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Despite recent developments, there are a number of conceptual issues on the hadronic light-by-light
(HLbL) contribution to the muon (g − 2) which remain unresolved. One of the most controversial ones is
the precise way in which short-distance constraints get saturated by resonance exchange, particularly in the
so-called Melnikov-Vainshtein limit. In this paper we address this and related issues from a novel
perspective, employing a warped five-dimensional model as a tool to generate a consistent realization of
QCD in the large-Nc limit. This approach differs from previous ones in that we can work at the level of an
effective action, which guarantees that unitarity is preserved and the chiral anomaly is consistently
implemented at the hadronic level. We use the model to evaluate the inclusive contribution of Goldstone
modes and axial-vector mesons to the HLbL. We find that both anomaly matching and the Melnikov-
Vainshtein constraint cannot be fulfilled with a finite number of resonances (including the pion) and instead
require an infinite number of axial-vector states. Our numbers for the HLbL point at a non-negligible role of
axial-vector mesons, which is closely linked to a correct implementation of QCD short-distance constraints.
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I. INTRODUCTION

The anomalous magnetic moment of the muon is one
of the most precise tests of the Standard Model dyna-
mics. Besides the dominant electromagnetic contribution,
one is also testing the weak and strong interactions.
The present experimental value is given by aexpμ ¼
116592091ð54Þð33Þ × 10−11 [1], where statistical errors
are the largest source of uncertainty. The upcoming experi-
ments at FNAL [2] and J-PARC [3] are expected to
reduced the experimental error by a factor four down to
1.6 × 10−10, much smaller than the current theoretical
uncertainty.
If the E821 experimental number is confirmed, the

discrepancy between the experimental value and the
theoretical prediction, currently at about 3.5σ, would rise
up to a 7σ effect with the projected new precision. It is

therefore essential to have good control over the theoretical
estimate.
The theoretical prediction for aμ is overwhelmingly

dominated by electromagnetic [4] and, to a much lesser
extent, weak [5,6] effects (see also the reviews [7,8]).
Hadronic effects have a very modest contribution but are
extremely difficult to evaluate. The present theoretical
number, aSMμ ¼ 116591823ð1Þð34Þð26Þ × 10−11 [1], is
dominated by the hadronic uncertainties (second and third
error sources). The largest hadronic contribution comes
from the hadronic vacuum polarization, which can be rather
cleanly connected to existing data on eþe− scattering
[9–11]. In contrast, the (subleading) hadronic light-by-light
contribution is more remote from experiment.
The physics involved in the hadronic light-by-light

(HLbL) contribution is sensitive to nonperturbative had-
ronic dynamics and cannot be calculated from first prin-
ciples, except in some particular kinematical limits. One is
therefore bound to use nonperturbative techniques. General
arguments, based on chiral symmetry and the large-Nc
limit, can be used to assess the relevance of the different
contributions [12]. There is general consensus that the
neutral pion exchange provides the largest effect, and there
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is overall agreement on the contribution of the neutral
Goldstone bosons. However, the status of the remaining
contributions is not as satisfactory, in particular, that of
axial-vector mesons. Depending on the method used, their
estimated contribution can differ by 1 order of magnitude,
from being negligible to accounting for roughly 15% of the
value of the HLbL. The latter value is comparable with the
projected experimental precision at FNAL and J-PARC, so
a better understanding of the axial-vector contribution is
definitely needed.
Progress on the light-by-light front is nowadays pursued

along three main avenues: hadronic models, dispersion
relation approaches, and lattice simulations.
Hadronic models provide, by far, the largest pool of

HLbL determinations. In some cases the models are rather
broad in scope [13–16], while in some other cases [17–19]
the focus is on specific contributions. The main strategy
behind these approaches is to come up with hadronic form
factors able to successfully interpolate between low ener-
gies, where experimental data is available, and high ener-
gies, where the operator product expansion (OPE) ofQCD is
valid. The different models can then be understood as
different ways to build interpolating functions between
these limiting cases. In principle, the more constraints that
a model satisfies, the more reliable their predictions should
be. This has motivated a lot of work to increase the number
of known short-distance constraints and test their impact on
aμ [19–21].
Dispersion relation techniques have been applied more

recently (see, e.g., [22–25]). Their main focus is to bring
the HLbL determination as close as possible to the available
experimental data, thus affording much better control of the
uncertainties with respect to hadronic models. Progress is
underway but there are still a number of open issues. In
particular, how dispersive techniques should implement the
short-distance constraints from perturbative QCD is only
starting to be studied (see, e.g., [26–29]).
In turn, lattice simulations are rapidly becoming com-

petitive [30–33] and should eventually give us the most
precise determination of the muon HLbL.
However, the effort to bring the HLbL under better

theoretical control also requires the resolution of a number
of conceptual issues that are still open. The core of the
problem is tounderstandhowshort distances are saturatedby
thedifferenthadronicstates. In theHLbL,understandinghow
theseduality relationswork turns out to be ahighlynontrivial
task. A notorious example is the short-distance constraint
discussedin[19],whichwasclaimedtoincreasesubstantially
the value for the HLbL contribution through a combined
increase of the Goldstone and axial-vector contributions.
Attempts to incorporate the constraint into form factor
models have led to a number of proposals, e.g., [7,19].
However, without a better understanding of how this con-
straint happens to be fulfilled, the state of affairs with the
HLbL cannot be considered satisfactory.

In order to address the previous point, it is clear that one
has to go beyond form factor parametrizations and be able
to compute in terms of hadronic states at the level of
correlators. This can be done if one borrows techniques
from QFT in extra dimensions. It is well-known that,
starting from a five-dimensional theory, the compactifica-
tion to four dimensions gives rise to an infinite number of
modes, which can be interpreted as mesons [34–37]. These
constructions can also be tailored to break chiral symmetry
spontaneously, such that in the infrared limit one recovers
chiral perturbation theory. If, additionally, the five-
dimensional theory lives in an anti de–Sitter (AdS) gravi-
tational background, the breaking of the associated con-
formal symmetry mimics the almost conformal behavior of
QCD at large momenta. As a result, these theories
approximate remarkably well both the long- and short-
distance behavior of QCD correlators. Finally, if the five-
dimensional model is endowed with a Chern-Simons term,
one obtains a four-dimensional theory with the chiral
anomaly consistently implemented at all energy scales
(see, e.g., [38,39]). Following the AdS=CFT prescription
[40–42], there is a well-defined procedure to compactify
the fifth dimension and express the resulting four-
dimensional effective action in terms of external sources,
out of which correlators can be computed with functional
differentiation. The five-dimensional model is therefore
used here simply as a technical device to end up with a
consistent four-dimensional theory of hadrons.
Similar five-dimensional settings have been used to

evaluate the Goldstone [43–45] and axial-vector contribu-
tions [46] to the HLbL. In this paper we employ the
simplest model implementing all of the features mentioned
above to evaluate the joint Goldstone and axial-vector
contributions to the HLbL correlator. As opposed to other
approaches, our determination considers all the states
coupled to axial currents in an inclusive way and unitarity
is thus automatically built in. Considering Goldstone and
axial-vector states simultaneously is also a requisite to
fulfill anomaly matching, as we will show below.
Our analysis clarifies a number of points. First, it shows

that the Melnikov-Vainshtein (MV) condition can only be
fulfilled by a collective effect of the axial-vector resonances
and not by a finite number of form factors. Similar results
were found in [46] and we thus confirm their conclusions.
This explains, in particular, why attempts to fulfill the
condition with single-particle form factors were problem-
atic, no matter their degree of sophistication. Second, this
collective axial-vector effect is intimately connected with
having anomaly matching at all energies. With a finite
number of axial-vector mesons, anomaly matching simply
fails. This shows that axial-vector mesons have a more
prominent role than previously assumed.
Our number for the joint pseudoscalar and axial-vector

contribution to the HLbL is aμ ¼ 125ð15Þ × 10−11, largely
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compatible with the numbers of other hadronic models that
incorporate the MV constraint. However, we argue that part
of the axial-vector contribution was previously misidenti-
fied as coming from pseudoscalars. As a result, we find that
the relative weight of the axial-vector contribution onto the
HLbL is larger than previously claimed.
The structure of this paper is as follows. In Sec. II we

introduce our toy model and bring it to the form of a four-
dimensional effective action. We highlight how the pion
and the (infinite towers of) vector and axial-vector reso-
nances arise. In Sec. III we derive the expression for the
HLbL electromagnetic tensor as predicted by the model in a
closed form. The HLbL tensor is then naturally split in two
pieces, which collect the longitudinal and transverse polar-
izations of the resonances exchanged. The structure of the
longitudinal piece is explored in detail in Sec. IV, and in
Sec. V we show its relation with the triangle anomaly by
analyzing the VVA correlator. The MV short-distance
constraint is discussed in Sec. VI. We show explicitly
how the model fulfills it and make the connection with
anomaly matching. In Sec. VII we give our numbers for the
Goldstone and axial-vector contributions to the muon
anomalous magnetic moment and compare them with
previous estimates. Concluding remarks are given in
Sec. VIII, while technical aspects are collected in three
Appendixes.

II. THE MODEL

In order to have a consistent realization of hadronic
physics in the large-Nc limit for vectors, axial-vectors,
and Goldstone bosons, we will adopt an extension of the
five-dimensional model introduced in [36], which is a
particular application of the AdS=CFT correspondence [40]
to hadronic physics. The spirit of using this model is to
have a minimal setup able to capture the relevant features
of QCD for the HLbL, namely, conformality at very high
energies, chiral symmetry breaking at low energies, and
the chiral anomaly. The model can also be extended to
incorporate scalars and (non-Goldstone) pseudoscalars, but
this further step will not be considered in the present paper.
The model is a five-dimensional Uð3ÞL ×Uð3ÞR Yang-

Mills–Chern-Simons theory,

S ¼ −λ
Z

d5x
ffiffiffi
g

p
tr ½FMN

ðLÞ FðLÞMN þ FMN
ðRÞ FðRÞMN �

þ c
Z

d5x tr ½ω5ðLÞ − ω5ðRÞ�; ð1Þ

where LM ¼ La
Mt

a is a Uð3ÞL gauge field, FðLÞMN ¼
∂MLN − ∂NLM − i½LM;LN � and

ω5ðLÞ ¼ tr

�
LF2

ðLÞ þ
i
2
L3FðLÞ −

1

10
L5

�
; ð2Þ

where the wedge product of forms is implicitly understood.
Similar considerations apply to the right-handed sector. ta

are the eight Gell-Mann matrices extended with t0 ¼
13=

ffiffiffi
6

p
, normalized such that trðtatbÞ ¼ 1

2
δab.

A point in the five-dimensional space has coordinates
ðx; zÞ. The background metric will be chosen to be exactly
anti de–Sitter, so that

gMNdxMdxN ¼ 1

z2
ðημνdxμdxν − dz2Þ; ð3Þ

where μ; ν ¼ ð0; 1; 2; 3Þ, M;N ¼ ð0; 1; 2; 3; zÞ, and ημν has
a mostly negative signature. The fifth dimension is assumed
to be compact, i.e., four-dimensional boundary branes exist
at ðx; 0Þ and ðx; z0Þ, the so-called UV and IR boundary
branes, respectively.
In order to make contact with the hadronic states, it is

convenient to trade the left- and right-handed fields,Lμðx; zÞ
and Rμðx; zÞ, for vector and axial-vector ones through the
usual relations Lμ ¼ Vμ − Aμ and Rμ ¼ Vμ þ Aμ. These
(massless) fields admit Kaluza-Klein decompositions

Vμðx; zÞ ¼
X
n

VðnÞ
μ ðxÞφV

n ðzÞ;

Aμðx; zÞ ¼
X
n

AðnÞ
μ ðxÞφA

nðzÞ; ð4Þ

and generate two infinite towers of four-dimensional modes,

which become massive by absorbing the scalar modes VðnÞ
5

and AðnÞ
5 through higgsing.

The resonance poles are determined from the solutions
for φV;A

n ðzÞ. Working in four-dimensional momentum
space, they are normalizable only for discrete values of
the four-momentum q, namely at

mVn ¼
γ0;n
z0

; mAn ¼
γ1;n
z0

; ð5Þ

where γk;n is the nth root of the Bessel function JkðxÞ. The
previous equation shows that the size of the fifth dimension
is an infrared quantity that sets the confinement scale.
Spontaneous chiral symmetry breaking is implemented

in this model through boundary conditions on the IR brane,
where low-energy physics takes place. The choice

Lμðx; z0Þ − Rμðx; z0Þ ¼ 0;

Fzμ
L ðx; z0Þ þ Fzμ

R ðx; z0Þ ¼ 0; ð6Þ

ensures that on the infrared brane only the vectorial
subgroup Uð3ÞV is preserved. The pattern of breaking is
therefore the one expected from large-Nc QCD, namely,
Uð3ÞL ×Uð3ÞR → Uð3ÞV , and a nonet of Goldstone
bosons is generated.
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The infrared boundary conditions make sure that all the
zero modes cancel except Að0Þ

5 , which encodes the
Goldstone degrees of freedom. In order to have a more
conventional representation of the pion multiplet, it is

convenient to trade the Að0Þ
5 field for a Wilson line. One

defines

ξLðx; zÞ ¼ P exp

�
−i

Z
z0

z
dz0 L5ðx; z0Þ

�
; ð7Þ

and ξRðx; zÞ in a similar way, such that the IR boundary
conditions are respected, and redefines the fields as

Lξ
Mðx; zÞ ¼ ξ†Lðx; zÞ½LMðx; zÞ þ i∂M�ξLðx; zÞ;

Rξ
Mðx; zÞ ¼ ξ†Rðx; zÞ½RMðx; zÞ þ i∂M�ξRðx; zÞ: ð8Þ

These chirally dressed combinations make sure that the
physical degrees of freedom are Lξ

μðx; zÞ and Rξ
μðx; zÞ,

while their fifth components identically vanish.
The Goldstone degrees of freedom are captured by the

combination of Wilson lines ðξAðx; 0Þ≡ ξAðxÞÞ:

UðxÞ≡ ξLðxÞξ†RðxÞ ¼ exp

�
2iπaðxÞta

fπ

�
; ð9Þ

which transforms as UðxÞ → gLðxÞUðxÞg†RðxÞ. The field
redefinitions in (8) are thus the way to move from a
linear to a nonlinear representation of chiral symmetry
breaking. With SUð3ÞL × SUð3ÞR, one can always choose
ξLðxÞ ¼ ξ†RðxÞ≡ uðxÞ, such that UðxÞ ¼ u2ðxÞ [47]. As
a result, the expressions for the chirally dressed UV
sources are

lξμ ≡ Lξ
μðx; 0Þ ¼ u†ðxÞ½lμðxÞ þ i∂μ�uðxÞ;

rξμ ≡ Rξ
μðx; 0Þ ¼ uðxÞ½rμðxÞ þ i∂μ�u†ðxÞ: ð10Þ

The Yang-Mills action in Eq. (1) is invariant under this field
redefinition. In contrast, the Chern-Simons form gets
shifted to

ω5ðLξÞ ¼ ω5ðLÞ þ ω5ðΣLÞ þ dα4ðL;ΣLÞ; ð11Þ

where ΣL ¼ dξLξ
†
L, and similarly for the right-handed

fields. The second term can be shown to reproduce the
ungauged Wess-Zumino-Witten Lagrangian, while the
function

α4ðL;ΣLÞ ¼
1

2
tr

�
ΣLðLFðLÞ þ FðLÞLÞ

þiΣLL3 −
1

2
ΣLLΣLL − iΣ3

LL

�
ð12Þ

is a pure boundary term in five dimensions.

The connection with the associated effective four-dimen-
sional theory is done with the AdS=CFT correspondence
prescription [41,42], according to which the value of the
five-dimensional fields on the UV brane are the sources of
the four-dimensional operators. It is therefore convenient to
split the fields as

Aμðx; zÞ ¼ aðx; zÞâ⊥μ ðxÞ þ āðx; zÞâkμðxÞ þ αðzÞ
fπ

∂μπðxÞ;

Vμðx; zÞ ¼ vðx; zÞv̂⊥μ ðxÞ þ v̄ðx; zÞv̂kμðxÞ; ð13Þ
where v̂ðxÞ and âðxÞ are identified with the classical
sources associated to the chiral currents

jaμ ¼ q̄γμtaq; j5aμ ¼ q̄γμγ5taq: ð14Þ

The functions aðx; zÞ, āðx; zÞ, αðzÞ, vðx; zÞ, and v̄ðx; zÞ can
be found by solving the (linearized) five-dimensional
equations of motion subject to the appropriate boundary
conditions (see Sec. III).
In order to obtain the four-dimensional effective action,

the solutions in Eq. (13) are substituted into the five-
dimensional action and the dependence on the fifth
dimension is integrated out. The end result is a four-
dimensional generating functional, out of which the corre-
lators of the theory can be computed.
The model presented here contains an infinite tower of

vector and axial-vector resonances together with the pion
multiplet and is therefore a good toy model to evaluate the
interplay between Goldstone modes and axial vectors in
the HLbL.
All observables are expressed in terms of the three

parameters λ, c, and z0. The former is normally fixed by
matching the coefficient of the parton logarithm in the
axial-vector two-point function (see, e.g., [35] and
Appendix B). This gives

λ ¼ Nc

48π2
: ð15Þ

By requiring the right normalization of the chiral anomaly,
one finds

c ¼ Nc

24π2
: ð16Þ

The parameter z0 is a characteristic infrared scale. Actually,
the simplicity of the model means that all infrared quan-
tities depend on z0. For instance, the pion decay constant is
given by

f2π ¼
8λ

z20
¼ Nc

6π2z20
; ð17Þ

and the resonance masses are given in Eq. (5). Which
parameter is chosen to fix z0 depends on the application
at hand. We will come back to this issue in Sec. VII. For the
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time being, we simply observe that the model predicts
extremely well the splitting between the lowest-lying vector
and axial-vector states, i.e.,

mρ

ma1

¼ γ0;1
γ1;1

∼ 0.63; ð18Þ

but cannot account for satisfactory values for fπ and mρ

simultaneously. These shortcomings can be circumvented
but at the price of sophisticating the model in a rather
ad hoc way. In this paper we will stick to the minimal
model. As we will argue in the next sections, since not all
the hadronic information is equally relevant for the HLbL,
the minimal model is already able to provide interesting
quantitative estimates.
It is also relevant to mention at this point that the success

of Eq. (18) does not extend to heavier vector and axial-
vector mesons. There is also the issue of the mass splittings
inside multiplets, something that the model is unable to
capture. One could therefore cast some doubts on the
reliability of the model to yield predictions for the HLbL.
The key point is that the HLbL is an inclusive observable
for spacelike momenta. In these cases, practice has shown
that correlators with very different spectra lead to very
stable predictions, as long as short and long distances are
correctly matched (see, e.g., the discussion in [48]). As a
result, we expect our prediction for the HLbL contributions
to be rather robust, despite the fact that the individual
resonance contributions might be hard to match to the
actual QCD hadronic spectrum.
Another limitation of the model is that the Goldstone

modes are strictly massless, i.e., there is no explicit chiral
symmetry breaking. In order to be realistic, we should
depart from the chiral limit and give the pion multiplet a
mass. We will account for explicit chiral symmetry break-
ing simply by adding a mass term in the Goldstone
propagators, while the form factors will be computed in
the chiral limit, which is known to be a very good
approximation [49]. This modification can be understood
as introducing a deformation operator on the UV boundary
and therefore does not jeopardize the consistency of the
model. For more details see, for instance, [50,51] and
references therein.

III. THE ELECTROMAGNETIC FOUR-POINT
FUNCTION

The fundamental object for the HLbL is the electromag-
netic four-point correlator of Fig. 1, defined as

Πμνλρðq1;q2;q3Þ¼−i
Z

d4xd4yd4ze−iðq1·xþq2·yþq3·zÞ

× h0jTfjμemðxÞjνemðyÞjλemðzÞjρemð0Þgj0i;
ð19Þ

where jμemðxÞ ¼ q̄γμQ̂q, with Q̂ ¼ 1
3
diagð2;−1;−1Þ being

the electromagnetic charge matrix. Our conventions for
momenta are such that q1 þ q2 þ q3 þ q4 ¼ 0.
This correlator satisfies the Ward identities:

fqμ1; qν2; qλ3; qρ4g × Πμνλσðq1; q2; q3Þ ¼ 0; ð20Þ
which reduce the number of independent kinematic invar-
iants down to 43 gauge-invariant tensor structures [24].
In our model, all quartic terms in vector fields are

antisymmetric in flavor indices and therefore cancel due
to Bose symmetry. The leading contributions to Eq. (19) are
driven by the cubic interactions in the Chern-Simons term,
corresponding to pion and axial-vector exchanges, which
are the leading effects in the 1=Nc expansion.
The corresponding diagrams are listed in Fig. 2. The

vertices can be extracted from the effective action, which is
obtained by solving the equations of motion for vector and
axial-vector fields and plugging the solutions back into the
five-dimensional action. As usual, exact solutions cannot
be found and one has to resort to perturbation theory, with
the quadratic part of the Yang-Mills piece as the leading
effect and the Chern-Simons term as a perturbation.
The Yang-Mills piece of the action can be written in

components as

SYM½V; A� ¼ −2λ
Z

d4x
Z

z0

0

dz
z

× tr½ðFV
μνÞ2 − 2ðFV

μzÞ2 þ ðFA
μνÞ2 − 2ðFA

μzÞ2�:
ð21Þ

From the Chern-Simons term we need to keep interactions
linear in the axial-vector field. They come from the first
terms in Eqs. (2) and (12). In components, one finds

Sð3ÞCS ½V; A� ¼ 2cεμνλρd̂abc
�
−

1

2fπ

Z
d4xπa∂μVb

ν∂λVc
ρ

þ
Z

d5xðAa
μ∂νVb

λ∂zVc
ρ − ∂zAa

μ∂νVb
λV

c
ρ

− ∂νAa
μVb

λ∂zVc
ρÞ
�
; ð22Þ

FIG. 1. The HLbL diagram. The blob represents the HLbL
tensor. In our conventions, photon momenta are pointing inwards.
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where d̂abc ¼ tr½taftb; tcg� and the first piece comes from
the boundary term in Eq. (12). Plugging the expressions for
the vector and axial-vector fields given in Eq. (13), the
previous expression can be split into a transverse, longi-
tudinal and the Goldstone contribution. In the following,
we will concentrate on the contributions of the neutral pion
and the a1ð1260Þ tower, and we will select accordingly the
flavor structure d̂3γγ ¼ 1

3
. For the numerical estimates in

Sec. VII, we will also consider the contributions of the η, η0
and the axial-vector isosinglet towers.

In order to build the diagrams of Fig. 2 from the action
one needs the first-order solutions for vector fields and up
to second-order solutions for the axial-vector ones. The
first-order solutions are the so-called bulk-to-boundary
propagators. Working in four-dimensional (Euclidean)
momentum space, they read

vðz;QÞ ¼ Qz

�
K1ðQzÞ þ K0ðQz0Þ

I0ðQz0Þ
I1ðQzÞ

�
;

aðz;QÞ ¼ Qz

�
K1ðQzÞ − K1ðQz0Þ

I1ðQz0Þ
I1ðQzÞ

�
; ð23Þ

where KjðxÞ and IjðxÞ are modified Bessel functions. The
axial-vector zero-mode αðzÞ instead simplifies to

αðzÞ ¼ 1 −
z2

z20
: ð24Þ

The second-order solution for the axial-vector field can be
expressed in terms of the first-order ones as

Að1Þ
μ ðx; zÞ ¼ c

2λ
ϵανλρ

Z
z0

0

dξGA
αμðz; ξ; xÞ∂ξVν∂λVρ; ð25Þ

where Gμν
A ðz; ξ; xÞ is the axial-vector Green function (see

Appendix A). The expression for the transverse and
longitudinal components can be easily found by projecting
out the corresponding components of the Green function,
defined as

GA
μνðz; z0; qÞ ¼ P⊥

μνGA⊥ðz; z0; qÞ þ Pk
μνGA

k ðz; z0; qÞ; ð26Þ

with

P⊥
μν ¼ ημν −

qμqν
q2

; Pk
μν ¼ qμqν

q2
: ð27Þ

Plugging the previous solutions back into Eq. (1), the
relevant terms of the effective action for the electromag-
netic tensor are

Seff ⊃
Z

d4x

�
c2

λ
εμνλρεμ

0ν0λ0ρ0
Z

z0

0

Z
z0

0

dz dz0½∂νVλðx; zÞ∂zVρðx; zÞ�GA
μμ0 ðz; z0; xÞ½∂ν0Vλ0 ðx; z0Þ∂z0Vρ0 ðx; z0Þ�

þ 1

2
∂μπðxÞ∂μπðxÞ þ c

fπ
εμνλρπðxÞ

Z
z0

0

dz α0ðzÞ∂μVνðx; zÞ∂λVρðx; zÞ
�
: ð28Þ

The first piece takes into account the contribution of
axial vectors while the second line contains the form factor
of the pion coupled to two photons, which is defined as

Γμνðq1; q2Þ ¼ i
Z

d4x eiq1·xh0jTfjemμ ðxÞjemν ð0ÞgjπðpÞi

¼ εμναβqα1q
β
2Fπγγðq21; q22Þ: ð29Þ

The pion propagator follows directly from the term

−2λAμðx; zÞ
1

z
∂zAμðx; zÞ

����
z¼0

; ð30Þ

which is the effective action for axial-vector fields coming
from Eq. (21), once the expression in Eq. (13) is used.
Notice that the boundary term in (22) affecting the pion is

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Diagrams contributing to the HLbL tensor at tree level
in our model. The solid lines represent the vector bulk-to-
boundary propagators, depending on the external momenta.
The double lines in (a), (c), and (e) denote the axial-vector
Green functions, while the dashed lines in (b), (d), and (f) cor-
respond to the pion propagator. The black dots represent the
trilinear anomalous vertices, derived from the Chern-Simons part
of the action. To any of these vertices an integration over the fifth
dimension is understood.
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no longer present. Its cancellation, leaving the expression
above for the pion form factor, is a consistency check that
our model has the anomaly correctly implemented. The
presence of a boundary term would be in conflict, e.g., with
the asymptotic behavior of the form factor at large photon
virtualities.
By matching (29) to the holographic expression above,

one finds

FπγγðQ2
1; Q

2
2Þ ¼

2c
fπ

Z
z0

0

dz α0ðzÞvðz;Q1Þvðz;Q2Þ: ð31Þ

The expression above depends on the three parameters of
the model, which can be traded for c, z0, and fπ . However,
as opposed to other hadronic models, in our approach the
functional form of Fπγγ is completely fixed, so Eq. (31) is
actually a consistency check of the model.
In the zero-momentum limit, Fπγγ is determined by the

chiral anomaly. Using that vðz; 0Þ ¼ 1, the integral above is
given by the boundary values for αðzÞ. From Eq. (16) one
then obtains the well-known result

Fπγγð0; 0Þ ¼ −
Nc

12π2fπ
; ð32Þ

which confirms that the model has the chiral anomaly
correctly implemented.
At very high energies, for large and equal photon

momenta, one can expand Eq. (31) to find

lim
Q2→∞

FπγγðQ2; Q2Þ ¼ −
2fπ
3Q2

þOðe−Qz0Þ; ð33Þ

which matches the OPE prediction. When one photon is on
shell and the other far off shell, one expects the Brodsky-
Lepage Q−2 scaling. We indeed find

lim
Q2→∞

Fπγγð0; Q2Þ ¼ −
2fπ
Q2

þOðe−Qz0Þ: ð34Þ

Equation (31) therefore has the correct high- and low-
energy behavior. Notice, however, that only the leading
term in the OPE is correctly reproduced by the model, with
all subleading pieces identically vanishing. This is a
consequence of the conformal symmetry of the AdS metric.
The electromagnetic four-point function defined in

Eq. (19) can now be obtained by taking the variation of
Eq. (28) with respect to the boundary values of the
(transverse) vector fields. Using Eq. (31), one obtains

Πμνλρðq1;q2;q3;q4Þ¼εμναβελρα0β0

�
2c2

λ

Z
dz

Z
dz0Tβ

12ðzÞGαα0
A ðz;z0;sÞTβ0

34ðz0ÞþFπγγðq1;q2Þ
qα1q

β
2q

α0
3 q

β0
4

s−m2
π

Fπγγðq3;q4Þ
�

þεμναα0ελρββ0

�
2c2

λ

Z
dz

Z
dz0Tβ

13ðzÞGαα0
A ðz;z0;tÞTβ0

24ðz0ÞþFπγγðq1;q3Þ
qα1q

β
2q

α0
3 q

β0
4

t−m2
π

Fπγγðq2;q4Þ
�

þεμναβ0ελρβα0

�
2c2

λ

Z
dz

Z
dz0Tβ

14ðzÞGαα0
A ðz;z0;uÞTβ0

23ðz0ÞþFπγγðq1;q4Þ
qα1q

β
2q

α0
3 q

β0
4

u−m2
π

Fπγγðq2;q3Þ
�
; ð35Þ

where s ¼ ðq1 þ q2Þ2, t ¼ ðq1 − q3Þ2, and u ¼ ðq1 − q4Þ2
and we have used the shorthand notation viðzÞ≡ vðz;QiÞ.
The tensors Tμ

ij are defined as

Tμ
ijðzÞ ¼ ½qμi viðzÞ∂zvjðzÞ − qμjvjðzÞ∂zviðzÞ�: ð36Þ

The closed expression of Eq. (35) for the hadronic light-by-
light tensor is all that is needed for the evaluation of the
contribution to the anomalous magnetic moment. However,
one of thevirtues of having a consistentmodelwith analytical
control is that a number of issues can be examined in detail.
This we will do in the following sections.

IV. LONGITUDINAL PIECE AND
PION-EXCHANGE DOMINANCE

Based on large-Nc arguments and dimensional power
counting, there is agreement that the pion exchange
contribution is the dominant piece of the HLbL.

Equation (35) contains, as expected, the pion contribu-
tion to the hadronic light-by-light tensor as the product of
the πγγ form factors connected by a pion propagator (see
Fig. 3). In turn, the first term on each line accounts for the
contribution of the full tower of axial-vector states.
In order to understand better the structure of the HLbL

tensor, it is convenient to project out its longitudinal and
transverse parts, which can be done using Eq. (26).

FIG. 3. The three one-pion exchange HLbL diagrams. The
dashed line denotes the pion propagator and the black dots the
Fπγγ form factors. Photon momenta assignments are the same as
in Fig. 1, i.e., they point inwards.
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The longitudinal component, which also contains the
pion contribution, can be expressed in terms of three
tensorial structures,

Πμνλρ
k ðqjÞ ¼ Wk

12;34T
ð1Þ
μνλρ þWk

13;24T
ð2Þ
μνλρ þWk

14;23T
ð3Þ
μνλρ;

ð37Þ

where

Tð1Þ
μνλρ ¼ εμναβελρα0β0qα1q

β
2q

α0
3 q

β0
4 ð38Þ

and the tensors Tð2Þ
μνλσ and Tð3Þ

μνλσ are the crossed-symmetric
ones. Defining, as in [24], the crossing operations C14 ¼
fq1 ↔ q4; μ ↔ σg and C13 ¼ fq1 ↔ q3; μ ↔ λg, they are
related by

Tð2Þ
μνλσ ¼ C14T

ð1Þ
μνλσ; Tð3Þ

μνλσ ¼ C13T
ð1Þ
μνλσ: ð39Þ

The longitudinal form factors can be shown to take the
simplified form

Wk
12;34ðqj;m2

πÞ

¼ Fπγγðq1; q2Þ
1

s −m2
π
Fπγγðq3; q4Þ

−
2c2

λ

Z
dz

Z
dz0v1ðzÞv2ðzÞ

∂z∂z0G
k
Aðz; z0Þ
s

v3ðz0Þv4ðz0Þ;

ð40Þ

with similar expressions for Wk
13;24 and Wk

14;23. The last
line above can be easily obtained from the first term in
Eq. (35) by using the antisymmetry of the Levi-Civita
tensors and integration by parts.
Using the expression (see Appendix A)

∂z∂z0G
k
Aðz; z0Þ ¼

z20
2
½α0ðzÞα0ðz0Þ þ α0ðzÞδðz − z0Þ�; ð41Þ

the longitudinal form factor takes the form

Wk
12;34ðqj;m2

πÞ¼Fπγγðq1;q2Þ
1

s−m2
π
Fπγγðq3;q4Þ

−
�
2c
fπ

	
2 1

s

Z
dzα0ðzÞv1ðzÞv2ðzÞv3ðzÞv4ðzÞ

−Fπγγðq1;q2Þ
1

s
Fπγγðq3;q4Þ; ð42Þ

where we have used that z20 ¼ 8λf−2π and the definition of
the pion transition form factor in Eq. (31).
The previous expression shows explicitly that the con-

tribution of the whole tower of axial-vector states consists
of a factorizable and a nonfactorizable piece in five
dimensions. In four dimensions, they correspond to a
propagating piece and a contact term, respectively. In the

chiral limit, one can easily check that the axial-vector
propagating piece and the pion contribution cancel each
other and one is left with the contact term. Explicitly,

Wk
12;34ðqj;m2

πÞ¼−
�
2c
fπ

	
21

s

Z
dzα0ðzÞv1ðzÞv2ðzÞv3ðzÞv4ðzÞ

þFπγγðq1;q2Þ
m2

π

sðs−m2
πÞ
Fπγγðq3;q4Þ: ð43Þ

The structure of this expression and, in particular, the
presence of the contact term is mostly dictated by the chiral
anomaly, as we will show more explicitly in the next
section.
At very low energies (still in the chiral limit) the integral

appearing in the contact term can be easily evaluated. Using
that vjðz; 0Þ ¼ 1 and the explicit expression for αðzÞ, one
finds

lim
s→0

Wk
12;34ð0;m2

π ¼ 0Þ ¼
�
2c
fπ

	
2 1

s
≡ F2

πγγð0; 0Þ
s

: ð44Þ

The result is actually the same that one would have
obtained by dropping the axial-vector tower and consid-
ering only the pion exchange contribution. This is of course
not a coincidence. At very low energies only the pion is a
dynamical degree of freedom and it is entirely responsible
for fulfilling the chiral anomaly. This is the content of the
Wess-Zumino-Witten term in chiral perturbation theory,
which our model also contains, and actually fixes the value
of Fπγγð0; 0Þ, as we have already shown. It is clear that at
higher energies, anomaly matching requires the participa-
tion of resonance states other than the pion. However, since
no first-principle description of the strong interactions
exists in the intermediate energy regime, it is not known
how this is implemented in detail.
The result in Eq. (43) is precisely the way the model

implements the chiral anomaly in a consistent way at all
energy scales. The expression for the resummed axial-
vector contributions and the precise cancellation of the pion
contribution in the chiral limit can be therefore seen in this
light as a sort of sum rule to enforce anomaly matching at
all energies. This interpretation will be reinforced in the
following section, where we will look into the chiral
anomaly in a more explicit fashion.

V. ANOMALY MATCHING IN THE VVA
CORRELATOR

The best way to uncover the role of the axial anomaly in
the HLbL tensor is to consider the three-point correlator

Γμνλðq3; q4Þ ¼ i
Z

d4xd4y e−iðq3·xþq4·yÞ

× h0jTfjemμ ðxÞjemν ðyÞj5λð0Þgj0i: ð45Þ
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This correlator has been studied in great detail in, e.g.,
[52,53]. In [53] it was shown that, on general grounds, Γμνλ

can be decomposed into four independent tensorial struc-
tures: one longitudinal and three transverse, which are
associated with four different scalar functions.
In the holographic model, the VVA correlator can be

computed from thevariation of the effective action inEq. (22)
with respect to the sources. Rewriting the action in terms of
the transverse and longitudinal axial-vector sources, inte-
grating by parts and using the boundary conditions for the
vector and axial-vector fields, the result is

ðSð3ÞCSÞ⊥ ¼ 2c
3
εμνλρ

Z
d4xâ⊥μ ðxÞ∂νv̂λðxÞv̂ρðxÞ

×

�
1þ 3

Z
z0

0

dz aðx; zÞvðx; zÞv0ðx; zÞ
�
; ð46Þ

ðSð3ÞCSÞk ¼
c
3
εμνλρ

Z
d4x

∂αâkαðxÞ
□

∂νv̂λðxÞ∂μv̂ρðxÞ

×

�
1þ 3

Z
z0

0

dz α0ðzÞvðx; zÞvðx; zÞ
�
; ð47Þ

where the first structure in each equation is a boundary term,
while the second one has a nontrivial profile and energy
dependence. Apart from a local contribution, the correlator
also contains a pion-exchange contribution (see Fig. 4).
Explicitly, the pion contribution is generated from the
effective action

SðπÞeff ¼
Z

d4x

�
1

2
∂μπðxÞ∂μπðxÞ þ fπâ

k
μðxÞ∂μπðxÞ

þ c
fπ

εμνλρπðxÞ
Z

z0

0

dz α0ðzÞ∂μVνðx; zÞ∂λVρðx; zÞ
�
;

ð48Þ

where the first line comes entirely from Eq. (30) by using the
decomposition of Eq. (13).

From the previous terms in the effective action it is
straightforward to obtain the expression for Γμνλ. The
longitudinal part of the correlator yields

Γk
μνλðq3; q4Þ ¼ tkμνλ

�
2c
3q23

�
1þ 3

Fπγγðq3; q4Þ
Fπγγð0; 0Þ

	

−
2c

q23 −m2
π

Fπγγðq3; q4Þ
Fπγγð0; 0Þ

�
; ð49Þ

where tkμνλ is the longitudinal tensor

tkμνλ ¼ q3λεμναβqα4q
β
3; ð50Þ

defined as in [53].
The transverse part is less straightforward to obtain. The

reason is that the model we are using necessarily describes
the consistent anomaly, which is the only one that can be
derived from an action [54]. However, in the presence of
gauge fields, only the covariant anomaly is compatible
with the Ward identities. This change of prescription can be
interpreted as a different definition of the chronological T
product. Therefore, with the effective action of Eq. (22) one
is not computing the correlator defined in Eq. (45), but
instead

Γ̂μνλðq1; q2Þ ¼ i
Z

d4xd4y eiðq1·xþq2·yÞ

× h0jT̂fjemμ ðxÞjemν ðyÞj5λð0Þgj0i; ð51Þ

where T̂ is associated with the consistent anomaly. In this
prescription, the photon contains both transverse and
longitudinal components. Taking this into account, one
can check that the Ward identities are

qμ3Γ̂μνλ ¼
Nc

12π2
εαβνλqα4q

β
3;

qν4Γ̂μνλ ¼ −
Nc

12π2
εαβμλqα4q

β
3;

ðq3 þ q4ÞλΓ̂μνλ ¼ −
Nc

12π2
εαβμνqα4q

β
3; ð52Þ

which are indeed the ones corresponding to the consistent
anomaly.
The relation between both prescriptions involves a

Bardeen-Zumino polynomial of the form [54]

Γμνλ ¼ Γ̂μνλ þ
Nc

12π2
εμνλαðq1 − q2Þα; ð53Þ

such that in the covariant prescription one recovers the
well-known Adler-Bardeen results

FIG. 4. Diagrams contributing to the VVA correlator. The one
on the left is the axial-vector contribution, where the blob
contains the nontrivial momentum dependence of Eqs. (46)
and (47). The diagram on the right is the pion exchange
contribution.
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qμ3Γμνλ ¼ 0;

qν4Γμνλ ¼ 0;

ðq3 þ q4ÞλΓμνλ ¼ −
Nc

4π2
εαβμνqα4q

β
3: ð54Þ

In the particular kinematic configuration where q4 and
ðq3 þ q4Þ2 go to zero, the four independent tensorial
structures reduce to just two [5,53],

tkμνλ ¼ qλ3εμναβq
α
4q

β
3;

t⊥μνλ ¼ q23εμνλρq
ρ
4 − qν3εμραβq

α
4q

β
3

− qλ3εμναβq
α
4q

β
3 þOððq3 þ q4Þ2Þ: ð55Þ

Accordingly, in this limit there are only two independent
kinematic invariants, defined as

Γμνλðq3; q4Þ ¼
1

24π2
½ωLðq3Þtkμνλ þ ωTðq3Þt⊥μνλ�: ð56Þ

The longitudinal function ωL is known to be fixed by the
anomaly to

ωLðq3Þ ¼ −
2Nc

q23
: ð57Þ

This result is exact in the chiral limit, and gets correc-
tions only from nonperturbative contributions [52]. ωT
instead depends on the dynamics of axial-vector exchange.
Both functions are, however, linked at very high energies,
where they satisfy the well-known expression [52]

lim
Q3→∞

½ωLðQ3Þ − 2ωTðQ3Þ� ¼ 0: ð58Þ

It is relatively easy to check that the previous general
QCD results get reproduced with our model. If one
considers Eq. (49) in the chiral limit, one finds a cancella-
tion between the pion contribution and the energy-
dependent part of the longitudinal vertex. This is the same
cancellation that we already discussed in the previous
section. In the chiral limit, therefore, the longitudinal part
is saturated by the boundary term. Notice that this can-
cellation between the whole tower of axial-vector states and
the pion, which is naturally implemented by the model, is
the only way to have

ωLðq3Þ ∼
1

q23
ð59Þ

at all energies. The cancellation of the pion contribution
against a collective effect of the whole axial-vector tower
(in the chiral limit) is thus a sum rule enforced by the chiral
anomaly.

As constructed in Eq. (53), the Bardeen-Zumino term
cancels the boundary terms in the transverse part and brings
the longitudinal part to the Adler-Bardeen value. In this
prescription, the predictions for ωL and ωT in Euclidean
space at OðQ2

4Þ read

ωLðQ3Þ ¼
2Nc

Q2
3

−
�
2Nc

Q2
3

−
2Nc

Q2
3 þm2

π

	
FπγγðQ3; 0Þ
Fπγγð0; 0Þ

;

ωTðQ3Þ ¼ −
2Nc

Q2
3

Z
z0

0

dzaðz;Q3Þv03ðz;Q3Þ: ð60Þ

The integral inωT can actually be solved analytically and
its expression considerably simplified. In order to do so, it
is convenient to rewrite [55]

aðz;q3Þv03ðz;q3Þ¼
1

2
∂z½aðz;q3Þv3ðz;q3Þ�

þ1

2
½aðz;q3Þv03ðz;q3Þ−a0ðz;q3Þv3ðz;q3Þ�:

ð61Þ

The first piece is a boundary term while the second one can
be shown to be linear in z [see Eq. (A8)]. The result for both
form factors can therefore be written in the rather compact
form:

ωLðQ3Þ ¼
2Nc

Q2
3

�
1 −

m2
π

Q2
3 þm2

π

FπγγðQ3; 0Þ
Fπγγð0; 0Þ

�
þOðQ2

4Þ;

ωTðQ3Þ ¼
Nc

Q2
3

−
Nc

2
z20ðξ0 þ ξ1Þ þOðQ2

4Þ: ð62Þ

As expected, in the chiral limit the pion contribution gets
cancelled by part of the axial-vector one such that ωL is
structureless, as already noticed before. Corrections to this
expression are proportional to the pion mass and are
therefore of nonperturbative nature, in compliance with
QCD. We stress that this is a consistency check that the
anomaly is correctly implemented in the model. The study
of the VVA correlator thus reveals that the nonfactorizable
piece in the longitudinal part of the HLbL tensor that we
observed in the previous section has the same origin as the
contact term in the VVA correlator that reproduces the
Adler-Bardeen result for the chiral anomaly.
Expanding the previous expressions for large momenta,

one finds

lim
Q3→∞

ωLðQ3Þ ¼
2Nc

Q2
3

þO
�
m2

π

Q6
3

; Q2
4

	
;

lim
Q3→∞

ωTðQ3Þ ¼
Nc

Q2
3

þOðe−Q3z0 ; Q2
4Þ; ð63Þ

which implies that
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lim
Q3→∞

½ωLðQ3Þ − 2ωTðQ3Þ� ∼O
�
m2

π

Q6
3

; Q2
4

	
: ð64Þ

This scaling is consistent with the OPE. However, as
already emphasized, conformal symmetry in the five-
dimensional model ensures that the OPE relations will
be satisfied to leading order, but the effects of OPE
condensates will in general be missed. Therefore, the
expression above has the value of a consistency check
rather than a prediction.
Another important observation is that the pion contri-

bution at low energies happens to be

lim
q̂→0

ωðπÞ
L ðq3Þ ¼ −

2Nc

q23
; ð65Þ

and one would be tempted to conclude that the pion
saturates the anomaly at low energies. This interpretation
is not wrong but it is misleading: in the mπ → 0 limit, the
pion and the dynamical axial-vector contribution cancel
analytically at all energies. Based on the previous deriva-
tion, one is forced to conclude that the pion does not

saturateωL, although it is fundamental to make sure that the
result is consistent with the anomaly.
The form of the chiral corrections to both form factors

and its behavior at intermediate energies are not known
from first principles and are therefore a prediction of the
model. At low energies both form factors go to a constant,
namely,

lim
Q3→0

ωLðQ3Þ ¼
2Nc

m2
π
ð1þ aπÞ þOðQ2

3; Q
2
4Þ;

lim
Q3→0

ωTðQ3Þ ¼
3Nc

8
z20 þOðQ2

3; Q
2
4Þ; ð66Þ

where aπ is the slope of Fπγγ at zero momentum [see
Eq. (90)]. The predictions of the present model can be
compared, for instance, with the expressions used in [19]:

½ωLðQ3Þ�MV ¼ 2Nc

Q2
3 þm2

π
;

½ωTðQ3Þ�MV ¼ Nc

m2
a1 −m2

ρ

�
m2

a1 −m2
π

Q2
3 þm2

ρ
−

m2
ρ −m2

π

Q2
3 þm2

a1

�
: ð67Þ

FIG. 5. Comparison between our predictions for ωL;TðQ2Þ
(blue lines) and the ones from Ref. [19] (orange lines). The
vertical axis is in units of GeV−2.

FIG. 6. Q2ωL;TðQ2Þ for both our model and the one of Ref. [19].
The asymptotic limit agrees in all cases with the OPE results.
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The results are illustrated in Figs. 5 and 6, where one can
see that the main difference between both models mostly
affect ωT .

VI. THE MELNIKOV-VAINSHTEIN LIMIT

The closed expression that we obtained for the light-by-
light tensor in Eq. (35) can be extrapolated to large
Euclidean momenta and compared with the different
short-distance constraints derived from the OPE of
QCD. This is a necessary consistency check before the
numerical analysis of the next section. The more constraints
the expression satisfies, the more reliable the predictions
will be. Conversely, if a constraint is not satisfied, one can
estimate its impact by comparing with models that do
implement it.
Relevant for the evaluation of the ðg − 2Þμ are the limits

when q24 ¼ 0. A nontrivial check is to find out how the
HLbL behaves when all virtual photons have large
momenta, Q2

1 ¼ Q2
2 ¼ Q2

3 ≡Q2 ≫ Λ2
QCD. For the longi-

tudinal component of the HLbL tensor, the quark loop
diagram in QCD gives [19]

Wk
12;34 ¼ −

4

9π2Q4
∼ −

0.44
π2Q4

: ð68Þ

One can find the corresponding expression in the model by
applying the high-energy limit to Eq. (42). The first thing to
note is that this limit cannot be fulfilled by the pion
contribution, which falls off like Q−6. The relevant piece
comes instead from the axial-vector tower, from which one
obtains

Wk
12;34 ¼ −

Nc

3π2Q4

Z
∞

0

x4K1ðxÞ3dx ∼ −
0.36
π2Q4

: ð69Þ

Numerically, this amounts to 80% of the OPE coefficient.
This deficit is not necessarily a mismatch, given that other
hadronic contributions to the HLbL not included in our
model (e.g., pseudoscalar mesons) are also expected to
contribute to the quark loop matching.
Particularly interesting are the limits where only two

photons have large virtualities. Without loss of generality
one can consider Q2

1 ≃Q2
2 ≫ Q2

3 ≫ Λ2
QCD, with the

remaining two possibilities generated by crossing sym-
metry. In the context of the ðg − 2Þμ, these limits were first
explored in [19], where the relation with the anomaly was
emphasized.
The key object to study this limit is the product of two

electromagnetic currents:

Wμνðq1; q2Þ ¼
Z

d4x
Z

d4yeiðq1·xþq2·yÞTfjμemðxÞ; jνemðyÞg

ð70Þ

in the kinematical limit

Q1 ¼ ξQ −
Q3

2
; Q2 ¼ −ξQ −

Q3

2
; ð71Þ

where ξ is large and all momenta are spacelike. In this limit,
the OPE gives

lim
ξ→∞

Wμν

�
ξQ −

Q3

2
;−ξQ −

Q3

2

	

¼ 1

ξ

2i
Q2

ϵμνλρQλ

X
a

d̂aγγ
Z

d4ze−iq3·zjðaÞ5ρ ðzÞ; ð72Þ

with jðaÞ5ρ ðzÞ ¼ q̄Q̂2γργ5q. This limit shows that a number of
the short-distance constraints relevant for the evaluation of
the HLbL are actually determined by the axial anomaly
through the VVA correlator discussed in the previous
section.
Within the model, it is rather straightforward to check

that, when the limit Q2
1 ≃Q2

2 ≫ Q2
3 ≫ Λ2

QCD is taken, the
leading term comes from the first line of Eq. (35), i.e., from
Figs. 2(a) and 2(b). The crossed diagrams are subleading,
as expected.
The pion contribution can be computed using the

asymptotic expression in Eq. (33), from which one con-
cludes that it falls off with higher powers of Q2 than the
previous OPE demands. The contribution of the axial-
vector tower is the relevant piece. For its evaluation it is
convenient to consider the integral

Jσαβðz; q1; q2Þ ¼
Z

dz0Gαβ
A ðz; z0; sÞTσ

12ðz0Þ: ð73Þ

In order to separately analyze the longitudinal and trans-
verse components, we will define

Jσαβðz; q1; q2Þ
¼ Pαβ

⊥ ðq3ÞJσ⊥ðz; q1; q2Þ þ Pαβ
k ðq3ÞJσkðz; q1; q2Þ: ð74Þ

In the limit Q ≫ Q3, one can easily show that

Jσ⊥ðz;Q;Q3Þ ¼ −
2Qσ

Q2
aðz;Q3Þ

�
1

3
þ 1

5

�
Q3

Q

	
2

þ � � �
�
;

ð75Þ

while

Jσkðz;QÞ ¼ −
2Qσ

3Q2
αðzÞ: ð76Þ

The fact that the longitudinal piece is exact to all orders in
Q3 is the manifestation of the chiral anomaly, as we will
show below.
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For the soft momenta, using that

lim
q→0

vðz; qÞ ¼ 1þOðq2ÞfðzÞ; ð77Þ

one easily concludes that

lim
q4→0

Tμ
34ðzÞ ¼ −qμ4∂zv3ðzÞ þOðq24Þ: ð78Þ

Plugging the previous expressions back into the HLbL
tensor, one finds

ΠμνλρðQ;Q3Þ ¼ εμναβελρα0β0q
β0
4

�
−
2c2

λ

Z
dzv03ðzÞ½Pαα0⊥ Jβ⊥ðz;Q;Q3Þ þ Pαα0

k Jβkðz;Q;Q3Þ� þ
2

3

fπ
Q2

qα1q
β
2q

α0
3

Q2
3 þm2

π
FπγγðQ3; 0Þ

�

¼ εμναβελρα0β0q
β0
4 Q

β Q
2
3

Q2

1

36π2
½Pαα0⊥ ωT þ Pαα0

k ωL�; ð79Þ

where in the second line we have identified ωL and ωT
using their expressions in Eq. (60). The previous equation
shows explicitly that the cancellation between the pion and
longitudinal axial-vector contributions that we have ob-
served before is associated with the right expression for ωL
or, analogously, the correct implementation of the chiral
anomaly. Notice that the pion contribution alone, i.e.,

ωðπÞ
L ðQ3Þ ∼

2Nc

Q2
3 þm2

π
FπγγðQ3; 0Þ; ð80Þ

is clearly incompatible withω ∼Q−2
3 in the chiral limit. The

problem is the structure of the form factor, which depends
onQ3. For this same reason, it is clear that no single particle
exchange can saturate ωL. In order to satisfy the constraint,
an infinite number of (axial-vector) particles is needed.
This is precisely what the contact term is indicating.
We note that the mechanism to saturate the MV con-

straint with the whole tower of axial-vector states found
above follows from imposing the correct implementation of
the chiral anomaly. It is therefore not a peculiar feature of
our model but a rather generic one. In the next section we
will show that this has a substantial impact on the HLbL,
thus confirming the numerical importance of the MV
constraint.

VII. NUMERICAL ANALYSIS

In Eq. (35) we already wrote down the electromagnetic
HLbL tensor in a closed form within our model. In order to
perform our numerical analysis and be able to compare with
other studies, we will employ standard model-independent
techniques.
Quite generically, the HLbL tensor can be expanded as a

sum over gauge-invariant Lorentz tensor structures. Out of
the 138 structures [56], once Ward identities are imposed,
one ends up with 43 kinematic structures. Here we will
adopt the formalism introduced in [24], which builds on
previous works [57,58], where the number of kinematical
structures is extended to ensure that they are free of poles
and zeros. We will therefore write

Πμνλσðq1; q2; q3Þ ¼
X54
i¼1

Tμνλσ
i Πiðq21; q22; q23Þ; ð81Þ

where the definitions of the tensors Tμνλσ
i can be found

in [24].
Using projection techniques, the two-loop diagram of

Fig. 1 can be related to the muon anomalous magnetic
moment as follows:

aHLbLμ ¼−
e6

48mμ

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4

1

q21q
2
2ðq1þq2Þ2

1

ðpþq1Þ2−m2
μ

1

ðp−q2Þ2−m2
μ

×TrððpþmμÞ½γρ;γσ�ðpþmμÞγμðpþq1þmμÞγλðp−q2þmμÞγνÞ
� ∂
∂qρ4Π

μνλσðq1;q2;−q4−q1−q2Þ
	����

q4¼0

; ð82Þ

where p is the muon momentum. Because of the projection
above, only 19 independent linear combinations of the 54

Tμνρλ
i contribute to aHLbLμ [56]. Furthermore, due to the

symmetries of the two-loop integral, one needs to evaluate
eventually only 12 different integrals containing 12 scalar
coefficients Π̄iðq1; q2; q3Þ.

Following the general analysis outlined in [18,24], one
can perform five out of the eight integrals above using
Gegenbauer polynomials, regardless of the specific form of
Π̄i. The resulting master formula contains then only three
integrals and, in terms of Euclidean momenta, takes the
form:
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aHLbLμ ¼ 2α3

3π2

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
Q3

1Q
3
2

×
X12
i¼1

T̄iðQ1; Q2; τÞΠ̄iðQ1; Q2; τÞ; ð83Þ

where Q1 and Q2 are the radial components of the

momenta. The hadronic scalar functions Π̄i are evaluated

for the reduced kinematics

ðq21; q22; q23; q24Þ ¼ ð−Q2
1;−Q2

2;−Q2
1 − 2Q1Q2τ −Q2

2; 0Þ:
ð84Þ

The complete list of the integral kernels T̄iðQ1; Q2; τÞ can
be found in Appendix B of [59].

A. Longitudinal contributions

Given our previous discussion, it is convenient to split
the contributions in longitudinal and transverse parts. One
can check that the longitudinal contribution is described by
the first two structures in Eq. (83). They correspond to
Eq. (37), i.e.,

Πμνλρ
k ðqjÞ ¼ Wk

12;34T
ð1Þ
μνλρ þWk

13;24T
ð2Þ
μνλρ þWk

14;23T
ð3Þ
μνλρ;

ð85Þ

where

Tð1Þ
μνλρ ¼ εμναβελρα0β0qα1q

β
2q

α0
3 q

β0
4 ; ð86Þ

and similarly for the crossed-symmetric Tð2Þ
μνλσ and Tð3Þ

μνλσ .
The scalar invariants were simplified in Sec. IV to the

form

Wk
12;34ðqj;m2

πÞ¼Fπγγðq1;q2Þ
1

s−m2
π
Fπγγðq3;q4Þ

−
�
2c
fπ

	
21

s

Z
dzα0ðzÞv1ðzÞv2ðzÞv3ðzÞv4ðzÞ

−Fπγγðq1;q2Þ
1

s
Fπγγðq3;q4Þ; ð87Þ

where the first line accounts for the pion contribution and
the remaining two are the resummation of the whole axial-
vector tower.
In Sec. IV we showed that our model generates a pion

transition form factor which has the correct intercept at zero
momentum and the right scaling when one or the two
photons have large momenta, namely,

Fπγγð0; 0Þ ¼ −
Nc

12π2fπ
;

lim
Q2→∞

FπγγðQ2; Q2Þ ¼ −
2fπ
3Q2

;

lim
Q2→∞

Fπγγð0; Q2Þ ¼ −
2fπ
Q2

: ð88Þ

However, in Sec. II we also emphasized that our model
predicts

mρ

fπ
¼ γ0;1

ffiffiffiffiffiffi
6

Nc

s
π ∼ 10.7; ð89Þ

which is roughly 30% bigger than the experimental
number. This is a well-known shortcoming of the present
model, which can be amended with more sophisticated
versions of it. Such sophistications are beyond the scope of
the present paper. In the following we will make two
choices for the parameters c, λ, and z0, which emphasize
different energy regimes in the HLbL. This will be used as
an estimate of the uncertainty in our determination of aμ.
Since the longitudinal contribution to HLbL is the

dominant one and, in particular, the pion form factor plays
a prominent role, a reasonable criterium is to choose the
parameters such that agreement with Fπγγ is achieved.
Based on Eq. (88), fixing Nc and fπ to the physical values
thus seems to be the reasonable choice, at the price of
overshooting mρ.
However, experimental information exists also for the

slope of the form factor at low momentum, defined as

lim
Q→0

FπγγðQ; 0Þ ¼ −
Nc

12π2fπ

�
1 − aπ

Q2

m2
π
þ � � �

�
: ð90Þ

Using the low-energy expansion for vðz;QÞ,

vðz;QÞ ¼ 1 −Q2

�
1 − 2 log

z
z0

�
z2

4
þ � � � ; ð91Þ

one readily finds [44,45,60]

aπ ¼ −m2
π

Z
z0

0

dzα0ðzÞ
�
1 − 2 log

z
z0

�
z2

4
¼ 0.033; ð92Þ

which is in excellent agreement with the current world
average, ðaπÞexp ¼ 0.0335ð31Þ, if one fixes z0 to match the
physical mρ. Instead, the result is grossly undershot if one
fixes z0 with fπ .
In the following, we will thus consider the following

choices of parameters:
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fπ
Nc

¼ 31 MeV; mρ ¼ 776 MeV; ðSet 1Þ

fπ ¼ 93 MeV; Nc ¼ 3: ðSet 2Þ ð93Þ

Additionally, we will take as input

αem ¼ 1

137.036
; mμ ¼ 105.7MeV; mπ ¼ 135MeV:

ð94Þ

The first choice of parameters ensures the right behavior of
Fπγγ at low energies (intercept and slope). An additional
perk of fixing mρ to its physical value is that the axial-
vector multiplet masses fall into the right ballpark [see
Eq. (18)]. At high energies, it still correctly reproduces the
Q2 fall-off behavior, yet it fails to pin down the right
coefficients. The second choice of parameters matches the
expected short-distance behavior but gives a poor deter-
mination of mρ and the Fπγγ slope.
Given the form of the kernels in the expression for aμ,

which are peaked in the low-GeV regime, one would be
tempted to prioritize the low-energy regime. However, this
depends on how fast the asymptotic regime sets in. In
Figs. 7 and 8 we compare the predictions for the pion form
factor with one virtual photon and both photons virtual with
equal momenta, respectively, using both sets of parameters
in Eq. (93). The lattice result of [61] is also included for
comparison. As expected from our previous discussion,
Set 1 fits the experimental data better than Set 2. However,
aHLbLμ is proportional to the integral of the form factor over
Euclidean space, and is thus sensitive to global aspects of
the form factor. Therefore, there is a priori no reason to
prefer one set of parameters over the other. In the following,

we will report our numbers for both sets. Our final number
will be the average of them.
For the pion contribution we find

aðπÞμ ¼ ð5.7–7.5Þ × 10−10; ð95Þ

where the left and right numbers stand for the Set 1 and
Set 2 predictions. This is in excellent agreement with
previous determinations, e.g., [13,17,18,63–67]

aðπÞμ ¼ 5.7ð0.3Þ × 10−10; ½17; 63�
aðπÞμ ¼ 5.9ð0.9Þ × 10−10; ½13; 64�
aðπÞμ ¼ 5.8ð1.0Þ × 10−10; ½18; 65�
aðπÞμ ¼ 6.8ð0.3Þ × 10−10; ½66�
aðπÞμ ¼ 6.3ð0.3Þ × 10−10: ½67� ð96Þ

In turn, the axial-vector contribution to the longitudinal part
coming from the isovector a1 and its excitations reads

aða1Þμ ¼ 0.4 × 10−10 ð97Þ

for both sets of parameters. The final result for the
longitudinal piece in the isovector channel therefore reads

aLμ ¼ð5.7þ13.5−13.1Þ×10−10¼ 6.1×10−10; ðSet1Þ
aLμ ¼ð7.5þ16.6−16.2Þ×10−10¼ 7.9×10−10; ðSet2Þ

ð98Þ

where the different contributions are ordered as in Eq. (87).
The second number is the contribution of the contact term,
which corresponds to the value for aLμ in the chiral limit.
Notice that the axial-vector contribution is the result of a
large numerical cancellation between the second and third

FIG. 8. Fπγγ when both photons have the same virtuality. The
horizontal line is the OPE value given in Eq. (33). Conventions
are the same as in Fig. 7.

FIG. 7. Fπγγ with one virtual photon. Data points are taken from
[62]. The horizontal line is the asymptotic Brodsky-Lepage limit
for large Q2. The lower dashed line is generated with the
parameters of Set 1, while the upper dashed line is done with
Set 2. The continuous line is the lattice result of Ref. [61], with
the corresponding error bands.
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terms. The result above also shows that the chiral correc-
tions to aLμ amount to a 50% decrease of its value
[see Fig. 9].
The contributions of the isoscalar pseudoscalars will be

estimated by simply using the physical values for masses
and decay constants,

fη ¼ 93 MeV; fη0 ¼ 74 MeV; ð99Þ

mη ¼ 548 MeV; mη0 ¼ 958 MeV: ð100Þ

These numbers are not the ones predicted by the model,
which has an exactly massless Goldstone nonet with a
common decay constant. The introduction of masses can be
argued exactly as we did with the pion: their effects are
limited to the pseudoscalar propagators without affecting
the dynamics of the model. From the five-dimensional
perspective, this can be achieved with the introduction of
flavor-dependent boundary terms. For our purposes, we
will simply add the different masses by hand. Breaking the
degeneracy of the decay constants to fit the experimental
values for the η and η0 can also be done as long as one
consistently correlates it with the corresponding isoscalar
axial-vector channel, such that the sum rules that preserve
anomaly matching remain in place. In practice, this can be
done by modifying the parameter sets to

fη0

Nc
¼ 24.7 MeV; mρ ¼ 776 MeV; ðSet1Þ

fη0 ¼ 74 MeV; Nc ¼ 3; ðSet2Þ ð101Þ

for the η0 and axial-vector f�1ð1420Þ tower, and similarly for
the η and axial-vector f1ð1285Þ tower.

Our results are

aðηÞμ ¼ ð1.4–2.1Þ × 10−10; aðη
0Þ

μ ¼ ð1.0–1.6Þ × 10−10;

aðf1Þμ ¼ 0.4 × 10−10; a
ðf�

1
Þ

μ ¼ 0.6 × 10−10: ð102Þ

We emphasize that the axial-vector contributions are the
result of resumming full towers of states, with the first state
shown as representative. A comparison of these numbers
with the contributions of the lowest-lying axial-vector
mesons reported in [8,68–70] is therefore not meaningful.
We also note that our prescription to satisfy the anomaly
implies that the f1 and f�1 towers of states have the same
flavor structure as η and η0, which is not phenomenologi-
cally favored. One can improve on the low-energy phe-
nomenology of axial-vector mesons [46] but it is not easy
to preserve the anomaly at the same time. Based on these
considerations, we place more confidence in our estimate
for the total axial-vector contribution rather than on less
inclusive, e.g., single-particle, axial-vector contributions.
Regarding the pseudoscalars, the numbers are compa-

rable with the ones quoted in the literature, e.g.,

aðηÞμ ¼ 1.3ð0.1Þ×10−10; aðη
0Þ

μ ¼ 1.2ð0.1Þ×10−10; ½18�
ð103Þ

and the more recent determinations in [49,71,72]. A
comparison of the transition form factors resulting from
both parameter sets is provided in Fig. 10.
Adding all the contributions up, our final number for the

longitudinal contribution of axial vectors and Goldstone
modes is

aLμ ¼ ð9.6–12.6Þ × 10−10: ð104Þ

B. Transverse contributions

The transverse terms of the HLbL tensor collect the
remaining part of the axial-vector contributions. They
represent only a small correction to the HLbL value, but
they are considerably harder to work out. Explicitly, they
follow from

aHLbLμ ¼ 2α3

3π2

Z
∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
Q3

1Q
3
2

×
X12
i¼3

T̄iðQ1; Q2; τÞΠ̄iðQ1; Q2; τÞ; ð105Þ

with the first two scalar factors, which are the longitudinal
contributions, subtracted. The expressions for the scalar
functions in our model are given in Appendix C.
The final values one obtains for the whole towers of

isovector and isoscalar axial-vector states is

FIG. 9. The chiral extrapolation of the isovector component of
aLμ . The upper and lower dashed lines correspond to the
predictions with Set 2 and Set 1, respectively.
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aTμ ¼ 1.4 × 10−10 ð106Þ

for both sets of parameters. As discussed in the previous
section, care has to be taken to use the right input
parameters for each flavor.

C. General discussion

Averaging out the results from the two sets of parameters
and using the spread as an estimate of the uncertainty, our
final number for the contribution of Goldstone modes and
axial-vector states is

aðAVþPSÞ
μ ¼ 12.5ð1.5Þ × 10−10: ð107Þ

The breakdown of the different contributions to this
number is collected in Table I. Our analysis shows that,
since the axial-vector contribution is mostly constrained
by the anomaly, the associated uncertainty happens to be
small. The bulk of the uncertainty of our number comes
instead from the Goldstone contribution, which can only be
improved with better experimental data. However, this does
not mean that our uncertainty on the axial-vector contri-
bution is realistic. As already shown in [19], the splitting of

axial-vector masses inside the multiplet (something that
our model cannot reproduce) can have a sizeable effect.
This effect cannot be estimated within our model, but the
observation recommends that we increase the axial-vector
uncertainty.
Our result can be compared with previous literature on

the same contributions, e.g.,

aðAVþPSÞ
μ ¼ 13.6ð1.5Þ × 10−10; ½19� ð108Þ

aðAVþPSÞ
μ ¼ 12.9ð2.7Þ × 10−10; ½73� ð109Þ

aðAVþPSÞ
μ ¼ 12.1ð2.1Þ × 10−10; ½7� ð110Þ

aðAVþPSÞ
μ ¼ 11.0ð0.6Þ × 10−10; ½46� ð111Þ

showing agreement.
One might wonder whether the comparison above with

[7,19,73] makes sense. After all, the numbers found there
were not obtained by resumming an infinite number of
states, as we did in this work. However, those approaches
obey the same short-distance constraints, which means that
the numbers above are effectively accounting for the same
effects.
A different issue is how the results have to be interpreted.

In particular, care has to be exercised when analyzing the
relative weight of pseudoscalars and axial vectors in the
numbers above. As we already discussed, our model shows
that the MV limit is saturated by the longitudinal part of the
axial-vector states. In the references quoted above, it was
instead assumed (implicitly or explicitly) that pseudosca-
lars were saturating the constraint.
In view of these differences, a more meaningful exercise

would be to compare the longitudinal and transverse
contributions of each determination separately. One would
then find

aLμ ¼ 11.1ð1.5Þ × 10−10; ð112Þ
to be compared with

TABLE I. Results for the longitudinal and transverse contri-
butions to aHLbLμ × 1010 for the set of values described in the text.
In parenthesis, the separate contributions to each entry. The labels
for the axial vectors are understood to take into account not just
the lowest-lying states, but also the whole tower of excitations.

Set 1 Set 2

aPSμ ðπ0 þ ηþ η0Þ 8.1 (5.7þ 1.4þ 1.0) 11.2 (7.5þ 2.1þ 1.6)

aAL
μ ða1 þ f1 þ f�1Þ 1.4 (0.4þ 0.4þ 0.6) 1.4 (0.4þ 0.4þ 0.6)

aLμ ðaPSμ þ aAL
μ Þ 9.6 12.6

aTμ ða1 þ f1 þ f�1Þ 1.4 (0.4þ 0.4þ 0.6) 1.4 (0.4þ 0.4þ 0.6)

aμ 11.0 14.0

FIG. 10. Fηγγ and Fη0γγ with one virtual photon. Experimental
data are taken from [62]. The lower dashed line is generated with
the parameters of Set 1, while the upper dashed line is done
with Set 2.
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aðPSÞμ ¼ 11.4ð1.0Þ × 10−10; ½19�
aðPSÞμ ¼ 11.4ð1.3Þ × 10−10; ½73�
aðPSÞμ ¼ 9.9ð1.6Þ × 10−10; ½7� ð113Þ

and

aTμ ¼ 1.4ð0.2Þ × 10−10; ð114Þ

to be compared with

aðAVÞμ ¼ 2.2ð0.5Þ × 10−10; ½19�
aðAVÞμ ¼ 1.5ð1.0Þ × 10−10; ½73�
aðAVÞμ ¼ 2.2ð0.5Þ × 10−10: ½7� ð115Þ

The results show that the overall agreement carries over
to the separate longitudinal and transverse contributions.
However, when it comes to the separate particle contribu-
tions, we find

aðPSÞμ ¼ 9.6ð1.6Þ× 10−10; aðAVÞμ ¼ 2.8ð0.2Þ× 10−10:

ð116Þ

In other words, we find that the relative weight of axial
vectors is substantially bigger than previously claimed in
the literature. The same conclusion was also reached in
[46]. This does not mean that previous analyses should
increase their estimate for axial vectors, as long as the MV
constraint is satisfied. However, it shows that the analyses
of the lowest-lying axial-vector contributions in [8,68–70]
grossly underestimate the role of axial-vector contributions.
A more detailed analysis of the longitudinal piece shows

that, despite the numerical agreement with [19], the relative
increase in aLμ associated to states other than the Goldstone
modes is more modest in our case, roughly 14%. Given that
we satisfy the same short-distance constraints as [19], this
difference has to have the origin in a different kinematic
regime. In [26,27] the impact of the MV constraint on the
HLbL was estimated using a model with an infinite tower
of pseudoscalars. A smaller number than the one in [19]
was also found, with the discrepancy identified by
differences at low energies. Based on our conclusion in
Sec. VI that axial-vector mesons saturate the MV con-
straint, we believe that massive pseudoscalars do not play a
role in fulfilling the MV constraint (see also related
comments in [73]). Actually, the conceptual difficulties
acknowledged in [27] when taking the chiral limit are
absent if axial vectors are considered. It is nevertheless
instructive to compare their numerical results with ours.
The comparison has to be made between our longitudinal
axial-vector contribution and what [26,27] define as their

short-distance contribution. The reason is that the model
used in [26,27] can be taken simply as an interpolator
between low and high energies, such that it effectively
captures the same effects we have studied. With these
caveats, we find good numerical agreement with them.

VIII. CONCLUSIONS

The evaluation of the hadronic light-by-light contribu-
tion to the muon (g − 2) contains a number of conceptual
issues which are hard to address using the approaches
employed to date. For instance, a consistent phenomeno-
logical implementation of the so-called Melnikov-
Vainshtein limit has turned out to be particularly challeng-
ing. The underlying problem is how to match OPE
constraints with resonance exchanges, which happens to
be highly nontrivial for the muon HLbL.
A framework suitable to study these issues should be

able to evaluate hadronic effects from a Lagrangian
formalism while being able to reproduce the right high-
energy limits of QCD correlators. In other words, one
would need a consistent realization of hadronic physics at
the level of correlators.
This can be done if one starts from a Lagrangian

formulation in five dimensions and integrates out the fifth
dimension. The spectrum of the resulting effective four-
dimensional action contains an infinite number of reso-
nances, with the quantum numbers of the fields introduced
in the initial Lagrangian. In this paper we have chosen a
minimal version of such constructions. The resulting four-
dimensional effective action has a number of interesting
features: (a) it is a theory of Goldstone modes consistently
coupled to full towers of vector and axial-vector resonan-
ces; (b) the anomaly is consistently implemented at the
hadronic level, i.e., at all energies; (c) the high-energy limit
of correlators matches the pQCD predictions, such that
quark-hadron duality is correctly implemented; and (d) it
generates a phenomenologically successful pion transition
form factor.
With this toy model we have evaluated the contributions

of pseudoscalar and axial-vector resonances to the HLbL
four-point electromagnetic correlator in an inclusive way.
We have thereby clarified why the phenomenological
implementation of the Melnikov-Vainshtein limit at the
hadronic level was elusive: the limit results from a
collective effect of axial-vector resonances and, accord-
ingly, cannot be reproduced with a finite number of states.
Similar conclusions were recently drawn in [46]. We have
also explicitly shown how the sum rule that enforces the
Melnikov-Vainshtein limit is the same that implements the
anomaly in the VVA triangle through a nontrivial interplay
(a sum rule driven by anomaly matching) between pseu-
doscalars and the whole tower of axial vectors.
Our final number for the joint Goldstone and axial-vector

contributions is
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aHLbL;ðPSþAVÞ
μ ¼ 12.5ð1.5Þ × 10−10; ð117Þ

where the uncertainty is simply orientative.
This number agrees with previous estimates of the same

contributions that took the MV constraint into account, but
there are some important points to note. First, we claim a
much bigger role for the axial-vector contribution, part of
whose numerical impact has been commonly ascribed to
excited pseudoscalar contributions in previous analyses.
Second, for the relative weight that can be associated with
the MV constraint compared to the Goldstone contribution,
we find roughly 14%, which corresponds entirely to the
longitudinal axial-vector contribution. This relative con-
tribution is smaller than the one claimed in [19] and
comparable to the recent estimates in [27,46].
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APPENDIX A: BULK-TO-BOUNDARY
PROPAGATORS AND GREEN FUNCTIONS

In order to apply the AdS=CFT prescription, it is
convenient to split the fields in terms of the four-
dimensional sources. For our purposes, this can be
written as

Aμðq; zÞ≡ aðq; zÞâ⊥μ ðqÞ þ āðq; zÞâkμðqÞ þ αðzÞiqμ
π

fπ
;

Vμðq; zÞ≡ vðq; zÞv̂⊥μ ðqÞ; ðA1Þ

where q is a four-dimensional momentum. The leading-
order solutions for the functions vðz; qÞ, aðz; qÞ, āðz; qÞ are
called the bulk-to-boundary propagators, which are deter-
mined from the solutions of the linearized equations of
motion in five dimensions:

�
∂z

�
1

z
∂z

	
ημν þ

q2

z
P⊥
μν

�
vðz; qÞ ¼ 0;

�
∂z

�
1

z
∂z

	
ημν þ

q2

z
P⊥
μν

�
aðz; qÞ ¼ 0;�

∂z

�
1

z
∂z

	
ημν

�
āðz; qÞ ¼ 0; ðA2Þ

stemming from the quadratic part of the Yang-Mills term.
The solutions for the transverse components can be

determined once the boundary conditions are specified.
Because of the previous factorization, at z ¼ 0 the mode
functions get normalized to unity, vð0; qÞ ¼ að0; qÞ ¼
āðz; qÞ ¼ 1. At z ¼ z0 chiral symmetry breaking is
enforced with (see the discussion in the main text)

∂zvðz0; qÞ ¼ 0; aðz0; qÞ ¼ 0 ¼ āðz0; qÞ: ðA3Þ

For the evaluation of the different quantities we will mostly
work in Euclidean space. The solutions in that case can be
written in terms of modified Bessel functions as

vðz;QÞ ¼ Qz½K1ðQzÞ þ ξ0I1ðQzÞ�; ðA4Þ

aðz;QÞ ¼ Qz½K1ðQzÞ − ξ1I1ðQzÞ�; ðA5Þ

with

ξ0 ¼
K0ðQz0Þ
I0ðQz0Þ

; ξ1 ¼
K1ðQz0Þ
I1ðQz0Þ

: ðA6Þ

The solution for the axial-vector longitudinal component
can be found by taking the Q → 0 limit of Eq. (A5). The
result is

āðz; qÞ ¼ aðz; 0Þ ¼ 1 −
z2

z20
≡ αðzÞ: ðA7Þ

The following identity:

v0ðz;QÞaðz;QÞ − vðz;QÞa0ðz;QÞ ¼ zQ2ðξ0 þ ξ1Þ; ðA8Þ

follows from the properties of the Wronskian of (A2). It is
convenient to rewrite it in the form

v0ðz;QÞaðz;QÞ−vðz;QÞa0ðz;QÞ¼−
z20Q

2

2
α0ðzÞðξ0þξ1Þ;

ðA9Þ

which is used in the main text to simplify a number of
expressions.
The Green function for the axial-vector channel can be

determined from the equations
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�
∂z

�
1

z
∂z

	
þ q2

z

�
GA⊥ðz; z0;qÞ ¼ δðz − z0Þ;�

∂z

�
1

z
∂z

	�
GA

k ðz; z0;qÞ ¼ δðz − z0Þ; ðA10Þ

where we have decomposed it in terms of its longitudinal
and transverse projectors, i.e.,

GA
μνðz; z0; qÞ ¼ P⊥

μνGA⊥ðz; z0; qÞ þ Pk
μνGA

k ðz; z0; qÞ: ðA11Þ
It satisfies the boundary conditions

GA
μνð0; z0; qÞ ¼ 0; GA

μνðz0; z0; qÞ ¼ 0; ðA12Þ
and the following continuity conditions at z ¼ z0:

GA
μνðz0 þ ϵ; z0; qÞ ¼ GA

μνðz0 − ϵ; z0; qÞ;
∂zGA

μνðz0 þ ϵ; z0; qÞ − ∂zGA
μνðz0 − ϵ; z0; qÞ ¼ z0: ðA13Þ

Since

Gj
kðz; z0Þ ¼ Gj

⊥ðz; z0; 0Þ; ðA14Þ

it suffices to work out the solution of the transverse
component. In Euclidean space, it is given by

GA⊥ðz; z0;QÞ ¼

8>>><
>>>:

−
ðvðz0; QÞ − aðz0; QÞÞaðz;QÞ

Q2ðξ0 þ ξ1Þ
; z > z0

−
aðz0; QÞðvðz;QÞ − aðz;QÞÞ

Q2ðξ0 þ ξ1Þ
; z < z0:

ðA15Þ
Using the results of (A4) and (A5), the expression can be
simplified to

GA⊥ðz; z0;QÞ ¼ −
1

Q2

�
Qz0I1ðQz0Þaðz;QÞ; z > z0

aðz0; QÞQzI1ðQzÞ; z < z0:

ðA16Þ
The longitudinal component is obtained as

GL
Aðz;z0;QÞ¼G⊥

A ðz;z0;0Þ¼

8>>><
>>>:
−
ðz0Þ2
2

αðzÞ z> z0

−
z2

2
αðz0Þ z< z0:

ðA17Þ

Using the expression (A15) and the relation (A8), one
obtains that

∂z∂z0G⊥
A ðz; z0; QÞ

¼ z20
2
α0ðzÞδðz − z0Þ þ 1

Q2ðξ0 þ ξ1Þ
½a0ðzÞa0ðz0Þ

− v0ðz0Þa0ðzÞθðz − z0Þ − v0ðzÞa0ðz0Þθðz0 − zÞ�: ðA18Þ

The longitudinal component is the zero-momentum limit of
the above expression, which leads to

∂z∂z0G
k
Aðz; z0Þ ¼

z20
2
½α0ðzÞδðz − z0Þ þ α0ðzÞα0ðz0Þ�: ðA19Þ

APPENDIX B: AXIAL-VECTOR TWO-POINT
CORRELATOR

The computation of the two-point function

ΠAA
μν ðqÞ ¼ i

Z
d4xeiq_xh0jTfJμðxÞJνð0Þgj0i ðB1Þ

is a simple example to illustrate the importance of keeping
track of sources in order to have consistent expressions for
correlators. It will also be used to fix the values of the free
parameters of the model. Our results will be in the exact
chiral limit.
The relevant part of the action to compute the correlator

is the quadratic term in axial-vector sources. In the holo-
graphic prescription, this term is given by

Seff ¼ −2λ
Z

d4xAμðxÞ
1

z
∂zAμðxÞ

����
z¼0

: ðB2Þ

Plugging Eq. (A1) above, one finds contact terms for
the perpendicular and longitudinal axial-vector sources,
together with a vertex connecting the pion to the longi-
tudinal axial-vector source. Notice this important feature of
the model: while the pion and axial-vector modes are
decoupled [this determines the form of αðzÞ], the pion still
couples to the longitudinal axial-vector sources. This just
shows that the model correctly implements PCAC.
The explicit expression for the two-point correlator takes

the form

ΠAA
μν ðqÞ ¼ −4λ

�
P⊥
αμP⊥

ανaðq; zÞ
1

z
∂zaðq; zÞ þ Pk

αμP
k
ανāðq; zÞ 1

z
∂zāðq; zÞ þ Pk

αμP
k
α0ν

qαqα
0

q2
αðzÞ 1

z
∂zαðzÞ

�����
z¼0

¼ −4λ
�
P⊥
μνaðq; zÞ

1

z
∂zaðq; zÞ þ Pk

μνāðq; zÞ 1
z
∂zāðq; zÞ þ Pk

μναðzÞ 1
z
∂zαðzÞ

�����
z¼0

; ðB3Þ

where the last term corresponds to the pion propagation.
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At very low energies one can check that að0; zÞ ¼
āð0; zÞ ¼ αðzÞ and the expression above can be simplified to

lim
q2→0

ΠAA
μν ðqÞ ¼ −4λðP⊥

μν þ 2Pk
μνÞαðzÞ 1z ∂zαðzÞ

����
z¼0

¼ 8λ

z20
P⊥
μν; ðB4Þ

where in the last linewe have used the explicit expression for
αðzÞ. The previous equation can be alternatively obtained
using that

Aμð0; xÞ ¼
uμ
2
≡ −

i
2
u†DμUu†; ðB5Þ

where DμU ¼ ∂μU − ilμU þ iUrμ. This ensures, in par-
ticular, that the low-energy limit of this model matches chiral
perturbation theory, as it should. This means that the
prefactor in (B4) is to be identified with f2π , i.e.,

8λ

z20
¼ f2π; ðB6Þ

and thus one obtains Eq. (17) in the main text.
The important point to emphasize is that the pion

propagation alone is longitudinal, and only the inclusion

of both the longitudinal and the transversal local contact
terms makes ΠAA

μν a transverse object, as required by the
Ward identity in the chiral limit. This role of the contact
terms is in close analogy to what we observed for the VVA
correlator in Sec. V.
The leading short-distance behavior of Eq. (B3) can be

found by expanding the two-point axial-vector correlator
close to the UV boundary.

lim
Q2→∞

ΠAA
μν ðqÞ ¼ −2λ log

Q2

μ2
P⊥
μν; ðB7Þ

which is reproduced from the transverse piece alone.
Matching to the coefficient of the parton-model logarithm
gives the result reported in Eq. (15).

APPENDIX C: SCALAR COEFFICIENTS FROM
THE TRANSVERSE PART OF THE
AXIAL-VECTOR GREEN FUNCTION

If one uses the formalism described in [24], one
can decompose the HLbL tensor into 54 tensorial
structures. Details and definitions can be found in this
reference. In this Appendix we just list the form of the
scalar functions Π̄iðq21; q22; q23Þ; i ¼ 1;…12 as predicted
by our model.

Defining

WTðqa1; q2b; q2c; q2dÞ≡
Z

z0

0

dz
Z

z0

0

dz0vðz; q2aÞ∂zvðz; q2bÞGT
Aðz; z0; ðqa þ qbÞ2Þvðz0; q2cÞ∂z0vðz0; q2dÞ; ðC1Þ

one gets (q4 ¼ 0 and q3 ¼ −q1 − q2)

Π̄3ðq21; q22; q23Þ ¼
1

q21q
2
2ðq1 þ q2Þ2

½q22ðq1 · q2 þ q22ÞWTðq22; q23; 0; q21Þ þ q21ðq1 · q2 þ q21ÞWTð0; q22; q21; q23Þ�; ðC2Þ

Π̄4ðq21; q22; q23Þ ¼
1

q21q
2
2ðq1 þ q2Þ2

½q23ðq1 · q2 þ q22ÞWTðq23; q22; 0; q21Þ − q21q1 · q2W
Tðq21; q22; 0; q23Þ�; ðC3Þ

Π̄5ðq21; q22; q23Þ ¼
1

q21q
2
2ðq1 þ q2Þ2

½q22WTðq22; q23; 0; q21Þ − ðq1 þ q2Þ2WTðq23; q22; 0; q21Þ − q21W
Tð0; q22; q21; q23Þ�; ðC4Þ

Π̄6ðq21; q22; q23Þ ¼
1

q21q
2
2ðq1 þ q2Þ2

½q21WTðq21; q22; 0; q23Þ − q22W
Tðq22; q21; 0; q23Þ − ðq1 þ q2Þ2WTðq23; q22; 0; q21Þ�; ðC5Þ

Π̄7ðq21; q22; q23Þ ¼ −
1

q21q
2
2ðq1 þ q2Þ2

½q21WTðq21; q22; 0; q23Þ þ q22W
Tðq22; q23; 0; q21Þ − ðq1 þ q2Þ2WTðq23; q22; 0; q21Þ�; ðC6Þ

Π̄8ðq21; q22; q23Þ ¼
1

2q21q
2
2ðq1 þ q2Þ2

½q22ðWTðq22; q23; 0; q21Þ−WTðq22; q21; 0; q23ÞÞ

þq21ðWTðq21; q22; 0; q23Þ þWTð0; q22;q21; q23ÞÞ þ ðq1 þ q2Þ2ðWTðq23; q22; 0; q21Þ −WTð0; q22;q23; q21ÞÞ�; ðC7Þ
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Π̄9ðq21; q22; q23Þ ¼
1

2q21q
2
2ðq1 þ q2Þ2

½q21ðWTðq21; q22; 0; q23Þ−WTð0; q22;q31; q23ÞÞ

þq22ðWTðq22; q21; 0; q23Þ−WTðq22; q23; 0; q21ÞÞ þ ðq1 þ q2Þ2ðWTðq23; q22; 0; q21Þ þWTð0; q22;q23; q21ÞÞ�; ðC8Þ

Π̄10ðq21;q22;q23Þ¼
1

2q21q
2
2ðq1þq2Þ2

½q22ðWTðq22;q21;0;q23ÞþWTðq22;q23;0;q21ÞÞ

þq21ðWTðq21;q22;0;q23ÞþWTð0;q22;q21;q23ÞÞþðq1þq2Þ2ðWTðq23;q22;0;q21ÞþWTð0;q22;q23;q21ÞÞ�; ðC9Þ

Π̄11ðq21; q22; q23Þ ¼
1

2q21q
2
2ðq1 þ q2Þ2

½q21ðWTðq21; q22; 0; q23Þ−WTð0; q22;q21; q23ÞÞ

þq22ðWTðq22; q21; 0; q23Þ−WTðq22; q23; 0; q21ÞÞ− ðq1 þ q2Þ2ðWTðq23; q22; 0; q21Þ−WTð0; q22;q23; q21ÞÞ�; ðC10Þ

Π̄12ðq21;q22;q23Þ ¼
1

2q21q
2
2ðq1þq2Þ2

½q21ðWTðq21;q22;0;q23Þ−WTð0;q22;q21;q23ÞÞ

−q22ðWTðq22;q21;0;q23Þ−WTðq22;q23;0;q21ÞÞþ ðq1þq2Þ2ðWTðq23;q22;0;q21Þ−WTð0;q22;q23;q21ÞÞ�: ðC11Þ

In all the Π̄i above, vðz; q24Þ [or vðz0; q24Þ] always appear without derivative, and since we are taking the q4 → 0 limit, if
follows that vðz; q24Þ → 1. Thus, the integral at the soft-photon vertex contains the product of the transverse axial-vector
Green function and only one derivative both depending on the same four-momentum. This leads to simplifications.
For instance, let us consider the case

WTðq21; q22; 0; q23Þ ¼
Z

z0

0

dz
Z

z0

0

dz0vðz; q21Þ∂zvðz; q22ÞGT
Aðz; z0; q23Þ∂z0vðz0; q23Þ; ðC12Þ

where q3 ¼ −q1 − q2, and we have used that vðz; 0Þ ¼ 1. Then the following identity holds:

Z
z0

0

dz0GT
Aðz; z0; q2Þ∂z0vðz0; q2Þ ¼

1

2

z20
2
ðaðz; q2Þ − αðzÞvðz; q2ÞÞ; ðC13Þ

so that one is left with a single integration:

WTðq21; q22; 0; ðq1 þ q2Þ2Þ ¼
1

2

z20
2

Z
z0

0

dz vðz; q21Þ∂zvðz; q22Þðaðz; ðq1 þ q2Þ2Þ − αðzÞvðz; ðq1 þ q2Þ2ÞÞ; ðC14Þ

which can be evaluated numerically.
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