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We show that the on-shell effective theory (OSEFT) is the quantum field theory counterpart of a Foldy-
Wouthuysen diagonalization of relativistic quantum mechanics for massless fermions. Thus, it is free of the
Zitterbewegung oscillations that would yield an ill-defined meaning to the semiclassical transport approach
at short distances if derived from the pure Dirac picture. We present a detailed derivation of the collision
terms in the chiral kinetic theory using the OSEFT. Collision integrals are derived up to order 1=E, where E
is the energy of an on-shell fermion. At this order, the collision terms depend on the spin tensor of the
fermion, and in the presence of chiral imbalance, it describes how a massless fermion of a given helicity
interacts differently with the transverse photons of different circular polarization. In order to back up our
results, we check that they allow us to reproduce the fermion decay rate in an ultradegenerate plasma with a
chiral imbalance computed directly from QED.
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I. INTRODUCTION

In this manuscript we continue our work on the derivation
of chiral transport theory from the on-shell effective field
theory (OSEFT) [1,2]. We first discuss how the OSEFT is
equivalent to a Foldy-Wouthuysen diagonalization for mass-
less fermions, and we discuss several of its subtleties. Then
we present a detailed derivation of the collision terms of the
chiral kinetic theory, as derived from OSEFT. We assume a
system composed of massless chiral charged fermions
interacting through electromagnetic fields.
The chiral kinetic theory (CKT) was first proposed in

Refs. [3–5] starting with the action of a point particle

modified by the Berry curvature, together with a modified
Poisson bracket structure. Different alternative derivations
have been discussed in the literature since then [1,6–16].
The CKT was initially formulated as a sort of semi-

classical approach, where the point particle picture of
classical mechanics could be used to see how some relevant
quantum effects modify different transport phenomena. It
is also possible to derive such framework from quantum
field theory. However, one could run into the same sort of
ambiguities as those that were found when trying to give a
semiclassical interpretation to the Dirac equation. It is well
known that the Dirac Hamiltonian mixes up the dynamical
evolution of positive and negative energy solutions [17,18],
an effect that is apparent in the famous Zitterbewegung
(ZB) motion of relativistic electrons [19], which occurs
over distances of the order of the Compton wavelength of
the particle, λc ¼ ℏ=ðmcÞ. The ZB oscillations also have
an effect on the relativistic transport approach [20]. To
eliminate the ZB oscillations one should fold the quantum
Wigner function with a coarse graining function, such that
the ZB oscillations are averaged out [21]. These steps
are also needed to render a proper classical probabilistic

*stefano.carignano@fqa.ub.edu
†cmanuel@ice.csic.es
‡torres-rincon@itp.uni-frankfurt.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 016003 (2020)

2470-0010=2020=102(1)=016003(18) 016003-1 Published by the American Physical Society

https://orcid.org/0000-0001-5470-8416
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.016003&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevD.102.016003
https://doi.org/10.1103/PhysRevD.102.016003
https://doi.org/10.1103/PhysRevD.102.016003
https://doi.org/10.1103/PhysRevD.102.016003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


meaning to the quantum approach, as otherwise the
quantum Wigner function S can take negative values at
short distances. Typically these considerations are over-
looked, as one considers that the quantum transport
approach is only valid at enough large scales, much larger
than λc, by imposing as a condition jλcγμ∂μ

XSðX; pÞj ≪
jSðX; pÞj. In the massless case, this condition is also used
by simply replacing λc by λdB ¼ ℏc=E, the de Broglie
wavelength, where E ¼ cp is the fermion energy [22].
It is possible to get rid of theZBoscillations of the quantum

relativistic fermions by performing a Foldy-Wouthuysen
(FW) diagonalization of the Dirac Hamiltonian [17]. The
physical interpretation of the rotated fields differs from those
of the original Pauli-Dirac picture (see Sec. III for a more
detaileddiscussion).ThepioneeringworkofFWwasdone for
massive relativistic fermions and showed that one could
properly disentangle the particle and antiparticle sectors
interacting with weak electromagnetic fields as an expansion
in 1=m, wherem is the fermion mass. Later on, it was shown
that the same could be achieved with the use of effective field
theories, such as nonrelativistic quantum electrodynamics
(NRQED) [23].
In a similar fashion, it is also possible to disentangle the

dynamics of particle and antiparticle sectors of massless
relativistic fermions, as an expansion in 1=E, assuming
that the energy is the large scale of the problem. We have
derived an effective field theory approach for that purpose
[1]. A detailed derivation of the OSEFT Lagrangian has
been given in Refs. [1,2,24,25]. Let us also mention here
that the OSEFT has also been used for other purposes not
related to transport theory, such as describing the power
corrections of the hard thermal loop amplitudes of QED
[24,25], providing the same result as that derived directly
from QED [26].
In this manuscript we prove that the OSEFT

Lagrangian can be derived order by order via successive
FW transformations of the QED Lagrangian. Once this
equivalence is noted, several implications appear in the
interpretation of our fermion fields, as the OSEFT
“particle field” is a combination of the original particle
and antiparticle components of the Dirac spinor, as it
occurs after a FW diagonalization. In other words, the
effective semiclassical particle is seen as a combination
of Dirac particles and antiparticles and has different
properties [27].
All the above discussion is relevant to understand the

differences of the chiral transport equation as derived from
the OSEFT, or as derived from the Dirac picture, after an
ℏ-expansion [8]. It was noted in Ref. [28] that these
differences arise because the two equations act on different
degrees of freedom, which is correct. However, while the
OSEFT is free of the ZB effects, a systematic procedure to
eliminate the ZB oscillations as derived from the Dirac
picture should be worked out, such as the coarse graining
mentioned in Ref. [21], that would necessarily introduce a

minimal length scale in the resulting framework. Details of
this procedure, and how it might affect the resulting
transport approach when going beyond the pure classical
limit, are yet to be discussed. This is a relevant question in
CKT as the transport equation contains terms of the order
∼∂X

μ =E which could measure fluctuations of the Wigner
function at scales that are sensitive to the ZB effects.
This paper is structured as follows. In Sec. II we show

that the OSEFT Lagrangian up to order 1=E2, which was
used in Ref. [2] for the derivation of the collisionless CKT,
can be recovered from the QED Lagrangian by carrying
out subsequent FW diagonalizations. Higher-order terms
could be derived as well, but we leave this for future
projects. In Sec. III we provide several discussions related
to the FW versus Pauli-Dirac representations, reparamet-
rization invariance of the OSEFT, and the so-called side
jumps. In Sec. IV we present the basic steps to construct
the transport equation from quantum field theory. This is a
reminder of the standard techniques, based mostly on
Refs. [29,30] for QED, and could be skipped by those
readers who are familiar with them. In Sec. V we comment
on the differences and particularities in the derivation of
the transport equation in the OSEFT case. In Sec. VI we
provide the basic steps on the calculation of the collision
terms in the OSEFT. In Sec. VII we compute the fermion
decay rate in an ultradegenerate plasma using kinetic
theory with a QED matrix element, and check that after a
1=E expansion it can be reproduced using our OSEFT
results for an isotropic plasma. Finally we present our
conclusions in Sec. VIII. We devote the Appendix A to
collect some of the notation we use in this article. In
Appendix B we recall the structure of the photon propa-
gator in a medium with chiral imbalance. We will use
natural units in this paper ℏ ¼ c ¼ kB ¼ 1, unless other-
wise indicated.

II. DERIVATION OF THE OSEFT FROM
A FW DIAGONALIZATION

Consider a massless charged fermion in a given frame
with energy E and lightlike velocity vμ ¼ ð1; vÞ, where v is
a unit 3-vector. Let us define ṽμ ¼ ð1;−vÞ, which is also a
lightlike vector. Thus v2 ¼ ṽ2 ¼ 0, but v · ṽ ¼ 2. We also
define the orthogonal projector,

Pμν
⊥ ¼ gμν −

1

2
ðvμṽν þ ṽμvνÞ: ð1Þ

The massless QED Lagrangian describing this fermion
reads

L ¼ ψ̄ ð0Þi=Dψ ð0Þ; ð2Þ

where ψ ð0Þ is the standard Dirac spinor and Dμ ¼ ∂μ þ
ieAμ is the covariant derivative.
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We first perform the change in the field

ψ ð1Þ ¼ exp ðiEv · xÞψ ð0Þ; ð3Þ

and using the decomposition (1) the Lagrangian can be
written as

L ¼ ψ̄ ð1Þ
�
i=D⊥ þ ṽ

2
ðiv ·DÞ þ =v

2
ð2Eþ iṽ ·DÞ

�
ψ ð1Þ; ð4Þ

where =D⊥ ¼ γ⊥ ·D ¼ Pμν
⊥ γμDν.

We define particle and antiparticle projectors as

Pv ¼
1

2
=v=u; Pṽ ¼

1

2
=̃v=u; ð5Þ

respectively, where uμ ¼ ð1; 0Þ is a 4-vector describing the
rest frame. By noting that =vPv ¼ ṽPṽ ¼ 0, ṽPv ¼ 2=uPv,
and =vPṽ ¼ 2=uPṽ, one can check that Eq. (4) reproduces the
Lagrangian Eq. (55) of Ref. [1] for a single fermion of
energy E and velocity vμ.
Unfortunately, Eq. (4) mixes up particle and antiparticle

degrees of freedom due to the presence of the “odd”
operator i=D⊥. To disentangle these 2 degrees of freedom
of the Dirac field a couple of different techniques were used
in Ref. [1]. First, a FW diagonalization at the Hamiltonian
level, performed as an expansion in ℏ. An effective field

theory, the OSEFT, was then also proposed to separate
particle and antiparticle degrees of freedom of the Dirac
field at a quantum field theory level. While it is not a priori
obvious, the two approaches are fully equivalent. To show
this we present here a third equivalent way, which consists
of performing a FW diagonalization at the Lagrangian
level, which allows us to recover the OSEFT Lagrangian at
a given order of accuracy. These three techniques have been
proven to be equivalent for relativistic massive fermions,
when the diagonalization is carried out as an expansion in
1=m [31,32], the inverse of the fermion mass.
In order to be fully general, and to recover the results of

OSEFT in an arbitrary frame [2], from now on we will
allow the frame vector uμ to be an arbitrary timelike vector
u2 ¼ 1 fulfilling the condition

uμ ¼ vμ þ ṽμ

2
: ð6Þ

To remove the odd operator in Eq. (4) we carry out the
canonical transformation

ψ ð2Þ ¼ exp

�
=uSð1Þ

2E

�
ψ ð1Þ; Sð1Þ ≡ i=D⊥: ð7Þ

The Lagrangian acting on the new field reads

L ¼ ψ̄ ð2Þ exp
�
=ui=D⊥
2E

��
i=D⊥ þ =̃v

2
ðiv ·DÞ þ =v

2
ð2Eþ iṽ ·DÞ

�
exp

�
−
=ui=D⊥
2E

�
ψ ð2Þ: ð8Þ

Using the formula

eABe−A ¼ Bþ ½A; B� þ 1

2!
½A; ½A; B�� þ 1

3!
½A; ½A; ½A; B��� þ � � � ð9Þ

one can explicitly work out every term in the Lagrangian in terms of a 1=E expansion,

L ¼ ψ̄ ð2Þ
�
=̃v
2
ðiv ·DÞ þ =v

2
ð2Eþ iṽ ·DÞ

�
ψ ð2Þ

þ 1

2E
ψ̄ ð2Þ

�
ði=D⊥Þ2=u − i=D⊥iv ·D

=v=̃v
4
− iv ·Di=D⊥

=̃v=v
4
− i=D⊥iṽ ·D

=̃v=v
4
− iṽ ·Di=D⊥

=v=̃v
4

�
ψ ð2Þ

−
1

16E2
ψ̄ ð2Þðfði=D⊥Þ2; iv ·Dg=̃vþ 2i=D⊥iv ·Di=D⊥=vþ 2i=D⊥iṽ ·Di=D⊥=̃v

þ fði=D⊥Þ2; iṽ ·Dg=vÞψ ð2Þ − ψ̄ ð2Þ 1

3E2
ði=D⊥Þ3ψ ð2Þ þO

�
1

E3

�
: ð10Þ

Notice that in Eq. (10) we have eliminated the “odd” operator at leading order, but additional odd operators connecting
particles and antiparticles at orders 1=E and 1=E2 are still present. To eliminate those at Oð1=EÞ we need to carry out an
additional transformation,

ψ ð3Þ ¼ exp

�
=uSð2Þ

2E

�
ψ ð2Þ; ð11Þ
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with

Sð2Þ ≡ −
1

2E
½ði=D⊥iv ·Dþ iṽ ·Di=D⊥ÞPv þ ðiv ·Di=D⊥ þ i=D⊥iṽ ·DÞPṽ�: ð12Þ

This transformation generates itself new odd terms at subleading orders, while keeping the even operators untouched. Yet
another transformation,

ψ ð4Þ ¼ exp

�
=uSð3Þ

2E

�
ψ ð3Þ; ð13Þ

with

Sð3Þ ≡ 1

4E2
ði=D⊥ðiv ·DÞ2 þ 2iṽ ·Di=D⊥iv ·Dþ ðiṽ ·DÞ2i=D⊥ÞPv

þ 1

4E2
ði=D⊥ðiṽ ·DÞ2 þ 2iv ·Di=D⊥iṽ ·Dþ ðiv ·DÞ2i=D⊥ÞPṽ −

1

3E2
ði=D⊥Þ3 ð14Þ

will remove all the pieces that mix particles and antiparticles at order 1=E2 (while there will be odd operators at the
following orders in the energy expansion). Successive canonical transformations should be done at every order in the energy
expansion to achieve a full diagonalization.
It is now easy to see how these FW partial diagonalizations allow us to reproduce the OSEFT Lagrangian at a certain

order of accuracy. If we define the particle/antiparticle components at a given order (n) in the FW diagonalizations,

χðnÞ ≡ Pvψ
ðnÞ; ξðnÞ ≡ Pṽψ

ðnÞ; ð15Þ

then at Oð1=E2Þ the particle Lagrangian reads

L ¼ χ̄ð4Þ
�
iv ·Dþ 1

2E
ði=D⊥Þ2 −

1

8E2
fði=D⊥Þ2; iv ·Dg − 1

4E2
i=D⊥iṽ ·Di=D⊥

�
=̃v
2
χð4Þ; ð16Þ

plus the analogous term for the antiparticle field ξð4Þ.
We stress that the diagonalization we have carried out for massless fermions assumes that E is the hard scale, larger than

the values of the electromagnetic fields and their gradients, and also of the derivatives of the Dirac field. Note also that

χð4Þ ¼ eiEv·x
�
χð0Þ þ =ui=D⊥

E
ξð0Þ −

ði=D⊥Þ2
8E2

χð0Þ −
=u

4E2
ðiv ·Di=D⊥ þ i=D⊥iṽ ·DÞξð0Þ

�
þO

�
1

E3

�
; ð17Þ

that is, the new particle field is a combination of the particle and antiparticle fields of the original Dirac picture [which is
order (0)] [17]. The covariant derivatives in the expansion also tell us about the nonlocal relation between the original Dirac
picture and the FW one.
Let us note that the Lagrangian (16) contains temporal derivatives beyond the leading order term. Exactly as in Ref. [24],

we perform a local field redefinition to eliminate these. Thus, after doing

χ̃ ≡
�
1þ ði=D⊥Þ2=u

4E2

�
χð4Þ; ð18Þ

in the Lagrangian (16) we end up at order 1=E2

L ¼ ¯̃χ

�
iv ·Dþ 1

2E
ði=D⊥Þ2 þ

1

8E2
ðfði=D⊥Þ2; ðiv ·D − iṽ ·DÞg − ½i=D⊥; ½iṽ ·D; i=D⊥��Þ

�
=̃v
2
χ̃; ð19Þ

which is the OSEFT Lagrangian deduced in Ref. [24] and
used in Ref. [2] for the derivation of the chiral transport
equation.
While here we have shown how to derive the OSEFT

Lagrangian associated with a single fermion, it is possible

to generalize the method and perform the diagonalizations
associated with having several fermions. One can also
perform similar diagonalizations to derive the OSEFT
Lagrangian for the on-shell antiparticles, simply exchanging
E → −E and vμ ↔ ṽμ [2] in all the preceding equations.
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In Ref. [1] the OSEFT was derived using the modern
language of effective field theories, where to describe on-
shell particles one integrates out the off-shell modes. As in
the QED Lagrangian these two set of modes are inherently
coupled through the equations of motion. When the off-
shell components are integrated out, only particles remain
in the effective theory at the expense of having an infinite
series of operators in the Lagrangian, but suppressed by
successive powers of 1=E. The FW diagonalization allows
for a similar decoupling of particles and antiparticles order
by order in 1=E. As we arrive at the same result with FW
diagonalizations, we can therefore conclude that this and
the original OSEFT approach describe the same physics.

III. DISCUSSION: OSEFT/FW PICTURE
AND SIDE JUMPS

As our formulation of the CKT is based on the OSEFT,
which corresponds to the FW picture of relativistic quan-
tum mechanics, we review in this section some of its
peculiarities. We also recall how the side jumps of CKT
first discussed in [33,34] can be recovered in the OSEFT, as
shown in Ref. [2].
The distinction between the Pauli representation and

Foldy-Wouthuysen’s was discussed by Foldy himself [35]
and by Newton and Wigner [36]. A summary of the dif-
ferences are given in Table I. Some of them are crucial to
understand the different approaches to fermion collisions.
The first difference concerns how the electromagnetic

interaction is coupled to fermions. In the Dirac Lagrangian
it couples in a minimal way, via the covariant derivative
Dμ

x ¼ ∂μ
x þ ieAμðxÞ. The use of the covariant derivative

implies the use of kinetic momentum instead of the
canonical one. In the resulting FW formulation (either
nonrelativistic [17] or for massless fermions) it is explicit
that some terms involving electromagnetic fields cannot be
written in terms of a simple minimal coupling; e.g., there is
a magnetic moment or Pauli term, which couples like
σμνFμν in the OSEFT Lagrangian.
Another difference concerns the interpretation of the

position operator. In the Pauli-Dirac representation one
works with punctual fermions with a position indicated by

the eigenvalues of the operator x. However, the inherent
mixture between particle and antiparticle degrees of free-
dom of the Dirac equation makes the would-be velocity
operator unusual. It has�c, where c is the speed of light, as
unique eigenvalues, and its equation of motion gives rise to
the famous Zitterbewegung in which the trajectory has an
oscillating motion [18]. In the FW, on the contrary, the
fermion has a spatial extent of the order of ∼1=E (or 1=m in
the large mass limit), and the position operator refers to the
average position associated with the ZBmotion in the Dirac
picture. There is no ZB, because positive and negative-
energy modes are decoupled, and the velocity operator
(also denoted as the Newton-Wigner velocity [27,36]) has
continuum eigenvalues. Another residual feature of the ZB
appears in this formulation, the Darwin term, which can be
interpreted as the interaction of the electromagnetic field
with the spherical charge distribution of the fermion due to
the ZB oscillations in position [37,38].
Finally the spin operator is also differently interpreted. In

the Pauli-Dirac representation it is not conserved as only
the total angular momentum J ¼ SþL is. In addition, a
semiclassical interpretation of the spin in Dirac represen-
tation is not immediate. In the FW picture the spin is
conserved, independently of the angular momentum.
Therefore, it has a well-defined classical limit.
Our effective field theory description of the classical

transport approach also allows us to understand the
behavior of CKT under Lorentz transformations. The side
jumps of CKT can be understood as a consequence of the
so-called reparametrization invariance of OSEFT.
The OSEFT fields are labeled by the velocity vμ and E,

given in one specific frame. The frame vector uμ is a
timelike vector, and it is defined such that u · v ¼ 1. The
OSEFT fields have a dependence on the residual momen-
tum, with values much less than E. In turn, this implies that
the OSEFT fields describe large distances. However, there
is a redundancy in the theory, as small shifts in the velocity
could be reabsorbed in the definition of the residual
momentum, leaving the physics unchanged. This is the
so-called reparametrization invariance (RI). On the other
hand, an explicit choice of the vectors vμ and uμ seem to
imply an apparent breaking of the Lorentz symmetry of the

TABLE I. Summary of some properties of the different fermion representations, Foldy-Wouthuysen (equivalently
in the OSEFT) versus Pauli-Dirac.

FW representation (OSEFT) Pauli-Dirac representation

Electromagnetic interaction Nonminimal coupling Minimal coupling
Magnetic moment ✓ ✗
Fermion structure Spatial extent ∼ 1

E Pointlike
Position operator Mean position of the wave package Fermion position
Velocity operator Darwin interaction Zitterbewebung

Spin, S Conserved Not conserved (only J is)
Classical limit for S ✓ ✗
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initial theory, QED, which does not have a dependence on
any explicit vector.
In Ref. [2] we showed that the OSEFT Lagrangian is

reparametrization invariant, the symmetry can also be
studied in a 1=E expansion. The proof goes in parallel
to that of a different effective field theory for massless
fermions, the soft-collinear effective field theory [39].
There are three types of RI symmetries, namely type I,
type II, and type III, that change infinitesimally the value
of the vectors vμ and ṽμ, without changing their lightlike
behavior, and preserving the property u · v ¼ 1. The three
types of RI transformations can also be interpreted in terms
of combinations of rotations and Lorentz boosts (see
also [40]).
It is clear that changes in the vectors vμ and ṽμ have to be

accompanied by redefinitions of the residual momentum.
We listed in Ref. [2] the changes on the residual momentum
after the three different types of RI symmetries. As the
OSEFT fields have a dependence on the residual momen-
tum, this implies that covariant derivatives acting on these
fields also change under RI. As the Wigner function of
chiral kinetic theory is constructed from the OSEFT fields,
then we could show that under one specific type of RI
transformation the distribution function of chiral kinetic
theory also changes, giving rise to the side jump effect first
discussed in Ref. [33].
Reparametrization invariance is intimately linked to

Lorentz invariance. One could think of preforming a
Lorentz transformation that would change the values of
vμ, uμ. Then, the physics described by the OSEFT theory
(and the subsequent CKT) would not be the same if the
residual momentum, and thus the x dependence of the
OSEFT functions are not changed as prescribed by RI.
Summarizing, by showing that the OSEFT is RI invariant

one can show that it is Lorentz invariant. The separation of
scales implicit in OSEFT, and ultimately in the CKT, is
finally responsible that functions that describe long dis-
tance behavior might change in a nonstandard way under
Lorentz symmetry.
Let us also mention that the FW interpretation of the

chiral transport theory gives a plausible explanation of
some of the apparent paradoxes found in Ref. [34]. In
particular, in that reference it was found that in binary
collisions of relativistic massless fermions there could be
discontinuous jumps in their trajectories, when observed in
different frames, if conservation of angular momentum was
considered. However, in the semiclassical description, one
has to take into account the finite size of the fermions and
the relevant operators which act as conserved quantities. It
has been noted that the center of mass of extended spinning
objects is frame dependent and suffers a side jump when
observed in a different frame [41]. For a relativistic
massless fermion the mean position, which is the center
of a charge distribution in the Dirac picture, also suffers
from side jumps. These jumps described in Ref. [34] would

be interpreted in our formalism, not as discontinuous
trajectories, but as displacements of the mean position of
the effective fermion in binary collisions when observed in
different frames.
However, we note that when deriving the CKT from

quantum field theory, the collision terms are not described
in terms of classical trajectories. We will use the quantum
field theory formulation in this article instead.

IV. TRANSPORT EQUATIONS DERIVED FROM
QUANTUM FIELD THEORY

In this section we give a very brief account on how
transport equations can be derived from a fermionic
quantum field theory. We basically follow here the formu-
lation of Refs. [29,30,42–46] keeping the Dirac structure of
the equations. We first ignore the effects of the electro-
magnetic fields, and finally comment on the pertinent
modifications to maintain gauge invariance when consid-
ering them.
We use the real time formalism of thermal field theory.

If ψ denotes the Dirac field, the associated two-point
function in the closed time path contour is given by a
2 × 2 matrix [44]

Sðx; yÞ ¼
�
Scðx; yÞ S<ðx; yÞ
S>ðx; yÞ Saðx; yÞ

�

¼
� hTψðxÞψ̄ðyÞi −hψ̄ðyÞψðxÞi

hψðxÞψ̄ðyÞi hT̃ψðxÞψ̄ðyÞi

�
; ð20Þ

where T denotes time ordering and T̃ anti-time ordering.
From the above functions, one can additionally define the
retarded and advanced propagators as

SRðx; yÞ ¼ iθðx0 − y0ÞðS>ðx; yÞ − S<ðx; yÞÞ; ð21Þ

SAðx; yÞ ¼ −iθðy0 − x0ÞðS>ðx; yÞ − S<ðx; yÞÞ; ð22Þ

where θ denotes the step function. Note that not all Green
functions are independent as

SRðx; yÞ − SAðx; yÞ ¼ S>ðx; yÞ − S<ðx; yÞ: ð23Þ

One can deduce equations of motion for every com-
ponent of the two-point Green function from the Kadanoff-
Baym equations [47], including effects of the fermion
self-energy Σðx; yÞ. Similar to [29] we denote by ΣtðxÞ a
possible tadpole contribution. The two-point fermion self-
energy is also expressed as a 2 × 2 matrix, whose compo-
nents obey the same relations as the components of the
fermion propagator. More particularly, the equation for
S<ðx; yÞ is [44,46]
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½S−10;x − ΣtðxÞ�S<ðx; yÞ ¼ ðΣR ⊗ S<Þðx; yÞ
þ ðΣ< ⊗ SAÞðx; yÞ; ð24Þ

where S−10;x is the inverse of the free propagator, and we have
defined the convolution operator

ðA ⊗ BÞðx; yÞ≡
Z

∞

−∞
d4zAðx; zÞBðz; yÞ: ð25Þ

One should also consider the Hermitian conjugate equation
acting on y,

S<ðx; yÞ½S−10;y − ΣtðyÞ�† ¼ ðS< ⊗ ΣAÞðx; yÞ
þ ðSR ⊗ Σ<Þðx; yÞ; ð26Þ

where the operator S−1;†0;y acts to the left, and we use that
ΣtðyÞ is real.
The transport equation is obtained by considering the

difference of the two equations. After some trivial manip-
ulations, one can finally obtain

½S−10 − Σt; S<�ðx; yÞ − ½ReΣR ;⊗S<�ðx; yÞ − ½Σ< ;⊗ReSR�ðx; yÞ

¼ i
2
fΣ> ;⊗S<gðx; yÞ − i

2
fΣ< ;⊗S>gðx; yÞ; ð27Þ

where Re refers to the real part, and the first commutator is
to be understood as

½S−10 − Σt; S<�ðx; yÞ≡ ½S−10;x − ΣtðxÞ�S<ðx; yÞ
− S<ðx; yÞ½ðS−10;yÞ† − ΣtðyÞ�: ð28Þ

In Eq. (27) we have also introduced the notation,

½A ;⊗B�≡ A ⊗ B − B ⊗ A; ð29Þ

fA ;⊗Bg≡ A ⊗ Bþ B ⊗ A; ð30Þ

and used the relation ReSR ¼ 1
2
ðSR þ SAÞ, and ReΣR ¼

1
2
ðΣR þ ΣAÞ.
Equation (27) is a generic equation for a theory of

relativistic fermions, where all operators carry their own
Dirac structure. For example, in QED one would use
S−10;x ¼ i=Dx ¼ i=∂x − e=AðxÞ. Incidentally, the expression for
the scalar case is totally analogous but the spin structure
disappears [30].
In QED the photon propagator also obeys a similar

equation to (24) [29]

ðgμν∂2 − ∂μ∂ν − Πt;μνÞD<
νρðx; yÞ

¼ ðΠR ⊗ D<Þμρðx; yÞ þ ðΠ< ⊗ DAÞμρðx; yÞ; ð31Þ

where Πμν is the photon (respectively, tadpole, retarded,
and lesser) self-energy.
In order to derive the transport equations one first defines

the (gauge covariantly modified) Wigner function

S<ðX;KÞ ¼
Z

d4seiK·sU

�
X;X þ s

2

�
S<

�
X þ s

2
; X −

s
2

�

×U

�
X −

s
2
; X

�
; ð32Þ

where s ¼ x − y and X ¼ ðxþ yÞ=2 are the relative and
center-of-mass coordinates, respectively, and Uðx; yÞ is the
Wilson line joining x and y. The Wigner function is a
function of Xμ and the fermion kinetic momentum Kμ.
Applying the (gauge covariantly modified) Wigner

transform to the whole set of Kadanoff-Baym equations,
and performing a gradient expansion, one ends up with a
set of transport equations describing the system.
An important limitation of the above framework is that

the transport approach is meant to describe the long
distances, larger than the Compton wavelength for massive
particles or longer than the de Broglie wavelength for
massless particles [22,29], in order to avoid the effects of
the ZB oscillations which occur at those scales.
In the remaining part of this manuscript we will use the

same basic set of equations where we will treat the fermions
using OSEFT, instead of the full QED theory.

A. Comment on the dispersion relation

Before applying Eq. (27) to the OSEFT, we briefly
comment on the computation of the fermion dispersion
relation and argue that collisions do not modify it to the
order we consider in this work. On the one hand the
difference between Eqs. (24) and (26) gives the transport
equation. On the other hand, their sum results in an
independent equation, which in the collisionless case
[2,3] provided the fermion dispersion relation. While there
is nothing wrong with this procedure, it is not the conven-
tional way to address the dispersion relation. In fact, when
collisions are present, this is a more complicated path. The
standard way is to consider the sum of the equation of
motion of SRðx; yÞ and its conjugate and, after a Wigner
transform, look for the poles of the retarded Green function.
The equations of motion for SRðx; yÞ and its conjugate

read [they can be obtained from the equations for S<ðx; yÞ
and S>ðx; yÞ; cf. Eq. (21)]

S−10;xS
Rðx; yÞ ¼ δð4Þðx − yÞ þ ðΣR ⊗ SRÞðx; yÞ; ð33Þ

SRðx; yÞðS−10;yÞ† ¼ δð4Þðx − yÞ þ ðSR ⊗ ΣRÞðx; yÞ; ð34Þ

where δð4Þ is the Dirac delta function. Notice that the terms
which lead to collisions in the difference equation—which
are those in the right-hand side (RHS) of Eq. (27)—cancel.
After half-summing (33) and (34) and performing the
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Wigner transform and gradient expansion (see later), one
obtains the expression for SRðX;KÞ. It is easy to check that
the pole of SRðX;KÞ coincides with the solution of the
constraint equation given by the sum equation of S<ðx; yÞ
and its conjugate—also after Wigner transform and gradient
expansion—in the absence of collisions [2,3]. The dis-
persion relation is the one found previously in Ref. [2].
In that calculation, as well as in the present one, we will
neglect the terms Σt and ΣR as they provide contributions
to the dispersion relation suppressed by α, the electromag-
netic structure constant. It is also suppressed by ∼

ffiffiffi
α

p
in

comparison to the magnetic moment correction found in [2].

V. TRANSPORT APPROACH ASSOCIATED
WITH THE OSEFT

The formulation presented in the previous section is
completely general, and therefore, it is also applicable
to the OSEFT. However, we need to point out several
particularities of this effective theory not present in the full
QED theory. Therefore, let us recall some of the basic
properties of the OSEFT in our original formulation. For
more explicit details see Ref. [2].
One first assumes that the full momentum Kμ of the

fermion can be divided into a large part and a residual or
off-shell part kμ as

Kμ ¼ Evμ þ kμ; kμ ≪ E: ð35Þ
Let us recall how the Dirac and OSEFT fields are related.

We express the Dirac field of a fermion with lightlike
velocity vμ,

ψv;ṽ ¼ e−iEv·xðPvχvðxÞ þ PṽH
ð1Þ
ṽ ðxÞÞ

þ eiEṽ·xðPṽξṽðxÞ þ PvH
ð2Þ
v ðxÞÞ; ð36Þ

where Pv=Pṽ are particle/antiparticle projectors, respec-
tively. The lightlike velocity ṽμ is fixed with the knowledge
of the frame timelike vector uμ, as uμ ¼ ðvμ þ ṽμÞ=2. By
integrating out the Hð1Þ

ṽ , Hð2Þ
v fields, we get a theory where

the particle χv and antiparticle ξṽ fields are totally
decoupled. There is an interesting symmetry between the
particle and antiparticle sectors of the theory, as all the
equations for the antiparticles can be obtained from those of
the particles after carrying out the changes E; vμ ↔ −E; ṽμ.
For this reason we will concentrate our discussion on the
particles, as all the equations for the antiparticles can be
easily recovered.
We can still use the equations and formulation of Sec. IV

if we understand that the two-point functions and fermion
self-energy refer to the χv, describing particles, or to ξṽ
if one wants to describe antiparticles. This encodes the
whole discussion between Pauli-Dirac representation and
the OSEFT (Foldy-Wouthuysen) one. Thus, the starting
two-point functions are

S<E;vðx; yÞ ¼ −hχ̄vðyÞχvðxÞi ð37Þ
for particles or

S̃<−E;ṽðx; yÞ ¼ −hξ̄ṽðyÞξṽðxÞi ð38Þ

for antiparticles. In the Fourier space, the OSEFT fields are
functions of the residual momentum, and thus also the
associated two-point functions. As said before, we will
mainly focus on the particles in the following.
A main difference with the QED case is that instead of

using as the inverse free propagator S−10x ¼ i=Dx, the OSEFT
Lagrangian indicates that this has to be replaced by

S−10x → Ox ¼
�
iv ·Dx þ

ði=Dx;⊥Þ2
2E

þ � � �
�
ṽ
2
; ð39Þ

written as an expansion in 1=E. In particular, in Ref. [2] we
explicitly computed up to order n ¼ 2 in the energy
expansion,

OxS<E;vðx; yÞ − S<E;vðx; yÞO†
y; ð40Þ

and checked that after a Wigner transformation, it would
give rise to the chiral transport equation.
At the end of the computations, and to compare with the

full theory, we reexpress all our final results in terms of the
full momentum Kμ. Actually, this last operation acts as a
sort of consistency check of the computations, as the
dependence on the residual momentum of all the final
physical quantities should disappear.
In the remaining part of the manuscript we will see how

the collision terms of the CKT can be derived by consid-
ering the fermion self-energy corrections in the OSEFT.

VI. COLLISION TERMS AND
CKT FROM OSEFT

In this section we proceed with the calculation of the
collision terms of the OSEFT transport equation associated
with the particle field. The collision term that enters into the
antiparticle transport equation can easily be deduced from
the particle one.
In the OSEFT we start from the two-point function

S<E;vðx; yÞ, and the Wigner function

S<E;vðX; kÞ ¼
Z

d4seik·sU

�
X;X þ s

2

�
S<E;v

�
X þ s

2
; X −

s
2

�

×U

�
X −

s
2
; X

�
ð41Þ

is given in terms of the residual momentum [cf. Eq. (35)].
We then apply a Wigner transformation and a gradient

expansion to Eq. (27), taking also the Dirac trace. Let us
first discuss the left-hand side (LHS) of Eq. (27). As argued
before we neglect terms which are suppressed at weak
coupling, such as ReΣR which would introduce α
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corrections to both the dispersion relations and LHS of the
transport equation. The LHS is finally written as a 1=E
expansion (this calculation was performed up to order 1=E2

in Ref. [2] to obtain the collisionless transport equation)

�
2ivμ þ 2

i
E
kμ⊥ þ � � �

�
Δk

μG
χ
E;vðX; kÞ; ð42Þ

where

Δk
μ ¼

∂
∂Xμ − eFμνðXÞ

∂
∂kν ð43Þ

is the transport operator.
To obtain (42) we recall that in the OSEFT the Wigner

function can be expressed as

S<E;vðX; kÞ ¼
X
χ¼�

Pχ=vG
<;χ
E;vðX; kÞ; ð44Þ

where we introduce the chirality projectors,

Pχ ¼
1þ χγ5

2
; χ ¼ �; ð45Þ

and

G<;χ
E;vðX; kÞ ¼ ð2πÞδðKχ

E;vÞfχE;vðX; kÞ; ð46Þ

written in terms of the distribution function fχE;vðX; kÞ. We
keep the labels of E and v in the distribution function, as in
thermal equilibrium, for example, the energy E acts as a
sort of chemical potential for the modes with residual
momenta k [24]. The Dirac delta function puts the particle
on-shell, and the function Kχ

E;v fixes the dispersion relation
to a certain order in the 1=E expansion [2]. For example, at
n ¼ 1

Kχ
E;v ¼ 2k · vþ 1

E

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μνðXÞ
�
þO

�
1

E2

�
:

ð47Þ
For later reference the two-point function S>E;vðX; kÞ is

expressed in the same manner, by replacing fχE;vðX; kÞ by
1 − fχE;vðX; kÞ. If we write explicitly Eq. (42) up to
Oð1=E2Þ in terms of the full momentum (35), the fermion
total energy

EK ¼ K · u ¼ Eþ k · u; ð48Þ
and the on-shell velocity vμK,

vμK ¼ Kμ

EK
; ð49Þ

we obtain

2i

�
vμK −

e
2E2

K
Sμνχ FνρðXÞð2uρ − vρKÞ

�
ΔK

μGχðX;KÞ; ð50Þ

where the spin tensor is

Sμνχ ≡ χ

2
ϵαβμν

uβKα

u · K
¼ χ

2
ϵαβμν

ṽβ
2
vα þO

�
1

E

�
; ð51Þ

and we have converted

G<;χ
E;vðX; kÞ ¼ G<;χðX;KÞ; G>;χ

E;vðX; kÞ ¼ G>χðX;KÞ
ð52Þ

into functions of the full momenta [2].
Before introducing explicitly the distribution function let

us look into the RHS of Eq. (27). After a Wigner transform
and Dirac trace we obtain

iTr½Σ>
E;vðX; kÞS<E;vðX; kÞ − Σ<

E;vðX; kÞS>E;vðX; kÞ�; ð53Þ

FIG. 1. Diagrammatic terms of the particle self-energy in (55), where the fermion vertices are denoted by their order n ¼ 0 or n ¼ 1.
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which will be computed up to order 1=E.
Let us call this RHS the total collision term

iCT ¼ iCgain þ iCloss ¼ iTr½−Σ<
E;vðX; kÞS>E;vðX; kÞ

þ Σ>
E;vðX; kÞS<E;vðX; kÞ�; ð54Þ

where the first and second terms in the trace correspond to
gain and loss terms, respectively. As we concentrate on the

transport equation for particles, this collision term will
describe binary particle-particle and particle-antiparticle
collisions. We focus here on the gain term of this equation,
as the loss term is computed in an analogous way and will
be added later too.
At order n ¼ 1 the fermion self-energy contains four

terms due to the possible combination of vertices and photon
propagator at order n ¼ 0 and n ¼ 1 (see Fig. 1 for illustra-
tion). With these terms the gain part of the collision term is

Cgain ¼ −i
Z

d4q
ð2πÞ4 Tr½V

μ;ð0ÞS<E;vðX; k − qÞVν;ð0ÞS>E;vðX; kÞ�Dð0Þ;<
μν ðX; qÞ

− i
Z

d4q
ð2πÞ4 Tr½V

μ;ð1ÞS<E;vðX; k − qÞVν;ð0ÞS>E;vðX; kÞ�Dð0Þ;<
μν ðX; qÞ

− i
Z

d4q
ð2πÞ4 Tr½V

μ;ð0ÞS<E;vðX; k − qÞVν;ð1ÞS>E;vðX; kÞ�Dð0Þ;<
μν ðX; qÞ

− i
Z

d4q
ð2πÞ4 Tr½V

μ;ð0ÞS<E;vðX; k − qÞVν;ð0ÞS>E;vðX; kÞ�Dð1Þ;<
μν ðX; qÞ; ð55Þ

where the vertices at n ¼ 0 and n ¼ 1 orders read [2,25,48]

Vμ;ð0Þ ¼ ie
=̃v
2
vμ; ð56Þ

Vμ;ð1Þ ¼ i
e
E
=̃v
2

��
kμ⊥ þ 1

2
qμ⊥

�
−
i
2
σμα⊥ qα

�
; ð57Þ

where qμ is the momentum of the incoming photon and kμ

the residual momentum of the incoming fermion.
Let us mention that the two point functions S<E;v and S

>
E;v

should also be expanded in 1=E by expanding the Dirac
delta function of Eq. (46). As in Ref. [24], we keep the
general structure of these functions without expanding the
delta function, as this facilitates both the intermediate
computations and the expressions of the final results in
terms of the full momentum, but one should keep in mind
this fact when doing the power counting in 1=E.

The first line of (55) (upper diagram of Fig. 1) contains
the leading-order (LO) (n ¼ 0) pieces for the vertices and
photon propagators, while the three last terms of that
equation (lower diagram in Fig. 1) represent the next-to-
leading order (NLO) (n ¼ 1) contributions of vertices and
photon propagators to the trace.
Equation (55) is written in terms of a photon two-point

function. This can be obtained after carrying out a Wigner
transformation and a gradient expansion to Eq. (31) so that
one ends up with [29]

D<
μνðX; qÞ ≃DR

μρðX; qÞΠ<;ρσðX; qÞDA
σνðX; qÞ; ð58Þ

in terms of the retarded and advanced photon propagators.
We use this result by noting that both the photon polari-
zation, and thus also the photon propagator, can be
computed in OSEFT in a 1=E expansion.
At order n the photon polarization tensor reads

ΠðnÞ;<
ρσ ðX; qÞ ¼ i

Xn
j¼0

X
E0;v0

Z
d4k0

ð2πÞ4 Tr½V
ðjÞ
ρ S<E0;v0 ðX; qþ k0ÞVðn−jÞ

σ S>E0;v0 ðX; k0Þ�

þ i
Xn
j¼0

X
E0;ṽ0

Z
d4k0

ð2πÞ4 Tr½Ṽ
ðjÞ
ρ S̃<−E0;ṽ0 ðX; qþ k0ÞṼðn−jÞ

σ S̃>−E0;ṽ0 ðX; k0Þ�; ð59Þ

where the first/second integral arises from particle/
antiparticle contributions to the photon polarization tensor.
The first sum in the above integrals counts the possible

combination of vertices leading to the desired order. The

second sum is performed together with the integration of
the residual momentum k0. It is worth reminding the reader
here that q is the (soft) photon momentum, and not a
residual momentum.
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For n ¼ 0 only one diagram contributes to the photon
polarization function, whereas for n ¼ 1 two diagrams
must be considered. We plot them in Fig. 2.
Let us give some details of the technical calculation,

where we will only focus on the particle contribution, and
only add the antiparticle contribution at the very end. Let us
start computing the photon polarization function at n ¼ 0.
There is a single diagram, constructed by two n ¼ 0
vertices,

Πð0Þ;<
ρσ ðX; qÞ ¼ −ie2

X
E0;v0

Z
d4k0

ð2πÞ4 v
0
ρv0σTr

×

�
ṽ0

2
S<E0;v0 ðX; qþ k0Þ ṽ0

2
S>E0;v0 ðX; k0Þ

�
:

ð60Þ
After carrying out the Dirac trace one realizes that

different chiralities are not mixed up inside the loop, as
the photon cannot produce a chirality flip in the vertex.
Thus, one finds

Πð0Þ;<
ρσ ðX; qÞ ¼ −4ie2

X
E0;v0

Z
d4k0

ð2πÞ4 v
0
ρv0σ

×
X
χ0¼�

G<;χ0
E0;v0 ðX; qþ k0ÞG>;χ0

E0;v0 ðX; k0Þ: ð61Þ

Using this result and the one for the case n ¼ 1, we can
obtain the photon propagator at LO and NLO,

Dð0Þ;<
μν ðX; qÞ ¼ −4ie2DR

μρðX; qÞDA
σνðX; qÞ

X
E0;v0

Z
d4k0

ð2πÞ4

×
X
χ0¼�

v0ρv0σG<;χ0
E0;v0 ðX; qþ k0ÞG>;χ0

E0;v0 ðX; k0Þ;

ð62Þ

Dð1Þ;<
μν ðX; qÞ ¼ −ie2DR

μρðX; qÞDA
σνðX; qÞ

×
X
E0;v0

Z
d4k0

ð2πÞ4
X
χ0¼�

1

E0

�
4v0σ

�
k0ρ⊥ þ 1

2
qρ⊥

�
− χ0v0σq⊥;αiϵλωρ⊥αṽ0λv

0
ω

þ 4v0ρ
�
k0σ⊥ þ 1

2
qσ⊥

�
þ χ0v0ρq⊥;αiϵλωσ⊥αṽ0λv

0
ω

�
G<;χ0

E0;v0 ðX; qþ k0ÞG>;χ0
E0;v0 ðX; k0Þ; ð63Þ

respectively, where in the latter case some terms depend explicitly on the chirality χ0, but it is still conserved in the vertex.
The only missing step is to combine all the computed pieces and express the result in a familiar way, in terms of the

fermion distribution function, expressed in terms of the full momentum, instead of the residual momentum used in the
OSEFT. We denote with capital/lowercase letters the full/residual momenta, respectively. We make an exception with
the photon momenta, which is denoted with lowercase letters because it is soft and it is of the same order as the residual
momenta. Recall that from Eq. (49) the on-shell velocity differs from vμ already at order 1=E.
The soft photon propagator at LOþ NLO is the combination of (62) and (63),

Dð0Þ;<
μν ðX; qÞ þDð1Þ;<

μν ðX; qÞ ¼ −2ie2DR
μρðX; qÞDA

σνðX; qÞ

×
X
E0;v0

Z
d4k0

ð2πÞ4
X
χ0¼�

�
v0σK0

�
v0ρK0 þ qρ⊥

EK0

�
þ v0ρK0

�
v0σK0 þ qσ⊥

EK0

�

−
i

2EK0
χ0v0σK0q⊥;αϵ

λωρ⊥αṽ0λv
0
ω þ i

2EK0
χ0v0ρK0q⊥;αϵ

λωσ⊥αṽ0λv
0
ω

�

×G<;χ0
E0;v0 ðX; qþ k0ÞG>;χ0

E0;v0 ðX; k0Þ; ð64Þ

where we have already combined some pieces in terms of full momenta K0μ.

FIG. 2. Photon polarization function up to n ¼ 1, where three
diagrams contribute. The fermion vertices are denoted by their
order n ¼ 0 or n ¼ 1.
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One can insert the photon propagator into each of the four traces of Eq. (55). After performing the Dirac traces that appear
in that equation, and half dozen of steps to combine and simplify terms we arrive to the result

Cgain ¼ 4e4
X
χ¼�

Z
d4q
ð2πÞ4

X
E0;v0

Z
d4k0

ð2πÞ4 D
R
μρðX; qÞDA

σνðX; qÞ

×
X
χ0¼�

�
vμK

�
vνK −

qν⊥
EK

�
þ vνK

�
vμK −

qμ⊥
EK

�
−

2i
EK

vμKq⊥;αS
αν⊥
χ þ 2i

EK
vνKq⊥;αS

αμ⊥
χ

�

×

�
vσK0

�
vρK0 þ qρ⊥

EK0

�
þ vρK0

�
vσK0 þ qσ⊥

EK0

�
−

2i
EK0

vσK0q⊥;αS
αρ⊥
χ0 þ 2i

EK0
vρK0q⊥;αS

ασ⊥
χ0

�

×G<;χ
E;vðX; k − qÞG>;χ

E;vðX; kÞG<;χ0
E0;v0 ðX; qþ k0ÞG>;χ0

E0;v0 ðX; k0Þ; ð65Þ

where we have introduced the spin tensor (51). Notice that the Dirac trace in (55) gives a sum over the chiralities χ of the
fermion with momentum K. As done in Ref. [2] we simply focus on a fermion with some particular chirality χ and write the
collision term for this particular particle. We stress that this chirality is not modified in the interaction with a soft photon.
To further simplify this expression we define the scattering amplitude squared, which is already a function of the full

momenta and the photon soft momentum as

jMχ;χ0 j2ðK;K0; qÞ≡ 4e4EKEK−qEK0EqþK0DR
μρðX; qÞDA

σνðX; qÞ

×

�
vμK

�
vνK −

qν⊥
EK

�
þ vνK

�
vμK −

qμ⊥
EK

�
−

2i
EK

vμKq⊥;αS
αν⊥
χ þ 2i

EK
vνKq⊥;αS

αμ⊥
χ

�

×
�
vσK0

�
vρK0 þ qρ⊥

EK0

�
þ vρK0

�
vσK0 þ qσ⊥

EK0

�
−

2i
EK0

vσK0q⊥;αS
αρ⊥
χ0 þ 2i

EK0
vρK0q⊥;αS

ασ⊥
χ0

�
: ð66Þ

Here we have explicitly included the factors EKEK−qEK0EqþK0 in order to have an adimensional scattering amplitude
squared, following standard relativistic quantum field theory conventions. These precise energy factors will later allow us to
eventually express the collision term, when given on shell, in terms of Lorentz-invariant phase space measures.
In terms of this amplitude, and when complemented with the loss term, the total collision term of the particle-particle

interaction is

CT ¼
Z

d4q
ð2πÞ4

Z
d4K0

ð2πÞ4
X
χ0¼�

jMχ;χ0 j2ðK;K0; qÞ 1

EKEK−qEK0EqþK0

× ½G>;χðX;KÞG<;χðX;K − qÞG<;χ0 ðX; qþ K0ÞG>;χ0 ðX;K0Þ
− G<;χðX;KÞG>;χðX;K − qÞG>;χ0 ðX; qþ K0ÞG<;χ0 ðX;K0Þ�; ð67Þ

where we have used the prescription [24]

X
E0;v0

Z
d4k0

ð2πÞ4 ¼
Z

d4K0

ð2πÞ4 ; ð68Þ

and we have converted all G<;χ
E;vðX; kÞ into G<;χðX;KÞ (52)

in terms of the full momentum.
At this point we note that by including the contributions

to the photon polarization tensor as arising from the
antiparticles, we can construct also the collision term that
describes particle-antiparticle scatterings.
Combining the LHS of the kinetic equation (50) and the

RHS (equal to iCT), the transport equation in an arbitrary
frame reads

2

�
vμK −

e
2E2

K
Sμνχ FνρðXÞð2uρ − vρKÞ

�
ΔK

μGχðX;KÞ

¼ CT þ C̃T; ð69Þ

where we added the particle-antiparticle collision term C̃T ,
which is equal to the previous one, but the Green functions
involved in C̃T describe a collision of a particle degree of
freedom with an antiparticle one.
We point out that at order n ¼ 1 the collision term

depends on the spin tensor associated with the particle. One
should also further notice that the photon propagator in a
medium with fermion chiral imbalance has three indepen-
dent components, one associated with the longitudinal
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mode and two transverse different components, which
correspond to right- and left-handed circular polarizations
(see Appendix B for explicit expressions close to equilib-
rium). Let us mention that the scattering matrix element at
leading order is the same that one would expect in the Born
approximation in QED for soft momentum transfers [see
Eq. (2.3) of Ref. [49] ], while the new corrections propor-
tional to the spin tensor will describe how a fermion of a
given chirality interacts in a different way with the trans-
verse photons of different helicity, as it will be explicitly
seen in Sec. VII.

A. Collision term in the local rest frame

It is possible to simplify the form of the collision term if
one chooses the local rest frame with the plasma,
uμ ¼ ð1; 0Þ. In addition, we need to express it in terms

of the fermion distribution functions. The OSEFT Green
functions, which are functions of the residual momentum,
can also be written in terms of the full momentum as

G<;χ
E;vðX; kÞ ¼ G<;χðX;KÞ ¼ πθðEKÞδðK0 − EKÞfχðX;KÞ;

ð70Þ

G>;χ
E;vðX; kÞ ¼ G>χðX;KÞ

¼ πθðEKÞδðK0 − EKÞ½1 − fχðX;KÞ�; ð71Þ

at order n ¼ 1.
The collision terms are now functionals of the distribu-

tion functions (which we will indicate explicitly as argu-
ments of CT), and they are written as functions of the full
momenta,

CT ½fχ ; fχ0 � ¼
Z

d4K2

ð2πÞ3
d4K3

ð2πÞ3
d4K4

ð2πÞ3
X
χ0¼�

jMχ;χ0 j2ðK;K2; qÞ
2π

2EK2EK2
2EK3

2EK4

× ð2πÞ4δð3ÞðKþK2 −K3 −K4ÞδðK0 þ K0
2 − K0

3 − K0
4Þ

× fθðEKÞδðK0 − EKÞð1 − fχðX;KÞÞθðEK3
ÞδðK0

3 − EK3
ÞfχðX;K3Þ

× θðEK4
ÞδðK0

4 − EK4
Þfχ0 ðX;K4ÞθðEK2

ÞδðK0
2 − EK2

Þð1 − fχ
0 ðX;K2ÞÞ

− θðEKÞδðK0 − EKÞfχðX;KÞθðEK3
ÞδðK0

3 − EK3
ÞfχðX;K3Þ

× θðEK4
ÞδðK0

4 − EK4
Þð1 − fχ

0 ðX;K4ÞÞθðEK2
ÞδðK0

2 − EK2
Þfχ0 ðX;K2Þg; ð72Þ

where we have changed notation K0 → K2, performed the change of variables K4 ≡ qþ K2, and introduced K3 via the
identity

1 ¼ ð2πÞ4
Z

d4K3

ð2πÞ4 δ
ð3ÞðKþK2 −K3 −K4ÞδðK0 þ K0

2 − K0
3 − K0

4Þ: ð73Þ

We can now integrate over all zero components of
momenta dK0

2, dK
0
3, dK

0
4 as well as over dK0=2π. The

result is a collision term for the on-shell distribution
function:

CT ½fχ ; fχ0 �≡
Z

dK0

2π
CT ½fχ ; fχ0 �; ð74Þ

where all energies are on shell and are functions of their res-
pective momenta and magnetic field, and we have defined

Z
Ki

≡
Z

d3Ki

ð2πÞ32EKi

: ð75Þ

The only remaining steps are to express the LHS of
Eq. (69) as a function of the distribution function in the
local rest frame and integrate over dK0=2π. We obtain,
recalling that the electric and magnetic fields Ei and Bi are
related to the field tensor as Fi0 ¼ Ei, Fij ¼ −ϵijkBk,

�
ΔK

0 þ K̂i

�
1þ eχ

B · K̂
2K2

�
ΔK

i þ eχ
ϵijkEjK̂k − Bi⊥;K

4K2
ΔK

i

�

× fχðX;KÞ ¼ CT ½fχ ; fχ0 � þ C̃T ½fχ ; f̃χ0 �; ð76Þ

where K ¼ jKj, K̂ ¼ K=K, B⊥;K ¼ B − K̂ðB · K̂Þ, and

CT ½fχ ; fχ0 �

¼ 1

2EK

Z
K2;K3;K4

X
χ0¼�

jMχ;χ0 j2ðK;K2; qÞð2πÞ4

× δð4ÞðK þ K2 − K3 − K4Þ
× ffχðX;K3Þfχ0 ðX;K4Þ½1 − fχðX;KÞ�½1 − fχ

0 ðX;K2Þ�
− fχðX;KÞfχ0 ðX;K2Þ½1 − fχðX;K3Þ�½1 − fχ

0 ðX;K4Þ�g;
ð77Þ

with jMχ;χ0 j2ðK;K2; qÞ given in Eq. (66).
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VII. FERMION DECAY RATE IN A
CHIRAL PLASMA

In this section we review the computation of the decay
rate of Ref. [50] and check that the same result, at a
certain order of accuracy, can be obtained from the
collision term of the OSEFT just derived. For simplicity
we will assume a fermionic system with chiral imbalance
at T ¼ 0, with thus different right- and left-handed
chemical potentials. (We make the assignments χ ¼ þ ¼
R and χ ¼ − ¼ L.) We work in the local rest frame of
the plasma. In this case the fermion distribution function
becomes a step function

fχðKÞ ¼ nχFðEKÞ ¼ θðμχ − EKÞ: ð78Þ

We compute the decay rate associated with a massless
fermion with energy EK, which is above the two Fermi
surfaces, and with four momentum Kμ and chirality χ.
These systems suffer from the presence of chiral instabil-
ities [51]. The computation of the fermion decay rate is
only strictly valid for timescales much shorter than the
timescale of the onset of the instability tins ∼ 1=α2μ5, where
μ5 ¼ μþ − μ− is the chiral chemical potential. The decay
rate can be computed from the imaginary part of the
fermion self-energy, as done in Ref. [50]. The same com-
putation can be performed from the kinetic theory of
QED as

ΓχðEKÞ ¼
ð2πÞ4
2EK

X
χ0¼�

Z
K2;K3;K4

nχFðEK2
Þ½1 − nχ

0
F ðEK4

Þ�

× ½1 − nχFðEK3
Þ�δð4ÞðK þ K2 − K3 − K4Þ

× jMQED
χ;χ0 j2; ð79Þ

where we adopted the same variables as in the previous
section (K; 2 → 3; 4).
The square of the scattering matrix of the process can be

computed from QED, and it is given by

jMQED
χ;χ0 j2 ¼ e4Tr½K3γ

μKγρPχ �DR
μνðqÞ

× Tr½K4γ
νK2γ

λPχ0 �DA
ρλðqÞ; ð80Þ

where we have defined the momentum transfer by qμ ¼
ðω;qÞ. It is possible to eliminate the K4 integral, using the
conservation of momentum, and introduce

1 ¼
Z

dωδðω − EK2þq þ EK2
Þ
Z

d3qδð3Þðq −KþK3Þ

ð81Þ

to trivially integrate over K3 and finally write

ΓχðEKÞ ¼
π

EK

X
χ0¼�

Z
K2

Z
d3q
ð2πÞ3

Z
dωδðω − EK2þq þ EK2

Þ

× δðEK − EK−q − ωÞ

×
nχ

0
F ðEK2

Þ½1 − nχ
0

F ðEK2þqÞ�½1 − nχFðEK−qÞ�
2EK−q2EK2þq

× jMQED
χ;χ0 j2: ð82Þ

The Pauli blocking constraints of the problem impose
that the momentum transfer has to be much smaller than the
fermion energy and also than the two Fermi energies. We
can then approximate

nχ
0

F ðEK2
Þ½1 − nχ

0
F ðEK2þqÞ� ¼ ωδðEK2

− μχ
0 Þ

þO
��

ω

EK2

�
2
�
; ð83Þ

which is already a ω=EK2
effect. Equation (80) can also be

worked out and expanded in powers of both 1=EK and
1=EK2

:

jMQED
χ;χ0 j2 ¼ e4DR

μνðqÞDA
ρλðqÞ4E2

KE
2
K2

×
�
2vμKv

ρ
K − vμK

qρ

EK
− vρK

qμ

EK
þ iχϵαμβρ

qα
EK

vK;β

�

× 2vνK2
vλK2

þ � � � ; ð84Þ

where we have introduced the notation vμK ¼ Kμ=EK ¼
ð1; vKÞ and vμK2

¼ Kμ
2=EK2

¼ ð1; vK2
Þ. Notice that we

neglect terms in the square of the scattering matrix that
depend on χ0, as they would only contribute to order 1=E2

K2

in the decay rate. We further expand

EK−q ¼ EK − qk þ
q⊥2

2EK
þ � � � ;

EK2þq ¼ EK2
− vK2

· qþ � � � ; ð85Þ

where we defined qk ¼ vK · q and q⊥ ¼ q − qkvK .
The jK2j integration can easily be done as

X
χ0¼�

e2
Z jK2j2djK2j

2π2
δðEK2

− μχ
0 Þ ¼ m2

D; ð86Þ

written in terms of the Debye mass, m2
D ¼ e2ðμ2R þ

μ2LÞ=2π2. For the angular integrals of K2 we use

CARIGNANO, MANUEL, and TORRES-RINCON PHYS. REV. D 102, 016003 (2020)

016003-14



Z
dΩ2

4π
δðω − vK2

· qÞ ¼ 1

2jqj θðq
2 − ω2Þ;

Z
dΩ2

4π
δðω − vK2

· qÞviK2
¼ 1

2jqj θðq
2 − ω2Þ ω

jqj q̂
i;

Z
dΩ2

4π
δðω − vK2

· qÞviK2
vjK2

¼ 1

2jqj θðq
2 − ω2Þ

�
q2 − ω2

2jqj2 δij þ 3ω2 − q2

2jqj2 q̂iq̂j
�
; ð87Þ

where Ω2 is the solid angle of the vector v2. Using the
explicit form of the retarded photon propagator (see
Appendix B)

DR
μνðqÞ ¼ δμ0δν0DLðqÞ þ

X
h¼�

PT;h
ij Dh

TðqÞδμiδνj; ð88Þ

where h labels the two circular polarized transverse states,
left and right, and we introduced the transverse projector
for a given helicity

PT;h
ij ¼ 1

2
ðδij − q̂iq̂j − ihϵijkq̂kÞ: ð89Þ

The rate is better expressed in terms of the spectral
functions of the longitudinal and transverse photon propa-
gators on the chiral medium. Using [52]

ρLðqk;qÞ ¼ πm2
D

qk
jqj jDLðqk; jqjÞj2θðq2 − qk2Þ; ð90Þ

ρhTðqk;qÞ ≈ πm2
D

qk
2jqj

�
1 −

qk2

jqj2
�
jDh

Tðqk;qÞj2θðq2 − qk2Þ:

ð91Þ

So we can write

ΓχðEKÞ ¼
Z

d3q
ð2πÞ3 ½1 − nχFðEK − qkÞ�

×

��
1 −

qk
EK

�
ρLðqk;qÞ þ

X
h

�
1 −

qk2

q2

�

×

�
1 −

1

EK
ðqk þ jqjχhÞ

�
ρhTðqk;qÞ

�
: ð92Þ

We thus reproduce the value of the damping rate of
Eq. (23) of Ref. [50], considering that our Γ ¼ 2γ com-
puted there. As in Ref. [50], we see that a fermion of a given
chirality interacts differently with transverse photons,
depending on their helicity. This is an effect that is
nonvanishing only in a medium where the transverse
photon propagators of the two circular polarizations are
different, as it is the case for a system with chiral fermion
imbalance [53].

Within OSEFT we can derive the previous result, which
we recall has been computed to order 1=E. The damping
rate in OSEFTexpressed in terms of the full momenta reads

ΓχðEKÞ ¼
1

2EK

Z
K2;K3;K4

X
χ0¼�

jMχ;χ0 j2ðK;K2; qÞð2πÞ4

× δð4ÞðK þ K2 − K3 − K4Þ
× nχ

0
F ðK2Þ½1 − nχFðK3Þ�½1 − nχ

0
F ðK4Þ�; ð93Þ

where the scattering amplitude in the OSEFT at the order
we computed is given in Eq. (66). This scattering amplitude
depends on the spin tensor of the particle, and thus on the
frame vector uμ, which does not show up in the QED result;
see Eq. (84). It is, however, easy to show that the OSEFT
expression leads to the same value of the interaction rate as
that computed with QED, at the order of accuracy we work.
Using that uμ ¼ ð1; 0Þ one simply has to integrate over the
K2 momentum, using Eqs. (87) to reach to Eq. (92), as one
could naturally expect.
Finally we remind the reader that the kinetic theory

expression (93) can be obtained from the OSEFT as

ΓχðEKÞ ¼ −
1

2
Tr½Pχ=vImΣR

E;vðX; kÞ�; ð94Þ

where thanks to the cutting rules all fermions in the
imaginary part of the self-energy are put on shell. In
addition, the distribution functions are the equilibrium
ones (78). Instead of directly computing the retarded
self-energy one could use the relation −2ImΣR

E;v ¼ Σ<
E;v −

Σ>
E;v in the T ¼ 0 case, where further simplifications occur,

to express ΓχðEKÞ as similar traces to those computed
already in Eq. (54).

VIII. CONCLUSIONS AND OUTLOOK

We have used the OSEFT—an effective field theory
designed to describe on-shell degrees of freedom—which
disentangles particles and antiparticles, for the derivation
of the relativistic version of the chiral kinetic theory
without and with collisions. We have also proved that
the OSEFT is the quantum field theory counterpart of a
Foldy-Wouthuysen diagonalization carried out for massless
fermions, as opposed to the original FW approach valid for
massive fermions.
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The main advantage of our approach is that it has a clear
semiclassical interpretation, as it is not affected by the ZB
oscillations, at a given order of accuracy. However, one has
to keep in mind that our effective classical particles and
antiparticles have to be viewed as combinations of the
original Dirac particles and antiparticles, and they have a
finite size. We have to stress that these ideas have already
been implemented for massive relativistic fermions before.
Our main contributions have been in generalizing them for
the massless case, and use them to derive semiclassical
transport equations. We have worked out an effective field
theory method for that purpose, which allows us to
implement this program systematically as a 1=E expansion.
We have derived the first terms of the transport approach in
this expansion, which could be pushed to higher orders if
desired.
The OSEFT also allows us to understand the range of

validity of the CKT, which to our knowledge has not been
discussed before. In our derivation, we have always
assumed that the fermion energy is the large scale in the
system. As the whole program is meant to be applied to a
many-body system, this is a statement related to the mean
energy of the fermions in the system. Our derivation of the
CKT is valid for the fermionic modes which have energies
close to that mean value, under the assumption that this is
the large scale of the system. For example, close to thermal
equilibrium, the mean fermion energy is of the order of the
temperature ∼T, which is considered then to be the hard
(large) scale. It was already realized in the past for thermal
plasmas [30,54] that a pure classical transport approach is
valid only for the quasiparticles with large energies, while
the lower modes would not admit such a treatment.
We also note that in this semiclassical formulation,

having a more accurate description of the quasiparticle
hard modes including quantum effects, we end up including
corrections to the classical transport equation of the order
∂μ
X=E, which then allows us to use the transport framework

at shorter distances.
In this manuscript we have presented a detailed deriva-

tion of the collision term of the chiral kinetic theory derived
from the OSEFT at order 1=E. At this order the collision
term depends on the spin tensor of the particle, and the
associated terms describe how a massless fermion of a
given chirality interacts differently with the transverse
photons of different circular polarization in a plasma with
chiral imbalance. We have checked that our collision term
for an ultradegenerate plasma, and in the presence of chiral
imbalance, allows us to reproduce the decay rate of a
fermion as computed directly from QED.
Note that from the OSEFT, as initially constructed, one

cannot describe fermion-antifermion annihilation proc-
esses. However, it is easy to understand that these processes
are very much suppressed as compared to the particle-
particle, and particle-antiparticle scatterings mediated by a
soft photon exchange, only by doing a power counting

analysis of their corresponding matrix elements. However,
it is possible to enlarge the OSEFT to include these
processes, even if they are subleading, by adding four
fermion contact interactions, similarly as it is done in
NRQED [55]. The resulting events would contribute to the
collision term at order 1=E4, so that at the order we have
worked in this manuscript, they can be safely ignored.
One might also wonder about the Compton scattering

process in the collision term. A quick analysis of the
diagrams involved concludes that due to the presence of
hard fermion propagators, the amplitude square is sup-
pressed by a factor 1=E2 with respect to the order we
consider the collision term here. Moreover, such a process
requires photons with hard momentum, which are addi-
tional degrees of freedom requiring their own kinetic
equation for full consistency. Therefore the description
of Compton scattering lies beyond the scope of this work,
but we expect to address it in future calculations.
It would be very interesting to use our results for

different physical applications. In particular, for a plasma
near equilibrium one could study different transport coef-
ficients. In the presence of chiral imbalance our framework
could also be used to study the fate of the chiral plasma
instabilities discussed in Ref. [51].
We have not discussed in this work the form of the

transport equation for on-shell energetic photons, and how
the OSEFT techniques are applied to gauge degrees of
freedom. This will be the subject of future projects.
Finally, let us comment that it would also be very

interesting to apply our effective field theory techniques
in order to obtain semiclassical transport equations asso-
ciated with massive relativistic fermions. In some recent
works these equations are obtained from the Dirac picture
in a ℏ-expansion [56–60].
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APPENDIX A: NOTATION

E—on-shell (lightlike) fermion energy—Eq. (35);
vμ—on-shell (lightlike) fermion velocity—Eq. (35);
kμ ¼ ðk0;kÞ—residual 4-momentum—Eq. (35);
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Kμ ¼ ðK0;KÞ—full 4-momentum—Eq. (35);
EK—physical fermion energy—Eq. (48);
vμK—on-shell (physical) velocity—Eq. (49);
qμ ¼ ðq0;qÞ—photon (soft) momentum—Eq. (55);
xμ, yμ—spacetime coordinates—Eq. (20);
Xμ, sμ—center-of-mass and relative distance coordinates

—Eq. (32);
uμ—reference frame 4-vector—Eq. (6);
VðnÞ—nth order fermion-photon vertex in the OSEFT

—Eq. (56);
Δk

μ—transport operator—Eq. (42);
S<ðx; yÞ—fermion propagator in QED—Eq. (20);
S<ðX;KÞ—fermion Wigner function in QED—Eq. (41);
Σðx; yÞ—fermion self-energy in QED—Eq. (24);
SE;vðx; yÞ—fermion propagator in the OSEFT—Eq. (37);
S<E;vðX; kÞ—fermion Wigner function in the OSEFT

—Eq. (32);
ΣE;vðX; kÞ—fermion self-energy in OSEFT—Eq. (54);
Gχ

E;vðX; kÞ—fermion 2-point function in OSEFT
—Eq. (46);

ΠðnÞ
μν —nth order photon polarization tensor—Eq. (59);

DðnÞ
μν —nth order photon propagator—Eq. (31);

DL, Dh
T—resummed longitudinal and transverse photon

propagator—Eq. (B1);
ρLðq0;qÞ; ρhTðq0;qÞ—photon longitudinal and trans-

verse spectral functions—Eq. (B7);
χ, χ0—fermion chirality—Eq. (45);
Pχ—chiral projector—Eq. (45);
h, h0—photon helicity—Eq. (89);
PT;h
ij —helicity projector—Eq. (89);

Pv, Pṽ—particle/antiparticle projectors—Eq. (5);
Sμνχ —spin tensor—Eq. (51);
ΓχðEKÞ—fermion decay rate—Eq. (79);
CT , C̃T—particle-particle/particle-antiparticle total col-

lision term—Eq. (54).

APPENDIX B: THE PHOTON PROPAGATOR IN
A MEDIUM WITH CHIRAL IMBALANCE

The generic form of the photon propagator in a medium
where both parity P and CP are broken has been discussed
in Ref. [53]. In a medium the photon polarization tensor has
both longitudinal and transverse components, but in the
presence of a chiral chemical potential, another structure
antisymmetric in the Lorentz indices is also possible,
respecting all the possible symmetries in the system. In
turn, this implies that the photon propagator, in the
Coulomb gauge, for example, can be written in terms of
three components [see Eq. (88)], a longitudinal one and two

transverse different components, which correspond to
right- and left-handed circular polarizations. This is a
general result, based only on the symmetries of the
problem.
For a system close to thermal equilibrium, and in the

presence of a chiral imbalance in the local rest frame with
the plasma, it is possible to get the proper form of the
photon propagator for low momenta [50]. The photon
polarization tensor can actually be computed with chiral
kinetic theory [7].
The resummed longitudinal and transverse propagators

read, with the usual prescription q0 → q0 � iη for retarded
and advanced quantities, respectively,

DLðq0;qÞ ¼
1

q2 þ ΠLðq0;qÞ
;

Dh
Tðq0;qÞ ¼

1

q20 − q2 − ΠTðq0;qÞ − hΠPðq0;qÞ
; ðB1Þ

where

ΠLðq0;qÞ ¼ m2
D

�
1 −

q0
2jqj ln

q0 þ jqj
q0 − jqj

�
; ðB2Þ

ΠTðq0;qÞ ¼ m2
D

q20
2jqj2

�
1þ 1

2

�jqj
q0

−
q0
jqj

�
ln
q0 þ jqj
q0 − jqj

�

ðB3Þ

are the longitudinal/transverse part of the hard thermal/
dense loop photon polarization tensor [61,62], and

m2
D ¼ e2

�
T2

3
þ μ2R þ μ2L

2π2

�
ðB4Þ

is the Debye mass, while

ΠPðq0;qÞ ¼ −
e2μ5
2π2

q20 − jqj2
jqj

�
1 −

q0
2jqj ln

q0 þ jqj
q0 − jqj

�
ðB5Þ

can be viewed as the anomalous hard dense loop contri-
bution [7,51,63].
The spectral functions associated with the gauge field

modes are given by

ρLðq0;qÞ ¼ 2ImDLðq0 þ iη;qÞ; ðB6Þ

ρhTðq0;qÞ ¼ 2ImDh
Tðq0 þ iη;qÞ; h ¼ �: ðB7Þ
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