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Semileptonic decays of charmed mesons to light scalar mesons
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Within the framework of covariant confined quark model, we compute the transition form factors
of D and D, mesons decaying to light scalar mesons f;(980) and a((980). The transition form factors
are then utilized to compute the semileptonic branching fractions. We study the channels, namely,

D(t) = f0(980)¢ v, and D — a((980)¢ " v, for £ = e and p. For computation of semileptonic branching

fractions, we consider the a,(980) meson to be the conventional quark-antiquark structure and the f(980)
meson as the admixture of s5 and light quark-antiquark pairs. Our findings are found to support the recent

BESIII data.
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I. INTRODUCTION

Charmed semileptonic decays are important for the study
of open flavor hadron spectroscopy in general and heavy
quark decay properties in particular. More specifically, the
scalar mesons below 1 GeV in final product can provide the
key information regarding their internal structure as well as
the chiral symmetry in the low energy region of non-
perturbative QCD [1]. The internal structure of these
mesons is yet to be clearly understood from the theoretical
studies attempted so far.

Conventionally, the structure of f,(980) meson was
thought to be a bound state of quark-antiquark pair. CLEO
was the first to have studied the semileptonic decays of
D, = fy(980)e*v, [2,3] and recently, BESIII has reported
branching fractions for the semileptonic decays of Dt —
f0(980)ety, [4] suggesting that the internal structure of
bound state of f;(980) meson may not be the conventional
quark-antiquark pair. These experimental results also indi-
cate that the internal structure of f,(980) meson could be
admixture of lighter quark state and ss state. For the
D — f4(980), the dominant contribution is from the lighter
quarks, whereas that for the D, — f;(980) channel is from
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the s5 counterpart. Recently, BESIII Collaboration reported
the first ever experimental observation for the semileptonic
branching fraction of D — a((980)e*v, [5]. The notable
results on these channels read

B(D* = £,(980)e*v,,fo(980) > nt77) <2.5x 107 [4]
B(D} — f,(980)e"v,,fo(980) >zt x™)
=(0.13£0.04+0.01)% [3]
B(D® - ay(980)~e*v,,a(980)~ = nz~)
=(1.331033£0.09) x 10~* [5]
B(D* — ay(980)°e*v,,ay(980)° — 5z°)
]

=(1.66"58 £0.11)x 107 [5]. (1)
On experimental front, BESIII and other worldwide exper-
imental facilities have reported the most precise results
on semileptonic decay of D, to pseudoscalar and vector
mesons. From theory point of view, these channels are
straightforward to study because the internal structure/
quark content of the daughter meson is a typical quark-
antiquark system. But the quark structure of the scalar
mesons below 1 GeV has varied explanations (see note
on scalar mesons below 2 GeV in Particle Data Group
Ref. [6]). The computation of branching fractions of D)
mesons decaying to ay(980) and f,(980) is highly sensi-
tive to the internal structure of these mesons. The theo-
retical approaches so far include lattice quantum
chromodynamics [7-12], QCD sum rules [13-17], chiral
unitary approach [18], and different quark models [19-24].

Published by the American Physical Society


https://orcid.org/0000-0002-4444-0855
https://orcid.org/0000-0002-9426-9742
https://orcid.org/0000-0003-0806-5864
https://orcid.org/0000-0001-5958-6294
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.016013&domain=pdf&date_stamp=2020-07-20
https://doi.org/10.1103/PhysRevD.102.016013
https://doi.org/10.1103/PhysRevD.102.016013
https://doi.org/10.1103/PhysRevD.102.016013
https://doi.org/10.1103/PhysRevD.102.016013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SONI, GADARIA, PATEL, and PANDYA

PHYS. REV. D 102, 016013 (2020)

There are different ways in which these scalar mesons are
studied globally, viz. conventional quark-antiquark states
[25-27] and compact multiquark states including diquark-
diantiquark [28], meson-meson composite molecule
[29-37], as well as compact structure of tetra quarks
[38—46]. In this mass range, one can also consider the
possibility of scalar glueball bound state [47,48].

In quark-antiquark picture, several theories have been
proposed including the constituent quark model [25]. The
semileptonic branching fractions for D, — f,(980) were
considered in the light front quark model [26] and semi-
leptonic as well as rare decays of the B, have also been
studied in the formalism of covariant quark model [27]. In
composite structure, there are several ways in which the
structure of scalar mesons is proposed. Fariborz et al
studied the light scalar mesons considering diquark-
diantiquark state in the formalism of linear sigma model
[28]. The scalar mesons have been considered to be the
bound states of KK molecules in the potential model
approach [29,30]. Achasov et al. considered the scalar
meson to be the KK molecule in the radiative decays of ¢
meson [31]. The assignment of f((980) as the molecular
structure of KK has also been used in the phenomeno-
logical Lagrangian approach by studying the strong decays
of fy(980) to zz and yy channels [32]. The multiquark
structure was also attempted in the unitarized meson
model [33], effective field theory [34,35], as well as
chiral perturbation theory [36,37]. Maiani et al. studied
the diquark-diantiquark structure via strong decay of D)
mesons [42,43]. Light scalar mesons are also studied in the
framework of tetraquark mixing [44—46].

Lattice quantum chromodynamics investigations of these
scalar mesons are reported employing the four quark
[49,50] and diquark-diantiquark pictures [51]. The tran-
sition form factors for the decays with scalar mesons as
daughter products are also computed in the framework of
QCD sum rules [52-54] and light cone sum rules [55,56].
Cheng et al. studied the transition form factors and semi-
leptonic branching fractions for the channel D — a((980)
in the light cone sum rule approach where they considered
ay(980) to be the conventional quark-antiquark state [57].
The transition form factors are also determined in the light
front quark model considering them as a four quark state
[22]. Jaffe considered the diquark-diantiquark structure of
these mesons in the formalism of MIT bag model [1].

The present work is focused on the semileptonic decay
of D and D; mesons to the light scalar mesons, namely,
f0(980) and a((980) in the framework of covariant
confined quark model (CCQM) [58-61]. The CCQM is
the effective field theory approach with the built-in infrared
confinement for the hadronic interactions to their constitu-
ents. Recently, we studied the semileptonic decays of
D and D, mesons to the pseudoscalar and vector mesons
in this formalism in great detail [62—66]. In these papers,
we investigated the transition form factors, branching

fractions, and other physical observables such as forward
backward asymmetry and lepton polarization. The present
study will help understand the essential dynamics of
charmed semileptonic decays and the possible structure
of the scalar mesons below 1 GeV, namely, f,(980) and
ay(980).

This paper is organized in the following way: after
introducing the requirement for the study of scalar mesons
in the semileptonic decays with the literature in Sec. I, we
briefly introduce the essential components of covariant
confined quark model employed here for computation of
the hadronic form factors in Sec. II. Using the transition
form factors, we compute the semileptonic branching
fractions. In Sec. III, we present our numerical results of
semileptonic branching fractions in comparison with other
theoretical results and available experimental data. Finally,
in Sec. IV, we summarize and conclude the present work.

II. FORM FACTORS AND SEMILEPTONIC
BRANCHING FRACTIONS

Within standard model, the semileptonic decays are
very well separated by strong and weak interactions.
The charmed meson semileptonic decays to light scalar
meson can be written as

G _
M(Dy) — §¢tv,) = 7% Vg (S1g0%c| D)) £+ 0,07,

with O¥ = y#(1 —y5) and g € d, s. The matrix element in
this process is very well parametrized in terms of transition
form factors given by

M = PHF(q*) + ¢"F_(q*). (2)

Here P = p; + p, and ¢ = p; — p, with p; and p, to be
the momentum of D(;) meson of mass m; and momentum
of scalar (S) meson of mass m,, respectively. The form
factors F, and F_ are computed in the entire accessible
physical range of momentum transfer in the formalism of
CCQM. The Lagrangian describing the coupling of the
constituent quarks to the meson can be written as [58-61]

Lo = gy M(x) / iy des Fyg (330 %) 8 (62) Dy (x1)

+ H.c. (3)

Here, I'y; is the Dirac matrix projecting onto spin of
corresponding mesonic state. It should read, i.e., Iy, = I,
v, v, for scalar, pseudoscalar, and vector mesons, respec-
tively. gy, is the coupling strength of the meson with its
constituent quarks. F,, the translation invariant vertex
function characterizing the effective physical size of the
hadron, is given by
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Fp(x,x1,x) =6( x — s wix; | @y ((x) —x2)%), (4)
(+-25m)

i=1

with @,, as the correlation function of two constituent
quarks with masses m, and m,, and w, =m, /(m, +m,,)
such that w; + w, = 1. We choose Gaussian form for the
vertex function as

Dy (—p?) = exp(p*/Aj). (5)

where the model parameter A, characterizes the effective
finite size of the mesons. Note that Eq. (5) is the Fourier
transform of the vertex function Eq. (4) for meson M. The
coupling strength g;, can be determined using the renorm-
alization of the one loop self-energy Feynman diagram.
This is also known as the compositeness condition which
ensures the absence of any bare quark state in the final
mesonic state [67-69],

392 N
— 2L ) = 0. (©

ZM — 1
The matrix element of self-energy diagram and semi-
leptonic decays are constructed from the S matrix using the
interaction Lagrangian equation (2). The corresponding
one loop Feynman diagram is drawn using the convolution
of quark propagator and vertex functions (Figs. 1 and 2).
The matrix element for self-energy diagram for any meson
can be written as

- Vol
My (p?) = Ncgﬁ/mq’zzw(—kz)

x tr(Ly Sy (k + w1 p)TySa(k—wop)).  (7)
In Eq. (6), IT), is the derivative of meson mass operator

Eq. (7). Similarly, the matrix element for the semileptonic
D,y decays to scalar mesons can be written as

9,

9

FIG. 1. Diagram describing meson mass operator.
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FIG. 2. Quark model diagrams for the D-meson leptonic decay.

(S(p2)|g0*c|D)(p1))

&'k )
= Ncgp,9s W‘DD(J)(—U‘ +wi3p1)7)

X ®g(—(k + wy3p2)?)
X tr[Sy(k + pa)O*S(k + p1)rS;(k)]
= F (¢*)P* + F_(¢*)q". (8)

where N, =3 is the number of flavors. The Fock-
Schwinger representation of the quark propagator (S, S,
and S3) is used in computing the loop integral. This method
involves the conversion of the loop momenta into the
exponential of function. The necessary loop integral can be
evaluated analytically using the FORM code [70]. Finally,
the universal infrared cutoff parameter A is used in
computation that guarantees the quark confinement within
the hadrons. We take 4 to be the same for all the physical
processes. This computation technique is quite general and
can be used for Feynman diagrams with any numbers
of loops. All the numerical calculations including the
multidimensional integrations are performed using a
Mathematica code developed by us. For more detailed
information regarding computation technique of the loop
integral, we suggest the reader to refer to Refs. [61,64]. The
necessary model parameters for computation of semilep-
tonic branching fractions are given in Table I. These
parameters have been determined for the basic electromag-
netic properties like leptonic decay constants to match
with the corresponding experimental data or lattice simu-
lation results [71]. For present computations, we employ
model parameters that are obtained using updated least
square fit procedure performed in Refs. [27,64,72].
The parametrization was achieved to keep the deviation
in the computed decay constants defined by the function

) ()v?xperimem _yt.henry>2
X = Zi &
are reported experimental standard deviations. After all, the

to be minimum [73-75]. Here, o;
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TABLE 1. Model parameters, namely, quark masses, size
parameters, and infrared cutoff parameter (all in GeV).

My/q my m, Ap ADS A

0.241 0428 1.672 1.60 1.75

qq 3
) Afo Afo A
1.50 0.25 1.30 0.181

parameters were fitted to get the best possible decay
constant values; the uncertainties in the model parameters
were determined by individually changing them to get the
exact experimental or lattice results. The difference
between these two values of the parameters was considered
as uncertainty in the respective parameter. These uncer-
tainties are considered absolute for given parameters and
are then transported to the form factors in the whole g?
range. In Fig. 3, we present the spread of form factors F', in
the whole ¢? range due to propagation of uncertainty in the
parameters. It is observed that the uncertainties are of
the order of 4%—6% at the maximum recoil (¢> = 0) and
8%—10% at the minimum recoil (¢> = ¢2,y). Further, we
compute their propagation in determination of uncertainty
in branching fractions using the generic method given in
the Appendix.

F.(¢?) for D* > £,(980) transition

0.65]
0.60f
0.55]

0.50f

0.45}

0.0 T 0.2 T 0?4 T 0.6
7*(GeV?)

F (g% for D° - a((980)" transition
0.75F7 T T T

0.70

0.65

0.60

0.55

0.0 0.2 0.4 0.6 0.8
7*(GeV?)

The form factors given in Eq. (8) are also very well
represented in the double pole approximation as

2
F(qz)zl F(O) 3 :qT
—as+bs my,
The parameters in the double pole approximation for the
different decay channels are given in Table II. It is worth
mentioning that the parametrization in the double pole
approximation is quite precise and the deviation of the form
factors from the actual data is less than 1% in the entire

range of momentum transfer.

Using the necessary model parameters (Table I) and
computed form factors (Table II), we determine the semi-
leptonic branching fractions in terms of helicity structure
functions using the relation [76,77]

dF(D(S) d SerIJg)
dq?
_ G%|ch|2|p2|q2v2

_ ((1+67)[Ho|* +38,|H,[*), (10)
12(27)'m? ’

F(g®) for Dy* = £3(980) transition

0.45

0.40

0.0 0.2 T Oi4 T 0.6 0.8 .
qz(GeVz)

F.(g?) for D* > ay(980) transition

0.75F

N

0.70

0.65

0.60

0.55

0.50 1 n n n 1 n n n 1 n n n 1 n n n
0.0 0.2 0.4 0.6 0.8

7*(GeV?)

FIG. 3. ¢ dependence of the Dy — S form factors.
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TABLE II. Double pole parameters for the computation of form factors in Eq. (9).

F F(0) a b F F(0) a b
F€*~f0(980) 0.45+0.02 1.36 0.32 FD—/0(980) 0.40 +£0.02 0.71 0.24
Fi?—»fn(%O) 0.36 £0.02 0.99 0.13 FD7—0(980) —0.39 £0.02 1.13 0.18
Fﬁ"—*ao(%o)‘ 0.55+0.02 1.05 0.15 FD—a0(980) 0.03 £0.01 -0.04 32.81
Flj**ao(%())o 0.55+£0.02 1.06 0.16 JD—a0(980) 0.03 £0.01 1.43 72.93

where 8, = m2/2q¢ is the helicity flip factor, |p,| =
A/ 2(mlz)m, m%, q*)/2m p,, is the momentum of the daugh-
ter (Scalar) meson in the rest frame of the parent (D))
meson, and v = 1 — m% /q? is the velocity-type parameter.
In the above Eq. (10), the bilinear combinations of the

helicity structure function are defined in terms of form
factors as

1
H, =—=(PqF, +q’F_),
V4
2
Hozwﬂr- (11)

\/q_z

This helicity technique is formulated in Refs. [78—80] and
is also discussed recently in Refs. [76,77]. The computation
technique in CCQM is very general and can accommodate
hadronic state with any number of constituent quarks.

III. NUMERICAL RESULTS AND DISCUSSION

After fixing the quark masses and meson size parame-
ters, we compute the transition form factors for the semi-
leptonic decays of D and D, mesons to the scalar mesons
below 1 GeV in the entire physical range of momentum
transfer. Looking at the literature, theoretically the internal
structure of these scalar mesons is still not very much clear.
In this study, we consider the internal structure of scalar
meson a((980) to be the conventional quark-antiquark state
while f,(980) meson as the admixture of gg and s3 state
characterized by a mixing angle €. In terms of wave
function, the internal structures of these scalar mesons
are defined as

|/0(980)) = cos @|s5) + sin0|qq)
|ao(980)7) = |du),

1
V2

with g = 1/+v/2(u@t + dd) and the mixing angle 6 to be in
the range 25° < 0 < 40° and 140° < 0 < 165° [81,82].
Similar approach has been used earlier in the formalism
of light front quark model and the authors obtained the
mixing angle to be (56 +7)° or (124 4 7)° [26]. Another
approach was used in covariant quark model formalism by

|ay(980)°) = luit — dd),

Bennich ef al where they considered the phenomenological
analysis of two body decay of D, mesons and the form
factors were computed using the dispersion relation (DR)
and covariant light front dynamics (CLFD) [83].
Furthermore, various other approaches have been reported
considering the quark contribution. For example, Oset et al.
have studied the structure of f((980) in various channels
using chiral unitary approach and inferred that the f(980)
has major contribution from the strange quarks [18,84-87].
Bediaga et al. studied the structure of f(,(980) in semi-
leptonic decay D5 — f(980)¢* v, using QCD sum rules
approach and inferred that the contribution of light quark
component is not negligible [13]. Motivated by these
findings clearly suggesting considerable strange quark
contribution, we choose the mixing angle to be in the
range 25° < 6 < 40° [81,82] for present computations and
the computed branching fraction range turns out to be

( (980)e*w,) = (5.95 — 10.06) x 1075

( (980)ut,) = (5.92 — 10.01) x 10~
B(D} — f,(980)e*r,) = (0.14 —0.27) x 1072

( (980) ) = (0.14 = 0.26) x 1072

In Table IV, we quoted the central values of branching
fractions and the corresponding value of the mixing angle is
31°. Also, in Tables II and III, we quoted the values of form
factors and double pole parameters for mixing angle of 31°.

TABLE III. Comparison of the form factor at the maximum
recoil.
Channel Present Other Reference
Dt — £,(980) 0.45 £0.02 0.321 LCSR [56]
0.216 LFQM [26]
0.21 CLFD [83]
0.22 DR [83]
Df — £,(980) 039+£0.02 030+£0.03 LCSR [55]
0.434 LFQM [26]
0.45 CLFD [83]
0.46 DR [83]
D° - ay(980)~  055+£0.02  1.75%926  LCSR [57]
DT = ay(980)°  0554+0.02 1.76+026 LCSR [57]
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TABLE IV. Branching fractions of D — § semileptonic decay.

Channel Unit  Present Theory  Reference

D* > f,(980)e v, 10-5 7.78 £0.68 5.7 4+ 1.3 LFQM [26]
D = £(980)uty, 105 7.87 +0.67
(980)
( )

Df = £0(980 ewe 102 0.21+£0.02 02995 LCSR [55]
D — £,(980 1072 0.21 £0.02
DY - ay(980)~e 107+ 1.68 +£0.15 4,08*!37 LCSR [57]
D° = ay(980)u 1074 1.63+£0.14
Dt = ay(980)° em 10* 2.18 £0.38 54078 LCSR [57]

D — a(980)°%u "y, 107 2.12£0.37

[(D°—ay(980)"¢*v,) 1.95 +£0.38
(D" —=ay(980)°e*v,)

In computing the transition form factors, we considered
contribution from ¢g for the channel D — f;(980) meson
and that from s5 for D; — f;(980). The form factors
appearing in Eq. (8) are computed in the entire accessible
range of momentum transfer and associated double pole
parameters [Eq. (9)] are tabulated in Table II. We also
compare our results of the form factors at the maximum
recoil (¢> = 0) in Table III along with the other theoretical
models using light cone sum results data, covariant light
front dynamics, and dispersion relations. Our results of
f+(0) for D — f,(980) are lower than those obtained
using the light cone sum rules (LCSR) [56] from the
theoretical analysis of D — zz£v decays. However, they
match well with the quark-antiquark picture of scalar meson
in light front quark model (LFQM) [26] and the mixing of s5
with light quark state of scalar mesons in CLFD/DR [83]
approach. For D; — f;(980) channel, our result of the
f+(0) matches well with the LCSR [55], but it is lower than
the LFQM and CLFD/DR approach. We also provide the
form factors for the channel D — a((980) in comparison
with the LCSR results [57], where the structure of a((980) is
considered to be the conventional ¢g state.

The computed form factors are then utilized for calcu-
lation of semileptonic branching fractions using Eq. (10).
Our results of semileptonic branching fractions for both
electron channel and muon channel are presented in
Table IV in comparison with other theoretical and available
experimental data. No experimental results are available for
the absolute branching fractions of D(t) - f0(980)e"v,.
However, recently BESIII set the upper limit on the
B(D* — £4(980)e*v,, f4(980) — ztx~) < 2.8 x 107>
with the confidence level of 90% [4]. Also, Hietala et al.
predicted  B(DJ — f4(980)e*v,, fo(980) - ztz~) =
(0.13 £0.03 £ 0.01)% using the CLEO-c data [88]. For
D — a((980) channel also, the absolute value of branching
fraction is not available in the BESIII paper [5]. They

predicted the ratio of the partial width % =

2.034+0.95+0.06 and we obtained the ratios to be
1.95 £ 0.38, which is within the uncertainty limits pre-
dicted by them [5].

IV. CONCLUSION

In this paper, we have considered the f,(980) meson to
be the admixture of s5 and light quark component with
the mixing angle of 25° < 6 < 40° and a((980) meson to
be the conventional quark-antiquark pair. We have
employed the covariant confined quark model to study
the semileptonic branching fraction of charmed mesons
decaying to the light scalar mesons. Our results are found
to be consistent with theoretical results as well as available
experimental data. The present study indicates that the
internal structure of f,(980) has higher contribution of s3
state, suggesting the validity of chiral unitary approach,
light cone sum rules analysis, and light front quark model
approaches. We have also provided theoretical prediction
for the semileptonic branching fractions of charmed meson
to scalar meson in the muon channel for the first time.

The present study can help in understanding the internal
structure of the scalar mesons below 1 GeV. As no absolute
value of the branching fractions is available in the literature,
we expect more accurate data coming from the worldwide
upgraded experimental facilities to check the validity of
computed results in this study.
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APPENDIX: PROPAGATION
OF UNCERTAINITY

The error propagation in the branching fraction can be
computed using the most common technique. In general,
the differential branching fractions Eq. (10) can also be
rewritten in terms of form factors as

dB

d_q2 N(CIFZ( )

+bF2(q*) + cFo(q*)F_(q)).  (Al)

Here N includes the terms involving the various constants
such as Fermi coupling constant, Cabibbo-Kobayashi-
Maskawa matrix elements, meson masses, etc., and a, b,
and c are the coefficients of form factors in Eq. (11). The
uncertainty in the measurement of branching fractions
because of the uncertainty in form factors can be written as

016013-6



SEMILEPTONIC DECAYS OF CHARMED MESONS TO LIGHT ...

PHYS. REV. D 102, 016013 (2020)

4(8B) = W (e

oF ,

sr) o (25

OF_ (A2)

where (AF;)? = (F;-¢;)*> with e the relative error of all the form factors. The uncertainties in the form factors are
also extracted using the same method. Finally, we determine the uncertainty in the branching fractions by integrating the

above equation.
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