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We investigate the nonequilibrium evolution of the quark-meson model using two-particle
irreducible effective action techniques. Our numerical simulations, which include the full dynamics of
the order parameter of chiral symmetry, show how the model thermalizes into different regions of its phase
diagram. In particular, by studying quark and meson spectral functions, we shed light on the real-time
dynamics approaching the crossover transition, revealing, e.g., the emergence of light effective fermionic
degrees of freedom in the infrared. At late times in the evolution, the fluctuation-dissipation relation
emerges naturally among both meson and quark degrees of freedom, confirming that the simulation
approaches thermal equilibrium.
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I. INTRODUCTION

The quest to discover the conjectured critical point of the
QCD phase diagram is a central motivation of modern
heavy-ion collision experiments at collider facilities, such
as the Large Hadron Collider at CERN and the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven National
Laboratory. In the beam energy scan currently executed
at RHIC, the phase diagram of QCD is explored over a wide
range of temperatures and baryon densities by depositing
different amounts of energy in the initial collision volume.
As the fireball expands and cools, the efficient exchange of
energy and momentum among quarks and gluons leads to
local thermalization over time. The question to answer is: if
a critical point exists and some of the volume of the fireball
evolves close to it, does the dynamical buildup of long
range fluctuations leave any discernible mark on the yields
of measurable particles?
Understanding the out-of-equilibrium dynamics of

heavy-ion collisions thus remains one of the most pressing
theory challenges in heavy-ion physics. So far, genuinely
nonperturbative ab initio calculations of the equilibration
process of the quark-gluon plasma and the dynamics close
to the phase transition remain out of reach. In order to make

progress, we therefore set out to shed light onto pertinent
aspects of the physics of dynamical thermalization in
heavy-ion collisions by deploying a low-energy effective
theory of QCD, the two-flavor quark-meson model. This
model incorporates the off-shell dynamics of the lowest
mass states in QCD, the pseudoscalar pions, and the scalar
sigma-mode, as well as the light up and down quarks.
Further degrees of freedom, and in particular the gluons,
heavier quark flavors, as well as higher mass hadronic
resonances carry masses ≳500 MeV and are neglected
here. This low-energy effective theory reflects the central
and physically relevant feature of low-energy QCD: chiral
symmetry breaking in vacuum and its restoration at finite
temperature and density. At its critical end point, the model
is expected to lie in the same universality class as QCD and
hence constitutes a viable low-energy effective theory to
explore dynamical critical phenomena in QCD at finite
temperature and density at scales ≲500 MeV.
In the present work, we consider the real-time dynamics

of the two-flavor quark-meson model with small current
quark masses in a nonexpanding scenario; for progress
on the out-of-equilibrium quark-meson model, see [1–4]. In
the presence of such an explicit chiral symmetry breaking,
the equilibrium chiral transition at finite temperature is a
crossover as confirmed for QCD at vanishing and small
density; for recent results, see [5–7]. By the help of
different initial conditions defined via the initial occupa-
tions of sigma and quark fields, we map out the thermal-
ization dynamics for different regions of the phase diagram.
This allows, for the first time, to study the full thermal-
ization dynamics including that of order parameters of
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chiral symmetry. An extension of the present study to the
scenario of an expanding fireball should give access to the
freeze-out physics of heavy-ion collisions.
The evolution toward thermal equilibrium is viewed

through the lens of the one- and two-point functions of
the theory, which are computed with the two-particle
irreducible (2PI) approach by means of their quantum
equations of motion. These correlation functions not only
provide complementary order parameters for the study of
chiral symmetry restoration but also give direct access
to the spectral properties, including the quasiparticle con-
tent of the system. Being genuine nonequilibrium quan-
tities, they map out the whole time evolution of the
system including the physics of the crossover transition
in the late-time limit.
This paper is organized as follows. In Sec. II, we briefly

review the quark-meson model and give an overview
over our nonequilibrium and nonperturbative treatment.
The numerical setup for the time evolution starting from
free-field initial conditions quenched to a highly non-
equilibrium environment is described. In Sec. III, we
discuss the spectral functions of the bosonic and fermionic
degrees of freedom, which provide information about the
masses as well as the lifetimes of the dynamical degrees of
freedom. We investigate the late-time limit of our simu-
lations, which reveals the dynamical emergence of the
fluctuation-dissipation relation and hence allows us to
define a thermalization temperature. Finally, Sec. IV covers
the results for the sigma field describing the order param-
eter of the quark-meson model. We further discuss the
behavior of different order parameters in equilibrium
which lead to a consistent pseudocritical temperature.
In Sec. V, we conclude with a summary. The Appendix
provides details about the evolution equations of the
model including the relevant expressions for the deployed
approximation scheme.

II. THE QUARK-MESON MODEL

QCD evolves from a theory of dynamical quarks and
gluons at large momentum scales, the fundamental degrees
of freedom, to a theory of dynamical hadrons at low
momentum scales. This transition of the dynamical degrees

of freedom is related to the mass gaps of the respective
fields. It is by now well understood that the gluon degrees
of freedom start to decouple at about 1 GeV, that is above
the chiral symmetry breaking scale kχ of about 400 MeV.
Most of the hadron resonances are too heavy for taking
part in the off-shell dynamics and we are left with the up,
down, and to some extend the strange quarks, as well as the
pions and the scalar sigma mode; for details, see [8,9].
Indeed, low-energy effective theories emerge naturally at
low momentum scales from first principle QCD, and their
systematic embedding leads us to the quark-meson model
and its Polyakov loop enhanced version as QCD-assisted
low-energy effective theories. While its quantitative val-
idity has been proven for momentum scales k with k≲
300 MeV [10], it reproduces qualitative QCD features up
to k≲ 700 MeV. It is this natural QCD embedding as well
as its robust QCD-type chiral properties that has triggered a
plethora of works with the quark-meson model on the QCD
phase structure with functional methods; see, e.g., [11–16].
More recently also, real-time correlation functions in
equilibrium have been investigated in, e.g., [17–27].
(Pre-)Thermalization has been studied in the OðN ¼ 4Þ

symmetric scalar model coupled to fermions using a two-
loop approximation of the 2PI effective action in [1,28].
The model was studied extensively in Refs. [2,3] in the
context of inflaton dynamics to describe nonequilibrium
instabilities with fermion production from inflaton decay.
In [4], the model was investigated for highly occupied
bosonic fields, where the predictions were shown to agree
well with lattice simulation results in the classical-statistical
regime. Further results for spectral functions in and out of
equilibrium with 2PI effective action techniques can be
found in [29], and with classical-statistical simulations in
[30–32] for scalar theories, and in [33] for Yang-Mills
theory.
In this work, we build on these results and investigate the

nonequilibrium evolution of the two-flavor quark-meson
model: we consider two light quark flavors with isospin
symmetry, up and down quarks with an identical current
quark mass mu=d ¼ mψ , coupled to a scalar mesonic field σ
and a triplet of pseudoscalar pions πα (α ¼ 1, 2, 3) through
a Yukawa coupling g. The classical action reads

S½ψ̄ ;ψ ; σ; π� ¼
Z

d4x

�
ψ̄ðiγμ∂μ −mψ Þψ −

g
Nf

ψ̄ðσ þ iγ5ταπαÞψ þ 1

2
ð∂μσ∂μσ þ ∂μπ

α∂μπαÞ

−
1

2
m2ðσ2 þ παπαÞ − λ

4!N
ðσ2 þ παπαÞ2

�
; ð1Þ

with τα (α ¼ 1, 2, 3) denoting the Pauli and γμ (μ ¼ 0, 1,
2, 3) the Dirac matrices, while spinor and flavor indices are
suppressed, In (1).mψ is the current quark mass, andm2 the
mesonic mass parameter. The lowest mass states of the

mesonic scalar-pseudoscalar multiplet, σ and π⃗, are
given by the N ¼ 4 scalar components of the bosonic
field φaðxÞ ¼ fσðxÞ; π1ðxÞ; π2ðxÞ; π3ðxÞg interacting via a
quartic self-coupling λ. The boson fields φa are coupled to
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the fermion fields ψ and ψ̄ ¼ ψ†γ0 via the Yukawa
interaction g, which we also express in terms of h ¼ g=Nf.
The π mesons play the role of the light Goldstone

bosons in the chirally broken phase, whereas the σ meson
represents the heavy mode. Assigning these roles to the
components of the scalar field is achieved by choosing a
coordinate system in field space where the field expectation
value has a single component which defines the σ direction,
i.e., ϕaðxÞ ¼ hφðxÞi ¼ fhσðxÞi; 0; 0; 0g.
The quasiparticle excitation spectrum of the quark-

meson model is encoded in the spectral functions of the
respective fields. For the bosonic and fermionic fields,
the spectral function is defined as the expectation value of
the commutator and anticommutator, respectively,

ρϕabðx; yÞ ¼ ih½φaðxÞ;φbðyÞ�i;
ρψABðx; yÞ ¼ ihfψAðxÞ; ψ̄BðyÞgi; ð2Þ

where a; b ¼ 1;…; N denote field space and A;B ¼
1;…; 4 correspond to Dirac spinor indices. Fermion flavor
indices are omitted and the operator nature of the quantum
fields is implied. We consider systems with spatial isotropy
and homogeneity such that the spectral functions depend on
times and relative spatial coordinates, i.e., ρðt; t0; jx − yjÞ or
in momentum space ρðt; t0; jpjÞ, while the field expectation
value only depends on time, i.e., hσðtÞi. Due to the
remaining OðN − 1Þ symmetry of the chirally broken
model, the bosonic spectral function can be written as
ρϕab ¼ diagðρσ; ρπ; ρπ; ρπÞ where the components ρi with
i ¼ σ, π describe the respective mesons. The fermionic
spectral function can be decomposed into Lorentz compo-
nents according to

ρψ ¼ ρS þ iγ5ρP þ γμρ
μ
V þ γμγ5ρ

μ
A þ 1

2
σμνρ

μν
T ; ð3Þ

with σμν ¼ i
2
½γμ; γν� and γ5 ¼ iγ0γ1γ2γ3. The corresponding

Lorentz components are given by

ρS ¼
1

4
Tr½ρψ �;

ρP ¼ 1

4
Tr½−iγ5ρψ �;

ρμV ¼ 1

4
Tr½γμρψ �;

ρμA ¼ 1

4
Tr½γ5γμρψ �; ρμνT ¼ 1

4
Tr½σμνρψ �; ð4Þ

where the trace acts in Dirac space. In spatially homo-
geneous and isotropic systems with parity and CP invari-
ance, the only nonvanishing components are the scalar,
vector, and 0i-tensor components. Rotational invariance
allows us to write

ρSðx0; y0;pÞ ¼ ρSðx0; y0; jpjÞ;
ρ0Vðx0; y0;pÞ ¼ ρ0ðx0; y0; jpjÞ;

ρiVðx0; y0;pÞ ¼
pi

jpj ρVðx
0; y0; jpjÞ;

ρ0iT ðx0; y0;pÞ ¼
pi

jpj ρTðx
0; y0; jpjÞ; ð5Þ

where we refer to the two-point functions ρS, ρ0, ρV , and ρT
on the right-hand sides as the scalar, vector, vector-zero,
and tensor components. The relevant contributions to the
quark spectral function are the scalar, vector-zero, and
vector components, where the vector-zero component
represents the quark excitations of the system [25,34].
For chiral symmetric theories with mψ ¼ 0, the scalar and
tensor components vanish. The spectral functions also
encode the equal-time commutation and anticommutation
relations of the quantum theory, implying that

i∂tρ
ϕðt; t0; jpjÞjt¼t0 ¼ 1; ρ0ðt; t; jpjÞ ¼ i; ð6Þ

while all other fermion components vanish at equal time.
In addition to the spectral functions, we may consider the

so-called statistical functions. These are the anticommuta-
tor and commutator expectation values,

Fϕðx; yÞ ¼ 1

2
hfφðxÞ;φðyÞgi − ϕðxÞϕðyÞ;

Fψðx; yÞ ¼ 1

2
h½ψðxÞ; ψ̄ðyÞ�i; ð7Þ

where field space, Dirac, and flavor indices are suppressed.
The statistical functions carry information about the par-
ticle density of the system, i.e., the occupation of the
available modes in the system. Together, the spectral and
statistical functions fully describe the time-ordered con-
nected two-point correlation function, commonly denoted
as Gðx; yÞ ¼ hTφðxÞφðyÞi − hφðxÞihφðyÞi for the bosonic
and Δðx; yÞ ¼ hTψðxÞψ̄ðyÞi for the fermionic sector. Note
that in nonequilibrium settings, the time-ordering occurs
along the closed time path also known as Schwinger-
Keldysh contour.

A. 2PI effective action real-time formalism at NLO

One can derive closed and nonsecular evolution equa-
tions for the one- and two-point functions of the quark-
meson model out of equilibrium. These equations follow
from the 2PI effective action Γ½ϕ; G;Δ�, the quantum
counterpart of the classical action S½ψ̄ ;ψ ; σ; π�, via a
variational principle (see, e.g., [35]). The 2PI effective
action of the quark-meson model can be written as
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Γ½ϕ; G;Δ� ¼ S½ϕ� þ i
2
Tr ln½G−1� þ i

2
Tr½G−1

cl ðϕÞG�
− iTr ln½Δ−1� − iTr½Δ−1

cl ðϕÞΔ�
þ Γ2½ϕ; G;Δ� þ const:; ð8Þ

where S is the classical action given by (1), and G−1
cl and

Δ−1
cl are the classical meson and quark propagators derived

from it. Traces, logarithms and products have to be
evaluated in the functional sense. The term Γ2½ϕ; G;Δ�
contains two-loop and higher order quantum fluctuations
that correspond to 2PI diagrams.
The relevant evolution equations for the one- and two-

point functions have the form (explicit expressions can be
found in the Appendix),

½□x þM2ðxÞ�ϕðxÞ ¼
Z

x0

0

dzΣϕðx; zÞϕðzÞ þ JϕðxÞ;

½□x þM2
ϕðxÞ�ρϕðx; yÞ ¼

Z
x0

y0
dzΣϕ

ρ ðx; zÞρϕðz; yÞ;

½i=∂x þMψðxÞ�ρψðx; yÞ ¼
Z

x0

y0
dzΣψ

ρ ðx; zÞρψ ðz; yÞ; ð9Þ

with shorthand notation
R t2
t1 dz≡ R t2

t1 dz
0
R
d3z and the

dependence of the self-energies Σi on ϕ; G;Δ is implied.
Similar expressions hold for the statistical functions. On the
left-hand side, the Klein-Gordon or Dirac operators act
on the corresponding expectation value. Thereby, effective
masses take into account local quantum corrections. On the
right, the effects of quantum fluctuations appear in so-
called memory integrals that encode the generally non-
Markovian effects of fluctuations in the past. The source
term Jϕ in the field equation arises in the chirally broken
case and describes the fermion backreaction on the field. It
pushes the field to nonzero field expectation values even in
the case where ϕðtÞ ¼ ∂tϕðtÞ ¼ 0 at initial time.
In order to carry out explicit computations, the self-

energies Σi need to be approximated. Here we deploy an

expansion to next-to-leading order (NLO) in 1=N for the
bosons, where N is the number of scalar field components,
and an NLO expansion in g, the Yukawa coupling. The
large N expansion provides a controlled nonperturbative
approximation scheme, which at NLO includes scattering
as well as off-shell and memory effects, capable of handling
relatively large couplings [36]. The loop expansion in g to
NLO contributes with a fermion-boson loop originally
discussed in [1]. The 2PI diagrams contributing in this
approximation are sketched in Fig. 1.
The explicit equations of motions are presented in the

Appendix, where also the self-energy expressions for
the given approximation scheme are provided. To study
the time evolution of the system, we iteratively solve the
equations of motion without further approximations.

B. Initial conditions

The derivation of the nonequilibrium 2PI effective action
and the equations of motion following from it rely on the
assumption of a Gaussian initial state. This corresponds to a
system initially exhibiting the characteristics of a non-
interacting theory. However, higher order correlation func-
tions build up during the subsequent time evolution. While
this appears at first sight to correspond to a very limited
choice of initial conditions, it still allows for a wide variety
of different configurations through which we can determine
for instance the energy density εinit at the beginning of our
computation. In particular, the Gaussian initial state rep-
resents a genuine nonequilibrium state in the fully inter-
acting nonequilibrium system, in which the time evolution
takes place.
We allow for spontaneous symmetry breaking by using a

negative mesonic bare mass squaredm2 < 0 in the classical
potential of the system. Since the initial state is determined
by a free theory with m2 ¼ m2

init > 0, the sign flip of m2

leads to a quench of the classical potential from positive to
negative curvature in the first time step. At initial time, the
classical potential is minimal at vanishing field expectation
value while the minimum at t > 0 becomes nonzero by
taking m2 < 0.

FIG. 1. 2PI diagrams at NLO in 1=N and g. Full lines represent boson propagators, crossed circles macroscopic field insertions, and
dashed lines fermion propagators. The first two-loop diagram in the first row corresponds to the leading-order contribution in 1=N. The
last diagram in the second row shows the fermion boson loop. The other diagrams in the first and second rows depict the infinite series of
NLO diagrams in 1=N.
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AGaussian initial state can be fully specified in terms of
the one- and two-point functions. Since the field evolution
equation involves second order time derivatives, one has to
specify both the sigma field value and its initial time
derivative. We choose the latter to vanish and refer to the
initial field expectation value as σ0,

σðt ¼ 0Þ ¼ σ0; ∂tσðtÞjt¼0 ¼ 0; ð10Þ

where σðtÞ now denotes the expectation value of the
sigma field. As pointed out above, due to the presence
of a finite bare quark mass mψ , the field can move away
from σ0 ¼ 0 due to the backreaction with the fluctuations
of the theory.
We specify the initial conditions for the two-point

functions in terms of the spectral and statistical compo-
nents. The initial conditions for the bosonic (fermionic)
spectral functions are fully determined by the equal-time
commutation and (anti)commutation relations (6). For
the remaining statistical functions, we employ free-field
expressions with a given initial particle number. The
bosonic statistical function then reads

Fiðt; t0; jpjÞ ¼
niðt; jpjÞ þ 1

2

ωiðt; jpjÞ
cos ½ωiðt; jpjÞðt − t0Þ�; ð11Þ

with i ¼ σ, π and where at initial time t ¼ t0 ¼ 0 the
dispersion is set to ωið0; jpjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj2 þm2
init

p
with initial

mass squared m2
init > 0 and the particle distribution given

by nið0; jpjÞ ¼ 0. For the fermions, the free statistical
function can be written as

Fψðt; t; jpjÞ ¼ −γipi þmψ

ωψðt; jpjÞ
�
1

2
− nψðt; jpjÞ

�
; ð12Þ

where we choose the initial dispersion to be ωψ ð0; jpjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

ψ

q
and the initial particle distribution to be

constant, i.e., nψ ð0; jpjÞ ¼ n0.
The energy contained in the initial state via εinit deter-

mines the temperature at which the system thermalizes.
By preparing different initial conditions, we can study the
thermalization process toward different temperatures and
hence phases of the model as sketched in Fig. 2.

C. Numerical implementation

As is customary in the context of the 2PI effective
action, we discretize the system on the level of the
equations of motion (9). The explicit form of the
equations allows us to deploy a leap-frog scheme, where
in particular the fermionic two-point functions are dis-
cretized in a temporally staggered fashion. The two-
point functions, as the name suggests, carry an explicit
dependence on two temporal coordinates. Since the

memory integrals contain the full time history, the
required memory grows quadratically with the number
of time steps. In order to keep the computation manage-
able, we reduce the memory burden by exploiting
isotropy and homogeneity, which reduces the effective
spatial dimensions to one. A modified Fourier transform
based on Hankel functions allows us to evaluate the self-
energy contributions in coordinate space and to simplify
the convolutions in the memory integrals in momentum
space. For this project, we extended the code used in
Ref. [2] to include the additional nonvanishing fermionic
two-point functions present in our setup (the source code
for this project is publicly accessible via the Zenodo
repository under [37]).
In the spirit of effective field theories, we choose a UV

cutoff at a high enough momentum scale. Below this scale,
we consider quantum and statistical fluctuation within the
2PI framework. The ultraviolet parameters of our effective
field theory are cutoff dependent and chosen such that
physical observables, i.e., mass ratios and the pion decay
constant, are reproduced.
The numerical time evolution is computed using a spatial

grid with Nx ¼ 200 lattice points and a lattice spacing of
ax ¼ 0.2. The time step size is chosen to be at ¼ 0.05ax
guaranteeing energy conservation at the level of a few
percent for the times analyzed. In the following, all
dimensionful quantities will be given in units of the
pseudocritical temperature Tpc, which has the value
Tpc ¼ 1.3a−1x determined according to the procedure
described in Sec. IV B; see Fig. 19. Subsequently, we
usem to denote the dimensionless ratiom=Tpc and likewise
for all other dimensionful quantities.
Interactions between the macroscopic field, the bosonic

and the fermionic propagators lead to an exchange of
energy between the different sectors. To observe an
efficient energy exchange and equilibration process at
computationally accessible times, it is necessary to study

FIG. 2. Sketch of the setup deployed in this study. We consider
the real-time evolution from nonequilibrium initial states char-
acterized by an energy density sourced either through a finite σ
field expectation value (blue circle) or a nonzero occupancy of
fermionic modes (orange triangle). Depending on the initial
energy contained in the system, one of three discernible final
states, the chiral broken phase, the crossover regime, or the
(almost) symmetric phase is approached.
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large couplings. We choose the quartic self-coupling
λ ¼ 90.0, the Yukawa coupling g ¼ 5.0, the bare mass
squared m2 ¼ −0.0047, and the bare fermion mass
mψ ¼ 0.15. These parameters not only allow us to observe
the equilibration of the system on time scales accessible
computationally but also lead to reasonable values for
the observables when compared to the phenomenological
values known at T ¼ 0, where the pion decay constant is
fπ ≃ 93.5 MeV, the meson masses are mσ ≃ 400 MeV,
and mπ ≃ 135 MeV, and the constituent quark mass is
mq ¼ 350 MeV [38].
The above choices are close to that used in equilibrium

computations of the quark-meson model with functional
methods and a physical ultraviolet cutoff ΛUV ≈ 1 GeV,
(see, e.g., [9,39]). In these computations, it can be shown
that the self-interaction is of subleading relevance for the
fluctuation dynamics, despite the large size of the classical
coupling λ. In the present 2PI framework, the quantum
interactions are obtained through an NLO resummation and
for large occupancies or large classical coupling they can be
shown to be small.
The functional equilibrium studies [9,39], as well as a

comparison of the quark-meson model to QCD (see,
e.g., [10]) reveal that a one-to-one correspondence of the
low-energy limits of both theories in quantitative approx-
imations to the full dynamics in the quark-meson model
either requires a far smaller UV cutoff for the latter or a
systematic improvement of the model toward QCD-assisted
low-energy effective theories [8,9]. In the present work, we
restrict ourselves to studying the qualitative properties of
the nonequilibrium dynamics as a first step.
When identifying the sigma field expectation as pion

decay constant, we can reproduce fπ < mπ < mq < mσ at
low temperatures. At the lowest temperatures considered in
this work, we find fπ=mπ ≃ 0.65, which is very close to the
phenomenologically known value of approximately 0.69,
the meson mass ratio mσ=mπ ≃ 1.75, smaller than the
vacuum value of around 2.9 but expected to increase when
going to lower temperatures, and mq=mπ ¼ 1.45, being on
the order of magnitude with zero-temperature value of 2.6.
Hence, we expect our findings to qualitatively reproduce
the QCD dynamics. Note, however, that the meson mass
ratio mσ=mπ < 2 leads to another order of the thresholds
for scattering processes, and hence respective difference in
the spectral functions.
For the bosonic sector, we use vacuum initial condi-

tions, i.e., nϕðt ¼ 0; jpjÞ ¼ 0. The initial mass is fixed at
m2

init ¼ 0.0047. The fermion initial distribution is chosen
to be constant nψ ðt ¼ 0; jpjÞ ¼ n0. We study simulations
with fluctuation dominated initial conditions where the
fermion number n0 is varied between 0 and 1 while the
initial field value is σ0 ¼ 0. Furthermore, the field domi-
nated initial conditions with a nonvanishing field value
of σðt ¼ 0Þ ¼ σ0 between 0 and 2.0 with vanishing
fermion number n0 ¼ 0 are investigated. Unless otherwise

specified, plots are shown for the case n0 ¼ 0 and σ0 ¼ 0.
For plots showing spectral and statistical functions in
frequency space, a cubic spline interpolation of the data
points is employed.

III. SPECTRAL FUNCTIONS

In this section, we explore the nonequilibrium evolution
of the quark-meson model from the point of view of its
quark and meson spectral functions. As these quantities are
derived from the two-point correlation functions, they
provide insight on the (quasi)particle content of the theory,
the dispersion relation of propagating modes and their
decay widths, providing insight into the modification of the
system due to the presence of a (non)equilibrium medium.
Our numerical simulations find clear indications for qua-
siparticles in both the IR and UV, revealing the presence of
additional light propagating fermion modes for temper-
atures above the pseudocritical temperature.
It is convenient to analyze the spectral functions in the

Wigner representation where the Fourier transformed
spectral function can be interpreted as the density of states
such that its structure provides information about the
quasiparticle states of the system. Therefore, the temporal
dependence of the unequal-time two-point correlation
functions on the two times t and t0 is rephrased in terms
of Wigner coordinates: the central time τ ¼ ðtþ t0Þ=2 and
the relative time Δt ¼ t − t0. The dynamics in Δt describes
microscopic properties of the system while the evolution in
τ describes macroscopic properties governed by nonequili-
brium characteristics of the system. In order to study the
frequency spectrum of the spectral functions, we then apply
a Wigner transformation to the propagators. This corre-
sponds to a finite range Fourier transformation of the
propagators with respect to the relative time Δt, which is
constrained by �2τ in initial value problems where
t; t0 ≥ 0. As a result, we obtain the frequency space spectral
function

ρðτ;ω; jpjÞ ¼
Z

2τ

−2τ
dΔteiωΔtρðτ;Δt; jpjÞ ð13Þ

with analogous expressions for all statistical functions.
For a real and antisymmetric spectral function (as in the
bosonic case and for the fermionic scalar, vector and
tensor components) as well as for an imaginary and
symmetric spectral function (as for the fermionic vec-
tor-zero component), the Wigner transform ρðτ;ω; jpjÞ is
imaginary. Due to symmetry, it is sufficient to present
the Wigner transformed spectral functions for positive
frequencies ω. Since the frequency space spectral func-
tions are imaginary in our definition, we always plot −iρ
in the subsequent sections, thereby omitting the −i in the
plot labels to ease notation.
The commutation and anticommutation relations (6) can

be rephrased in frequency space,
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Z
dω
2π

ωρϕðτ;ω; jpjÞ ¼ i;
Z

dω
2π

ρ0ðτ;ω; jpjÞ ¼ i; ð14Þ

where they are referred to as sum rules. In our numerical
computations, the bosonic and fermionic sum rules are
satisfied at the level of Oð10−2Þ and Oð10−6Þ, respectively.

A. Establishing thermal equilibrium at late times

Before embarking on a detailed study of the dynamical
approach to thermal equilibrium, we first ascertain that our
simulations of the quark-meson model exhibit thermal-
ization at late times. We do so by observing the dynamic
emergence of the fluctuation-dissipation theorem. One
needs to keep in mind that as discussed in [1], the idealized
thermal equilibrium state cannot be reached in principle
due to the time reversibility of the evolution equations.
The simulation approaches the state more and more closely
over time and at some point becomes indistinguishable
from it for a given resolution. Hence, we expect the
computation to approach a steady state.
The fluctuation-dissipation theorem is reflected in a

particular property of the spectral and statistical functions
in thermal equilibrium: they are not independent of each
other. In four-dimensional Fourier space, it reads

Fϕ
eqðω;pÞ ¼ −i

�
1

2
þ nBEðωÞ

�
ρϕeqðω;pÞ;

Fψ
eqðω;pÞ ¼ −i

�
1

2
− nFDðωÞ

�
ρψeqðω;pÞ; ð15Þ

with nBEðωÞ ¼ ðeβω − 1Þ−1 being the Bose-Einstein and
nFDðωÞ ¼ ðeβω þ 1Þ−1 the Fermi-Dirac distribution. In
(15), the frequency ω is the Fourier conjugate to the
relative time Δt ¼ t − t0 as the time dependence of Feq

and ρeq can be fully described in terms of Δt due to the
time-translation invariance of thermal equilibrium.
Out of equilibrium, the independence of F and ρ

manifests itself in the fact that the ratio F=ρ in general
carries a momentum dependence. The equilibrium relation
(15) on the other hand allows us to define the generalized
particle distribution function [35]

niðτ;ω; jpjÞ ¼ i
Fiðτ;ω; jpjÞ
ρiðτ;ω; jpjÞ

� 1

2
; ð16Þ

with a negative (positive) sign for bosonic (fermionic)
components and i ¼ σ; π; V. This kind of distribution
function has been studied in the context of nonthermal
fixed points in relativistic as well as nonrelativistic scalar
field theories [40]. Considering (16) the approach of thermal
equilibrium in a general nonequilibrium, time evolution
setup is characterized by niðτ;ω; jpjÞ → nBE=FDðωÞ.

In Fig. 3, we show the time evolution of the particle
distribution defined in (16) for low and high momenta (left
and right columns). One can see that at late times (red
curves) the same shape is approached for small and large
momenta, whereas at early times the distribution functions
differ from each other. This loss of momentum dependence
is required for the thermalization process and reflects
the emergence of the fluctuation-dissipation relation in the
equilibrium state. From the late-time distributions shown in
Fig. 3, one can already guess that thermal distribution
functions are reached.
We also observe that the evolution of the effective

particle number is different for fermions and bosons.
The bosonic distribution functions nσ and nπ show strong
oscillations along frequencies at low momenta whereas
oscillations at high momenta are weak. Since the particle
distributions are computed by taking the ratio of the
statistical and spectral functions, ni plotted against ω
essentially describes how similar the peaks shapes of F
and ρ are. In the high-momentum range, we find that the
quasiparticle peaks of the bosonic statistical and spectral
functions resemble one another from early times on, while
in the low-momentum range more time is required for the
peak shapes to become aligned. In contrast, the quarks
show an opposite behavior. Their distributions have much
stronger frequency oscillations for large momenta than for
small momenta, i.e., it takes longer for the high-momentum
modes to approach a thermal distribution.
Putting the pieces together, we can see that a redistrib-

ution of the occupancies in fermionic and bosonic degrees
of freedom occurs during the nonequilibrium time evolu-
tion. While the time scales to converge to thermal distri-
bution functions depend on the particle species and the
momentum modes, we find that the distribution functions
all become stationary for times τ ≳ 100, reflecting the time-
translation invariant property of thermal equilibrium.
Although Fig. 3 already indicates the approach of

thermal distribution functions, we still need to prove
whether our final state actually fulfils the fluctuation-
dissipation theorem. For a quantitative analysis, we com-
pute the generalized Boltzmann exponents,

Aiðτ;ω; jpjÞ ¼ ln½n−1i ðτ;ω; jpjÞ � 1�; ð17Þ

with positive (negative) sign for bosonic (fermionic)
components and i ¼ σ; π; V. In thermal equilibrium, the
fluctuation-dissipation theorem (15) requires these expo-
nents to suffice Aiðτ;ω; jpjÞ ¼ βω, implying in particular
that they become independent of momentum jpj and time τ,
where the latter is fulfilled by our late-time states.
A linear fit of our simulation data for the generalized

Boltzmann exponents to βω yields the thermalization
temperature Tp ¼ β−1p , which can in general be τ depen-
dent. An example for such a fit is presented on the left side
of Fig. 4. The plot shows that the Boltzmann exponent of all
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three components i ¼ σ, π, V nicely fits to the same line
with slope β. We compute the temperature averaged over all
momenta to obtain Ti for each component. The system
temperature denoted by T is taken to be the mean over all
three components.
For every simulation, we compute the temperatures at

each momentum jpj and study the momentum dependence
of the obtained temperature Tp. As pointed out in [28],
thermodynamic relations can become valid before real
thermal equilibrium is attained, a phenomenon known as
prethermalization. Thermal equilibrium is characterized by
Tp being equal to some equilibrium temperature for all
modes jpj. On the right side of Fig. 4, the deviations from
the mean thermalization temperature T are plotted. As can
be seen, the deviations are very small. Hence, the
Boltzmann exponents at late times τ become momentum
independent and the late-time states are thermal in the sense

that they fulfill the fluctuation-dissipation theorem. The
thermalization temperatures for all simulations in this work
have been determined at time τ ¼ 130. For the example
shown in Fig. 4, it was checked that the thermalization
temperatures found in the time range between τ ¼ 100 and
τ ¼ 160 are constant at the level of Oð10−3Þ. We have
checked for all simulations in this work that the temperature
has reached a stationary value at time τ ¼ 130.
Having clarified the successful approach to quantum

thermal equilibrium in our system, we are now able to study
the differences during the out-of-equilibrium evolution
leading to the thermal states in detail.

B. Nonequilibrium time evolution of the spectral
and statistical functions

In this section, we study the dynamics of the thermal-
ization process, starting from fluctuation or field dominated

FIG. 3. We show the time evolution of the effective particle number defined in (16) for bosonic and fermionic components (rows) and
two different momenta (left and right columns). At late times (red curve), the effective particle number becomes time and momentum
independent and approaches the shape of a Bose-Einstein and Fermi-Dirac distribution, respectively. The shown data are interpolated
using a cubic spline. Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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initial conditions. We investigate the time evolution of
the spectral and statistical functions and consider derived
quantities such as particle masses and widths. While the
initial conditions strongly influence the nonequilibrium
dynamics taking place, the final states are universal and
characterized by the initial energy density εinit that trans-
lates into a unique temperature.
The time evolution leads to the emergence of quasipar-

ticle peaks in the spectral functions of both quark and
mesons. The value of the particle mass and its decay width
are a consequence of the interactions taking place among
the microscopic degrees of freedom. While the initial states
correspond to free particles, which would have a spectrum
given by a δ distribution located at the mass parameters of
the classical action, the scattering effects included in the
nonequilibrium evolution lead to peaks with finite widths in
the spectrum.
In Fig. 5, we present a representative set of fermionic

spectral functions from the vector-zero channel, which
describes the quark excitation spectrum [34,41]. The three
columns correspond to three different field dominated
initial conditions of increasing initial energy density, as
sketched by the blue dots in Fig. 2. The top row shows the
Wigner space spectral function at the lowest available
momentum (IR), the bottom row at the highest momentum
(UV). We can identify several characteristic properties of
these spectral functions from a simple inspection by eye.
In the UV, a single quasiparticle structure is present at all

times and at all energy densities. With increasing energy
density in the initial state, corresponding to an increasing
final temperature, the position of the peak and its width
increase. This is consistent with the expectation that a
fermion in an energetic medium will be imbued with an in-
medium mass (to lowest order in perturbation theory it
would be proportional to the temperature). Higher energy
densities go hand in hand with an increased chance of
scattering between the fermion and the other medium

constituents, which also leads to a larger in-medium width.
In the UV, no qualitative difference exists between the
broken, crossover, or symmetric phase behavior.
On the other hand, in the IR, a clear distinction between

the crossover region and all other energy density regimes is
visible. While we also find a single quasiparticle structure
at low and high initial energy densities, in the crossover
region at early times no well-defined peaks are present at
all. Instead, as times passes, two structures emerge. One
dominant peak is located where one would expect the usual
quasiparticle excitation to reside, another peak sits close to
the frequency origin, denoting a significantly lighter addi-
tional propagating mode.
In general, we find that also for the other fermionic and

bosonic spectral functions the approach of the equilibrium
state depends on the initial conditions. In the presence of a
nonzero initial field value σ0, the spectral functions evolve
differently than in the case where σ0 ¼ 0 but the fermion
occupation is finite, i.e., when the initial state contains more
energy in terms of fermion occupations. As pointed out in
Fig. 5, the most interesting dynamical features can be seen
in the low-momentum area, which we therefore focus on
during the following analysis.

1. High-energy densities

Here, we study the quark-meson model at high enough
initial energy densities such that the late-time evolution
thermalizes in the high-temperature phase, where chiral
symmetry is restored. For our analysis, we compare two
simulations starting from different initial conditions char-
acterized by almost indistinguishable energy densities.
One is dominated by the field σ0 ¼ 1.36 and n0 ¼ 0, while
the other is dominated by fermion fluctuations σ0 ¼ 0 and
n0 ¼ 0.8. The final states feature similar thermalization
temperatures of T ¼ 3.15 and T ¼ 3.18, respectively.
However, since the initial states are very different from

FIG. 4. Left: the generalized Boltzmann exponents defined in (17) shown as a function of frequency ω at a given momentum jpj for
bosonic and fermionic components. For better visibility, only every 39th data point is shown. Using a linear fit, one can determine the
slope β and hence the temperature T for each component. The temperature T indicated in the plot is averaged over all momenta and the
three components. Right: the relative deviation from the thermalization temperature Δ ¼ ðTi − TÞ=T shown for all three components as
a function of momentum. The results for the bosonic and fermionic sectors agree very well. In both plots, dimensionful quantities are
given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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each other, the evolution toward thermal equilibrium takes
significantly different paths.
For such high initial energy densities, the differences in

the time evolution are most apparent in the bosonic sector.
This can be studied by looking at the bosonic spectral
and statistical functions. Numerical results are shown in
Fig. 6, where only the pion spectral and statistical
functions are presented since the behavior of the sigma
meson is analogous. The final states of both simulations
(red curve) are characterized by the same peak shapes
for both spectral and statistical functions. However, the
functions at intermediate times exhibit a completely
different behavior.
For field dominated initial conditions (left column in

Fig. 6), the peak position of the spectral function moves
toward smaller frequencies with time, which means that the
mass of the quasiparticle state decreases during the time
evolution. In addition, the nonzero initial field leads to large
amplitudes in the pion statistical function at early times
(lower left plot in Fig. 6) which corresponds to relatively
high occupancies in the bosonic sector compared to the
final thermal distribution. These occupancies have to
redistribute to other bosonic momentum modes jpj and
the fermionic sector to let the system equilibrate.
This behavior can be readily understood from the micro-

scopic evolution equations of the system. The finite-valued

initial field drives the fluctuations in the bosonic sector
because it contributes to the bosonic self-energy at initial
time t ¼ 0. Since the nonequilibrium time evolution takes
into account the full time history since t ¼ 0, these initial
fluctuations not only play a role at initial time but also at
intermediate times. Only at late times, the system loses
memory about the details of the initial state. Since the
macroscopic field only couples to the bosons directly but not
to the fermions, the energy provided by the initial field is first
turned into bosonic fluctuations before being transferred to
fermionic modes. As a consequence, the thermalization of an
initial state with nonzero initial field value shows rich
dynamics in the bosonic spectra.
In contrast, for fluctuation dominated initial conditions

(right column in Fig. 6), one observes a continuous increase
of the amplitudes of both spectral and statistical functions
until the maximum is reached in the thermal state. If the
initial energy density is provided via fermionic fluctuations,
the thermal final state is found to be realized already at
intermediate times.
The spectral functions can be used to deduce the

dispersion relation and lifetimes of the corresponding
quasiparticle species. Following [42], we assume for the
moment that the spectral function decays exponentially
and can be approximated as ρðt; t0; jpjÞ ¼ e−γpjt−t0jω−1

p

sin½ωpðt − t0Þ� with a dispersion ωp and a damping rate

FIG. 5. A representative selection of spectral functions from the fermion vector-zero channel in the infrared (top row) and the UV
(bottom row) in three different regimes labeled by the temperatures of their final state. Each panel contains four curves indicating
different snapshots along the thermalization trajectory. All three simulations employ field dominated initial conditions, i.e., σ0 > 0 and
n0 ¼ 0. Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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γp, which are both allowed to be τ dependent. The
corresponding Wigner transform is given by ρðτ;ω; jpjÞ ¼
ρBWðτ;ω; jpjÞ þ δρðτ;ω; jpjÞ where ρBW denotes the rela-
tivistic Breit-Wigner function

ρBWðτ;ω; jpjÞ ¼
2ωΓðτ; jpjÞ

½ω2 − ω2ðτ; jpjÞ�2 þ ω2Γ2ðτ; jpjÞ ; ð18Þ

which describes a peak with width Γðτ; jpjÞ ¼ 2γpðτÞ
at position ω ¼ ωðτ; jpjÞ. The term δρ ∼ expð−2τγpÞ
describes boundary effects due to the finite integration
range in (13). Since δρ decreases exponentially with τγp,
this term is negligible for sufficiently large damping ratios
and/or sufficiently late times [42]. Otherwise, the frequency
space spectral function suffers under severe noise coming
from boundary effects. For all times shown in this work, we
find that boundary effects are irrelevant.
We observe that peak shapes of the bosonic spectral

functions can be well approximated by the Breit-Wigner
function (18). At some given time τ, performing Breit-
Wigner fits of the spectral function at all momenta jpj
yields the dispersion relation ωðτ; jpjÞ and the momen-
tum-dependent width Γðτ; jpjÞ. For initial states with high-
energy densities, such as considered in this section,
the spectral and statistical functions exhibit quasiparticle
peak structures already at early times (see Fig. 6).
Consequently, it is possible to fit a Breit-Wigner function

to the spectral functions at any stage such that the time
evolution of the dispersion relation ωiðτ; jpjÞ and
momentum-dependent width Γiðτ; jpjÞ for i ¼ σ, π can
be mapped out.
In the left plot of Fig. 7, we show the dispersion

relation of the pion at different times τ encoded in the
color scheme. A fit of ωðτ; jpjÞ to the relativistic dispersion
relation Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
at various times τ yields the

quasiparticle masses mðτÞ, which are shown in the inset.
In the following, the stationary late-time value is denoted
as m. We note that the mass corresponds to the dispersion
relation in the limit of vanishing momentum, i.e.,
m ¼ ωðτ; jpj → 0Þ. The right plot of Fig. 7 displays the
momentum-dependent width of the pion extracted from the
Breit-Wigner fits. We find a plateau in the IR and a
maximum in the UV. In analogy to the dispersion, where
the quasiparticle mass describes the zero-momentum limit,
we can extract the asymptotic value of the width in the limit
of vanishing momentum, Γ ¼ Γðτ; jpj → 0Þ. Since Γ cor-
responds to the width of the spectral function that is peaked
at the quasiparticle mass, it can be viewed as the width of
the quasiparticle. As the right plot in Fig. 7 indicates, Γ is
increasing with time.
We can now work out the differences observed in Fig. 6

in a quantitative fashion. There is an apparent difference in
the approach of the late-time values of the mass mπ and the
width Γπ when comparing the time evolution starting from

FIG. 6. Time evolution of the pion spectral and statistical functions shown for two different initial conditions at the smallest available
momentum jpj ¼ 0.012. The left column shows a simulation deploying field dominated initial conditions with σ0 ¼ 1.36, the right
column fluctuation dominated initial conditions with n0 ¼ 0.8. Both simulations lead to thermal states at temperatures where chiral
symmetry is restored. Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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the two different initial conditions. The results are shown in
Fig. 8, where again only the pion data are shown because
the sigma meson behaves accordingly.
For field dominated initial conditions, the effective mass

of the pion meson decreases during the time evolution,
whereas for fluctuation dominated initial conditions it grows,
albeit only slightly. This is in accordance to the previous
observation of the shifting peak position for field dominated
initial conditions. It is important to note that the mass of the
quasiparticles is not contained in the initial state, since minit
is much smaller than the particle masses of the thermal state,
but generated dynamically during the time evolution. The
quasiparticle masses build up from the fluctuations con-
tained in the self-energies. Since the nonzero initial field
value leads to large bosonic self-energy contributions in the
beginning of the time evolution, at early times the masses are
larger than in the case of vanishing initial field.
The time dependence of the spectral width shown in the

right plot of Fig. 8 can be understood in terms of the sum

rule (14) according to which the bosonic spectral functions
are normalized. Due to the additional factor of ω in the
integrand, which arises from the time derivative on one of
the fields in the boson commutation relation, a larger mass
automatically implies smaller widths. Consequently, the
behavior of mass and width in the time evolution must be
converse to each other.
After discussing the dynamics of the meson spectral and

statistical functions at high initial energy densities, we now
turn to the quark sector. After decomposing the Dirac
structure of fermionic two-point functions and imposing
symmetries, we are dealing with four components for the
quark spectral and statistical functions, the scalar, vector-
zero, vector, and tensor components as introduced in (5). Of
these four components, the vector-zero component contains
information about which states can be occupied [34,41].
Since it is normalized to unity according to the sum rule
(14), the vector-zero component quark spectral function can
be interpreted as the density of states for the quarks.

FIG. 8. Time evolution of the pion mass and the pion width in the limit jpj → 0. Results are shown for field dominated initial
conditions with σ0 ¼ 1.36 and n0 ¼ 0 (blue dots) as well as fluctuation dominated initial conditions with σ0 ¼ 0 and n0 ¼ 0.8 (orange
triangles). Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).

FIG. 7. Time evolution of the dispersion relation and the momentum-dependent width of the pion. The inset shows the time evolution
of pion mass obtained from fits of the dispersion relation to Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

π

p
at various times τ, where Z ¼ 1.07 is obtained for all times

analyzed. The data are shown for field dominated initial conditions with σ0 ¼ 1.24 and n0 ¼ 0. Dimensionful quantities are given in
units of the pseudocritical temperature Tpc (cf. Fig. 19).
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We note that in a chiral symmetric theory with vanishing
fermion bare mass one finds ρS ¼ ρP ¼ ρμνT ¼ 0 since only
components in (4) that anticommute with γ5 are allowed.
Here, we consider a setup where chiral symmetry restora-
tion takes place. For initial conditions with high-energy
densities and the corresponding final states in the high-
temperature chiral symmetric regime, the quark dynamics
can be studied in terms of the vector-zero and vector
components.
As was shown in Fig. 5, for high-energy densities there is

not much dynamics taking place in the excitation spectrum
of the quarks. More insight can be gained by looking at the
vector component which is presented in Fig. 9 for the same
field or fluctuation dominated initial conditions as dis-
cussed before for the bosons. The interesting case is again
the evolution starting from field dominated initial con-
ditions. The corresponding vector spectral function (upper
left plot) shows that the peak position moves toward
smaller frequencies, just as in the bosonic case. It indicates
that the energy of both meson and quark quasiparticles
decreases during the time evolution. However, it is impor-
tant to note that—in contrast to the mesons—the amplitude
of the fermion statistical function increases during the time
evolution. As discussed before, the nonzero initial field
leads to strong fluctuations and hence occupancies in the
bosonic sector. It takes time for these fluctuations to be
transferred to the fermionic sector, which is why we
observe that the fermion occupation grows slowly during
the time evolution.

For the fluctuation dominated initial conditions, we
again observe that the spectral and statistical functions
approach their late-time behavior very quickly. We con-
clude that the available states and their occupation quickly
approach their thermal final state if energy is provided in
terms of particles rather than the field in the initial state.

2. Intermediate energy densities

From Fig. 5, we can see that the most interesting
dynamics is taking place for systems thermalizing in the
crossover region. Thus, we aim to study the evolution of the
vector-zero quark spectral function for two simulations
thermalizing in the cross-over region.
Again we compare two simulations employing field or

fluctuation dominated initial conditions, respectively, but
in this case we are able to probe initial conditions that lead
to the same late-time state. When comparing the late-time
field expectation value σ̄, the mass ratio mσ=mπ , and the
temperature T of the final state of these two simulations, we
find that the respective quantities differ by less than 0.5%.
Also, the shape of the spectral and statistical functions
in frequency space is the same for bosonic as well
as fermionic components. Quantitatively, we find that
jρ1 − ρ2j=maxðρ1Þ is smaller than Oð10−2Þ for all frequen-
cies ω and momenta jpj, where the indices 1 and 2 denote
the two simulations compared and maxðρÞ the maximal
amplitude of ρ. Larger deviations are observed for the
vector-zero component statistical function and for the

FIG. 9. Time evolution of the vector component quark spectral and statistical functions shown for the same initial conditions as in
Fig. 6 at momentum jpj ¼ 0.016. Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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tensor component spectral and statistical functions, where
the amplitudes are of order Oð10−7Þ such that numerical
inaccuracies come into play. In conclusion, we consider the
late-time state of the two simulations to be the same thermal
state, universal in the sense that the dependence on the
initial conditions is lost. It is characterized solely by a
temperature of T ¼ 1.04, a mass ratio of mσ=mπ ¼ 1.46,
and a field expectation value of σ̄ ¼ 0.33. As we will see
later, this corresponds to a state in the crossover region.
The regime of intermediate energy densities distin-

guishes itself from high- and low-energy density initial
conditions by showing a double-peak structure in the quark
spectral functions. Our findings in a nonperturbative real-
time setting corroborate previous observations of such
double peak structures with perturbative computations or
spectral reconstructions reported, e.g., in [34,43–49].
First, consider the vector-zero component describing the

excitation spectrum of the quarks. In Fig. 10, we show the
time evolution of both spectral and statistical functions. As
before, for fluctuation dominated initial conditions (right
column) the system quickly approaches the shape of the
late-time two-point functions. However, in the case of field
dominated initial conditions, the double-peak structure of
the spectral function only emerges at later times. At early
times, the spectral function reveals a single broad structure.
We further point out that the statistical function F0

decays to zero during the time evolution, implying that the

fermion occupation is not contained in the vector-zero
component but in other components. This agrees well with
the effective quasiparticle number that has been employed
previously [3,41],

nψðt; jpjÞ¼
1

2
−
jpjFVðt;t; jpjÞþMψ ðtÞFSðt;t; jpjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jpj2þM2
ψ ðtÞ

q ; ð19Þ

with effective mass MψðtÞ ¼ mψ þ hσðtÞ. This definition
of an effective particle number only provides a good
description of the quark content in the system if the
occupations in the vector-zero and tensor component are
negligible. In our computations, we find that F0 and FT are
of the order Oð10−7Þ and hence irrelevant for the quark
particle number.
In order to study the particle content, we take into

account the vector component which is shown in Fig. 11.
We can see that the double-peak structure observed in the
vector-zero component is also visible in the vector com-
ponent, in particular in both spectral and statistical func-
tions. From this, we learn that the additional light degrees
of freedom, provided in the low-frequency peak of the
quark spectral density, is actually occupied in terms of
the vector component quark statistical function. Hence, for
states thermalizing in the crossover temperature regime,

FIG. 10. Time evolution of the vector-zero component quark spectral and statistical functions shown for two different initial conditions
at momentum jpj ¼ 0.012. The left column shows field dominated initial conditions with σ0 ¼ 0.98, the right column fluctuation
dominated initial conditions with n0 ¼ 0.11. Both lead to the same late-time state with T ¼ 1.04. Dimensionful quantities are given in
units of the pseudocritical temperature Tpc (cf. Fig. 19).
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there is an additional light mode with finite occupation in
the quark sector available to participate in the dynamics.
We further observe that for fixed momentum jpj the

energy of the light mode increases with rising temperature.
At sufficiently high temperatures, this additional mode
reaches energies comparable with the main quasiparticle
mode such that the two peaks merge into the single peak
persistent in the high-temperature regime.
We conclude this section with a comment on the

dynamics found for initial states with low-energy densities.
In contrast to the cases of intermediate and high-energy
densities, we find well-defined quasiparticle peaks for both
quarks and mesons. The smaller energy density leads to
lower thermalization temperatures and a stronger chiral
symmetry breaking, reflected by a mass difference between
the σ and π mesons. After discussing the nonequilibrium
time evolution of the spectral functions, we now turn to the
equilibrium properties.

C. Late-time thermal limit

In this section, we discuss the spectral functions of
quarks and mesons in the state of quantum thermal
equilibrium according to the definition introduced in
Sec. III A. The properties of spectral functions at dif-
ferent temperatures reflect the crossover transition of the
quark-meson model from the chiral broken to a chiral

symmetric phase. We find that the shapes of the final states
are universal in the sense that they only depend on the
temperature and not on the details of the initial state.

1. Mesons

Information about the different phases of the model can
be obtained from the temperature dependence of the late-
time thermal spectral functions of the mesons. We find that
the shape of the bosonic spectral functions is described by
a Breit-Wigner function for all considered temperatures.
Thereby, the width and the position of the Breit-Wigner
peak only depend on the temperature but not on the initial
conditions chosen.
As discussed in Sec. III B 1, the momentum-dependent

width and the dispersion relation are obtained by applying
Breit-Wigner fits to the spectral functions. Although the
Breit-Wigner function (18) has two parameters, the width
Γðτ; jpjÞ and the peak position given by ωðτ; jpjÞ, there is
only one free parameter since the normalization condition
given by the sum rule (14) must be satisfied.
In the right plot of Fig. 7, we already saw that there is a

characteristic momentum mode jpj at which the momen-
tum-dependent width becomes maximal. This corresponds
to the momentum at which the decay is strongest and can
be considered as the main decay mode, in the following
denoted by Q. In the left plot of Fig. 12, we show the main

FIG. 11. Time evolution of the vector component quark spectral and statistical functions shown for two different initial conditions at
momentum jpj ¼ 0.012. The left column shows field dominated initial conditions with σ0 ¼ 0.98, the right column fluctuation
dominated initial conditions with n0 ¼ 0.11. Both lead to the same late-time state with T ¼ 1.04. Dimensionful quantities are given in
units of the pseudocritical temperature Tpc
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decay mode Q as a function of temperature for both meson
species. At low temperatures, the strongest decays are
found in the IR, whereas at high temperatures the strongest
decays occur in the UV. There is an abrupt change at some
critical temperature, above which Q > 0 meaning that the
momentum-dependent width has a maximum at a nonzero
momentum, as shown by the upper line in the inset.
Comparing the momentum-dependent width at low T
and high T, we can see that the transition from the chiral
broken to the chiral symmetric phase is characterized by
new decay modes in the UV. Thereby, the main decay mode
is suddenly shifted from the IR to the UV.
Another prominent signature for the crossover transition

is provided by the quasiparticle masses of the σ and π
mesons. The two meson species are distinguishable in the
chiral broken phase, where they have different masses,
while they become identical in the chiral symmetric phase.
When plotting the meson masses as a function of temper-
ature, as shown in the right plot of Fig. 12, we can nicely
visualize the restoration of chiral symmetry, manifest in the
quasiparticle masses of σ and π becoming identical (pink
and cyan data points). We observe a softening of the masses
at intermediate temperatures, i.e., the quasiparticle masses
are minimal in the temperature region where the crossover
phase transition occurs. Decreasing masses indicate grow-
ing correlation lengths. In the limit of a second order phase
transition, which is characterized by diverging correlation
lengths, the masses would vanish at the transition point.
In the high-temperature range, masses grow with rising
temperatures. This reflects that the quasiparticle masses
can be considered as thermal masses in the sense that they

contain self-energy contributions and are generated by
quantum fluctuations, which increase with temperature.
We further note that one could also study the temperature

dependence of the width Γ ¼ Γðτ; jpj → 0Þ instead of
m ¼ ωðτ; jpj → 0Þ. However, the information is equivalent
due to the normalization of the spectral functions, as
pointed out above. Consequently, the behavior of Γ is
converse to the behavior of m and not presented here
explicitly. The width Γ is small at low temperatures,
strongly grows toward intermediate temperatures where
it reaches a maximum value in the crossover temperature
regime, and then decays slowly when going to higher
temperatures.

2. Quarks

Let us now consider the thermal spectral functions for the
quark sector. Several aspects of the different components
invite for discussion. Let us begin with a recap of the
findings shown in the vector-zero component of the quark
spectral function. As presented in Fig. 5, the spectral
density has different shapes at low, intermediate, and high
temperatures. In particular, the intermediate temperature
range of the crossover transition is characterized by a
double-peak structure. The temperature dependence of
the fermionic quasiparticle masses is depicted in Fig. 12.
The mass of the low-frequency mode (plasmino branch,
denoted by p) grows continuously with rising T until it
merges with the main peak (denoted by q), forming thewide
quasiparticle peak found for initial states with large energy
densities. For related studies with perturbative computations
or spectral reconstructions, see, e.g., [34,43–49]. Note also

FIG. 12. Left: temperature dependence of the characteristic decay momentum Q shown for the σ and π mesons. The inset shows
examples for the momentum-dependent width at high and low temperatures. Q corresponds to the momentum at which the width
Γðτ; jpjÞ is maximal. Right: temperature dependence of quasiparticle masses. Restoration of chiral symmetry is reflected in identical
masses of the σ and π mesons at high temperatures. The quark q quasiparticle mass is obtained from the dominant peak of the vector-
zero component quark spectral function. We also plot the “plasmino” branch p obtained from the quark spectral function. In both plots,
gray lines show cubic spline interpolations of the data points. Dimensionful quantities are given in units of the pseudocritical
temperature Tpc (cf. Fig. 19).
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that this double-peak structure is only visible in the small
momentum regime. It can be studied by considering the
dispersion relation obtained from the vector-zero quark
spectral function.
For temperatures below some critical temperature in the

crossover regime, the vector-zero spectral function reveals
the shape of a nonrelativistic Breit-Wigner function, also
known as the Lorentz function,

ρLðτ;ω; jpjÞ ¼
AΓðτ; jpjÞ

½ω − ωðτ; jpjÞ�2 þ Γ2ðτ; jpjÞ ; ð20Þ

where A is a normalization constant, Γðτ; jpjÞ the width, and
ωðτ; jpjÞ the dispersion. When temperature is increased, the
vector-zero quark spectral function ceases to be described in
terms of (20) as the low-frequency mode arises and grows in
amplitude. Due to appearance of the additional peak, it is
not possible to perform a Lorentz fit at all temperatures.
As a consequence, we choose to compute the dispersion
relation of the quarks by determining the peak position of
the main peak of ρ0. The obtained dispersion relation is
shown for three temperatures in Fig. 13.
For low temperatures, where no additional peak is

present, the quark dispersion is well described by a
relativistic dispersion relation; see left plot of Fig. 13.
When going to intermediate temperatures, the additional
light mode leads to a double-peak structure. As long as
the two peaks are distinguishable, one can determine the
dispersion relation of the main peak, which yields the same
shape as in the low-temperature regime. However, when the
main peak and the side peak merge into a single peak, the
dispersion relation obtained from the overlap of the two
peaks has a dispersion relation of the form shown by the
middle plot of Fig. 13. There is a clearly visible dip in
the dispersion, showing that for small momenta the peak
position is determined by the light mode, while for large

momenta the peak position is determined by the main peak.
We can fit the low-momentum and high-momentum
areas separately to a relativistic dispersion relation, as
shown by the dashed and dotted lines in Fig. 13. When
considering higher temperatures, the position of the dip
moves toward larger frequencies and is not visible by
eye anymore. However, we find that the dispersion
relation cannot be described by the relativistic dispersion
relation Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
over the whole momentum range

but still distinguishes between high-momentum and low-
momentum regimes. We conclude that the single peak of ρ0
at large temperatures is still the result of an overlap of a
small low-frequency peak with the main peak. More insight
is gained by considering the momentum dependence of
the corresponding spectral functions, which is shown in
Fig. 14. The spectral function ρ0ðτ;ω; jpjÞ is shown at some
late time τ where the system has approached thermal
equilibrium. The peak position of the spectral functions
corresponds to the dispersion relations shown in Fig. 13.
At low temperatures, we find a single narrow quasiparticle
peak. For higher temperatures, however, an additional light
mode interferes with the main peak. At intermediate
temperatures, where a softening of the mass occurs, the
light mode and the main peak have comparable frequencies
in the infrared. The superposition of the main peak and the
light mode leads to a broad peak at small momenta,
whereas the peak remains narrow at high momenta. As
temperature increases, the light mode is only visible at
higher momenta. An example is shown by the right plot in
Fig. 14, where one can see a small enhancement of the
spectral function at low frequencies for intermediate
momenta. This observation indicates that the quark spectral
function harbors additional degrees of freedom at high
temperatures, as compared to the low-temperature regime.
From the dispersion relation of the vector-zero quark

spectral function, we determine the constituent quark mass

FIG. 13. The dispersion relation of the vector-zero quark spectral function shown for three different temperatures. At low temperature,

a fit to the relativistic dispersion relation Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

q

q
is shown by the black dashed line. For higher temperatures, the behavior at small

and large momenta differs as the additional low-frequency peak and the main peak merge into one peak. We perform separate fits at low
and high momenta, shown by the dashed and dotted black lines. Dimensionful quantities are given in units of the pseudocritical
temperature Tpc (cf. Fig, 19).
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by taking the asymptotic value at vanishing momentum,
i.e., mq ¼ ω0ðτ; jpj → 0Þ. The constituent quark mass
behaves analogously to the bosonic masses, i.e., a softening
of the mass in the crossover temperature range occurs; see
violet data points in the right plot of Fig. 12. At low
temperatures, the constituent quark mass lies between the σ
and π masses, which is in qualitative agreement with the
particle masses known at T ¼ 0. For temperature below
T ≃ 2, we find that the pion is the lightest particle in the
theory. This supports chiral perturbation theory as an
effective theory for QCD where only pion degrees of
freedom are considered. On the contrary, at high temper-
atures, the constituent quark mass is smaller than the meson
mass. As light modes are easier to excite, they dominate the

dynamics in a system. Hence, our observation matches our
idea that the chiral symmetric phase is dominated by quark
degrees of freedom whereas the chiral broken phase is
described by hadronic degrees of freedom, in particular
by pions.
Finally, we shortly discuss the scalar component of the

quark spectral function. In a chiral symmetric theory with
vanishing fermion bare mass, the scalar component of the
quark spectral function vanishes, i.e., ρS ¼ 0. Although
chiral symmetry is broken explicitly here, we expect the
system to restore chiral symmetry at high temperatures,
implying that the limit of a vanishing scalar component
quark spectral function is approached. In Fig. 15, we
present the numerical results for a range of temperatures.

FIG. 14. The vector-zero quark spectral function as a function of frequencyω shown for a range of spatial momenta jpj. The three plots
correspond to the same three temperatures as in Fig. 13. The purple line indicates peak position of the spectral function in the jpj − ω
plane and is therefore equivalent to the dispersion relation shown in Fig. 13. The spectral function reveals a narrow quasiparticle peak at
low temperatures. As the temperature is increased, the light mode interferes with the low-momentum spectral function, leading to a
broad peak at small momenta. At high momenta, the quasiparticle peak remains narrow. Dimensionful quantities are given in units of the
pseudocritical temperature Tpc (cf. Fig. 19).

FIG. 15. The thermalized scalar component of the quark spectral function as a function of frequency shown for different temperatures.
Dimensionful quantities are given in units of the pseudocritical temperature Tpc (cf. Fig. 19).
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The clear quasiparticle peak existing at low temperatures
widens and flattens with rising temperature. The amplitude
of the scalar component finally decays to zero, visualizing
the predicted restoration of chiral symmetry in the course
of the crossover transition. We further note that the peak
position of the scalar component spectral function quali-
tatively shows the same behavior as the vector-zero
component. The peak moves toward small frequencies at
intermediate temperatures, corresponding to the softening
of a mass, and is shifted toward higher frequencies at low
and high temperatures.

IV. THE MACROSCOPIC FIELD

In this section, we study the time evolution of the
expectation value of the macroscopic field hσðtÞi, for
the set of different initial conditions deployed also in the
previous section. In addition, we study the model for
different fermion bare masses in order to analyze the
effects of spontaneous symmetry breaking in the model.

A. Nonequilibrium time evolution of the field

The classical potential of the sigma field is given by

VðσÞ ¼ 1

2
m2σ2 þ λ

4!N
σ4; ð21Þ

where the parameter choice of m2 < 0 allows for sponta-
neous symmetry breaking. Thus, the potential has the
shape of a double well with minima located at σ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3!Nm2=λ

p
. For the parameters employed in this work,

the minimum is located at σ ≈ 0.04. The time evolution of a
classical field in this potential is described by the classical
equation of motion

�
∂2
t þm2 þ λ

6N
σ2ðtÞ

�
σðtÞ ¼ 0; ð22Þ

where spatial homogeneity and isotropy are assumed. If the
initial field value, or the initial field derivative, is nonzero,
the field rolls down a potential hill and oscillates until it
equilibrates at the minimum of the potential. Here, we go
beyond the classical theory and compute the nonequili-
brium time evolution including additional quantum fluc-
tuations. As discussed above, we employ an approximation
that includes quantum corrections at NLO in 1=N and g.
The quantum corrections lead to an effective potential
and additional terms in the field equation (22). The full
evolution equation at the given approximation can be found
in the Appendix.
Depending on the initial conditions, the time evolution

of the field shows different properties. Let us first consider
field dominated initial conditions, where the initial field is
set to a finite value σ0. The time evolution for the
expectation value of the field hσðtÞi is shown for different
σ0 in the left plot of Fig. 16. One can see that the field
oscillates and eventually reaches a stationary value. In
contrast to the classical theory, where the field always
reaches the same equilibrium value given by the position
of the potential minimum, the field reaches different late-
time values. The reason is that the field itself generates
quantum fluctuations as it rolls down a potential hill.
These dynamically emerging fluctuations again influence
the effective potential in which the nonequilibrium time
evolution takes place. As the initial field value effects the
amount of quantum fluctuations in the system and hence
the shape of effective potential, different values of σ0
lead to different late-time values for hσðtÞi. Before we
come to a more detailed discussion of the plots in Fig. 16,

FIG. 16. Left: the time evolution of the field shown for field dominated initial conditions with different initial field values as indicated
in the legend. Right: the time evolution of the field shown for field dominated initial conditions with σ0 ¼ 1.98 (blue) and fluctuation
dominated initial conditions with n0 ¼ 0.11 (orange). The same late-time field value σ̄ ¼ 0.33 is approached for both initial states. The
gray line in both plots serves as a guide to the eye for hσðtÞi ¼ 0. Dimensionful quantities are given in units of the pseudocritical
temperature Tpc (cf. Fig. 19).
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we provide some intuition for the influence of fluctuations
on the effective potential.
Quantum fluctuations can be represented as loop cor-

rections of the effective action. The effective potential is
obtained when evaluating this effective action at a constant
field. For a nonvanishing fermion bare mass, i.e., mψ ≠ 0,
the chiral symmetry breaking tilts the effective potential
toward negative values. Thereby, larger mψ cause stronger
tilts. On the other hand, bosonic fluctuations provide
positive contributions, pushing the potential toward a
symmetric shape. Together, this leads to a tilted Mexican
hat potential with a minimum at some finite field expect-
ation value. The position of the minimum of the effective
action can easily be much larger than the position of the
minimum of the classical potential.
The influence of these quantum corrections to the

effective potential can be visualized by looking at the
energy density of the system, which we compute from
the energy-momentum tensor. We distinguish classical,
bosonic, and fermionic contributions to the energy density,
with the relevant expressions presented in the Appendix.
Quantum fluctuations are taken into account for the
fermionic and bosonic parts of the energy density.
Hence, the energy density reflects the amount of fluctua-
tions in the system.
In order to study the influence of the initial field, we

consider the energy density computed at initial time εinit.
In Fig. 17, we show the contributions from the field, the
bosons and the fermions separately. The blue and pink lines
show how the field and the bosonic energy densities exhibit
a positive curvature. In contrast, the fermionic contribution
shown in violet leads to a tilt toward negative curvature,
which is a consequence of the explicit chiral symmetry
breaking. Summing the three parts together, one obtains the
total energy density that has a minimum at a nonzero field
value, as represented by the gray curve.
It is important to note that the energy density εinit

computed at time t ¼ 0 does not include the quantum
fluctuations that are generated dynamically by the field. As
the field generates further fluctuations, the effective poten-
tial is pushed toward a more symmetric form with its
minimum moving toward smaller field expectation values.
In order to see this, we also look at the energy density
computed at late times, where the system is thermalized.
The result is shown by the black line in Fig. 17. It can be
seen that the energy density indeed becomes steeper and the
minimum moves towards smaller field values. Thus, the
energy density provides a useful quantity in order to study
the impact of quantum fluctuations on the effective poten-
tial, although we emphasize that the energy density and the
effective potential are two different quantities.
Having this qualitative picture of the effective quantum

potential in mind, we can understand the behavior of the
three curves shown in the left plot of Fig. 16. If the initial
field sits close to the minimum of the effective potential, it

barely oscillates and hence almost no additional fluctua-
tions are created dynamically. Accordingly, the shape of
the potential does not change with the time evolution such
that the position of the minimum stays the same. This is
shown by the black line. In contrast, the field can be placed
on a point away from the potential minimum. As it starts
moving toward the potential minimum, the field dynami-
cally generates fluctuations. These fluctuations change the
shape of the potential, thereby altering the position of the
minimum. The further away the field is from the potential
minimum in the beginning, the more fluctuations are
generated and the stronger the potential deforms. As we
increase the distance of the initial field from the potential
minimum at time t ¼ 0, the minimum of the potential at
late times moves toward zero. Examples of this behavior
are depicted by the green and red curves in the left plot
Fig. 16.
As discussed in the previous section, energy cannot only

be provided in terms of a nonzero initial field value (and
the fluctuations this field generates), but also in terms of
occupancies. Hence, the same late-time field value can be
approached for different initial conditions. In the right plot
of Fig. 16, the time evolution of hσðtÞi is shown for the two
simulations discussed in Sec. III B 2. The blue line displays
the time evolution of the field starting from field dominated

FIG. 17. The energy density at initial time εinit ¼ εðt ¼ 0Þ and
at late times εth ¼ ε̄ as a function of the initial field value. We
present the classical, bosonic, and fermionic contributions to the
initial energy density separately. Together, they form a bounded
shape with minimum at a nonzero initial field value (gray curve).
At late times, the energy density reaches the constant shape
shown by εtherm in black. The minimum of the energy density at
late times corresponds to the maximal field values found. The
initial field is given in units of the pseudocritical temperature Tpc
(cf. Fig. 19).
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initial conditions, while the orange line shows the time
evolution starting from fluctuation dominated initial con-
ditions. For both initial conditions the quantum potential
has the same minimum, characterized by a late-time sta-
tionary field value of σ̄ ¼ 0.33.
Although we commonly say that initial conditions with

the same energy density lead to the same thermal state, there
is a caveat. Two initial states thermalizing at the same late-
time state usually do not have the same energy density at
time t ¼ 0 because the energy density computed at initial
time does not include dynamically generated fluctuations.
What one means is that different initial conditions provide
the same amount of fluctuations to the system. The way they
are provided depends on the initial state and partly they are
generated dynamically. However, for the quantum thermal
equilibrium state that is approached at late times only the
amount of fluctuations introduced to the system is relevant.

B. Thermal equilibrium

1. Field expectation value

After discussing the time evolution of the field expect-
ation value, we now turn to its late-time properties. We
denote the stationary value of the field at late times by σ̄. As
discussed in III A, at these times the fluctuation-dissipation
theorem is satisfied and the system state is considered to
be thermal. Thus, we consider σ̄ to be the thermal field
expectation value.
The late-time field values σ̄ are determined by the

average of field values over a time range ½t�; t� þ Δt� with
t� being a time at which the field is sufficiently stationary.
For the results shown in this work, we use t� ¼ 130
and Δt ¼ 130, such that the standard deviation of the
mean is Oð10−4Þ to Oð10−11Þ depending on the initial
conditions used.
First, let us look at the time evolution of the macroscopic

field for different initial field values σ0. Naively, one might

expect that larger field values automatically imply
increasing energy densities in the initial state, hence a
higher thermalization temperature and smaller field value.
However, as the discussion above already pointed out, this
is not the case. In the left plot of Fig. 18, we show how the
late-time field value σ̄ depends on the initial field σ0. With
increasing σ0, the thermal field σ̄ first grows and then
decays to zero. The maximal value for σ̄ is expected, when
the least amount of fluctuations is generated dynamically,
as these fluctuations would push the minimum of the
potential and thus σ̄ toward zero. We indeed find the largest
late-time field values for σ0 ≈ σ̄, which in indicated by the
gray dashed line in the plot.
Second, we consider fluctuation dominated initial con-

ditions where the field value is set to σ0 ¼ 0 while the
initial fermion occupation is taken to be constant, i.e.,
nψðt ¼ 0; jpjÞ ¼ n0, and varied between zero and one. In
the right plot of Fig. 18, we can see that increasing the
fermion occupation number n0 goes along with smaller
thermal field values σ̄. Thus, for larger n0, higher temper-
atures are reached, emphasizing again that larger fermion
occupation numbers lead to a rise of the fluctuations that
make the effective potential more symmetric.

2. Crossover phase transition

Our results regarding the thermal state of the system can
be summarized in an analysis of the crossover transition
between the chiral broken and the chiral symmetric phase
of the quark-meson model. When a system becomes
thermal, the thermodynamic concept of a phase diagram
can be applied. The conjectured phase diagram of the
quark-meson model contains important features of the
QCD phase diagram. It exhibits a chiral symmetric phase
with vanishing field expectation value at high temperature
T, as well as a chiral broken phase with nonzero field
corresponds at low T.

FIG. 18. The value of the thermalized one-point function for different initial conditions. On the right, the thermal field value σ̄ is shown
for initial conditions with different field values σ0. The gray dashed line indicates σ̄ ¼ σ0. On the left, the thermal field value is shown for
different initial fermion occupation numbers n0. In both plots, the black star indicates the value obtained for initial conditions with
n0 ¼ 0 and σ0 ¼ 0. In both plots, gray lines show cubic spline interpolations of the data points. Dimensionful quantities are given in
units of the pseudocritical temperature Tpc (cf. Fig. 19).
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In order to study the phase transition and the transition
temperature, we employ two different order parameters,
one deduced from the one-point function and one from the
two-point functions. The first one is the field expectation
value of the thermalized field σ̄. It is nonzero in the chirally
broken phase and zero in the chirally symmetric phase.
Often, this field value is identified as the pion decay
constant fπ . The second one is the mass ratio mσ=mπ ,
where mσ and mπ are the masses of the σ meson and the
pion, respectively. The masses are determined from the
bosonic spectral functions as discussed in Sec. III C 1. In
the chiral limit, the mass ratio is expected to go to unity.
Starting from the different initial states analyzed, we find

that the system thermalizes at different temperatures.
Thereby, the dependence of an order parameter on the
temperature provides insight into the nature of the phase
transition. In Fig. 19, we show our numerical results for the
temperature dependence of the two order parameters, σ̄ in
the upper and mσ=mπ in the lower plot. Every point in the
diagram corresponds to a simulation with a different initial
state. As indicated in the legend, we are considering initial
states of various fermion occupations, described by n0, and

initial field values, described by σ0. It is reassuring to see
that the order parameters obtained from field or fluctuation
dominated initial conditions align themselves on a single
curve, which is characteristic for a smooth crossover
transition. This is yet another way of seeing that the
thermal states are independent of the details of the initial
conditions.
As chiral symmetry is restored with rising temperature,

the field value decays to zero while the mass ratio goes
down to one. The field expectation value σ̄ is often
considered as a first approximation for the pion decay
constant fπ. As can be seen, in the limit T → 0, some value
σ̄ ≃Oð1Þ is approached. At the lowest temperature con-
sidered, we find σ̄=mπ ≃ 0.65, matching the phenomeno-
logical value fπ=mπ ≃ 0.69 [38]. Further, we can see from
the lower plot in Fig. 19 that the mass ratio is only
mσ=mπ ≃ 1.8 at the lowest temperatures available, which
is smaller than the expectation from the known values of
the masses. However, the mass ratio is expected to further
increase with decreasing temperature.
We perform a cubic spline fit to the data points and

identify the inflection point of the field σ̄ as the pseudoc-
ritical temperature of the crossover Tpc. We indicate the
inflection point of both the field and the mass ratio in the
plots of Fig. 19. It can be seen that the temperatures
deduced from the two different order parameters are
comparable with each other. We find that the pseudocritical
temperature is of the order of the pion mass. This is in
agreement with the expectation of the QCD phase transition
being at around 150 MeV for vanishing baryon density.

C. Spontaneous symmetry breaking

We have seen that the explicit chiral symmetry breaking
in the system leads to nonzero field expectation values.
Here, we analyze the limit of vanishing explicit symmetry
breaking, i.e., mψ → 0, with spontaneous symmetry break-
ing still present.
If the fermion bare mass vanishes, i.e., mψ ¼ 0, the

action of the quark-meson model (1) is invariant under
chiral SULð2Þ × SURð2Þ ∼Oð4Þ transformations and
therefore symmetric under chiral symmetry. Still, a nonzero
field expectation value can break this symmetry sponta-
neously. For nonzero fermion bare masses, chiral symmetry
is explicitly broken and the minimum of the potential is
located at some nonzero field value. If the field expectation
value stays nonzero for mψ → 0, we expect to observe
spontaneous symmetry breaking.
We compare simulations with different fermion bare

masses mψ while all other parameters of the theory are
kept fixed. The system is studied for initial conditions with
σ0 ¼ 0.62 and vanishing fermion and boson occupations,
i.e., n0 ¼ 0. In the left plot of Fig. 20, we show the time
evolution of the field expectation value hσðtÞi, for three
examples with different fermion bare masses. As before,

FIG. 19. Order parameters of the quark-meson model as a
function of temperature. In the upper plot, the order parameter is
given by the macroscopic field σ̄ which is the thermalized value
of the one-point function. In the lower plot, the order parameter is
given by the ratio of the σ-meson and pion masses. The masses
are derived from the two-point functions of the corresponding
bosonic fields. The gray lines show cubic spline fits to the data
points. The inflection points are indicated by the black vertical
lines. Dimensionful quantities are given in units of the pseudoc-
ritical temperature Tpc defined as the inflection point T inflection of
the order parameter σ̄ shown in the upper plot.
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the field oscillates before it equilibrates to the thermal late-
time value σ̄.
Since the fermion bare mass mψ governs the strength of

the chiral symmetry breaking and thus the deformation of
the potential, increasing fermion bare masses yields larger
values for σ̄. At the same time, mψ determines the fermion
backreaction on the field, i.e., how strong the field is
pushed away from its current value. The field only reaches
a stationary value, if the backreaction from the fermions
on the field and the bosonic interactions with the field
balance out.
Here, fermion bare masses with values from Oð10−4Þ

ranging to Oð1Þ are considered. We find that the field
approaches the asymptotic value σ̄ ¼ 0.48 for mψ → 0,
which is shown in the right plot of Fig. 20. This analysis
shows that our numerical simulations of the quark-meson
model reproduce the expected spontaneous symmetry
breaking in the limit of vanishing fermion bare mass.

V. SUMMARY AND CONCLUSION

Motivated by current experimental studies of the QCD
phase diagram in heavy-ion collisions, we investigated the
dynamical approach of the quark-meson model to thermal
equilibrium using a range of different initial conditions
dominated by either the sigma field or fermionic fluctua-
tions. The time evolution of one- and two-point functions
was computed numerically using closed equations of
motion derived from the 2PI effective action at NLO in
1=N and the Yukawa coupling.
We show that our simulations correctly capture the

approach to thermal equilibrium, which depends only on
the energy density of the initial condition. The crossover
phase transition from the chiral broken phase at low
temperatures to the chiral symmetric phase at high

temperatures is reproduced by the late-time equilibrium
states. Thermalization in the chiral broken phase is char-
acterized by a finite field expectation value, a mass differ-
ence between the sigma meson and the pions as well as
narrow quasiparticle peaks in the spectrum. The restoration
of chiral symmetry in the high-temperature regime
expresses itself in the field expectation value decreasing
to zero, the mass ratio of σ and π mesons going to unity,
and the scalar component of the quark spectral functions
decaying to zero.
Our investigation focused in detail on the dynamical

thermalization revealing differences in the time evolution
depending on the initial state employed. We not only
studied the time evolution of the field expectation value
but also probed the dynamical properties of the two-point
functions, expressed in terms of the spectral and statistical
functions, which carry information about the available
quasiparticle states and their occupation in the system,
respectively. For initial states with vanishing initial field but
energy supplied by fermion occupation, the spectral and
statistical functions of both quarks and mesons approach
their late-time thermal shapes already at early times. In
contrast, if the energy density is predominantly provided by
the nonzero initial field value, the redistribution of energy
from the field first to the bosonic sector and subsequently
to the fermionic sector leads to high occupancies of the
mesons at intermediate stages. This is also reflected by
the different behavior found in the time evolution of the
quasiparticle masses depending on the initial conditions.
The deployed nonequilibrium setup of the quark-meson

model captures important features of the low-energy
behavior of QCD. By studying the temperature dependence
of the quasiparticle masses, we find that the lightest degrees
of freedom are given by the pions at temperatures below
and by quarks above the phase transition. This implies that

FIG. 20. Left: the time evolution of the field with initial value σ0 ¼ 0.62 shown for three different bare fermion masses mψ . The field
reaches the stationary value σ̄ at late times. Right: the asymptotic field value σ̄ shown for different bare fermion masses mψ . The green,
red, and black data points correspond to the simulations shown in the left plot. The field value decreases with the fermion bare mass and
approaches an asymptotic value for mψ → 0. Dimensionful quantities are given in units of the pseudocritical temperature Tpc
(cf. Fig. 19).
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quarks are the relevant degrees of freedom at high temper-
atures while pions dominate below the critical temperature.
Furthermore, we learn from the width that at high temper-
atures the more energetic high-momentum decay modes are
more pronounced than for low temperatures.
The nonvanishing expectation value of the sigma field

describes the order parameter of the chiral phase transition.
Its dynamics depends on the initial state. If the initial field
value is close to the minimum of the effective potential, the
field remains almost constant. Otherwise, the field rolls
down a potential hill and starts oscillating, thereby dynami-
cally generating fluctuations.
Having shown that the dynamics of the thermalization

process reveal interesting features before approaching the
final thermal state, we lay the foundation for future
investigations of the quark-meson model with nonzero
baryon chemical potential. In particular, the possibility of
probing the dynamical thermalization of systems surpass-
ing the critical point of the chiral phase transition is of
outermost interest.
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APPENDIX: 2PI EQUATIONS

In this Appendix, we review the equations of motion
for the macroscopic field as well as for the bosonic and
fermionic propagators obtained from the 2PI effective
action given in (8). For a derivation of the exact evolution
equations of the bosonic and fermionic equations of
motion, we refer to [36,50] and [1], respectively.
Quantum corrections are included in the evolution

equations via the self-energy terms. In the bosonic sector,
we take into account all leading and subleading quantum
corrections in an expansion of the 2PI effective action in
1=N, where N ¼ 4 is the number of bosonic field compo-
nents. The corresponding 2PI diagrams are depicted in the
first two rows of Fig. 1. The self-energy expressions for the
bosonic quantum corrections have been derived in [36].
Additionally, we include the NLO in the Yukawa coupling
g corresponding to the contribution coming from a fermion-
boson loop; see the third row in Fig. 1. The self-energy
terms for the chirally symmetric case of mψ ¼ 0 have been

derived in [1,2]. For nonvanishing fermion bare massmψ , a
computation of the self-energy contributions can be found
in [41]. For completeness, we provide a summary of all
relevant equations for the time evolution.

1. Exact evolution equations

We first outline the exact evolution equations—for the
macroscopic field, the bosonic as well as the fermionic
two-point functions—without any approximations but
including the assumption of symmetries. These equations
are derived from first principles and capture the whole
quantum evolution. As they are too complicated to be
solved analytically without approximations, we employ a
truncation of the 2PI effective action which yields the self-
energies presented subsequently.
We note that the bosonic and fermionic evolution

equations are causal, meaning that they only depend on
times prior to the evaluation. The history of the time
evolution is contained in memory integrals [35].
The equation of motion for the macroscopic field is

determined by the stationary conditions of the effective
action. Since the expectation values of the pion fields are
zero, the only relevant equation is the one for ϕ1ðtÞ≡ σðtÞ.
Making use of the decomposition into spectral and stat-
istical functions, the field equation in absence of external
source terms can be written as

�
∂2
t þm2 þ λ

6N
σ2ðtÞ

þ λ

6N

�
3

Z
p
Fσðt; t;pÞ þ ðN − 1Þ

Z
p
Fπðt; t;pÞ

��
σðtÞ

¼ 4g
Z
p
FSðt; t;pÞ þ

δΓ2½G;Δ;ϕ�
δσðtÞ : ðA1Þ

In this expression, the tadpole terms with Fσ and Fπ

originate from one-loop corrections and are therefore
independent of any truncation in the 2PI effective action.
The FS term corresponds to a source term representing the
backreaction of the fermions on the field. The functional
Γ2½G;Δ;ϕ� contains all contributions from 2PI vacuum
diagrams. Hence, the Γ2 term describes all nonlocal
contributions to the interactions of the spectral and stat-
istical functions with the field ϕ.
For both quarks and mesons, it is advantageous to rewrite

the relevant equations of motion in terms of the statistical
and spectral components. The time-ordered two-point
functions G and Δ are related to the statistical and spectral
functions according to

Gabðx; yÞ ¼ Fϕ
abðx; yÞ −

i
2
ρϕabðx; yÞsgnCðx0 − y0Þ;

ΔABðx; yÞ ¼ Fψ
ABðx; yÞ −

i
2
ρψABðx; yÞsgnCðx0 − y0Þ; ðA2Þ
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where the sign function is taken along the closed time path. Equivalently, the self-energies can be decomposed into
statistical and spectral components,

Σiðx; yÞ ¼ Ciðx; yÞ −
i
2
Aiðx; yÞsgnCðx0 − y0Þ − iΣlocal

i ðxÞδðx − yÞ; ðA3Þ

where i ¼ σ, π in the bosonic and i ¼ S; 0; V; T in the fermionic case. The local contribution Σlocal only appears in the
bosonic sector for the considered model. In this notation,C and A describe the symmetric and antisymmetric components of
the self-energy terms. Since the numerical calculations are performed in spatial momentum space, we choose to present the
formulas in terms of Fourier modes and refer to [41] for details on the calculation. The complete set of evolution equations
for the bosonic sector is given by

½∂2
t þ p2 þM2

i ðtÞ�Fiðt; t0; jpjÞ ¼ −
Z

t

t0

dt00Aiðt; t00; jpjÞFiðt00; t0; jpjÞ þ
Z

t0

t0

dt00Ciðt; t00; jpjÞρiðt00; t0; jpjÞ;

½∂2
t þ p2 þM2

i ðtÞ�ρiðt; t0; jpjÞ ¼ −
Z

t0

t
dt00Aiðt; t00; jpjÞρiðt00; t0; jpjÞ; ðA4Þ

where i ¼ σ, π and the time-dependent masses read

M2
σðtÞ ¼ m2 þ λ

2N
σ2ðtÞ þ Σlocal

σ ðtÞ;

M2
πðtÞ ¼ m2 þ λ

6N
σ2ðtÞ þ Σlocal

π ðtÞ; ðA5Þ

which are also referred to as gap equations. The coupling between σ and π components of the bosonic two-point functions
solely occurs via the self-energies.
For the fermions, we take into account the four components introduced in the main text: scalar, vector-zero, vector, and

tensor. The evolution equations for the fermionic statistical propagators are

i∂tFSðt; t0; jpjÞ ¼ −ijpjFTðt; t0; jpjÞ þMψðtÞF0ðt; t0; jpjÞ þ
Z

t

t0

dt00½ASðt; t00; jpjÞF0ðt00; t0; jpjÞ þ A0ðt; t00; jpjÞFSðt00; t0; jpjÞ

þ iAVðt; t00; jpjÞFTðt00; t0; jpjÞ − iATðt; t00; jpjÞFVðt00; t0; jpjÞ�

þ
Z

t0

t0

dt00½−CSðt; t00; jpjÞρ0ðt00; t0; jpjÞ − C0ðt; t00; jpjÞρSðt00; t0; jpjÞ

− iCVðt; t00; jpjÞρTðt00; t0; jpjÞ þ iCTðt; t00; jpjÞρVðt00; t0; jpjÞ�; ðA6aÞ

i∂tF0ðt; t0; jpjÞ ¼ jpjFVðt; t0; jpjÞ þMψðtÞFSðt; t0; jpjÞ þ
Z

t

t0

dt00½ASðt; t00; jpjÞFSðt00; t0; jpjÞ − ATðt; t00; jpjÞFTðt00; t0; jpjÞ

þ A0ðt; t00; jpjÞF0ðt00; t0; jpjÞ − AVðt; t00; jpjÞFVðt00; t0; jpjÞ�

þ
Z

t0

t0

dt00½−CSðt; t00; jpjÞρSðt00; t0; jpjÞ þ CTðt; t00; jpjÞρTðt00; t0; jpjÞ

− C0ðt; t00; jpjÞρ0ðt00; t0; jpjÞ þ CVðt; t00; jpjÞρVðt00; t0; jpjÞ�; ðA6bÞ

∂tFVðt; t0; jpjÞ ¼ −ijpjF0ðt; t0; jpjÞ þMψðtÞFTðt; t0; jpjÞ

þ
Z

t

t0

dt00½−iA0ðt; t00; jpjÞFVðt00; t0; jpjÞ þ iAVðt; t00; jpjÞF0ðt00; t0; jpjÞ

þ ASðt; t00; jpjÞFTðt00; t0; jpjÞ þ ATðt; t00; jpjÞFSðt00; t0; jpjÞ�

þ
Z

t0

t0

dt00½þiC0ðt; t00; jpjÞρVðt00; t0; jpjÞ − iCVðt; t00; jpjÞρ0ðt00; t0; jpjÞ

− CSðt; t00; jpjÞρTðt00; t0; jpjÞ − CTðt; t00; jpjÞρSðt00; t0; jpjÞ�; ðA6cÞ
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∂tFTðt; t0; jpjÞ ¼ jpjFSðt; t0; jpjÞ −Mψ ðtÞFVðt; t0; jpjÞ þ
Z

t

t0

dt00½−ASðt; t00; jpjÞFVðt00; t0; jpjÞ − AVðt; t00; jpjÞFSðt00; t0; jpjÞ

− iA0ðt; t00; jpjÞFTðt00; t0; jpjÞ þ iATðt; t00; jpjÞF0ðt00; t0; jpjÞ�

þ
Z

t0

t0

dt00½þCSðt; t00; jpjÞρVðt00; t0; jpjÞ þ CVðt; t00; jpjÞρSðt00; t0; jpjÞ

þ iC0ðt; t00; jpjÞρTðt00; t0; jpjÞ − iCTðt; t00; jpjÞρ0ðt00; t0; jpjÞ� ðA6dÞ

and for the fermionic spectral functions

i∂tρSðt; t0; jpjÞ ¼ −ijpjρTðt; t0; jpjÞ þMψðtÞρ0ðt; t0; jpjÞ þ
Z

t

t0
dt00½ASðt; t00; jpjÞρ0ðt00; t0; jpjÞ þ A0ðt; t00; jpjÞρSðt00; t0; jpjÞ

þ iAVðt; t00; jpjÞρTðt00; t0; jpjÞ − iATðt; t00; jpjÞρVðt00; t0; jpjÞ�; ðA7aÞ

i∂tρ0ðt; t0; jpjÞ ¼ jpjρVðt; t0; jpjÞ þMψ ðtÞρSðt; t0; jpjÞ þ
Z

t

t0
dt00½ASðt; t00; jpjÞρSðt00; t0; jpjÞ − ATðt; t00; jpjÞρTðt00; t0; jpjÞ

þ A0ðt; t00; jpjÞρ0ðt00; t0; jpjÞ − AVðt; t00; jpjÞρVðt00; t0; jpjÞ�; ðA7bÞ

∂tρVðt; t0; jpjÞ ¼ −ijpjρ0ðt; t0; jpjÞ þMψðtÞρTðt; t0; jpjÞ þ
Z

t

t0
dt00½−iA0ðt; t00; jpjÞρVðt00; t0; jpjÞ þ iAVðt; t00; jpjÞρ0ðt00; t0; jpjÞ

þ ASðt; t00; jpjÞρTðt00; t0; jpjÞ þ ATðt; t00; jpjÞρSðt00; t0; jpjÞ�; ðA7cÞ

∂tρTðt; t0; jpjÞ ¼ jpjρSðt; t0; jpjÞ −MψðtÞρVðt; t0; jpjÞ þ
Z

t

t0
dt00½−ASðt; t00; jpjÞρVðt00; t0; jpjÞ − AVðt; t00; jpjÞρSðt00; t0; jpjÞ

− iA0ðt; t00; jpjÞρTðt00; t0; jpjÞ þ iATðt; t00; jpjÞρ0ðt00; t0; jpjÞ�; ðA7dÞ

where the effective fermion mass is given by

MψðxÞ ¼ mψ þ hσðxÞ: ðA8Þ

We note that the factors of i are necessary because the vector-zero component is imaginary while all other components
are real.

2. Approximation scheme

At NLO in the large N expansion, the nonlocal interaction terms in the field equation (A1) are given by

δΓ2½ϕ; G;Δ�
δσðtÞ ¼ λ

3N

Z
t

t0

dt0
Z
p
½Iρðt; t0; jpjÞFσðt; t0; jpjÞ þ IFðt; t0; jpjÞρσðt; t0; jpjÞ�σðt0Þ; ðA9Þ

where IF and Iρ are the spectral and statistical components of the summation functions presented below in (A12).
In our approximation, the local parts of the bosonic self-energies are

Σlocal
σ ðt;FÞ ¼ λ

6N

Z
q
½3Fσðt; t; jqjÞ þ ðN − 1ÞFπðt; t; jqjÞ�; Σlocal

π ðt;FÞ ¼ λ

6N

Z
q
½Fσðt; t; jqjÞ þ ðN þ 1ÞFπðt; t; jqjÞ�:

ðA10Þ

Since the nonlocal self-energy contributions form convolutions in momentum space, it is easier to evaluate them in
coordinate space where they can be calculated as direct products. The relevant expressions for the boson self-energies in
coordinate space are
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Cϕ
abðx; yÞ ¼ −

λ

3N

�
IFðx; yÞ½ϕaðtÞϕbðt0Þ þ Fabðx; yÞ� −

1

4
Iρðx; yÞρabðx; yÞ þ PFðx; yÞFabðx; yÞ −

1

4
Pρðx; yÞρabðx; yÞ

�

− 4h2Nfδab

�
Fμ
Vðx; yÞFV;μðx; yÞ − FSðx; yÞFSðx; yÞ − F0i

T ðx; yÞF0i
T ðx; yÞ

−
1

4
½ρμVðx; yÞρV;μðx; yÞ − ρSðx; yÞρSðx; yÞ − ρ0iT ðx; yÞρ0iT ðx; yÞ�

�
; ðA11aÞ

Aϕ
abðx; yÞ ¼ −

λ

3N
fIρðx; yÞ½ϕaðtÞϕbðt0Þ þ Fabðx; yÞ� þ IFðx; yÞρabðx; yÞ þ Pρðx; yÞFabðx; yÞ þ PFðx; yÞρabðx; yÞg

− 8h2NfδabfρμVðx; yÞFV;μðx; yÞ − ρSðx; yÞFSðx; yÞ − ρ0iT ðx; yÞF0i
T ðx; yÞg; ðA11bÞ

where spatial isotropy and homogeneity are implied. The statistical and spectral components of the summation
functions are

IFðt; t0; jpjÞ ¼
λ

6N

�
ΠFðt; t0; jpjÞ −

Z
t

0

dt00Iρðt; t00; jpjÞΠFðt00; t0; jpjÞ þ 2

Z
t0

0

dt00IFðt; t00; jpjÞΠρðt00; t0; jpjÞ
�
;

Iρðt; t0; jpjÞ ¼
λ

3N

�
Πρðt; t0; jpjÞ −

Z
t

t0
dt00Iρðt; t00; jpjÞΠρðt00; t0; jpjÞ

�
; ðA12Þ

with the one-loop terms

ΠFðt; t0; jpjÞ ¼
Z
q

�
Fϕ
abðt; t0; jp − qjÞFϕ

abðt; t0; jqjÞ −
1

4
ρϕabðt; t0; jp − qjÞρϕabðt; t0; jqjÞ

�
;

Πρðt; t0; jpjÞ ¼
Z
q
Fϕ
abðt; t0; jp − qjÞρϕabðt; t0; jqjÞ: ðA13Þ

The functions PF and Pρ describe the interactions of the quantum fluctuations with the macroscopic field. We define

HFðt; t0; jpjÞ ¼ −σðtÞFϕ
σ ðt; t0; jpjÞσðt0Þ;

Hρðt; t0; jpjÞ ¼ −σðtÞρϕσ ðt; t0; jpjÞσðt0Þ ðA14Þ

in order to write down the expressions for PF and Pρ in momentum space as

PFðt; t0; jpjÞ ¼ −
λ

3N

�
HFðt; t0; jpjÞ −

Z
t

t0

dt00½Hρðt; t00; jpjÞIFðt00; t0; jpjÞ þ Iρðt; t00; jpjÞðHFðt00; t0; jpjÞ þ JFðt00; t00; jpjÞÞ�

þ
Z

t0

t0

dt00½HFðt; t00; jpjÞIρðt00; t0; jpjÞ þ IFðt; t00; jpjÞðHρðt00; t0; jpjÞ þ Jρðt00; t0; jpjÞÞ�
�
; ðA15aÞ

Pρðt; t0; jpjÞ ¼ −
λ

3N

�
Hρðt; t0; jpjÞ −

Z
t

t0
dt00½Hρðt; t00; jpjÞIρðt00; t0; jpjÞ þ Iρðt; t00; jpjÞðHρðt00; t0; jpjÞ þ Jρðt00; t00; jpjÞÞ�

�
;

ðA15bÞ

with the nested integrals

JFðt00; t0; jpjÞ ¼
Z

t0

t0

dsHFðt00; s; jpjÞIρðs; t0; jpjÞ −
Z

t00

t0

dsHρðt00; s; jpjÞIFðs; t0; jpjÞ;

Jρðt00; t0; jpjÞ ¼
Z

t0

t00
dsHρðt00; s; jpjÞIρðs; t0; jpjÞ: ðA16Þ
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These are the equations needed for the boson sector. Now, we consider their fermionic counterpart. The statistical and
spectral parts of the fermionic self-energy can be further decomposed into the relevant Lorentz components. With that,
the statistical part of the fermion self-energy can then be expressed by the terms

CSðx; yÞ ¼ −h2
�
FSðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ� −

1

4
ρSðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ�

�
;

Cμ
Vðx; yÞ ¼ −h2

�
Fμ
Vðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ� −

1

4
ρμVðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ�

�
;

C0i
T ðx; yÞ ¼ −h2

�
F0i
T ðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ� −

1

4
ρ0iT ðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ�

�
; ðA17Þ

while the spectral part is given by

ASðx; yÞ ¼ −h2fFSðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ� þ ρSðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ�g;
Aμ
Vðx; yÞ ¼ −h2fFμ

Vðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ� þ ρμVðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ�g;
A0i
T ðx; yÞ ¼ −h2fF0i

T ðx; yÞ½ρσðx; yÞ þ ðN − 1Þρπðx; yÞ� þ ρ0iT ðx; yÞ½Fσðx; yÞ þ ðN − 1ÞFπðx; yÞ�g; ðA18Þ

where again spatial isotropy and homogeneity are implied meaning that the space-time dependence is ðt; t0; jx − yjÞ.
With that, we have specified all the necessary terms entering the evolution equations presented in the previous section.

3. Energy-momentum tensor

Since the dynamics deduced from an effective action respect energy conservation of the system, we use energy
conservation as an important indicator for the stability of our numerical simulations. We obtain the energy density from the
energy-momentum tensor, which is defined as the variation of the effective action with respect to the metric gμνðxÞ,

TμνðxÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp δΓ½ϕ; G;Δ; gμν�

δgμν

				
gμν¼ημν

; ðA19Þ

with −gðxÞ≡ det gμνðxÞ. While doing so, the metric is assumed to be a general space-time-dependent metric with x being
the space-time coordinate. The result is evaluated at gμν equal to the Minkowski metric ημν ¼ diagðþ1;−1;−1;−1Þ. The
energy-momentum tensor for the employed approximation scheme has been computed in [41]. Here, we provide the
expressions for the energy density given by T00, which for a spatially homogeneous system only depends on time. Since all
propagators are computed in Fourier space, we present the relevant equations in spatial momentum space, corresponding to
formulas for the mode energies. These can be integrated over all momenta to obtain the energy density.
The classical part is given by

εclðtÞ ¼
�
1

2
_ϕ2ðtÞ þ 1

2
m2ϕ2ðtÞ þ λ

4!N
ϕ4ðtÞ

�
: ðA20Þ

The bosonic mode energy can be written as

εϕðt; jpjÞ ¼ 1

2
½∂t∂t0Faaðt; t0; jpjÞjt¼t0 þ p2Faaðt; t; jpjÞ þM2

cl;abðtÞFbaðt; t; jpjÞ�

þ λ

4!N
Faaðt; t; jpjÞ

Z
q
Faaðt; t; jqjÞ þ

1

2

�
IFðt; t; jpjÞ þ PFðt; t; jpjÞ þ

λ

3N
HFðt; t; jpjÞ

�
; ðA21Þ

while the fermionic mode energy reads

εψ ðt; jpjÞ ¼ −16½jpjFVðt; t; jpjÞ þMψðxÞFSðt; t; jpjÞ þ Rðt; jpjÞ�; ðA22Þ

where
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Rðx0;pÞ ¼
Z

x0

0

dy0½þASðx0; y0; jpjÞFSðy0; x0; jpjÞ − ATðx0; y0; jpjÞFTðy0; x0; jpjÞ

þ A0ðx0; y0; jpjÞF0
Vðy0; x0; jpjÞ − AVðx0; y0; jpjÞFVðy0; x0; jpjÞ�

þ
Z

x0

0

dy0½−CSðx0; y0; jpjÞρSðy0; x0; jpjÞ þ CTðx0; y0; jpjÞρTðy0; x0; jpjÞ

− C0ðx0; y0; jpjÞρ0Vðy0; x0; jpjÞ þ CVðx0; y0; jpjÞρVðy0; x0; jpjÞ�; ðA23Þ

using Nf ¼ 2. With these expressions, the total energy density becomes

EðtÞ
V

≡ T00ðtÞ ¼ εclðtÞ þ
Z
p
½εϕðt; jpjÞ þ εψ ðt; jpjÞ�: ðA24Þ

which is evaluated at each time step.
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