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We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum
computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path
integral as a quantum mechanical path integral over 0 4+ 1-dimensional fermionic and bosonic worldlines.
The proper time evolution of these worldlines can be determined on a quantum computer. While extremely
challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the
worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits
can be written down. As a first application, we employ the color glass condensate effective theory to
construct the quantum algorithm for a simple dipole model of the F, structure function. We outline further
how this computation scales up in complexity and extends in scope to other real-time correlation functions.
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I. INTRODUCTION

From its early role in the discovery of partons and
asymptotic freedom, deeply inelastic scattering (DIS) of
electrons off protons and heavier nuclei has been a funda-
mental tool in studying the quark-gluon structure of matter
[1-5]. The simplest DIS quantities are the inclusive
structure functions F, and F; which, respectively, provide
information on the sum of the quark and antiquark
distributions, and the gluon distribution, in the target proton
or nucleus [6,7].

Computing structure functions from first principles is an
outstanding problem in quantum chromodynamics (QCD)
because they are proportional to nucleon/nuclear matrix
elements of products of electromagnetic currents that are
lightlike separated in Minkowski spacetime. In contrast,
Monte Carlo computations in lattice QCD are robust in
Euclidean spacetime. The operator product expansion
(OPE) [8] allows one to compute moments of structure
functions in lattice QCD, but such computations are res-
tricted to low moments [9]. There are interesting alternative
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developments whereby so-called quasi- or pseudo-pdfs are
computed on the lattice [10-13]; excellent reviews of the
status of “classical” computation of structure functions can
be found in [14,15].

Given the formidable challenge, it is worthwhile to ask
whether simulations on a quantum computer can overcome
the limitations of classical Monte Carlo approaches. An
appropriate analogy is that of the sign problem at finite
baryon chemical potential in QCD [16,17]. In this noisy-
intermediate-scale-quantum (NISQ) era [18], a path for-
ward is to identify simple but scalable problems that are
tractable and to explore their implementation on quantum
devices [19-25].

We will outline in this paper a digitization strategy
whereby progress can be made constructing the Hilbert
space of a relativistic quantum field theory from “world-
line/single particle” states. We illustrate this approach, as a
simple first step, for the fermion sector of the QCD path
integral, by expressing the fermion determinant in the QCD
effective action as a quantum mechanical “worldline” path
integral [26-39] over fermionic and bosonic variables,’'
which when interpreted in a Hamiltonian formulation
suggests a novel digitization strategy of the underlying
quantum field theory. The primary objective of this manu-
script is to motivate and spell out the conceptual founda-
tions of this approach with the eventual goal being a
computation on quantum hardware.

'For a worldline approach to quantum computing in other
contexts, we refer the reader to [40-44].

Published by the American Physical Society
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In Sec. II, we will outline the essential elements of
this worldline formalism. We will then, in Sec. III, apply
it to discuss the quantum computation of F, in an
effective field theory approach to the high energy
“Regge” limit of QCD. Section IV will identify the
quantum circuits needed for the simplest toy model
computation. In Sec. V, we will discuss the gradual
scaling of the computation in complexity to address
quantum computation in DIS to high orders in pertur-
bation theory in the Regge limit. In Sec. VI, we outline
the digitization strategy for bosonic worldlines in the
context of a relativistic scalar field theory. A detailed
discussion of the corresponding quantum circuits and
their implementation on quantum hardware will be
discussed in a follow-up paper [45]. In the concluding
Sec. VII, we will discuss the expansion in scope of this
worldline/single particle framework to address scattering
amplitudes and other real time correlation functions that
are classically challenging in both perturbative and
nonperturbative QCD. We will outline the significant
practical and conceptual challenges facing realistic
computations of QCD real time distributions in the
NISQ era and beyond. The paper has two Appendices.
In the first Appendix, we discuss the preparation of the
initial state of the proton in the worldline formalism. In
Appendix B, we discuss some details of the quantum
circuit discussed in Sec. IV.

II. WORLDLINE REPRESENTATION OF THE
EFFECTIVE ACTION

The Euclidean QCD + QED effective action can be
expressed as

1 ig
Feltial = yTriog (02 = DE, 0 1). ()

where the A, represent the QCD gauge fields, a* the
QED photon field, with g and e the respective SU(N.)
and U(1) gauge couplings. Further, we have D* = D, DF,
with the covariant derivative D, = 0, —igA, — iea,,
F, zé[Dﬂ,Dy] is the field-strength tensor, and the
operator trace is over position, as well as color and
spin degrees of freedom.” The logarithm in Eq. (1) can
be written in integral form and a heat-kernel regulari-
zation of this expression [26] allows one to evaluate -
the functional trace in a coherent state basis for the
coordinate £,|x) = x,[x) and the momentum p,|p) =
pulp). giving tr (0) = [d*x(x|Olx) = [d*p(p|O|p).
The trace over the Dirac matrix structure may be
expressed in a coherent state basis of fermionic crea-
tion-annihilation operators [26-28]

*We will consider only light fermions and for simplicity will
not include a mass term explicitly in most of the computations.

a1 ) .1 )

aI = 5(3’1 +iy3), a) = 5(71 — iy3)

1 . .1 .

“; =5 (r2 + iya), =35 (r2 —ira) (2)

of the Clifford algebra of Euclidean Dirac matrices,
satisfying [y,.7,], =26, (u=1, 2, 3, 4). The fer-
mionic coherent states are defined by

a,l6) = 0,10).  ajler) = 6;107). (3)

where 6;, 07, with i = 1,2, are Grassmann variables. The
spinor trace in this coherent state basis is given by the
functional integral tr;O =i [ d’0(—0|O|0) with the nor-
malization tr I = 4 [46]. The Majorana representation of
these is

—i
=—(607-6,),
Y3 \/Q(l l)
—i

(605 + 6,), Wy /2 (605 —6,). (4)

w =—= (0] +6,),

\®)

szﬁ

Likewise, as outlined in Appendix A, the trace for
SU(3) color may be expressed as the Grassmann inte-
gral [27,28.47] tr,O = [d®2(=2|O}1) by introducing
the coherent states, ¢,|A) = A,|4), é4|A*) = A%|4*), where
a = 1,2, 3. However for the purposes of this discussion, we
shall keep the trace over color explicit.

Employing these coherent states, and analytically con-
tinuing to Minkowski space (—I'y — iI"), one obtains the
quantum mechanical path integral [26,37,38]

| [ dT _
Maia) = =5 [P [ Damp [ Dyesia, (5

with the action

. i
S|A;a] = /dr(pﬂx" +§l//#l//” - H[A;a}), (6)
and the worldline Hamiltonian given by
H[A;a] = P? + igy"F,, [Aly* + iey*F, [aly*. (7)

Here P, = p, — gA,(x) —ea,(x), A, = Ajt* and F,, =
Fy,t¢, with t* the SU(3) generators in the fundamental
representation. Further, P (AP) denote periodic (antiperi-
odic) boundary conditions for commuting (anticommuting)
variables.

III. DIS IN THE REGGE LIMIT

In the inclusive DIS process £(I) + N(P) — ¢(I') + X,
the cross section for the interaction between the lepton (¢)
and the hadron (N) can be factorized into the convolution
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of the lepton tensor L,,, corresponding to the exchange
of a virtual photon y* with spacelike four-momentum
g=1-1=(q",49",0,0), and the hadron tensor W
representing the interaction of the virtual photon with
the parton constituents of the hadron [48]. The latter is
given by the imaginary part of the forward Compton
amplitude:

Wr(q, P, S) = Imi/d“X@“‘"‘(RSITf”(X)f”(O)IP, S).
T
(8)

where “T” denotes time ordering of the bilinear product of

electromagnetic current operators ;¥ = Wy*¥ of quark
fields ¥ in the hadron state with four-momentum P and
spin S. Structure functions extracted from W, (g, P, S) are

expressed in terms of the Lorentz scalars Q? = —g> > 0
and xp; = Q*/(2P-q). In particular F, (xBJ, Q%) is
obtained from the projection’ F =I1°W,,, with

I = 3f—u‘f[%—ﬂ], a=P- q/(2xBJ) —I—M2 and M the
hadron mass.

In lattice gauge theory, direct evaluation of the time
ordered product on the rhs of Eq. (8) requires computing
the ratio of four-point and two-point Euclidean correlators
and subsequent analytic continuation from Euclidean to
Minkowski space [50-53]. In Sec. V (some details are
also given in Appendix A), we outline a first principles
computation of W, in the worldline formalism which
illustrates the complexity of the problem. We will return to
these issues shortly.

We will argue here that significant progress towards
quantum computation of structure functions can be made
in Regge kinematics, corresponding to Q> = fixed, and
Xpj ~ 0?/s — 0," where the squared center-of-mass energy
s &% 2P"q~. In this limit, a Born-Oppenheimer separation
of scales appears between fast (xg; ~ 1) and slow (xg; < 1)
degrees of freedom [55-57], allowing the former to be
described as static color sources and the latter as dynamical
gauge fields coupled to the sources.

This argument is quantified in the color glass condensate
effective field theory (CGC EFT) [58], wherein an emer-
gent scale proportional to the density of color sources
grows through a Wilsonian renormalization group evolu-
tion of the separation between sources and fields with
decreasing xg; [59-62]. In Regge asymptotics, this scale
is larger than intrinsic nonperturbative QCD scales and
therefore the hadron tensor in the CGC EFT can be written
as [63,64]

3Similar expressions for F; and g;.¢> can be found in [49].

Interestingly, these asymptotics are the most daunting for
classical computing approaches since the OPE breaks down at
small xg; [54].

WH(q, P, S) —Im/dQXl/dX / /d“
kK

X @i g=ik(X~+%) =ik (X~—5)
< [ Dowlp] [ AT ki)
oiTIA+iSlAp]. 9)
where [, = [d*k/(2z)*. We work in light cone coordi-
nates x* = (x° + x%) /2, p* = (p° £ p?)/+/2, assuming

a right moving hadron with large P*. In Eq. (9),
S[A.p| = =3 F5 For +J-A> Here J¢ = 8 p°(x~,x ),
where the static large xp; color source density p¢(x~, x )
(¢ = 1,...,8) has support limited to Ax™ = 1/P" and W/[p]
is a gauge invariant weight functional representing the
nonperturbative distribution of these sources. The polari-
zation tensor I* is given by

i6T'[A; a]
W a=0

where I'[A; a] is the QCD + QED effective action with the
worldline representation given in Eq. (5).

We will now discuss the computation of ', on a quantum
computer. The simplest problem we can address in 3 + 1
dimensions is to determine the quantum algorithm for the
static “shock wave” solution A% = (0,A,0,0) to the
Yang-Mills equations in the CGC EFT where A}“(x) =
P¢(x1)8(x7), with p¢(x,,x7) ~ p(x,)8(x7). In this back-
ground, the worldline effective action can be written as

[[Ag,a :——tr / /d4xd29x —0|eiHlAaalT|x gy,
(11)

where the Hamiltonian operator H is obtained by quantiz-
ing Eq. (7). While consistent quantization requires that we
eliminate states with indefinite metric from the physical
subspace of the theory [66], it will not be relevant for the
computation of F, we consider here. We will return to this
issue in Sec. V.

Computing the hadron tensor Eq. (9) from Egs. (10) and
(11) facilitates the simplest possible hybrid quantum
computation where only the spinor trace is simulated on
a digital quantum computer. Starting from the worldline
representation of the effective action in the shock wave
background field A, given by Eq. (11) where the worldline
Hamiltonian H[A, a] is defined by Eq. (7) and depends on
both the external electromagnetic field a,(x) and back-
ground gluon field of the target A, (x). In the Regge limit of

if””[k, k'] —_ /d4zd4zl eik'z-s-ik/.z,’ (10)

Note that the term J-A can also be written in a gauge
invariant generalization [65] but for the problem of interest here,
this simpler form will suffice.

016007-3



MUELLER, TARASOV, and VENUGOPALAN

PHYS. REV. D 102, 016007 (2020)

QCD, the imaginary part of the polarization tensor I'** in
Eq. (10) has the physical interpretation of the virtual photon
(emitted by the electron) splitting into a color singlet ¢g
“dipole” long before its interaction with the target. This
interaction, which has the structure of a shock wave, is
instantaneous and localized on the worldline at two
arbitrary instants 7 and 7’ in proper time.

The quantum computation of the trace over the fermionic
degrees of freedom in I', given by the integral [ d*@, is our
principal objective here. As discussed in Appendix A, the
trace over color can also be expressed as a quantum
mechanical path integral in the worldline action. For the
purposes of this computation, to keep things simple, we
will keep the trace over color explicit.

We first divide the worldline effective action into N
segments of size dz. Since the interaction A, is localized, at
most two segments of the worldline can interact with the
background field. As a result, we get

[

X / d*6 Z(x —0|Sy j11(a)

ij=1
i<j

F[ s d

—iH[Aq.a= O]r‘STS

x e ( ) e—iﬁ,- [Aq,a=0]67

j—1i+1
X SAi—l,l(a)|x99>- (12)

Here H;[A,, a = 0] is the Hamiltonian of segment number
i where the interaction with the shock wave background
field is located and where the photon field a,(x) = 0.

Further, S'm,n(a) denotes segments where the converse is
true; the worldline only interacts with the external photon
field:

—iH;[A=0,a]é7 (13)

m
mn ||

and S‘m’n(a) =1lifm<n.

In general, there could be a segment of the worldline
containing both the shock wave A and the photon field a,
defined by the general operator exp (—iH,[A,a|dt).
Examples of these segments are shown in Figs. 1(c) and
1(d). Indeed, there are several contributions of this type in
Eq. (10) and one has to sum over all of these contributions.
However in the computation of F,, there is a cancellation
between terms with the structure of Figs. 1(c) and 1(d). Asa
result, only the diagrams in Figs. 1(a) and 1(b) contribute.
To discuss the contributions of Figs. 1(a) and 1(b), we insert
momentum states p; and p, adjacent to the shock wave
interaction segment (labelled r below), using the complete-
ness relation

/ & pralpra)(pral = 1. (14)

N St
O

FIG. 1. Diagrammatic contributions to the photon polarization
tensor in the hybrid worldline formalism.

yielding

<p |e—1H A= 0a67|p2>

= ie(pi|(p a+a p-2ip"p*0,a,)ot|py).  (15)

The rhs here is obtained by expanding the evolution
operator in Eq. (12) up to linear terms in the photon field
a,(x). [Since there are no contact terms in Fig. 1(a), it is
safe to omit quadratic terms in the expansion.]

Next inserting first a complete set of coordinate states,
and subsequently taking the Fourier transformation of the
first derivative of Eq. (15) with respect to the external
photon field, we obtain the relation

| —iﬁ[A:O,a]61|p2>eikz

o
d4
/ Z(SCZH(Z) <p] e
— g d4 d4
le/ Z/ Xé

— 20p"70,a,(x)) x| pa)ecor

—ie / de(p (P + ph) — 20457k (x| pa) 5

(16)

) (pra(x) + a(x)ps

which gives the structure of the interaction segment of the

worldline with the external photon of momentum k.
Similarly, one can derive the form of the interaction

segment between the worldline and the shock wave:

dkt ..
—/a"‘x Te_lk X
T

< (p, |x>[<p; + p;) 2y,
x e S AERE ( pvse(17)

where the phase in A, denotes multiple scattering off the
background field. Substituting the explicit form of the
interaction vertices Eqgs. (16) and (17) into Eq. (12), yields
for the contribution from Fig. 1(a),

<pl|e—zHAa 0]5r|p
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W’(JZ) (Q7 )

dsz_ 1

2
/dle/d 3€lkixi/ /

2m)? {m+m +2(1-2)Q*H(p — k)1 +m* +z(1 - 2)Q*}

X{i/ POo(—60][(2p™ =247 — k) + 2k Je LA (0 gy 1 2]

X [(2p™ = k=) = 24k, o0 S AN 00T (g qb—zk”>—2u>”z/>ﬂqplleo>}

, (18)

k==0

where we integrated over intermediate coordinates and momenta, as well as over the positions of the interaction segments
on the worldline. Note that we introduced the variable z = p~/¢~. The diagram in Fig. 1(b) has a similar structure allowing

.

one to compute W(Z)(q, P). Further technical details of the worldline computation of this “dipole model” can be found

in Ref. [64].
To compute F,, we need to sum both contributions and consider the projection
B Q2 3 Q2
P 4P-q[(P-q)

— P'PY — g””] W, (19)

where W, = W,(ff,) + W,(fz). After integrating over transverse momenta p | and k; and summing over flavors f, we get our

final result:

F>(q,

163 Z /dz/dxm[

oy m)up(ou}

x i / A0y (00| — 30%2(1 - 2)[(22 — 1) + 27y *][(22 — 1) — 29+ |K3(0%x )

+2{z? + (1 - 2)°} 0}K]
—4z(1 — 2) Q2 H i~

where 0} = z(1 —2)Q* + m7} and

Uy (x,) = exp{—ig / e dx‘A:j(x‘,xl)}, (21)

—Ax"/2

where Ax~™ = 1/PT — 0 is the width of the shock wave in
the high energy limit. The x| independent terms stem from
the diagram in Fig. 1(b) and ensure the UV finiteness of the
expression at this order. Finally combining the terms
containing the MacDonald functions K ; into the well-

_ . . 6
known y* — gg wave functions ‘P{’T, we arrive at

o 2
Paa.p) =50 [l [ [ St
TLTif
<D ()i [ Pol-ouszxlo).  (22)

Here [, = [d’xy, [.= [§ dz, >°; 75 is the sum over the
photon polarization and quark flavors, 6 = f d’X | is the
transverse radius of the hadron/nucleus and |¥; 7 (x, , 2) |?

®As noted earlier, F, can be obtained by taking a different
kinematic projection of W,

(Ofx1) —4z(1 = 2) Q% vy v K (Qfx 1)
K3(0fx 1) + 2(1 = 2)(42° — 42+ 3)Q°K(QFx 1) +2m3KG(0Fx1)|6p).  (20)

denotes the modulus squared of the wave function of a
virtual photon with longitudinal (L) or transverse (T)
polarization to split into a quark-antiquark dipole,

N,
¥ ox )P = T 0221 - PR Q). (29
2 2Nc _ _
Wz ) = L (@ + (1= 920Ky
+ MKy (24)

where e, represents the fractional charge of a quark of
flavor f, Q% = z(1 — z)Q* + m7. The dipole-hadron cross
section is given by D, (x,) = - tr.[1 = U, (x,) x U}(0,)]
for a given p. )

In Eq. (22), €, 7 are given by

QL(Z’XJ_>

1

= m {—%[(21 — 1)+ 2p ][22 - 1) — 24y t]

L 3
— YTy — gty _Z(]_Z)+Z}’ (25)
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where Q7(z,x,) =1 is trivial and need not be quantum
computed, while [2z -1+ 2y '] and y/y* are the
photon vertex insertions described further below. We note
finally that we set exp(il") in Eq. (9) to unity, which is valid
to leading order in the coupling.

IV. WORLDLINE ALGORITHM FOR
THE DIPOLE MODEL

The trace in Eq. (22) of Eq. (25) can be determined on a
quantum computer. We quantize w* — y#* = ysy*/+/2,
where y# are the Dirac matrices in Minkowski spacetime
satisfying [y,.7,], = 2g,, with (+ —) signature and

y = iy%'y*3. We then replace y° = (b —b,)/V2,

= (B)+0)/vV2, ' = (b} +b,)/vV2 and 4P =
—i(l;; — 1;2)/\/5, where 13?, 5i (i=1,2) are fennion cre-
ation and annihilation operators satisfying [b}, b j]
Further, we define light cone operators ' = bI and
y~ = —b.

Perforr;ﬁng a Jordan-Wigner transformation 15'[ = (o*—
i6")/2 @1, b, = (6" +i0”) /2 QL b} = 6* ® (6" — ic*)/2
and 52 =06°Q® (6" + ic’ ) /2 we can write the individual
terms in Eqgs. (25) and (21) as

1
it = -5+ ®L
1
plpt = ———[0" F io”] ® o,
'y 2\/5[ F io’]
1
Pt = o Fio']l @ o7, 26
Wy 2f[ ] (26)

allowing us to express the shock wave operator and the
photon vertex terms as quantum circuits of 2-qubit oper-
ations involving tensor products of the Pauli spin operators
and the unit operator.

One can evaluate the spin traces in Eq. (22) with the
quantum circuit

6. = 10} 0] {H] gat

ﬁn = Hn/2n QL,T

(n qubits) — —

where p. = |0)(0| is an auxiliary control qubit p, and
p, =1,/2" initially, which combine to form the density
matrix p = p. ® p, (valid for any unitary n-qubit operator
Q) [67-69]. The elements of the circuit, specified in
detail in Appendix B, include the Hadamard gate H, the
controlled-Q; 7 [C(Q; 7)] gate, and the measurement of
the Pauli operators (¢*) and (¢”). The action of the latter on
the control qubit yields the real and imaginary part of
Tr[Q; 7], respectively [68]. The controlled-Q; 7 gate can be
straightforwardly constructed and is given in Appendix B.

This completes the quantum algorithm to measure the
worldline trace in Eq. (22).

V. EXPANDING IN COMPLEXITY

We presented above a quantum circuit for the worldline
representation of the fermion determinant in the limit of a
localized proper time interaction. The toy problem we
outlined has the virtue that analytical results for F, are
known for specific choices of W[p] and therefore provide a
benchmark to test our quantum algorithm. It can however
be expanded significantly in complexity. To appreciate this,
we note that the rhs of Eq. (8) is the “in-in”” matrix element
of a real-time correlation function, where

|P.S) = Uo—00)Pp.s10) (28)

represents the state of the hadron (specifically a proton)
before its interaction with the virtual photon. Here u (tr) =
exp (—iH(t — ') where H is the QCD Hamiltonian. The
operator dA)p,S creates a “valence” quark and gluon state
with the proton’s quantum numbers from the noninteracting
vacuum at past infinity, P = ®ps|0)(Dpg|0))7; the
proton is the result of its subsequent evolution with the
QCD Hamiltonian.

The proton state defined by Eq. (28) is encoded in a
partition function Z = Tr(pps), where ppg = |P, S)(P, S| is
the proton’s density matrix. It is related to the initial state
Pinit = Pp.s|0)(Dp 5|0))" by the QCD evolution operator
and may be expressed as the Schwinger-Keldysh path
integral [70,71],

Z = Tr[pps] = Tr[t o —co)pinidd (-0 0)) = / dA,dA,

X/lelle2<A1aTl'ﬁinit|A27lP2>
AZ \FZ - .

x / DA | DYDPeS, (29)
A, v,

where S¢ = [d*xc{-1tr.F, F*" +¥(iy"D,[A] + m)¥}
is the QCD action which has support on the Keldysh
double time contour C depicted in Fig. 2. We abbre-
viated D, =0, —igA,, dA,; =]]x,dA,2(x), where
Ap(x)=A (x1/2) DA =[]y, . dA,(x, 1) and likewise
for the fermionic integrals.

In Eq. (29), (A, ¥,|5|A,, ¥,) are matrix elements of an
initial density matrix of noninteracting quarks and gluons at
t = =00, Pinig = Pym ® Py, Where pyy = [0)(0] is the

\1117@1,14.1 t
> ~ .
< - "

et \IIQ, @2,142

FIG. 2. Visualization of the Schwinger-Keldsyh contour,
Eq. (29).
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Yang-Mills vacuum and py is a three valence quark state
with the proton’s quantum numbers. Aiming at performing
the fermionic path integral, we may write

A Az .
2= [ andnsailpeaiac) [ Daz,lajexp (isY).
1
(30)

where
~ ¥, T . oq
Zf[A]E/d‘{‘lle2<lP1|pV|lP2>[P D‘PD‘PCXp{lSC},
1
(31)

with iS¢ = [ d*zeP(iD[A] + m)¥ and SSM = —1 [d*z x
tr,F*F,,.

Before considering the more complicated case of a
baryon with three quarks, we consider first that of a
single valence quark. We will also ignore the flavor part
of this single valence quark state. Matrix elements for
momentum, spin and color of its initial density matrix p, =
p,s,c)(p, s, c| are given by

<lP1 |ﬁq|lIJ2> = <lPl |p’ s, C> <p’ s, c
:2Ep/d3x1d3xz[u;s,cll’(xl)]

x [PT(x,)u

%)

JeiP(xi=X2) (32)

p.s.c

where up, ;. = up, ¢ ® ©, represents the quark spinor and
color wave function, and E, ~ |p| for light quarks. The
QCD path integral [Eq. (31)] may be written in terms of this
initial condition as

. ¥ -
Zi[A] = / d¥,d¥,2E, / X dPx;[uh 5 - V(X)) [P (X)) - 1y ]I /y " DWDP exp {iS%}
1

—2E, / Px, x5 uh L Ou ]

:det[—iG_I]ZEp/d3xld3xzeip("'"‘Z)Tr[up’x,cu;,swcyOGA(xz,xl)],

where [DY'DY = [d¥,d¥, [y* DYDY and G=
(iP[A] —m)~" is the quark propagator. We used that
G(x1.%,)7° = y°G(x,,x;) at equal times 7, =, in the
last equality of Eq. (33). The trace in Eq. (33) and the
indices i, j are over spin and color.

Employing the worldline representation of the fermion
determinant, det(—iG™") = exp (il'[A]), yields

['[A] = iTrlog(—iG™")

DeD
— tr,i / DxDp | DODO* / X expl i / di, p*
P AP Vol g

i i
— 0.0 +-0,0i —H “ A
Ze,el 29,65 [x,p,0,0%; ]},

(34)
where i = 1,2 and the Hamiltonian given by

. . nw_
H[X,P,e,g ’A] = (P2 + lgl//ﬂF/u/[A]l// )_EPM//#’ (35)

€
2
with w0 = (6] -6,)/V2, v*=(0;+6))/V2, y'=
(05 4+ 6,)/V2 and w? = —i(05 —0,)/v/2 in Minkowski
spacetime. It is convenient to keep the 6;,6;, instead of
the Majorana representation yw* when we give explicit
expression of the valence quark initial density matrix in
Appendix A. .

Naive quantization of w° — y° as in Eq. (7) leads to
states with indefinite metric. To consistently quantize the

167,(x,)6

52

/ DY PP iSi [ dxeT¥+P)
J;(X5) J=J=0

(33)

|

Dirac theory we therefore need to restrict the path
integral measure Dy =iDODO* in Eq. (34) to the
physical subspace of the Hamiltonian in Eq. (35).
The Dirac constraint defining this subspace is imple-
mented via an (anticommuting) Lagrange multiplier
variable y(z) and the mass-shell constraint via the
commuting Lagrange multiplier, the “einbein” (7).
Note that in this more general real-time formulation
the dT/T integral in Eq. (5) is replaced by the integral
over €(7). For details of this “BRST fixing” of a gauge
symmetry related to worldline reparametrization, we
refer the reader to the discussion in [34,39]. In this
formulation, “Vol” denotes the volume of the gauge
group [34].

The Dirac and mass-shell constraints can be
solved on the operator level to eliminate ° and p°.
These are given by y° = pip'/p°, where p® = £|p| (at
leading order in the coupling g) acting on states of
definite three-momentum p. Solutions of the constraint
equation at higher order in g are given in Sec. III
of [37].

Defining,

<xl ’ _61 |ﬁq|x2’ 92> = <_91 ‘up,su;,5y0‘92>q)c¢);r
X 2E,5(x(z = 0) — 1)

x 6(xY(r = T) — 1y)ePi7%2) | (36)
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where #, - —oo, and using Schwinger’s proper time
representation of the quark propagator in Eq. (33) we write’

2E, / d3x1d3X2e"P(X"XZ)Tr[upﬁs,cu;,s,cyoé(xz,X,)]
:trci/d4x1d4x2/d291J292<x1,—91|ﬁq|x2,92>

x 0. DeD
x/ " DxDp 21)92)9*/ ¢ /Zexp{i/d'w'cﬂp”
X 6, Vol

i

2

0,07 + éeié;‘ — H(x, p.0. 9*)}. (37)

With this and Eq. (34), we can formally express the
partition function of the proton with three valence quarks as

3
Z =tr 3 / dA,dA, / [H d4x’fd4x’2‘d29’fd29’2‘]
k=1
X (A1[palAz) (x1, =0, |pv|x2, 6,)

A 3o o DekDyk
x/ Z’DA{H/"kaDpk/"DQkDQ*k < f(]
Al =1 /% o Vol

x exp{ngM + iz Sg} exp {iT'[A]}, (38)

k=1

where the fermion worldline action is
K _ ek Lk | E ok
Scz/d’l'{xﬂp ’”—EQiQi +§6191 —H}, (39)

and the Hamiltonian is given by Eq. (35). Here i = 1,2
labels the components of the Grassmann variables defined
in Eq. (3), while & labels the valence quarks. The expression
for the three valence quark initial density matrix for this
worldline path integral including spin, color and flavor is
given in Appendix A. For the sake of a compact notation,
we omit henceforth writing DeDy explicitly and shall
instead consider it to be part of the worldline path integral
measure.

Upon (gauge-)fixing the worldline parametrization, by
identifying worldline time 7 € [0, 7] with physical time
x(l) P for upper and lower Keldysh contours,

W =x00) =1+,

X =30(c) = 1o+ (T = 7).

t<T/2,
t>T/2, (40)

Eq. (38) becomes a Schwinger-Keldysh path integral in
physical time x° for the time evolution of bosonic and

"Note the volume Vol’ of the gauge group in Eq. (37) differs
from that in Eq. (34), due to the absence of zero modes present for
periodic boundary conditions.

BB gi i
x4, p1, 01,07 t

\

v

N
g

N T
5‘24’27957921

FIG. 3. The worldline path integrals for the quark effective
action and propagator Eqs. (34)—(37) have support on a
Schwinger-Keldysh contour.

Grassmann worldline variables as well as Yang-Mills
fields; See Fig. 3 for illustration. In this coordinate-fixed
formulation, we set the einbein parameter ¢ = 1/p° and
employ the temporal-axial gauge A° = 0.

The hadron tensor in Eq. (8) is defined by an in-in matrix
element of time-ordered electromagnetic currents. Intro-
ducing (auxiliary) electromagnetic fields a,(x), we can
relate this matrix element to the proton partition function
[Eq. (381,

(P. ST (x)]*(0)|P.S) = Tr[pp s T{"(x)}*(0)}]

A

S — 41

ida,(z)ida,(0) (“41)
Using the definition

O AP L S o
{H/k DxFDp ; DOFDO ]exp{zZSC}

k=1 1 k=1
= (x5, 6,17 [A:ad) __[Asa)|x,.0 42
= (0. 007, (4@l [Asallx.0y), (42)

where |x,0) = [[3_, [x*,0%), and the worldline time evo-
lution operator for three valence quarks is
A 3
Uy, [Asa) = exp {—i A*[A; a)(1 - ﬂ)}, (43)

k=1

we can write the hadron tensor as
1 .
W (q,P,S) = —Imtr / d*ze'* / dA,dA,
e

3
x/ {Hd“x’l‘d“xédzelfd%é] (A1lpyulAz)
k=1

52

iéa,(z)ida,(0)
x [0, O ) [As @) [As a1, 0)

x exp {iSEM[A] +iT[A; al}]] .- (44)

X (xl,—91|ﬁv|x2,62>/DA

Here, I'[A; a] is given in Eq. (34). The time ordering in this
expression is such that one current operator insertion is on
the upper (representing the amplitude), the other on the
lower (representing the conjugate amplitude) Keldsyh
contour [72].
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The derivative in Eq. (44) yields two terms:

P)

Imtr, i / d*zel? / dA dA, (A, |palAs)

W (q,
A

e

x / [Hd“ﬁdﬁ’gd@’fﬁ&’g] (x1,=0, |py|x2,6,) / DA
k=1

~N3B) ~3) B3 G ~(3
{0l T @UE T T (O)U) 1xi0)

0,2)" (3 (z.00)
(2 Ol U3 oy 1.61)i0[4](2.0)}
xexp{iSYM[A] +iT'[A]}. (45)

The first term is the valence quark contribution where the
derivative acts on any of the valence quarks,

5 A
Wu(ij*i“) = u(?wz)]’é) (DU 1), (46)

as depicted at the top of Fig. 4. Here, J” (z) S (z)
can be explicitly computed by Varylng the worldline
Hamiltonian

Jilz) = F [PY + iitapiq, )6 (2 — %,(2°)).  (47)
k

The second term in Eq. (45), where the derivative acts on
the exponential exp (i['[A; a]), yields the photon polariza-
tion tensor,

~

iF””[A} (Z,O) = trci/d4xJ29(x, —9|Z/A{(_°owz)f”(z)bl(z,oo)

A

X U o001 (01U ,-0) X, ). (48)

FIG. 4. Top: Photon interaction with valence quarks. Bottom:
Interaction with quark-antiquark pairs created from the color field
of the proton.. The red-dashed line denotes the imaginary part
taken via Cutkosky rules or equivalently the separation of the
amplitude and the conjugate amplitude in this process.

In the dipole picture, this term may be understood as the
virtual photon fluctuating into a quark-antiquark pair which
subsequently interacts with the color field of the target (see
bottom of Fig. 4). This term provides by far the dominant
contribution to F, in the high energy limit of the CGC EFT
with the first term suppressed by xg; as xgj — 0.

To bring Eq. (45) into a form useful for quantum simu-
lation, we insert a complete set of states into Eq. (48) and
write

i [A] (Z, O)
:trci/d4x1d4x2/d291£f292

X (x1, =04 12, 0) (%2, 02| oo .
FO)U g o) |X1. 01).

A

(U 0)

X Z/A{(oo_()) (49)

We then perform a loop expansion of exp (il'/A]) =
® ,(il'[A])"/n!, allowing us to express the hadron tensor
[Eq. (45)] as

2.1
Wi (g, P.S) = _— Wiy (q. P.S). (50)
n=0

where the n-quark loop contribution is given by
A+n
we — L, [tz e [ #*xtatsia?oia?o%
() pe2 ¢ k—l 14 Ad" 0 A0,
x it / dA dAy(A[palA)
X (x1,=01|py @ pr ® L,|x2, 05)
X <x2’ 92aA2|U~j(—oo,z)jl(l4)(z)[]j(z,oo)
X Uj(oo.o) AI(/4)<O)[O(O,—00) X1, 601, A), (51)

where |x,0,A) = |x,0)|A). The worldline and Yang-Mills
evolution operator is UAJ(,’,J) =exp{—iH(t—1)} with H =
Hyy + Z4+” H* being the sum of the coordinate-fixed
Hamiltonian of the kth worldline H*:

A | N A NTAp | oA I
Hk = 7 (P% + lgl//}leﬂu[A(xk)]l//z + lgl/’ll:Fﬂb[a(xk)]Wll:)v
k
(52)

and the Yang-Mills Hamiltonian in temporal-axial gauge,

A 1 A | BN
Avi= [ @ B0 + 3 BOP. (53)
where E¢(x) and B"(x) = ¢k F%/¥(x) /2 are the chromo-
electric and chromomagnetic field operators respectively.
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o

FIG. 5. High energy shock wave limit of the photon-proton
interaction.

To summarize, the hadron tensor [Eq. (8)] in its most
general form can be expressed as a hybrid Yang-Mills and
quark worldline path integral,

© _ n+4

1 . i
v 4 ,iq-z
WH —ﬂ_ezlm/d ze'd* E Py

n=0
n+4
x / {H d4x’;d4x§d29’;d29§}
k=1

x / A dAs 1, (x1. ~01. Ay 0. O, As)

~

X <)C2, 92’A2|®(—oo,z)jl(l4)(z)u(z,oo)
X [D(oo,o)jl(ﬁ) (O)U:I(O,—oo)|xlv 0,A)). (54)

It is important to note that p° and 17° here are not dynamical
operators and are removed from the physical Hilbert
space by Dirac and mass-shell constraints, as discussed
previously.

Equation (54) is the master formula for computing
structure functions as the initial value problem 0,p =
—i[A, p] with the initial condition p,y;, followed by the
measurement of electromagnetic worldline current oper-
ators. As discussed previously, the initial density matrix in
this coherent state basis at past infinity P = pym ®
Py ® pr ®1I,. Here pyy = |0)(0] is the noninteracting
Yang-Mills vacuum, p r contains initial conditions for k =
1,2,3 valence quarks, kK = 4 denotes the quark-antiquark
dipole pr =1 in the polarization tensor I'**, and [, is a
unit matrix representing the other k = 5, ..., n “sea-quark”
Fock states.

The simpler expression for W in Eq. (9) is obtained
from Eq. (54) because of the separation of timescales
between large and small xg; modes we alluded to pre-
viously. This limit is illustrated in Fig. 5. Valence quarks
(k=1,2,3) and large xg; partons become quasistatic color
sources and therefore the tensor product representing their
density matrix can be replaced with the weight functional
W{p] [73]. Further, in Eq. (9), only the polarization tensor
(k = 4) representing the virtual photon splitting into a
quark-antiquark pair is computed explicitly and the path
integral over gauge fields is greatly simplified in the

CGC EFT by performing the weak coupling expansion
around A.

VI. SINGLE PARTICLE DIGITIZATION
STRATEGY

The scheme we outlined thus far, of expressing the
fermion sector of the QCD path integral via quantum
mechanical worldlines, may serve as a template for a novel
digitization strategy. We illustrated here only the simplest
part of such a program, the treatment of internal sym-
metries, explicitly in terms of circuits. However the central
result of this work is the general path integral formulation
in Eq. (54), from which a Hamiltonian time evolution
scheme can be derived. We have yet to prove the practi-
cality of our approach for actual computation, using
quantum hardware resources that are realistically available.
Specifically, for any significant extension beyond the
simplest toy problem discussed here, it is essential that
the bosonic worldline variables X and p be quantum
simulated. We will outline below first steps in this direction
by considering the qubit digitization of single (position and
momentum) (quasi)particle Hilbert spaces in scalar quan-
tum field theory (QFT); this is work in progress that will be
reported on in a follow-up paper [45].

We propose the use of a basis of M relativistic worldline/
single particle states H =Q® | H,, where H; = {|p)"},
{|x)} are N discretized momentum and position eigen-
states p = p,, X =X,, (n,m € Z) that are binary encoded
in a sequence of d log, (N) spin/qubits per particle register i
[plus additional auxiliary qubit(s) for their occupation
number/(fermion)parity]. Here d = 3 denotes the dimen-
sion. We emphasize that this basis should not be confused
with the usual harmonic oscillator basis of Fock operators
in momentum space.

Implementing this single particle/worldline digitization
strategy requires order O(M log,(N?)) qubits, where M is
proportional to the number of external particles and
loops, typically of order M ~ O(10-50). Reflecting the
large dynamical range of momenta probed in high energy
scattering experiments, typically N¢ ~ O(100%). A more
conventional digitization, e.g. constructed from local
Hilbert spaces of Heisenberg (lattice) field operators
{lp)}, {|7¢)} would require roughly O(Nlog(Ny.))
qubits, where N, is the size of the local field operator
space [22,74,78]. In this comparison, our strategy is well
suited for high energy scattering, but will fare worse for
systems with very large occupation numbers.

To prepare a scattering “experiment,” we create an initial
state of n (and M-n nonoccupied) noninteracting wave
packets efficiently by a variant of (pairwise) Bell entangle-
ment of aforementioned n occupied and M — n nonoccu-
pied single particle states {|p)(}. This is very efficient in
our basis. We then use a Trotter scheme to perform unitary
time evolution. The kinetic part of the Hamiltonian is
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diagonal in our basis (of Bose- or Fermi-symmetrized
single particle states) [75]. Moreover one can directly work
with the continuum dispersion relation instead of the lattice
one,? up to the largest |p| that can be realized for a given
qubit digitization.

Interaction terms are highly nonlocal in the {|p)®}
basis; however, we can transform to the {|x)()} basis to
compute them. A difficulty is that [p)() and |x)(?) are not
simply Fourier conjugates in a relativistic theory, but are
connected by a quantum Fourier transformation (which is
particle local) and a variant of a (“intermode”) squeezing
transformation’ (which in our basis is two-particle local). In
the resulting |x)() basis, interaction terms (for instance, the
¢* interaction term in a scalar field theory) involve (Bose or
Fermi symmetrized) interactions between all particle sec-
tors but are few-particle local (four in the case of ¢*). To
relate our procedure to an actual cross section, we measure
noninteracting, asymptotic states in the basis {|p)(?},
following [22,78].

We will report on this strategy in a forthcoming paper
[45], including also a detailed resources analysis in
particular for the squeezing and interaction part. We note
that, for d = 1, a simplified toy computation with few
particles and on small systems requires only tens of qubits,
and thus may allow an error analysis, at least for some
elements of the algorithm. We plan to explore whether this
approach is competitive to that of [22,78], in particular for
scattering problems which typically have a few particles but
a large position (and momentum) space volume.

VII. OUTLOOK: EXPANDING IN SCOPE

We have focused thus far on laying the conceptual
foundations of our hybrid approach “bottom-up” for the
physical system of interest (instead of a toy model); the
high energy Regge limit is likely a fertile starting point
for this approach. This hybrid framework may also allow
one to quantum compute not just structure functions but in
principle multileg and multiloop scattering amplitudes.'
The diagrammatic expansion of Feynman amplitudes in
perturbation theory exhibit factorial growth in the number
of diagrams at each loop order [22,78]. In sharp con-
trast, such computations on a quantum computer with
fermionic and bosonic worldline variables would require

*In the lattice digitization of Heisenberg field operators, the
dispersion relation depends on the discretization of the kinetic
term in lattice position space [74]. It can be improved by making
this term more and more nonlocal.

In our case, this transformation is related, but distinct from the
bosonic “intramode” squeezing used in quantum optics [76,77].

We note that worldline methods have been extensively used
in such computations [26,79-83]; it would be interesting to
explore computing the nontrivial color and spinor traces therein
utilizing the worldline quantum circuits discussed in Appendix B.

resources that only scale polynomially with the number of
particles."!

Extending our toy problem systematically within the
CGC EFT is manageable because one would, as a first
step, gauge covariantly couple the |{|x)()} basis to the
Yang-Mills part, which is treated classically. For the full
nonperturbative problem [Eq. (54)], the dominant part of
resources would be used to realize the Yang-Mills Hilbert
space, using the Kogut-Susskind lattice Hamiltonian
approach [88]. This is a difficult problem and its imple-
mentation on analog and digital quantum devices is
deservedly a subject of much attention [§9—92], prominent
examples being quantum link models [89] and the matrix
product state formalism [93-98]. Some related recent
proposals are discussed in [99-102].

Preparing the projectile and target state is a nontrivial
problem requiring a large number of time evolution steps;
for example, in a Trotter scheme, this would imply a large
number of gate operations. Moreover simulation errors
drive the system from the physical part of the Hilbert,
requiring high fidelity of the gate operations. It is con-
ceivable that different approaches [99-102] will have
different sensitivity to errors and should be investigated
further. An advantage of the high energy limit is that the
initial proton state at small xg; is not in the ground state but
in a highly excited state, implying shorter preparation time.

We note finally that this phase space worldline formalism
permits a semiclassical Moyal expansion [103] to construct
Wigner functions [39]. These are accessible in DIS
[104,105] and therefore allow one to probe systematically,
at higher orders in 7, parton entanglement in QCD at high
energies [106-108].

ACKNOWLEDGMENTS

We thank P. Bedaque, J. Berges, M. Creutz, P. Hauke, H.
Lamm, P. Love, M. McGuigan, P. Petreczky, R. Pisarski,
M. Savage and T. Zache for discussions on quantum
information science. We would like to thank the Institute
for Nuclear Theory at the University of Washington and the
ITP Heidelberg for their kind hospitality during the
completion of this work. The authors are supported by
the U.S. Department of Energy, Office of Science, Office
of Nuclear Physics, under Contract No. DE-SC0012704
and by U.S. DOE Grant No. DE-SC0004286 (A.T.),
within the framework of the Beam Energy Scan
Theory (BEST) Topical Collaboration and the Topical
Collaboration for the Coordinated Theoretical Approach
to Transverse Momentum Dependent Hadron Structure
in QCD (TMD Collaboration). N. M. is funded by the
Deutsche  Forschungsgemeinschaft (DFG, German
Research Foundation)—Project No. 404640738.

""An important issue to address in this context is the renorm-
alization of infinities at each loop order. These have been
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APPENDIX A: WORLDLINE REPRESENTATION
OF THE PROTON’S SPIN, FLAVOR AND
COLOR VALENCE STRUCTURE

In this Appendix, we discuss the representation
of the proton’s initial density matrix composed of the
valence quarks, including color, spin and flavor. The
valence wave function of a proton polarized along its
momentum (S = 1/2) is a direct product of a color singlet

and a combined spin/flavor part ®p¢|0) = |color) ®
|spin/flavor) [109],
|spin/flavor)

fl (Du(t)d()) = \[Iu( Ju({)d(1))

- Wimu)u(ﬂd(ﬁ} + (permutations), (A1)

where 1(]) represents a quark with spin s = 1/2 (—1/2)
while

ek, j, k). (A2)

|color) = % Z

ijke(r,g.b)

We outline first the worldline representation of the spin
part. The single quark spin density matrix with spin
s = £1/2, assuming a right-moving valence quark with

large p

1
tp sttp.s = 5 (14 2s75)p™r 77", (A3)
Using the representation of the Clifford algebra of the
Lorentz group and the representation of the chirality matrix
in terms of fermion creation and annihilation operators
b}, b;,

2

s = —(=1) 2 PP -1 -25). a9
we obtain
2 A A A A
up sup.s = pI[1 =25 [ (1 = 26}6))(1 = b1by).  (AS)

j=1
Using the Jordan Wigner transformation, this may be
written as
upisuz,,s = %{H QI+ QI-2sI® 6° —256° Q@ 6°}.
(A6)

To write the color structure of the worldline density
matrix and the effective action, we first introduce the

representation of the color trace tr. of an operator O in
terms of Grassmann coherent states,

tr.0 = / dPA(=1|0]A). (A7)

More generally, the trace over a path ordered color matrix
exponential in this formalism is [27,28,47]

tr,Pexp | [’/TdrM( )]

/ D¢ / DA DA it5-1)

di ,
X exp [i / dr (MT —— /VM/1>] ,
0 dr

where the Grassmann variables 4;, A7, with i = 1,2, 3 being

IREAT ]

A At
Wigner-Weyl symbols of fermonic operators ¢;, ¢;,

(A8)

alay =12, ela) = x12), (A9)
similar to Eqs. (2)—(4) for spin. In Eq. (A8), ¢ is the
Lagrange multiplier implementing the constraint restricting
the fermion creation and annihilation operators to act on a
finite dimensional representation of SU(3). The color-
matrix valued coordinate fixed worldline Hamiltonian in

Eq. (52) may therefore be generalized to

o . o
A = o ()(Pk_‘_lgWI]:CkTFzy[A( )i et

el (A10)
Here, P, = p, — ig¢jA%(x)t},¢, — iea,(x) and n=3 is
the dimension of the matrix M(z).

A single quark color matrix can be written in terms of the
unit matrix I3 and the SU(3) generators ¢ (in fundamental
representation) as Peoior = I3/3 + > 5_, 919, where ¢ are
c-number coefficients. In the worldline formulation, where
color traces are expressed through Grassmann coherent
states, this may equivalently be written as

abc

pAcolor =1+ Ap d2 ljtkltmnCATé\]cAk mCA + 2¢a ;l/ Aj AJ’
(A11)
as derived in [39].
In the (r,g,b) basis the coefficients ¢* are
53 + \/%5“8 (red)
Pt =4 —6% + \%5“8 (green) (A12)
—%5“8 (blue).
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The color-flavor-spin density matrix of a baryon, contain-
ing three valence quarks is written as the product of a
symmetric spin flavor [Eq. (Al)] and an antisymmetric
color-singlet part [Eq. (A2)]. Employing the Jordan-Wigner
transformation, as in the spinor case, the color density
matrix may be written as a three-qubit quantum circuit.

APPENDIX B: QUANTUM CIRCUIT FOR THE
WORLDLINE COMPUTATION OF F,

In this Appendix, we will present details of the quantum
circuits required for the worldline computation of F, in
Eq. (22). To compute the trace in Eq. (22) we employ the
circuit in Eq. (27). Here the n = 2 circuit qubits are initially
in a mixed state with density matrix p, = I,/22, while an
additional control qubit (in a pure state |0)(0|) is used. The
combined density matrix of control and circuit qubits after
employing Eq. (27) is

_ 1L Q7
P2+e 23 QL’T ]I2 s

so that measurement of 6 and ¢” on the control qubit yields

(B1)

(o) = Trlo*] = 25 Re[Tr2 ],
(o) =Tilo'j] =~ 3y ImTe, /). (B2)

A crucial ingredient in Eq. (27) is the controlled gate
C(Qrr) = (5 Q(L)r)' Since €, 7 is decomposed into more

fundamental gates Q; 7 = [[; G, where G' stands for the

Hadamard gate H = \/% (1 ') and the phase gate S = (; 9),

we can construct C(Q; 7) from the controlled gates of its
constituents [110],

c@ur) = [[C(6). (B3)

This allows us to write the control circuit of Eq. (26).

We can also use the fact that C(6%) is a standard gate
available on present and future hardware to write C(¢*) and
C(o”),

- 4
— e Has (B)
using
SHo*HS™ = ¢” (B6)
Ho'H = o, (B7)

where = . Implementations of controlled

Hadamard and phase gates can be found for example in
[110,111].
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