

We now decompose ϕ into σ and a N − 2 component
vector, χ ,
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ϕ ¼ ðσ; χ Þ: ð31Þ

We introduce two constraint fields:

Lcons ¼
iϵ
2
ðω − χ 2Þ þ iϵ̃

2
ðω̃ − ð∂iχ Þ2Þ: ð32Þ

Here we only introduce constraint fields for the transverse
fluctuations, for both their magnitude and the square of
their derivative. This complicates the form of the effective
Lagrangian, but ensures that we isolate the dynamics of
these modes.
We takeM1 ¼ M2 ¼ h ¼ κ ¼ 0, although again it is not

difficult to include them. After integrating out χ , the
effective Lagrangian is

Seff ¼
Z

d3x

�
1

2M2
ð∂2σÞ2 þ Z

2
ð∂iσÞ2 þ

m2

2
σ2 þ λ

2
ωσ2

þ λ

4
ðσ2Þ2 − i

2
ðϵωþ ϵ̃ ω̃Þ þ Z

2
ω̃þm2

2
ωþ λ

4
ω2

�

þ ðN − 2Þ
2

tr log

�
1

M2
ð−∂2Þ2 − i∂iðϵ̃∂iÞ þ iϵ

�
:

ð33Þ

The expectation value of all quantities are denoted ϵ0,
ω0, etc. The equation of motion for ω is

2
∂
∂ωSeff ¼ −iϵ0 þm2 þ λðω0 þ σ20Þ ¼ 0: ð34Þ

We introduce the effective mass,

m2
eff ¼ iϵ0 ¼ m2 þ λðω0 þ σ20Þ: ð35Þ

The ω̃ field only appears in two places, and so its
equation of motion,

2
∂
∂ω̃Seff ¼ −iϵ̃0 þ Z ¼ 0; ð36Þ

just fixes iϵ̃0 ¼ Z.
The equation of motion for σ is that of Eq. (4),

∂
∂ωSeff ¼

�
1

M2
ð−∂2

i Þ2 þ Zð−∂2Þ þm2
eff

�
σ0 ¼ 0; ð37Þ

where we use the definition of meff .
It is useful to introduce the propagator for the static,

transverse mode. In momentum space, the static inverse
propagator for χ is, suppressing the isospin indices,

Δ−1
χ ðE ¼ 0; kÞ ¼ 1

M2
ðk2Þ2 þ Zk2 þm2

eff : ð38Þ

We have used Eq. (34) to fix ϵ0 in terms of m2
eff , and

Eq. (36) to set ϵ̃0.
The equation of motion for ϵ is

2i
∂
∂ϵSeff ¼ −ω0 þ ðN − 2Þ

Z
d3k
ð2πÞ3Δχð0; kÞ ¼ 0; ð39Þ

while that for ϵ̃ is

2i
∂
∂ϵ̃Seff¼−ω̃0þðN−2Þ

Z
d3k
ð2πÞ3k

2Δχð0;kÞ¼0: ð40Þ

Remember this is only for the static mode at nonzero
temperature, and so a factor of temperature has been
absorbed into the couplings and fields. At zero temperature,
the corresponding integral is then over all four momenta, E
and k.
We can now make a straightforward analysis for the

ansatz of a chiral spiral with a single mode, Eq. (5). The
equation of motion for the σ field, Eq. (37), gives

1

M2
k40 þ Zk20 þm2

eff ¼ 0; ð41Þ

or σ0 ¼ 0. Now it is useful to recognize a remarkable fact,
that the inverse propagator in Eq. (38) has exactly the same
structure as Eq. (41). Consequently, the (static) inverse
transverse propagator vanishes at k0, Δ−1

χ ð0; k0k̂Þ ¼ 0.
This still does not fix the value of k0. However, for a

physical field the propagator must be positive everywhere
or the theory is unstable. It is automatically positive at large
k, while positivity at k ¼ 0 implies that m2

eff > 0. As a
quadratic equation in k20, there can be two roots of Eq. (41),
at k−0 and kþ0 . If k

−
0 < kþ0 , the propagator is positive for

k < k−0 , crosses zero at k−0 , negative when k−0 < k < kþ0 ,
and positive again when k > kþ0 . If k−0 ≠ kþ0 , then, the
propagator is negative for some range of momenta, and the
theory is unstable.
The only way that Eq. (41) can be satisfied is if there is

only one zero for the inverse propagator, with k−0 ¼ kþ0 .
This implies that the propagator is extremal at k0:

∂
∂kΔ

−1ð0; kk̂Þ
����
k¼k0

¼ 4

M2

�
k20 þ

Z
2
M2

�
k0 ¼ 0: ð42Þ

This is the same equation as we obtained by varying the
Lagrangian, evaluated for the chiral spiral, with respect to
k0 in Eq. (9). Since the propagator is extremal at k0, the
inverse propagator has a double zero at k0,

Δ−1
χ ð0; kÞ ¼ 1

M2
ðk2 − k20Þ2: ð43Þ

In other words, just by requiring that the theory has a
transverse propagator which is everywhere positive, that
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and the equations of motion force a double pole in Δχð0; kÞ
at k ¼ k0.
This is precisely the same conclusion as we found

perturbatively in Secs. II B and II C. While before we
could only suggest that the tadpole integral over the
transverse propagator gives a linear infrared divergence,
Eq. (16), at large N these integrals are forced upon us by
Eqs. (39) and (40), and there is no escape from a linear
infrared divergence.
At large N, the N − 2 fluctuations must be included in

order to obtain a self-consistent solution, assuming that the
quartic coupling λN is held fixed as N → ∞. We demon-
strate in the next section that there is a self-consistent
solution for the theory, as a phase disordered by quantum
fluctuations.

IV. EXPLICIT SOLUTION AT LARGE N

In the previous section we showed that assuming a chiral
spiral with a single mode produces a double pole in the
propagator for the transverse mode. We demonstrate in this
section that there is a nonperturbative solution for the
symmetric phase, even when the mean field indicates a
condensate of chiral spirals, when m2

eff and Z are negative.
We start with the Lagrangian of Eqs. (1) and (2), and for
simplicity assume 1=M1 ¼ 1=M2 ¼ κ ¼ 0. It is trivial to
generalize our analysis to the general case. Since the
constraint field for ð∂i χ Þ2 in Eq. (32) did not make a
significant difference, we ignore it, and only introduce
ω ¼ ϕ2, Eq. (25), and integrate over all ϕ. If the six-point
coupling κ vanishes, it is possible to integrate over ω and
obtain an effective action only in terms of the constraint
field, ϵ:

S ¼
Z

d3x
ϵ2

4λ

þ N
2
tr log

�
1

M2
ð−∂2Þ2 þ Zð−∂2Þ þm2 − iϵ

�
: ð44Þ

We expand about a saddle point

ϵ ¼ iϵ0 þ ϵqu; ð45Þ

where ϵ0 is determined by

ϵ0 −
λN
2

tr
1

ð−∂2Þ2=M2 þ Zð−∂2Þ þm2
eff

¼ 0; ð46Þ

and we define the renormalized mass,

m2
eff ¼ m2 þ ϵ0: ð47Þ

We look for the simplest solution, with constant ϵ0. This
excludes a chiral spiral condensate which involves multim-
odes, Eq. (6). As we show at the end of this section,

however, our solution is at least locally stable, and so while
we cannot exclude it, it appears unlikely that a multimode
chiral spiral has a lower action.
For constant ϵ0, the transverse propagator is

ΔðkÞ ¼ 1

ðk2Þ2=M2 þ Zk2 þm2
eff

: ð48Þ

We need to evaluate

trΔ≡
Z

d3k
ð2πÞ3ΔðkÞ ¼

M2

4π2

Z þ∞

−∞
dk

k2

ðk2 þm2þÞðk2 þm2
−Þ

¼ M2

4π2
1

m2þ −m2
−

Z þ∞

−∞
dk

�
m2þ

k2 þm2þ
−

m2
−

k2 þm2
−

�
;

ð49Þ

where

m2
� ¼ ZM2

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Þ; α ¼ 2meff

jZjM : ð50Þ

To evaluate the integral it is necessary to take care with
where the poles lie in the complex k plane.

A. Solution for the effective mass

We start with the case where α ≤ 1, so thatm2
� is real and

positive, so we can assume the same for mþ and m−.
Equation (49) equals

trΔ ¼ M2

4π

1

mþ þm−
: ð51Þ

As m2þ and m2
− are solutions to a quadratic equation in k2,

ðk2Þ2 þ ZM2k2 þm2
effM

2 ¼ ðk2 þm2þÞðk2 þm2
−Þ ¼ 0,

ðmþ þm−Þ2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þm2

−

q
þm2þ þm2

− ¼ 2meffM þ ZM2:

ð52Þ

This is valid for positive meff and either sign of Z, if the
quantity 2meff þ ZM is positive. The saddle point equation
of Eq. (46) becomes

m2
eff −m2 ¼ λ0

M3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meff þ ZM

p ; ð53Þ

where we define the rescaled quartic coupling,

λ0 ¼
λN
8π

: ð54Þ

At large N, λ0 and all other quantities, meff , m, M, and Z,
are of order one as N → ∞. The mass dimensions also
match, as in three dimensions λ has dimensions of mass.
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For given values of Z, m2 and λ0, we need to determine
the solution for m2

eff. Notice that the left-hand side of
Eq. (53) is a monotonically increasing function of meff ,
while the right-hand side is a monotonically decreasing
function. The solution is then just the intersection of the
two. The solution can be found numerically for a given
value of the parameters.
It is useful to consider various limits. At large, positive Z,

the effective mass is

m2
eff ≈m2 þ λ0Mffiffiffiffi

Z
p þ � � � ; Z → þ∞: ð55Þ

Large Z suppresses fluctuations, with the correction to the
bare mass ∼λ=

ffiffiffiffi
Z

p
.

As Z decreases, the correction to the effective mass
grows. For simplicity, we begin with the line where the bare
mass vanishes, m2 ¼ 0. Letting Z decrease, there is a point
where α ¼ 2meff=ðZMÞ ¼ 1; from Eq. (53), this happens
when

Z1ð0Þ ¼
�
23=2

λ0
M

�
2=5

; meff ¼
�
λ20M

3

4

�
1=5

: ð56Þ

For arbitrary m2, we denote the point at which α ¼ 1

as Z1ðm2Þ.
For constant m2 ¼ 0, as Z decreases below Z1ð0Þ

nothing particularly interesting happens for meff. For
example, when both Z and m2 vanish the effective mass
remains nonzero,

meff ¼
�
λ20M

3

2

�
1=5

; Z ¼ m2 ¼ 0: ð57Þ

Clearly this behavior, meff ∼ λ2=50 , arises from a nontrivial
resummation of perturbation theory at large N.
As Z decreases to negative values form2 ¼ 0, mean field

theory suggests that the theory exhibits a condensate of
chiral spirals. We demonstrated in the previous section,
however, that such a condensate exhibits double poles for
the transverse modes, Sec. III B, which disorder the
condensate.
However, there is always a self-consistent solution for

the symmetric phase, Eq. (53); it is only necessary to ensure
that the quantity 2meff þ ZM is positive. This is easy to do:
for example, when Z is large and negative, the solution of
Eq. (46) is

meff ¼ −Z
M
2
þ 16λ20

M
1

Z4
þ…; Z → −∞: ð58Þ

Thus along the entire line of m2 ¼ 0, for both positive
and negative values of Z, the theory is in the symmetric
phase. This remains valid when m2 is positive. The point
where α ¼ 1 changes with m2, where Z1ðm2Þ is a mono-
tonically increasing function of m2.

Whenm2 becomes negative, the theory enters the broken
phase for a fixed, positive value of Z. Since the quartic
coupling λ is positive, this is a second order transition,
determined by the condition that the effective mass van-
ishes. The critical value of the bare mass is given by setting
m2

eff ¼ 0 in Eq. (53), which is just

m2
crit ¼ −

λ0Mffiffiffiffi
Z

p : ð59Þ

For Z > 0 and m2 < −m2
crit, the theory is in the broken

phase. This can be treated following the analysis of
Sec. III A, but other than algebraic complications, there
are no surprises. The broken phase has massless transverse
modes, and a nonzero value for a constant condensate. The
phase diagram which results is illustrated in Fig. 1.
In mean field theory, a Lifshitz point occurs when

m2 ¼ Z ¼ 0; in the full theory, the corresponding condition
is m2

eff ¼ Z ¼ 0. However, this requires that m2 ¼ m2
crit →

−∞ as Z → 0þ. This is not a Lifshitz point, but a singular
limit. That there is no true Lifshitz point agrees with general
analysis [2–4,66–71]. We also discuss in the next section
why m2

crit → −∞ as Z → 0þ.

B. Quantum spin liquid

The solution for the effective mass obscures interesting
physics associated with how the massesmþ andm− change
as the bare mass and Z are varied.

Z

m2

0

1

2

-0.4 -0.2 0.0 0.2 0.4

〈 φ 〉 ≠ 0

〈 φ 〉 = 0, OSP

〈 φ 〉 = 0, QSL

FIG. 1. The phase diagram at large N, in the plane of the bare
mass squared, m2, and the wave function renormalization con-
stant, Z, for positive quartic coupling λ ¼ 1. In terms of the global
order parameter, there is just the broken phase, where hϕi ≠ 0,
and the symmetric phase, where hϕi ¼ 0. Nevertheless, there are
two parts to the symmetric phase: an ordinary symmetric phase
(OSP) and the quantum spin liquid (QSL). In the OSP the two
point function of ϕ is the usual exponential, Eq. (60), while in the
QSL it also oscillates, Eq. (65). The solid line in the upper left
quadrant is a line of second order phase transitions. The dashed
line in the upper half plane is the boundary between the OSP and
the QSL, which is not a phase transition.
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We assume thatm2 is positive and fixed, and vary Z. The
extension to negative m2 is trivial; it is just necessary to
recognize the transition to the broken phase in Fig. 1.
We start at large, positive Z, where α ≤ 1. The masses

squared in Eq. (50) are real, so we can take mþ and m− to
be real. The poles of the propagator are for k2 ¼ −m2

�, and
so along the imaginary axis, at k ¼ �imþ and k ¼ �im−.
The two point function of the scalar field is a sum of
exponentials,

hϕiðxÞϕjð0Þijx→∞ ¼ δijðc−e−m−x þ cþe−mþxÞ; α ≤ 1:

ð60Þ

At large Z, m− is light, m− ≈m=
ffiffiffiffi
Z

p
, and mþ heavy,

mþ ≈
ffiffiffiffi
Z

p
M. Of course at large distances the light excita-

tion dominates.
As Z decreases from large, positive values, both poles

remain on the imaginary axis, as mþ decreases and m−
increases. At the point where Z ¼ Z1ðm2Þ, these poles
merge, with

mþ ¼ m− ¼ m0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
meffM

p
: ð61Þ

When Z < Z1ðm2Þ, the masses squared of m2
� have both

real and imaginary parts, and the poles of the propagator are
at

k ¼ exp

�
�i

�
π

2
�0 θ

2

��
m0; Z ≥ 0; ð62Þ

where

tanðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p
; α ≥ 1: ð63Þ

There are four poles, one in each quadrant.
As Z decreases below Z1ðm2Þ, the poles develop both

real and imaginary parts. Defining

mr ¼ m0 cos

�
θ

2

�
; mi ¼ m0 sin

�
θ

2

�
; Z ≥ 0; ð64Þ

and the two point function is

hϕiðxÞϕjð0Þijx→∞ ¼ δije−mrxðc1 cosðmixÞ þ c2 sinðmixÞÞ;
α ≥ 1: ð65Þ

Because the poles have a nonzero real part, the two point
function is the usual exponential of mrx times cosine or
sine of mix. For positive Z less than Z1ðm2Þ, mr > mi.
As Z → 0þ, by Eq. (57) the effective mass is nonzero, so

α → ∞ and θ ¼ π=2. The four poles are then at �π=4 and
�3π=4, with mr ¼ mi ¼ m0=

ffiffiffi
2

p
; m0 is given by Eqs. (57)

and (61).

For negative Z the poles are at

k ¼ exp

�
� iθ

2

�
m0;

k ¼ exp

�
�i

�
π −

θ

2

��
m0; Z ≤ 0: ð66Þ

Due to the overall factor of sign of Z in Eq. (50), when Z
changes sign the poles rotate by π=2. The limit of Z → 0�
is consistent as then the poles are spaced by π=2 anyway.
For negative Z the two point function remains an

exponential times oscillatory functions, but now the
expressions for mr and mi become

mr ¼ m0 sin

�
θ

2

�
; mi ¼ m0 cos

�
θ

2

�
; Z ≤ 0; ð67Þ

As Z decreases from zero, α decreases, although it must
remain greater than unity. As Z → −∞, for example,
from Eqs. (58), (61), and (63), m0 ∼ jZj1=2M=

ffiffiffi
2

p
and

θ ∼ 8λ0=ðMjZj5=2Þ, so that

mr ≈
23=2λ0
Z2

þ � � � ; mi ≈
jZj1=2Mffiffiffi

2
p þ � � � ; Z → −∞:

ð68Þ

In mean field theory meff vanishes, so the poles of the
propagator are at k2 ¼ 0 and k2 ¼ ZM2. If Z < 0, the latter
is on the axis of real, positive k2, with mi ¼ jZj1=2M. This
indicates the instability of the ground state to the formation
of a condensate of chiral spirals. At largeN, though, instead
the theory remains in the symmetric phase. When Z is large
and negative, the poles in k2 are close to the real axis, with
mi ∼ jZj1=2M=

ffiffiffi
2

p
, but the phase is stable, as each pole also

has a small, real part, mr ∼ λ0=Z2. As Z becomes more
negative, the two point function oscillates over distances
which are shorter and shorter relative to the distance over
which it falls exponentially, 1=mi ≪ 1=mr. This is the
signal for an unusual form of disorder, which we term a
quantum spin liquid [2,80–86].
The boundary between the usual symmetric phase, with

the two point function as in Eq. (60), and a quantum spin
liquid, with that of Eq. (65), is indicated by a dotted line in
Fig. 1. This line is the curve Z1ðm2Þ, where α ¼ 1. The
includes the entire region where Z < 0, plus a region where
Z is small and positive, 0 < Z < Z1ðm2Þ. This is in contrast
to mean field theory, where there is a condensate of chiral
spirals only for Z < 0 and m2 < m2

1, where m2
1 > 0; see

Fig. 1 of Ref. [3]. This difference is due to quantum
fluctuations at large N.
While the behavior of the two point function changes as

one goes from the ordinary symmetric phase into a
quantum spin liquid, in our model this is not a phase
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transition. We have concentrated on the static mode at
nonzero temperature. For a static mode with mass squared
m2, it contributes to the free energy as

F ðmÞ ∼ T
Z

d3k

�
tr log ðk2 þm2Þ −m2

k2

�
∼ Tðm2Þ3=2:

ð69Þ
In the present case, we have several masses which
contribute. For α ≤ 1 both are real. When α ≥ 1 there
are four complex masses, but they are always paired into
complex conjugates, so that the sum is real. Consequently,
the free energy, and any finite number of derivatives
thereof, behave smoothly as α → 1.
Logically, it is possible that the imaginary part of the

mass, mi, vanishes at the same time as the real part, mr; if
so, this might produce a novel critical point. From the phase
diagram of Fig. 1, though, this does not occur: the dotted
line, separating the ordinary symmetric phase and the
quantum spin liquid, never intersects the line of second
order phase transitions.
This also helps to understand one feature of the phase

diagram, which is that the bare mass squared diverges,
m2

crit → −1=
ffiffiffiffi
Z

p
, as Z → 0. This occurs because the broken

phase cannot exist for negative Z, so the transition to the
symmetric phase arises for a small but nonzero value of Z.

C. Stability of the quantum spin liquid phase

While we have established that there is a novel solution
for the symmetric phase when α > 1, we also need to show
that it is stable. This is actually direct. From the expansion
of ϵ in Eq. (45), the two point function of ϵqu is, in
momentum space,

hϵquðpÞϵquð−pÞi ¼ þ 1

2λ
þ N

Z
d3k
ð2πÞ3 ΔðkÞΔðkþ pÞ;

ð70Þ
where Δ is the transverse propagator of Eq. (48). Notice
that the sign of the second term is positive in Eq. (70)
because the contour of integration for ϵqu runs along the
real axis. This is standard in a large N expansion [72,73].
It is also direct to compute the propagator for the ϵ̃ field

of Eq. (33):

hϵ̃quðpÞϵ̃quð−pÞi

¼ þ 1

2λ
þ 4N

Z
d3k
ð2πÞ3 ðk · ðkþ pÞÞ2ΔðkÞΔðkþ pÞ: ð71Þ

Because of the complicated pole structure of the propa-
gators, it is involved to explicitly evaluate these inverse
propagators. However, both Eqs. (70) and (71) are con-
vergent in both the ultraviolet and infrared limits. Since the
propagator Δ ∼ 1=ðk2Þ2 at large momentum, ultraviolet

convergence follows directly by power counting. Infrared
convergence is guaranteed because the inverse propagator
for our solution is always gapped. Thus both propagators
are convergent integrals over positive quantities, and so are
also positive. This implies local stability.
This is important because when Z < 0, it is possible that

at large N there is a multimode solution for a chiral spiral,
Eq. (6). We expect that such a solution has a double pole at
k0, but cannot prove this. However, the quantum spin liquid
solution is at least locally stable, and it seems very likely
that it is the global minimum.

V. PHASE DIAGRAM INCLUDING
TRANSVERSE FLUCTUATIONS

In mean field theory, there are three phases: symmetric,
broken, and one with a spatially anisotropic condensate [3].
For now we allow N to be arbitrary, so the latter can be
either a kink crystal, forN ¼ 1, or a chiral spiral, forN ≥ 2.
The transition between the symmetric and broken phases is
of second order (when the quartic coupling λ > 0); that
between the symmetric and chiral spiral phases is of second
order; and that between the broken and chiral spiral phase is
first order, Fig. 1 of Ref. [3].
Fluctuations [61–65] turn the transition between the

symmetric and chiral spiral phases into a line of first order
transitions, Fig. 2 of Ref. [3]. This is due to fluctuations in
the longitudinal mode, whose propagator is

ΔlongðkÞ ∼
1

δk2z þ ð4k0δkz þ k̃2Þk̃2=M2 þm2
: ð72Þ

Here we assume that the condensate is along the z direction,
k0 the characteristic momentum of the condensate, δkz ¼
kz − k0 and k̃2 ¼ ðδkzÞ2 þ k2⊥. Notably, there are no terms
quadratic in k⊥. In mean field theory, the transition between
the symmetric and spatially anisotropic condensate phase
occurs when m2 ¼ 0. As pointed out by Brazovski
[3,61–65], this gives rise to a linear infrared divergence.
The transition occurs as the parameters m2 and Z are
changed, so m2 jumps from one nonzero value to another,
through a first order transition.
This is very similar to the mechanism proposed in this

paper, by which (static) transverse fluctuations disorder a
chiral spiral when N ≥ 2. We find that the would be
Goldstone bosons have a double pole when k ¼ k0,
although not along the direction of the condensate. This
produces a tadpole diagram which is linearly divergent in
the infrared, Eq. (16). This occurs throughout the chiral
spiral phase, however. As we demonstrated in the previous
section, Sec. IV, at large N the transverse fluctuations
disorder the chiral spiral phase, with a propagator which is

ΔijðE; kÞ ¼ δij

E2 þ ðk2Þ2=M2 þ Zk2 þm2
eff

: ð73Þ
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The isospin indices are i and j, so the propagator is
symmetric. At large N we showed that even in a region
where one expects a condensate of chiral spirals—whenm2

and Z are both negative—that at nonzero temperature static
transverse fluctuations disorder the system.
At large N we find that there is no phase transition

between the ordinary symmetric phase and that with a
quantum spin liquid, only between the ordinary symmetric
phase and the broken phase, Fig. 1.
While our conclusions are only certain at large N, we

suggest that they hold for any N ≥ 2. Consider the effective
Lagrangian of Eq. (33), and consider an expansion about
N ¼ 2þ δ, where δ ≪ 1. In this instance, we can expand in
δ. The leading terms are given by the classical theory, and
quantum fluctuations about that. However, the transverse
terms, ∼δ, inevitably bring in the infrared divergences of
the would be Goldstone modes, and will disorder the
system.
This does not exclude the possibility that the theory

is disordered for δ ≪ 1, ordered for some intermediate
range of N, from N ¼ 3 to Nmax, and then disordered
again for N > Nmax. This can be studied most directly
through numerical simulations of the scalar theory. One
of us has performed numerical simulations for N ¼ 8 and
10 which indicate there is no phase with a condensate of
chiral spirals [97]. In Sec. VI A, we suggest a Nambu–
Jona-Lasino model, where N ¼ 3, where this could also
be analyzed at nonzero chemical potential.
These numerical simulations [97] show that even if there

is a Nmax, it is difficult to distinguish between a standard
symmetric phase and a condensate of chiral spirals. If there
is a line of first order transitions between the two phases, as
predicted by the analysis of Brazovski [3,61–65], that
simplifies things greatly.
In all of our analyses we have assumed that the OðNÞ

symmetry is exact. If this symmetry is broken by a small
but nonzero background field, h ≠ 0 in Eq. (1), even for
small h, it is not trivial solving for the explicit form of
the chiral spiral. The assumption which simplified the
analysis so greatly, that ϕ2 is constant, no longer holds. It
is then like the case of a kink crystal, where it is
necessary to solve a nonlinear differential equation to
determine the form of how a deformed chiral spiral, for
small h, goes over to a kink crystal, for large h.
Even so, for small h it is very natural to assume that

the form of the propagator is like that of Eq. (73): for
either sign of Z, the propagator is always gapped, with
m2

eff ≠ 0. Thus for small h, it is reasonable to expect
that the quantum spin liquid exists for a large range of
parameter space.
We have concentrated on the static mode at nonzero

temperature. At zero temperature, the propagator for the
transverse mode about a chiral spiral, for the tadpole
diagram analogous to Eq. (16),

∼
Z þ∞

∞

dE
2π

Z
d3k
ð2πÞ3

1

E2 þ ðk2 − k20Þ2=M2

∼
Z

d3k
ð2πÞ3

M
jk2 − k20j

; ð74Þ

after integrating over the energy, E, which is continuous at
zero temperature. This has a logarithmic infrared diver-
gence about k ¼ k0, which mildly washes out a chiral spiral
condensate. This disorder is precisely analogous to that
which is expected for the phonon of the longitudinal mode
[1–3,10–15].
This implies that at sufficiently low temperature, that the

phase diagram is like that of mean field theory: there is
quasi-long-range order in a chiral spiral phase, separated by
a line of first order transitions between that and the
symmetric or ordered phases [3,61–65]. In the two dimen-
sional space of temperature and whatever thermodynamic
variable corresponds to m2 and/or Z, there are then four
phases: the usual broken and symmetric, a quantum spin
liquid at nonzero temperature, and a chiral spiral phase at
low temperature. While such a structure is surely involved,
it does suggest that when studying effective models, it is
imperative to consider not only which structure minimizes
the free energy in mean field theory, but to include the
effects of fluctuations, at least to one loop order.

VI. IMPLICATIONS

We have established that static transverse modes disorder
a condensate of chiral spirals with a single mode. Our
analysis can be tested by numerical simulations of the
scalar field theory. It is of interest to study these effects for
fermions at nonzero density. We discuss two examples.

A. Four fermion models

In 1þ 1 dimensions, Gross-Neveu models are given by

L ¼ ψ̄=∂ψ þ g1ðψ̄ψÞ2 þ g2ðψ̄γ5ψÞ2: ð75Þ

We take Nf flavors of two component fermions, with an

implied sum over flavors: ψ̄ψ ≡PNf

i¼1 ψ
iψ i, etc. The

theory is asymptotically free and soluble at large [98]
and indeed any [38,43] Nf. When g2 ¼ 0, the generation of
mass, hψ̄ψi ≠ 0, spontaneously breaks a Zð2Þ symmetry.
For the chiral Gross-Neveu model, g1 ¼ g2, mass gener-
ation spontaneously breaks the global Uð1Þ symmetry of
ψ → expðiθγ5Þ. The global symmetry is larger thanUðNfÞ,
equal toOð2NfÞ [99], but this symmetry is respected by the
dynamical generation of mass.
These theories are soluble at nonzero chemical potential.

At large Nf the Gross-Neveu model develops a kink crystal
[18,19,55,56]. In the chiral Gross-Neveu model at large Nf

[20–22], the critical temperature Tc is independent of μ:
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when T ¼ Tc this has a single mode, but for T < Tc, it is a
twisted kink, which in our terminology is multimode,
Eq. (6); see the discussion in Fig. 4 of Ref. [20].
Numerical simulations of Gross-Neveu models have also
been carried out at smallNf, and support the phase diagram
found at large Nf [57–60].
We note that a type of Gross-Neveu model in 1þ 1

dimensions, with two flavors and three colors, is soluble in
the limit of zero bare quark mass, and at small mass by
using a truncated conformal spectrum approach [38,43]. In
the chiral limit, only a discrete Zð2Þ symmetry is sponta-
neously broken. There is a wealth of phases with quasi-
long-range order at nonzero chemical potential, including
the Bose condensation of either scalar mesons or deuterons,
and a phase with gapless baryons.
Four fermion theories are nonrenormalizable in 2þ 1

dimensions, but they can still be considered as a type of
effective theory. Simulations with the Gross-Neveu model
in 2þ 1 dimensions [60] find a kink crystal, but one which
appears to vanish as the lattice spacing goes to zero.
We cannot use a Gross-Neveu model to study our effect,

since the global symmetry is not broken. Indeed, since
Goldstone bosons have logarithmic infrared divergences in
two spacetime dimensions, it is probably more useful to
study models in 2þ 1 dimensions.
We suggest the following theory. Let ψ and χ represent

two component fermions in 2þ 1 dimensions, with again

an implicit sum over Nf flavors, ψ̄ψ ¼ PNf

i¼1 ψ
iψ i, and

similarly for χ. Combine them together as ζi ¼ ðψ i; χiÞ,
with the Lagrangian

L ¼ ζ̄=∂ζ þ g1ðζ̄ζÞ2 þ g0ðζ̄σaζÞ2; ð76Þ

where the Pauli matrix σa acts in the space of ðψ ; χÞ. In
three spacetime dimensions the mass for a two component
fermion is odd under parity and time reversal. A parity even
mass is formed by pairing up ψ and χ together, with masses
of equal magnitude and opposite sign [100].
If g0 ¼ 0, the coupling g1 may spontaneously break the

Zð2Þ symmetry, but not the Uð2NfÞ symmetry, and so a
dynamically generated mass is odd under parity. In con-
trast, if g0 ¼ 0 and g1 ≠ 0, it is very possible that the theory
spontaneously generates a parity even mass. In particular,
the term ζ̄σ3ζ tends to give masses of opposite sign to ψ and
χ, and breaks Uð2NfÞ to UðNfÞ ×UðNfÞ [100]. For a
single flavor SUð2Þ breaks to Uð1Þ, times an overall,
unbroken Uð1Þ. One of the SUð2Þ directions generates a
condensate, leaving two Goldstone bosons. At nonzero
density one of the Goldstone bosons can pair with the
condensate to form a chiral spiral, leaving one Goldstone
boson to disorder the condensate of chiral spirals.
This model is presumably soluble at large Nf. We note,

however, that the transverse fluctuations are of ∼N0
f, and so

if a chiral spiral condensate arises at infinite Nf, it is only

disordered at next to leading order in 1=Nf. It may be more
useful to use numerical simulations on the lattice, espe-
cially for Nf ¼ 1. This assumes that the physics does not
disappear as the cutoff vanishes [60]. However, it is easy to
add additional, dynamical scalar fields and construct a
model which is both renormalizable and with the same
pattern of symmetry breaking, Sec. 4.4 of [73].
As discussed in Sec. II B, though, we expect that the

spontaneous breaking of anOð4Þ symmetry prefers a chiral
spiral over a kink crystal.

B. Phase diagram of QCD

Our analysis is relevant for the phase diagram of QCD, in
theplaneof temperature,T, and thequarkchemical potential,
μ.At nonzero chemical potential, it is natural that the effect of
fermion loops turns both the quartic coupling, λ, and Z
negative, Eq. (1) [3,6–17,23–54]. In particular, when λ
changes sign, a critical end point can arise [87–96].
It is not clear what the relationship is between the critical

end point and the region where a chiral spiral arises. In the
simplest Nambu–Jona-Lasino models, the critical end point
coincides with the Lifshitz point (where Z ¼ m2 ¼ 0) [29],
but in general the two are separate [30]. In any case,
fluctuations wash out the Lifshitz point [2–4,66–71].
Calculations using the functional renormalization group
appear to show that the region where Z < 0 is large, while
the critical region for the end point is small [95].
In QCD, the order parameter for a chiral spiral only

involves the global Uð1Þ symmetry [3]. This is not directly
affected by our analysis, as a chiral spiral for Uð1Þ has no
transverse modes. Nevertheless, there is surely a close
relation between the full chiral symmetry, which is at least
an approximate Oð4Þ symmetry, and this Uð1Þ. In particu-
lar, the Uð1Þ symmetry can exhibit a chiral spiral at any
temperature, while as we discussed at the end of Sec. V, an
Oð4Þ chiral spiral only exhibits quasi-long-range order at
low temperature. The relationship between the two types of
symmetry breaking in the phase diagram of QCD is surely
intricate, and left to future study.
Even so, it is reasonable to conjecture that any region

where Z < 0, and Uð1Þ chiral spirals arise, affects the
propagation of pions and kaons. We do not expect that the
inverse propagator of pions or kaons vanishes at any point,
as that would produce double poles. It is natural to
conjecture that the dispersion relation of pions and kaons
is like that of the symmetric modes in Eq. (73).
This modest assumption has immediate implications. If

the Minkowski energy Ẽ ¼ iE, the poles of the propagator
in Eq. (73) are

ẼðkÞ2 ¼ ðk2Þ2
M2

þ Zk2 þm2
eff : ð77Þ

Using the standard Bose-Einstein statistical distribution
function, such a modified dispersion relation produces what
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appears to be deviations from a thermal distribution. In this
case, the system is thermal, but the dispersion relation is
modified. The effects of amodified dispersion relation could
be quite striking [101]. This is diluted by integrating over the
temperature history and large boost velocity of the medium.
It is surely necessary not to look at total abundances,
integrated over all momentum, but as a function of momen-
tum.Amore sensitive probe is tomeasure the fluctuations for
particles binned with respect to their momentum.
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