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We scrutinize the novel chiral transport phenomenon driven by spacetime torsion, namely, the chiral
torsional effect (CTE). We calculate the torsion-induced chiral currents with finite temperature, density, and
curvature in the most general torsional gravity theory. The conclusion complements the previous study on
the CTE by including curvature and substantiates the relation between the CTE and the Nieh-Yan anomaly.
We also analyze the response of chiral torsional current to an external electromagnetic field. The resulting
topological current is analogous to that in the axion electrodynamics.
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I. INTRODUCTION

A prominent feature of relativistic chiral matter is the
existence of various novel chiral transport phenomena.
Famous examples are the chiral magnetic effect (CME)
and the chiral vortical effect (CVE), i.e., the generation
of electric current along a magnetic field and vorticity,
respectively, on the condition of chirality imbalance [1–4].
The chirality imbalance is produced by virtue of the axial
anomaly [5] so that these macroscopic chiral transport
phenomena are associated with the underlying quantum
anomaly. It has been demonstrated that the CME is related
to the axial anomaly [6]. Meanwhile, the CVE has been
regarded as also involving the gravitational anomaly [7–9].
As observable manifestations of the quantum anomaly and
topological properties of chiral gauge theories, chiral
transport phenomena have been studied with immense
efforts in various physical contexts, e.g., quark-gluon
plasma in heavy-ion collisions [10–15]; topological con-
densed matter systems such as topological insulators
[16–21] or Dirac and Weyl semimetals [22–27]; electro-
weak media in neutron stars [28–32], the primordial
universe [33–35], or core-collapse supernovae [36–38].
Very recently, a rather new type of chiral transport

phenomenon was discovered. It is induced by the spacetime
torsion in the presence of chirality imbalance and naturally
termed the “chiral torsional effect” (CTE) [39]. Torsion is a
hypothetical spacetime property in the augmented gravity
theory called Einstein-Cartan gravity, which has received
much attention in gravity physics as reviewed by
Refs. [40,41]. More research interest stems from the idea

that the CTE is supposed to be connected to the Nieh-Yan
anomaly [42] which depicts the torsional topology of
spacetime [43,44].
Although never observed in real spacetime so far, torsion

can be imitated by a lattice dislocation. This idea is for-
mulated in lattice field theory and buttressed by numerical
computation in Ref. [45]. In condensed matter, torsion is
realizable in diverse materials like graphene [46], topo-
logical insulators [47–49], and Weyl semimetals [50–54],
where the deformation of the materials effectively acts as
torsion. In particular, Weyl semimetals are ideal candidates
for the CTE experiments since they bear a chirality
imbalance as well.
Despite its profound theoretical significance and prom-

ising experimental verifiability, to the best of our knowl-
edge, the previous studies of the CTE are incomplete in
the sense that they have neglected curvature effects—
specifically, the spin connection term in the covariant
derivative—and overlooked a certain torsional term
allowed in the general torsional gravity Lagrangian. In
addition, the connection between the CTE and the Nieh-
Yan anomaly is not entirely clear. Firm computation in a
complete setup is indispensable for comprehending the
interplay between torsion, curvature, and axial anomaly.
Hence in this paper, we decisively calculate the CTE
current at finite temperature, density, and curvature in
the most general torsional gravity theory. In addition, we
analyze the current driven by the electromagnetic field in
torsional spacetime, unveiling the impact of torsion on the
conventional Maxwell electrodynamics.
This paper is organized as follows. Section II serves as a

brief review of torsional gravity. We introduce the basic
notion of torsion and expound the general form of the
coupling between torsion and a fermion. In Sec. III, we
calculate the torsion-induced current. We first evaluate the
current at zero temperature and density to clarify its relation
to the Nieh-Yan’s torsional topological invariant and then
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generalize our calculation to finite temperature and density.
In Sec. IV, we analyze the current driven by electromag-
netic fields in the presence of torsion and hereby illuminate
the analogy between the electrodynamics of the torsional
gravity theory to the axion electrodynamics. Section V
presents our summary and outlook. Throughout this work,
we adopt an imaginary time coordinate or, in other words, a
metric with a Euclidean signature.

II. TORSION

The standard Einstein gravity theory assumes the sym-
metry of affine connection Γλ

μν ¼ Γλ
νμ. Together with the

metricity condition, this assumption leads one to identify
the affine connection with the Christoffel symbol deter-
mined solely by the metric

Γλ
μν ¼

1

2
Δαβγ

ρμνgρλ∂αgβγ; ð1Þ

with a permutation symbol Δαβγ
μνρ ≡ δαρδ

β
μδ

γ
ν þ δανδ

β
μδ

γ
ρ −

δαμδ
β
νδ

γ
ρ. By contrast, the Einstein-Cartan gravity theory

relaxes the assumption of a symmetric affine connection,
allowing for an antisymmetric part termed “torsion”:

Tλ
μν ≡ Γ̃λ

μν − Γ̃λ
νμ: ð2Þ

Henceforth, we attach a tilde in denoting quantities con-
taining torsion. Affine connection itself is not a tensor, but
torsion is; thus, it is qualified as a physical quantity. Using
the metricity condition, the relation between Γ̃λ

μν and Γλ
μν

reads

Γ̃λ
μν ¼ Γλ

μν −
1

2
Δαβγ

ρμνgλρTαβγ: ð3Þ

Equation (3) demonstrates that the spacetime features two
independent intrinsic properties: metric and torsion.
Correspondingly, the covariant derivative of a spinor

field comprises an extra term embodying the coupling of
torsion with a fermion:

∇̃μψ ≡∇μψ þ i
16

Δαβγ
νρμTαβγðeνaeρb − eνbe

ρ
aÞσabψ ; ð4Þ

where eμm is the vierbein satisfying the orthonormal
relations eμmeμn ¼ δmn; eμmemν ¼ gμν. The first term in
Eq. (4) is the torsion-free covariant derivative in Einstein
gravity theory:

∇μψ ≡ ∂μψ þ i
2
ωμabσ

abψ ; ð5Þ

with σab ≡ i
2
½γa; γb� and the spin connection

ωμab ¼
1

4
ðebσ∂μeσa − eaσ∂μeσbÞ þ

1

4
Γα

βμðeβaebα − eβbeaαÞ:
ð6Þ

With the covariant derivative defined by Eq. (4), we
readily write down the Dirac Lagrangian in torsional
curved spacetime,

Lmin ¼
1

2
ψ̄ðγμ∇̃μ −mÞψ þ H:c:; ð7Þ

which is sometimes called the minimal theory. After some
algebra [41], we rewrite Eq. (7) to sort out the torsional
contribution,

Lmin ¼ ψ̄

�
γμ
�
∇μ −

1

8
γ5Sμ

�
−m

�
ψ ; ð8Þ

where Sμ is what we call “screw torsion”:

Sμ ≡ εμνρσTνρσ ð9Þ

with εμνρσ denoting the covariant Levi-Civita tensor. The
most general Lagrangian obeying covariance, locality,
renormalizability, and parity symmetry allows for another
type of torsional term that we call “edge torsion,”

Eμ ≡ Tα
μα; ð10Þ

and it takes the form

L ¼ ψ̄ ½γμð∇μ − η1γ5Sμ − η2EμÞ −m�ψ : ð11Þ

The parameters η1 and η2 are arbitrary real numbers for the
general theory, while the specific choice η1 ¼ 1=8; η2 ¼ 0
recovers the minimal theory (8).
Two features of the Lagrangian (11) play essential roles

in later computation. First, the torsional terms are entirely
separated. Thus, we can conveniently define the perturba-
tion away from the torsion-free theory that corresponds to
the choice η1 ¼ η2 ¼ 0. Second, the edge torsion couples to
a fermion in the same way as a U(1) gauge field. It enables
us to easily encompass an external electromagnetic field by
combining it with the edge torsion:

A0
μ ≡ Aμ þ η2Eμ: ð12Þ

In this way, we consider Eμ together with the electromag-
netic field in Sec. IV. Until then we turn off A0

μ for
simplicity.

III. TORSION-INDUCED CURRENT

We aim to evaluate the torsion-induced chiral current in
the most general theory (11) with metric and torsion treated
as background fields. Our calculation starts from the

ZEBIN QIU and SHOTA IMAKI PHYS. REV. D 102, 016001 (2020)

016001-2



following vacuum or thermal expectation value of the chiral
current:

Jμ� ¼ hψ̄γμP�ψi; ð13Þ

where “þ” and “−” stand for right-handedness and left-
handedness, respectively, and P� ≡ 1

2
ð1� γ5Þ denotes the

chiral projector.
Throughout the present section, as explained above, the

electromagnetic field, together with the edge torsion, A0
μ, is

shut down, and the screw torsion Sμ is disposed as a
perturbation to the linear order. In parallel, the effect of
curvature is also kept to the leading order in terms of the
curvature tensor Rμνρσ.
The chiral current Jμ� is calculated in two different

setups. The result at zero temperature and density is
achieved in Sec. III A. The axial current, in this case,
depends on the ultraviolet cutoff, and its divergence proves
to be related to the Nieh-Yan topological invariant. Then,
the generalization to finite temperature and density is
accomplished in Sec. III B. The chiral current relies on
the interplay between torsion and curvature and exhibits a
distinctive dependence on temperature and density in
contrast to the CME and the CVE.

A. Zero temperature and density

At zero temperature and density, given that the screw
torsion Sμ is an axial vector, the vector current vanishes at
OðSμÞ. We therefore focus on the axial current

Jμ5 ¼ hψ̄γμγ5ψi: ð14Þ

We calculate it as the trace involving the propagator, in a
way similar to Ref. [45]. The perturbative expansion with
respect to the screw torsion gives rise to

Jμ5 ¼ −η1Trðγμγ5Gγνγ5GÞSν þOðS2μ; ∂2SμÞ; ð15Þ

with G representing the torsion-free propagator and Tr
standing for the trace over both Dirac indices and coor-
dinate space. We make two remarks about our power
counting. First, given the symmetry property of the
curvature tensor, the torsion-independent part vanishes at
zero temperature and density, as also pointed out in
Ref. [4]. Second, from the perspective of parity, one can
understand that the first-order derivative of Sμ does not
contribute to the axial current.
To simplify our computation, we employ the Riemann

normal coordinate around the point x at which the current
is evaluated. In this coordinate system, the Christoffel
symbol Γμ

νρ vanishes at x, and the γ-matrices are those in
flat spacetime. After the transformation into momentum
k-space, the propagator at the coincidental point acquires
the following form according to Ref. [55]:

Gðx; x0 → xÞ ¼
Z

d4k
ð2πÞ4 ðiγ

μkμ þmÞGðkÞ; ð16Þ

where the function GðkÞ includes curvature effects in a
perturbative way:

GðkÞ ¼ −
�
1 −

�
A1 þ iA1α

∂
∂kα − A1αβ

∂2

∂kα∂kβ
� ∂
∂m2

þ A2

� ∂
∂m2

�
2
�

1

k2 þm2
þ � � � : ð17Þ

The first coefficient A1 is proportional to the scalar
curvature,

A1 ¼
R
12

: ð18Þ

The subsequent coefficients, A1α, A1αβ, A2 and so forth,
consist of higher orders of curvature or derivatives
thereof. One can refer to Ref. [55] for their specific values,
but we focus on the leading-order curvature effect so that
A1 suffices.
Inserting Eqs. (16) and (17) into Eq. (15) and taking the

trace over Dirac indices yields

Jμ5 ¼ 2η1Sμ
Z

Λ d4k
ð2πÞ4 ð2m

2 − k2ÞG2ðkÞ: ð19Þ

We have introduced the ultraviolet cutoff Λ so as to figure
out the dependence of the axial current on Λ, which is also
implied in Refs. [43,44]. With detailed computation given
in Appendix A, we present the conclusive result

Jμ5 ¼
η1
8π2

Sμ

×

�
−Λ2 − 3m2 þ 5

12
Rþ

�
4m2 −

R
6

�
log

�
1þ Λ2

m2

��
:

ð20Þ
Here, the cutoff Λ has definite physical significance as the
inverse of lattice spacing which is the physical length scale
of a crystal.
Let us examine the axial anomaly indicated by

Eq. (20). To this end, we take the massless limit m → 0.
Furthermore, since the curvature is independent of torsion
and irrelevant to our study, we rightfully take Rμν ρσ ¼ 0.
Then, the axial current reads

Jμ5 ¼ −
η1Λ2

8π2
Sμ: ð21Þ

Accordingly, the divergence of the axial current takes the
form of [42]

∂μJ
μ
5 ¼

η1Λ2

8π2
εμν ρσTα

μνTαρσ: ð22Þ
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In fact, the volume integral of the divergence is propor-
tional to Nieh-Yan’s topological invariant [42],

NNY ¼
Z

d4x εμν ρσTα
μνTαρσ; ð23Þ

which characterizes the torsional topology of spacetime.
The relation (22) is referred to as the Nieh-Yan anomaly
[43,44] in that the right-hand side has an anomalous nature
and the left-hand side embodies Nieh-Yan’s topological
invariant.
It is noteworthy that in a general sense, the divergence of

the axial current in a torsional curved spacetime receives
other contributions in addition to Eq. (22), which we are
nevertheless unable to capture under our truncation
scheme. For instance, Nieh-Yan’s topological invariant
should have the Pontryagin form of the curvature [42],
together with Eq. (23), which is at the second order of the
curvature tensor. As first indicated in Ref. [56], there is also
aΛ-independent torsional contribution to the axial anomaly
from higher orders of torsion and its derivative. To grasp
this, one can extend our analysis to include higher-order
terms of curvature and torsion.

B. Finite temperature and density

We now generalize to the chiral current (13) at finite
temperature T, vector chemical potential μ, and axial
chemical potential μ5. For such purposes, we resort to
the Matsubara formalism. We impose the stationary con-
dition of the metric; i.e., all metric components are time
independent, and the temporal components are space
independent, which justifies the standard Matsubara for-
malism. For simplicity, we consider a massless fermion
with m ¼ 0.
We observe from the Lagrangian (11) that the temporal

component of the screw torsion couples to a fermion in a
way identical to the axial chemical potential. Thus, we
absorb it into a redefined axial chemical potential:

μ05 ≡ μ5 þ η1Sτ: ð24Þ

Then, without loss of generality, we specify the screw
torsion to be pure spacelike and further direct it along
the z axis as Sμ ¼ Szẑ because of spherical symmetry. One
can manifest that only the τ- and z-components of the
current (13) are nonvanishing. Since the τ-component does
not depend on Sz at the linear order, we focus on the
z-component,

Jz� ¼ hψ̄γzP�ψi: ð25Þ

It is straightforward to prove that the current (25) can
be evaluated by a formula similar to Eq. (15), with the
momentum kμ therein replaced by

K�μ ≡ ðk;ωn þ iμ�Þ; ð26Þ

with the Matsubara frequencies ωn ≡ 2πTðnþ 1
2
Þ and the

chiral chemical potential μ� ≡ μ� μ05. To linear order, the
chiral current is expressed as

Jz� ¼ −η1TrðγzP�G�γzγ5G�ÞSz þ � � � ; ð27Þ

where G� is given by

G� ¼ T
X
ωn

Z
d3k
ð2πÞ3 iγ

μK�μG�ðkÞ ð28Þ

with the perturbative expansion of G�ðkÞ formally similar
to Eq. (17),

G�ðkÞ ¼ −
1

K2
�
−

R
12

1

ðK2
�Þ2

þ � � � : ð29Þ

Applying the formulas (28) and (29) to the expression
(27) and carrying out the Dirac trace, the computation can
be condensed to the following sum integral:

Jz� ¼ �2η1SzT
X
ωn

Z
d3k
ð2πÞ3 ð2k

2
z − K2

�ÞG2
�ðkÞ: ð30Þ

Now that we are interested in the dependence of Jz� on
temperature and density rather than the ultraviolet scale, we
calculate the integral with dimensional regularization and
subtract the divergence according to the modified minimal
subtraction scheme. After the computation of the sum
integral detailed in Appendix B, we obtain the final result:

Jz� ¼ � η1R
96π2

SzF

�
μ�
2πT

�
: ð31Þ

The dependence on temperature and density is expressed
utilizing the digamma function ψðzÞ as

FðzÞ ¼ ψ

�
1

2
þ iz

�
þ ψ

�
1

2
− iz

�
; ð32Þ

which is depicted in Fig. 1. One can further compute the
vector and axial currents from Eq. (31). Notably, the vector
current vanishes when there is no chiral imbalance, μ5 ¼ 0.
We remark that the result (31) should not be directly

compared with that in zero temperature and density (20)
because the result of Jμ� would change by altering the order
in which we take the three limits, T → 0, μ� → 0, and
m → 0. For example, in Eq. (31), the μ� → 0 limit can be
taken directly, while the T → 0 limit should be analyzed
through the asymptotic expansion; apparently, the results
have different coefficients of RSz. A discussion on the
T → 0 limit is provided in Appendix B. Moreover, during
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dimensional regularization, an infinite portion in Jz� exists
as the counterpart of the Λ-dependent term in Eq. (20), but
it has already been subtracted and is thus absent in Eq. (31).

IV. TORSIONAL ELECTRODYNAMICS

Now, we study the current response to an external
electromagnetic field in the presence of torsion. It is worth
noting that we combine the edge torsion with the electro-
magnetic field as

A0
μ ≡ Aμ þ η2Eμ: ð33Þ

Hence, our analysis in this section accounts for the current
driven by the edge torsion as well. For simplicity, we
confine our study to the massless fermion on a flat metric
with zero chemical potential. We also assume the screw
torsion to be stationary and homogeneous. Under these
assumptions, we can perform an axial transformation

ψðxÞ → expð−iη1γ5SμxμÞψðxÞ ð34Þ

to eliminate Sμ from the fermionic sector of the Lagrangian.
This transformation meanwhile yields the following
anomalous term in the gauge sector:

Sanom ¼ η1
4π2

Z
d4x A0

μSνF̃μν; ð35Þ

where Fμν ≡ ∂μA0
ν − ∂νA0

μ and F̃μν ≡ 1
2
εμν ρσFρσ. Remark-

ably, Eq. (35) is formally the same as the action of axion
electrodynamics, and the screw torsion plays the role of the
derivative of the vacuum angle: Sμ ∼ ∂μθ.
The functional derivative of the action (35) with respect

to Aμ gives rise to the vector current,

Jμ ¼ η1
2π2

SνF̃μν: ð36Þ

This equation summarizes multiple torsion-induced phe-
nomena. The temporal component represents an anomalous
charge density

n ¼ η1
2π2

S · B; ð37Þ

resembling the Witten effect [57], in which magnetic flux
traversing the gradient of the vacuum angle induces the
extra charge. Thus, we call Eq. (37) the torsional Witten
effect. On the other hand, the spatial component of the
current reads

J ¼ η1
2π2

ðSτBþ S × EÞ: ð38Þ

The first term is the torsional realization of the chiral
magnetic effect [1] in which Sτ acts as the axial chemical
potential. We thereupon designate it as the torsional
magnetic effect. The second term is a current perpendicular
to the electric field, which we name the torsional Hall effect
after the anomalous Hall effect [58,59].
As the parity dual of the vector current (36), the axial

current is derived in parallel from the anomalous action
(35) as

Jμ5 ¼
η2
4π2

EνF̃μν: ð39Þ

Given that the torsion is mimicked by lattice dislocation
[45], this relation would be useful for condensed matter
experiments that create chirality imbalance without axial
chemical potential.

V. CONCLUSION

We calculate the torsion-induced current at finite temper-
ature, density, and curvature for the general Einstein-Cartan
gravity theory. The axial current at zero temperature and
density reveals the relation between the CTE and Nieh-
Yan’s topological invariant. The chiral current at finite
temperature and density features a rather nontrivial depend-
ence on temperature and density, distinguished from the
quadratic dependence on T and μ� in the CVE.
Our work not only has theoretical significance but

also phenomenological implications. It has been proposed
that torsion can be realized as lattice dislocation, indicating
that the torsion-induced current is experimentally verifi-
able. The interaction between torsion and electromagnetic
field demonstrates torsion as an alternative to the axial
chemical potential for the production of chirality imbal-
ance, heralding broader physical contexts for the study
of chiral transport phenomena. The analogy between
torsional electrodynamics and axion electrodynamics sub-
stantiates that novel topological effects in the latter can
exist in a torsional spacetime even without a vacuum
angle. One interesting example is the recently discovered

FIG. 1. The dependence of the function F in Eq. (31) on
temperature and density.
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axionic Casimir force that proves anomalously repulsive
in Ref. [60].
Based on this paper, several future directions can be

explored. For example, we have truncated the result to the
leading order of both torsion and curvature. The generali-
zation to higher orders would fully clarify the relation
between the torsion-induced current and the axial anomaly
in the Einstein-Cartan gravity theory. Also, we have treated
the torsion as a background field, and the extension to
dynamical torsion would be a challenging yet intriguing
future task. Finally, we have restricted our discussion to
noninteracting fermions. Further incorporating fermionic
interactions will reveal whether there are higher loop
corrections of the CTE.
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APPENDIX A: INTEGRALS IN ZERO
TEMPERATURE AND DENSITY

We supply details for the calculation of Eq. (20). Up to
the leading orders of mass and curvature, Eq. (19) involves
the following integrals calculated with the hard cutoff
at k2 ¼ Λ2:

Z
Λ d4k
ð2πÞ4

1

ðk2 þm2Þ3 ¼
1

32π2m2
; ðA1Þ

Z
Λ d4k
ð2πÞ4

1

ðk2 þm2Þ2 ¼
1

16π2

�
log

�
1þ Λ2

m2

�
− 1

�
; ðA2Þ

Z
Λ d4k
ð2πÞ4

k2

ðk2 þm2Þ3 ¼
1

16π2

�
log

�
1þ Λ2

m2

�
−
3

2

�
; ðA3Þ

Z
Λ d4k
ð2πÞ4

k2

ðk2 þm2Þ2

¼ 1

16π2

�
Λ2 − 2m2 log

�
1þ Λ2

m2

�
þm2

�
: ðA4Þ

These formulas lead to the result (20).

APPENDIX B: INTEGRALS IN FINITE
TEMPERATURE AND DENSITY

We provide a concrete derivation of Eq. (31). With the
expansion (29) applied, the current (30) equals

Jz� ¼ �2η1Sz
�
2Iz2 − I1 þ

R
6
ð2Iz3 − I2Þ

�
; ðB1Þ

where we have defined, for convenience, the following sum
integrals:

In ≡ T
X
ωn

Z
d3k
ð2πÞ3

1

ðK2
�Þn

; ðB2Þ

Izn ≡ T
X
ωn

Z
d3k
ð2πÞ3

k2z
ðK2

�Þn
: ðB3Þ

We adopt the dimensional regularization d3k=ð2πÞ3 →
M3−dddk=ð2πÞd with the number of dimensions d ¼
3 − 2ϵ and the scale parameter M. Then, we carry out
the momentum integrals:

In ¼
M3−dΓðn − d

2
Þ

ð4πÞd2ΓðnÞ T
X
ωn

ðK2
�τÞ

d
2
−n; ðB4Þ

Izn ¼
1

2ðn − 1Þ In−1: ðB5Þ

After some algebra, the Matsubara sum amounts to

X
ωn

ðK2
�τÞ

d
2
−n ¼ ð2πTÞd−2n

×

�
ζ

�
−dþ 2n;

1

2
þ i

μ�
2πT

�
þ c:c:

�
; ðB6Þ

where ζðz; aÞ denotes the Hurwitz zeta function. The
integrals I1 and I

z
2 have no divergence at ϵ ¼ 0 and directly

read

I1 ¼ −
μ2�
8π2

−
T2

24
þOðϵÞ; ðB7Þ

Iz2 ¼ −
μ2�
16π2

−
T2

48
þOðϵÞ: ðB8Þ

On the other hand, the integrals I2 and Iz3 diverge at ϵ ¼ 0

and therefore need regularization. We exploit the Laurent
series expansion of the Hurwitz zeta function:

ζð1þ 2ϵ; zÞ ¼ 1

2ϵ
− ψðzÞ þOðϵÞ: ðB9Þ

In this way, we derive

I2 ¼
1

16π2

�
1

ϵ̄
þ 2 log

�
M
4πT

�
−F

�
μ�
2πT

��
þOðϵÞ; ðB10Þ

where the definition of the function FðzÞ has been clarified
in Eq. (32) and the constant is defined as

1

ϵ̄
¼ 1

ϵ
− γE þ logð4πÞ: ðB11Þ

Following the modified minimal subtraction scheme, we
subtract the infinity as well as the logarithmic term in
Eq. (B10) and obtain the final result
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I2 ¼ −
1

16π2
F

�
μ�
2πT

�
; ðB12Þ

Iz3 ¼ −
1

64π2
F

�
μ�
2πT

�
: ðB13Þ

Eventually, one can easily attain the chiral current (31) by
plugging the sum integrals (B7), (B8), (B12), and (B13)
into the formula (B1).
Notably, though the temperature T appears in the

denominator of the variable of FðzÞ, taking the zero-
temperature limit T → 0 does not incur a singularity
because the digamma function converges for a variable
with a large imaginary part. To elaborate this point, we
perform the asymptotic expansion of the digamma function

ψðzÞ ¼ log z −
1

2z
−

1

12z2
þ � � � ; ðB14Þ

which leads to

I2 ¼
1

16π2

�
1

ϵ̄
þ 2 log

πM
μ�

þ π2T2

3μ2�

�
þ � � � : ðB15Þ

This equation illuminates the proper way to examine the
low- or zero-temperature limit of our result (31). By
comparison, one can analyze the small density limit via
the Taylor expansion of Eq. (31) with respect to μ�
straightforwardly.
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