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Paterna. C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia)—SPAIN
2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC,

09210-580 Santo André-SP, Brasil
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(Received 9 May 2020; accepted 10 July 2020; published 23 July 2020)

We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter
stability is linked to the Dirac nature of neutrinos, which results from an unbroken B − L gauge symmetry.
The new gauge bosons get masses through the interplay of spontaneous symmetry breaking à la Higgs and
the Stueckelberg mechanism.
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I. INTRODUCTION

Despite its amazing phenomenological success, almost
no one thinks of the standard model as the final theory, so
many are its drawbacks. Amongst these, the issues of
neutrino mass, dark matter, the number of families, and
the strong CP problem stand out as important items in the
wish list of theorists. Here, we propose a standard model
extension where these appear closely interconnected. To do
this, we build up upon a minimal gauge extension of the
original Singer-Valle-Schechter (SVS) 3-3-1 model [1].
This was the first electroweak extension of the standard
model in which the existence of three families of quarks
and leptons is closely related to anomaly cancellation.
Indeed, in this SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞX theory, one
assumes that leptons transform as SUð3ÞL antitriplets,
while two families of left-handed quarks transform as
triplets, and the last one is an antitriplet. This choice
comes from anomaly cancellation and once adopted, leads
to the prediction of three families of quarks and leptons
[1–4]. In order to make the construction as minimal as
possible, we also adopt the choice made in [5] of identify-
ing the third component of the leptons as a “right-handed”

neutrino, so that neutrinos are of a Dirac nature and their
masses are generated at tree-level. However this early
formulation is not compatible with the current neutrino
oscillation data [6], as it predicts one massless and two
mass-degenerate neutrinos. Besides, an unaesthetic feature
of this construction is that lepton number symmetry
emerges in SVS as a combination of a gauge symmetry
and a global one.
In what follows, we explore a simple scheme with a

viable neutrino spectrum and realize the scotogenic dark
matter paradigm [7], which postulates that neutrino masses
arise through the radiative exchange of a “dark matter”
sector. The idea of relating dark matter stability to the
Diracness of neutrinos has been proposed in [8], employing
residual discrete symmetries arising from the partial break-
ing of a global B − L symmetry [8–14]. An alternative
proposal to link Dirac neutrino masses and dark matter
stability is through a fully conserved global B − L sym-
metry. This idea has been pursued in the context of bound-
state dark matter [15], in which the radiative generation of
Dirac neutrino masses is mediated by the exchange of
bound-state-dark-matter constituents.
In this paper, we choose a different route, namely, a

scenario where dark matter stability is interconnected to the
Diracness of neutrinos in the framework of a dynamical
theory with gauged lepton number. In order to achieve
this, we build upon a minimally extended class of SVS
theories developed within the framework of the SUð3Þc ⊗
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN gauge symmetry [16–20]. The
extra Abelian Uð1ÞN group allows a consistent embedding
of B − L as a fully dynamical gauge symmetry. We propose
a simple 3-3-1-1 extension of the original SVS theory,
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where neutrino masses arise “scotogenically” (i.e., through
the exchange of “dark” particles) at the one-loop level. The
unbroken B − L symmetry acts as the protecting symmetry
responsible for both neutrino Dirac masses and stabilization
of dark matter. Such a conserved gauge symmetry is shown
to be fully consistent, as we adopt the Stueckelberg
mechanism to provide a mass to the associated gauge field
while keeping the symmetry intact. Our present construc-
tion follows the path of the simple Stueckelberg [21] U(1)
extension of the standard model proposed in Ref. [22].
However, this is achieved within a richer framework that
provides not only a dynamical realization of the proposal
that dark matter stability and Diracness are closely inter-
related, but also touches other standard model shortcom-
ings such as the number of families and the strong CP
problem. In particular, the existence of three families of
quarks and leptons is linked to anomaly cancellation. Our
present model also provides an example of “predestined”
dark matter [23], in the sense that the specific quantum
numbers of the new fermion and scalar multiplets auto-
matically ensure the existence of a stable dark matter
candidate, without the ad hoc imposition of any additional
symmetry.
The paper is organized as follows. In Sec. II, we define

the proposed model in terms of its field content and
symmetries. The scalar sector is studied in Sec. III. In
Sec. IV, we derive the extended electroweak vector boson
spectrum taking into account contributions coming from
both the spontaneous symmetry and Stueckelberg mecha-
nisms. The charged fermion spectrum is presented in
Sec. V, the scotogenic neutrino masses are calculated in
Sec. VI, and in Sec. VII, we study the case for a complex
dark matter scalar candidate. Finally, the conclusions are
presented in Sec. VIII.

II. THE MODEL

In the present model, not only the Abelian electromag-
netic symmetry Uð1ÞQ but also the Uð1ÞB−L symmetry
emerges as a conserved residual subgroup of the SUð3Þc ⊗
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN gauge symmetry or 3-3-1-1 for
short. In 3-3-1-1 models, the electric charge operator can be
generically written as

Q ¼ T3 þ βT8 þ X; ð1Þ

while the B − L generator is expressed as

B − L ¼ β0T8 þ N; ð2Þ

with Ta (a ¼ 1;…; 8), X andN as the respective generators
of SUð3ÞL, Uð1ÞX, and Uð1ÞN [24]. The choices of the
constants β and β0 define different versions of the model,
and for the SVS model, we have β ¼ 1=

ffiffiffi
3

p
and β0 ¼

4=
ffiffiffi
3

p
. This specific choice ensures the B − L assignment

in the SVS model with its original field content is anomaly

free and can be promptly promoted to local. On the other
hand, other β0 values would require new fermions to cancel
the B − L anomalies1; see, e.g.,Refs. [16]. Here, we stick to
the SVS choice given in Table I. This gives all the quantum
number assignments for the fields contained in our model.
In addition to the fields present in the original SVS model,
we have included three two-component Majorana fermion
singlets SaR, a ¼ 1, 2, 3, and one scalar antitriplet Φ4.
Notice that the Majorana fermions are full gauge singlets
and hence, carry no anomaly. The global Uð1ÞPQ symmetry

forbids the term ðψa
LÞcΦ1ψ

b
L, which appears in Ref. [5]

and leads to tree-level Dirac neutrino masses. However, as
it will be discussed in Sec. III, this global symmetry is
softly broken in the scalar sector, by the trilinear Φ1Φ2Φ3

coupling. As we will see, this avoids the disastrous
presence of a visible axion field. Notice also that, since
B − L remains unbroken, the matter parity subgroup,
generated by the matter parity MP ¼ ð−1Þ3ðB−LÞþ2s, where
s is the field’s spin, is also fully preserved. Under
MP, all the fields in the original SVS model trans-
form trivially, whereas the new fields transform as

ðSaR;Φ4Þ!MP − ðSaR;Φ4Þ. Therefore, the lightest among
the MP-odd fields is stable, and, if electrically neutral, it
can play the role of dark matter.

III. SCALAR SECTOR

Our model contains four triplet scalars, three of them are
Higgs-like, even under matter parity, while Φ4 is “dark” or
MP odd. The resulting scalar potential is given by

TABLE I. Field content and symmetry transformations.

Field 3-3-1-1 rep Components B − L Uð1ÞPQ
QαL ð3; 3; 0;− 1

3
Þ ððuαL; dαLÞ; DαLÞT ð1

3
; 1
3
;− 5

3
ÞT 1

Q3L ð3; 3�; 1
3
; 1Þ ððbL;−tLÞ; U3LÞT ð1

3
; 1
3
; 7
3
ÞT 1

uaR ð3; 1; 2
3
; 1
3
Þ uaR 1

3
4

U3R ð3; 1; 2
3
; 7
3
Þ U3R

7
3

4
daR ð3; 1;− 1

3
; 1
3
Þ daR 1

3
−2

DαR ð3; 1;− 1
3
;− 5

3
Þ DαR − 5

3
−2

ψaL ð1; 3�;− 1
3
;− 1

3
Þ ððeaL;−νaLÞ; νcaRÞT ð−1;−1;þ1ÞT −3

eaR ð1; 1;−1;−1Þ eaR −1 −6

SaR ð1; 1; 0; 0Þ SaR 0 0

Φ1 ð1; 3�; 2
3
; 2
3
Þ ððϕ0

1;−ϕ
þ
1 Þ; ϕ̃þ

1 ÞT ð0; 0; 2ÞT 3
Φ2 ð1; 3�;− 1

3
; 2
3
Þ ððϕ−

2 ;−ϕ0
2Þ; ϕ̃0

2ÞT ð0; 0; 2ÞT −3
Φ3 ð1; 3�;− 1

3
;− 4

3
Þ ððϕ−

3 ;−ϕ0
3Þ; ϕ̃0

3ÞT ð−2;−2; 0ÞT −3

Φ4 ð1; 3�;− 1
3
;− 1

3
Þ ððϕ−

4 ;−ϕ0
4Þ; ϕ̃0

4ÞT ð−1;−1; 1ÞT −3

1Explicit calculation of anomaly coefficients for generic β and
β0 can be found in Ref. [24].
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VΦ ¼
X4
i¼1

½μ2iΦ†
iΦi þ λiðΦ†

iΦiÞ2� þ
X
i<j

½λijðΦ†
iΦiÞðΦ†

jΦjÞ þ λ̃ijðΦ†
iΦjÞðΦ†

jΦiÞ�

þ
�
−

μϕffiffiffi
2

p Φ1Φ2Φ3 þ
λ0

2
Φ†

2Φ4Φ
†
3Φ4 þ H:c:

�
; ð3Þ

where the cubic term characterized by μϕ breaks the Uð1ÞPQ symmetry softly.
The scalar multiplets are decomposed as

Φ1 ¼

0
BB@

v1þs1þia1ffiffi
2

p

−ϕþ
1

ϕ̃þ
1

1
CCA; Φ2 ¼

0
BB@

ϕ−
2

v2−s2−ia2ffiffi
2

p

ϕ̃0
2

1
CCA; Φ3 ¼

0
BB@

ϕ−
3

−ϕ0
3

wþs3þia3ffiffi
2

p

1
CCA; Φ4 ¼

0
BB@

ϕ−
3

−ϕ0
4

ϕ̃0
4

1
CCA; ð4Þ

where v1=
ffiffiffi
2

p
; v2=

ffiffiffi
2

p
, and w=

ffiffiffi
2

p
represent vacuum expectation values (vevs), with w2 ≫ v21 þ v22 ≡ v2EW. Notice that, with

the assumed vev alignment, the B − L symmetry remains conserved, and the minimization of the potential leads to the
tadpole equations,

v1ð2μ21 þ 2λ1v21 þ λ12v22 þ λ13w2Þ − v2wμϕ ¼ 0;

v2ð2μ22 þ 2λ2v22 þ λ12v21 þ λ23w2Þ − v1wμϕ ¼ 0;

wð2μ23 þ 2λ3w2 þ λ13v21 þ λ23v22Þ − v1v2μϕ ¼ 0; ð5Þ

which can be simultaneously solved for μ21, μ
2
2, and μ23. In the following subsections, we present the physical states of the

scalar sector and their respective masses.

A. CP-even scalars

After spontaneous symmetry breaking, the CP-even components of the fields that acquire a vev mix according to the
following squared mass matrix, written in the basis ðs1; s2; s3Þ:

M2
s1;s2;s3 ¼

0
BB@

2v21λ1 þ v2wμϕ
2v1

−v1v2λ12 þ wμϕ
2

v1wλ13 −
v2μϕ
2

−v1v2λ12 þ wμϕ
2

2v22λ2 þ v1wμϕ
2v2

−v2wλ23 þ v1μϕ
2

v1wλ13 −
v2μϕ
2

−v2wλ23 þ v1μϕ
2

2w2λ3 þ v1v2μϕ
2w

1
CCA: ð6Þ

Diagonalization yields three physical mass-eigenstate scalars. Assuming for simplicity, the hierarchy μϕ; w ≫ v1; v2, the
lightest one can be identified with the standard model Higgs boson discovered at the LHC,

h ≈
v2s2 − v1s1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p : ð7Þ

Its squared mass is given as

m2
h ≈
�
2λ1 −

λ213
2λ3

�
v21 þ v22

�
2λ12 −

λ13λ23
λ3

−
μ2ϕ
λ3w2

�
þ
�
2λ2 −

λ223
2λ3

�
v42
v21

þ μϕðλ13v21v2 þ λ23v32Þ
λ3v1w

; ð8Þ

where all parameters, other than μϕ and w, lie at the electroweak scale. The remaining scalars are heavy and can be
approximately identified as

H1 ≈
v2s1 þ v1s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p ; m2

H1
≈
ðv21 þ v22Þwμϕ

2v1v2
;

H2 ≈ s3; m2
H2

≈ 2w2λ3: ð9Þ
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In principle, μϕ can be even lower than the electroweak
scale. In that case, this sector would give rise to two light
scalars and a heavy one. In what follows, we assume an
arbitrary μϕ scale and a vev hierarchy w ≫ v1; v2.

B. CP-odd scalars

Similar to the CP-even scalars, the CP-odd components
also mix through the squared mass matrix,

M2
a1;a2;a3 ¼

μϕ
2

0
BB@

v2w
v1

−w v2

−w v1w
v2

−v1
v2 −v1

v1v2
w

1
CCA; ð10Þ

in the basis ða1; a2; a3Þ. Upon diagonalization, we find two
Nambu-Goldstone bosons that can be identified as

G1 ¼
v1a1 þ v2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p ; G2 ¼

−v1a1 þ wa3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ w2

p ; ð11Þ

and one physical pseudoscalar,

A0
1 ¼

v2wa1 − v1wa2 þ v1v2a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21v

2
2 þ v21w

2 þ v22w
2

p ; ð12Þ

with a squared mass,

m2
A0
1
¼ μϕðv21v22 þ v21w

2 þ v22w
2Þ

2v1v2w
: ð13Þ

The importance of the Uð1ÞPQ soft-breaking term charac-
terized by μϕ can be better understood by looking at
the equations above and Table I. In the limit μϕ → 0,
Uð1ÞPQ becomes a classical global symmetry of the model,
whose spontaneous breaking by the vevs of the scalar fields
would imply the existence of a massless Nambu-Goldstone
boson, namely, the pseudoscalar defined in Eq. (12).
However, the Peccei-Quinn-like symmetry has an associ-
ated ½SUð3ÞC�2Uð1ÞPQ anomaly. Therefore, instead of a
massless field, we would have a pseudo-Goldstone boson,
an axion field getting its mass via nonperturbative effects.
The existence of such a “low-scale” axion (w ¼ 10 TeV),

à la Weinberg-Wilczek [25,26], is ruled out phenomeno-
logically, as noted in Ref. [27]. Alternative 3-3-1 proposals
including gauge singlet scalars with nonvanishing Uð1ÞPQ
charges have been considered [28,29]. This way one can
make the axion invisible and thus, viable by introducing a
large Uð1ÞPQ breaking scale. Here, we do not follow this
path. Instead, we avoid the presence of the visible axion
simply by softly breaking Uð1ÞPQ via the trilinear Φ1Φ2Φ3

term, instead of adding more scalars. Apart from minimal-
ity, this also ensures that tree-level neutrino masses are
absent.

C. Complex neutral scalars

The complex neutral scalars that do not acquire vevs can
be grouped in pairs according to their B − L charges, as
follows. First notice that, since B − L is conserved, only
fields with the same B − L charges can mix. Since the fields
ϕ̃0
2 and ϕ0

3 carry opposite B − L charges, we define a B −
L ¼ 2 basis as ðϕ̃0

2;ϕ
0�
3 Þ. In this basis, we can write down

the following squared mass matrix:

M2
ϕ̃0
2;ϕ

0
3

¼ 1

2

 
wðwλ̃23 þ v1μϕ

v2
Þ −v1μϕ − v2wλ̃23

−v1μϕ − v2wλ̃23 v2ðv2λ̃23 þ v1μϕ
w Þ

!
: ð14Þ

Upon diagonalization, we find a massless complex scalar,
shown in the next section to be absorbed à la Goldstone by
the gauge sector,

G3 ¼
v2ϕ̃

0
2 þ wϕ0�

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 þ w2

p ; ð15Þ

and a heavy complex scalar field,

φ ¼ −wϕ̃0
2 þ v2ϕ0�

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 þ w2

p ; m2
φ ¼ ðv22 þ w2Þðλ̃23v2wþ v1μϕÞ

2v2w
:

ð16Þ

Likewise, coming to the remaining fields, these can
be grouped in a basis with B − L ¼ 1 as ðϕ̃0

4;ϕ
0�
4 Þ. The

corresponding squared mass matrix is

M2
ϕ̃0
4;ϕ

0
4

¼ 1

2

 
v21λ14 þ v22λ24 þ w2ðλ34 þ λ̃34Þ þ 2μ24 − 1

2
λ0v2w

− 1
2
λ0v2w v21λ14 þ v22ðλ24 þ λ̃24Þ þ w2λ34 þ 2μ24

!
; ð17Þ

that can be diagonalized as

�
η1

η2

�
¼
�

cos θ sin θ

− sin θ cos θ

��
ϕ̃0
4

ϕ0�
4

�
; ð18Þ

with

tan 2θ ¼ v2wλ0

v22λ̃24 − w2λ̃34
: ð19Þ
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The physical neutral fields η1 and η2 defined above have
squared masses,

m2
η1;η2 ¼

1

4
½4μ24 þ 2λ14v21 þ v22ð2λ24 þ λ̃24Þ þw2ð2λ34 þ λ̃34Þ

∓ F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ02v22w

2 þ ðλ̃24v22 − λ̃34w2Þ2
q

�; ð20Þ

where F ¼ signðλ̃24v22 − λ̃34w2Þ.

D. Charged scalars

Again, for the charged scalars too, mixing takes place
amongst those with the same B − L charges, and they can
be separated into three groups.
The basis ðϕ�

1 ;ϕ
�
2 Þ puts together the charged fields with

B − L ¼ 0, which mix according to the squared mass
matrix,

M2
ϕ�
1
;ϕ�

2

¼ 1

2

 
v2ðwμϕv1

þ λ̃12v2Þ −μϕw − λ̃12v1v2

−μϕw − λ̃12v1v2 v1ðwμϕv2
þ λ̃12v1Þ

!
: ð21Þ

Upon diagonalization, we find a (complex) “Goldstone”
boson,

G�
4 ¼ v1ϕ�

1 þ v2ϕ�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p ; ð22Þ

and a massive electrically charged physical scalar,

H�
1 ¼ −v2ϕ�

1 þ v1ϕ�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p ;

m2
H�

1

¼ ðv21 þ v22Þðwμϕ þ v1v2λ̃12Þ
2v1v2

: ð23Þ

The charged scalars with B − L ¼ �2 are characterized
by the following squared mass matrix, written in the basis
ðϕ̃�

1 ;ϕ
�
3 Þ:

M2
ϕ̃�
1 ;ϕ

�
3

¼ 1

2

 
wðwλ̃13 þ v2μϕ

v1
Þ v1wλ̃13 þ v2μϕ

v1wλ̃13 þ v2μϕ v1ðv1λ̃13 þ v2μϕ
w Þ

!
; ð24Þ

from which one can identify another pair of charged
Goldstones,

G�
5 ¼ −v1ϕ̃�

1 þ wϕ�
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ w2
p ; ð25Þ

and the heavy charged states,

H�
2 ¼ wϕ̃�

1 þ v1ϕ�
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ w2
p ;

m2
H�

2

¼ ðv21 þ w2Þðv2μϕ þ v1wλ̃13Þ
2v1w

: ð26Þ

Finally, the only charged scalar with B − L ¼ 1, ϕþ
4 ,

remains unmixed after spontaneous symmetry breaking and
gets the squared mass,

m2
ϕ�
4

¼ 1

2
½v21ðλ14 þ λ̃14Þ þ v22λ24 þ w2λ34 þ 2μ24�: ð27Þ

IV. GAUGE SECTOR

In this section, we study the vector boson spectrum of the
extended electroweak sector which contains ten gauge
fields. After spontaneous symmetry breaking, gauge boson
masses are generated, as usual, through the terms
L ⊃ ðDμΦiÞ†ðDμΦiÞ, where the covariant derivative acting
on the scalar antitriplets is defined as

DμΦi ¼
�
∂μ þ igL

λa

2
Wa

μ − igXXBμ − igNNCμ

�

Φi ¼
�
∂μ þ i

gL
2
Pμ

�
Φi; ð28Þ

where Wa
μ are the gauge fields of SUð3ÞL, λa are the Gell-

Mann matrices, Bμ is the gauge field of Uð1ÞX, and Cμ is
the gauge field of Uð1ÞN and

Pμ ¼

0
BBB@

W3 þ W8ffiffi
3

p − 2ðtXXBþ tNNCÞ ffiffiffi
2

p
W−

ffiffiffi
2

p
W0−ffiffiffi

2
p

Wþ −W3 þ W8ffiffi
3

p − 2ðtXXBþ tNNCÞ ffiffiffi
2

p
X0�ffiffiffi

2
p

W0þ ffiffiffi
2

p
X0 −2ðW8ffiffi

3
p þ tXXBþ tNNCÞ

1
CCCA

μ

; ð29Þ

with

W�
μ ¼ W1

μ ∓ iW2
μffiffiffi

2
p ; W0�

μ ¼ W4
μ ∓ iW5

μffiffiffi
2

p ; X0ð�Þ
μ ¼ W6

μ ∓ iW7
μffiffiffi

2
p : ð30Þ
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In addition, we assume another source for gauge boson
masses through the Stueckelberg mechanism for the
Abelian Uð1ÞN symmetry [21]. The masses and states of
the ten electroweak gauge bosons are discussed below.

A. Neutral gauge bosons and Stueckelberg mechanism

After spontaneous symmetry breaking, the two gauge
bosons of the Abelian symmetries, Bμ and Cμ, and the two
fields associated with the diagonal generators of SUð3ÞL,
W3

μ and W8
μ, mix among themselves. Assuming the kinetic

mixing between the gauge bosons Bμ and Cμ can be
neglected,2 the relevant terms contributing to the neutral
boson masses, written in the basis BT

μ ¼ ðW3
μ;W8

μ; Bμ; CμÞ,
are

L ⊃
1

2
BT
μM2

0B
μ þ 1

2
ðmCμ − ∂μσÞ2 þ LSt

gf : ð31Þ

Here, M2
0 is the squared mass matrix coming from the

Higgs mechanism, m is the Stueckelberg mass of the Cμ

gauge field, and σ is the scalar Stueckelberg compensator
that renders the second term in Eq. (31) invariant under the
gauge transformations,

Cμ → Cμ þ ∂μΩðxÞ;
σ → σ þmΩðxÞ; ð32Þ

with an arbitrary spacetime function ΩðxÞ. The gauge
fixing term LSt

gf can be chosen as

LSt
gf ¼ −

1

2ξ

�
∂μCμ þ ξ

�
mσ −

2

3
gNð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
G1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ w2

q
G2Þ
��

2

; ð33Þ

ensuring (up to a total derivative) that the gauge field Cμ decouples from the gradients ∂μσ, ∂μG1, and ∂μG2. Notice that
after gauge fixing, the Lagrangian is still invariant under a restricted set of gauge functions ΩðxÞ, subject to the same
equation of motion as σ, i.e., ð∂2 þ ξm2ÞΩ ¼ ð∂2 þ ξm2Þσ ¼ 0. This dynamical restriction guarantees the propagation of
3 degrees of freedom for the massive vector field Cμ. Moreover, LSt

gf introduces a mixing between the scalars σ, G1, and G2.
After implementing the Stueckelberg mechanism outlined above, the squared-mass matrix of the neutral gauge bosons

becomes

M2 ¼ g2L
2

0
BBBBBBBB@

1
2
ðv21 þ v22Þ v2

1
−v2

2

2
ffiffi
3

p − 1
3
ð2v21 þ v22ÞtX 2

3
ðv22 − v21ÞtN

v2
1
−v2

2

2
ffiffi
3

p 1
6
ðv21 þ v22 þ 4w2Þ ðv2

2
−2v2

1
−2w2ÞtX

3
ffiffi
3

p − 2ðv2
1
þv2

2
þ4w2ÞtN

3
ffiffi
3

p

− 1
3
ð2v21 þ v22ÞtX ðv2

2
−2v2

1
−2w2ÞtX

3
ffiffi
3

p 2
9
ð4v21 þ v22 þ w2Þt2X 4

9
ð2v21 − v22 þ 2w2ÞtNtX

2
3
ðv22 − v21ÞtN − 2ðv2

1
þv2

2
þ4w2ÞtN

3
ffiffi
3

p 4
9
ð2v21 − v22 þ 2w2ÞtNtX 2

g2L
m2 þ 8

9
ðv21 þ v22 þ 4w2Þt2N

1
CCCCCCCCA
; ð34Þ

with tX ¼ gX=gL and tN ¼ gN=gL. In order to diagonalizeM2, several changes of basis will be required. In this analysis, we
follow the procedure described in [33].
We first identify the photon field Aμ. The transformation matrix to the basis ðAμ; Z1μ; Z0

1μ; CμÞ is given by

0
BBB@

Aμ

Z1μ

Z0
1μ

Cμ

1
CCCA ¼ U1

0
BBBBB@

W3
μ

W8
μ

Bμ

Cμ

1
CCCCCA; U1 ¼

0
BBBBBBBBB@

ffiffi
3

p
tXffiffiffiffiffiffiffiffiffi

4t2Xþ3
p tXffiffiffiffiffiffiffiffiffi

4t2Xþ3
p

ffiffi
3

pffiffiffiffiffiffiffiffiffi
4t2Xþ3

p 0ffiffiffiffiffiffiffiffiffi
t2Xþ3

4t2Xþ3

r
−

ffiffi
3

p
t2Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt2Xþ3Þð4t2Xþ3Þ
p − 3tXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt2Xþ3Þð4t2Xþ3Þ
p 0

0
ffiffi
3

pffiffiffiffiffiffiffiffi
t2Xþ3

p − tXffiffiffiffiffiffiffiffi
t2Xþ3

p 0

0 0 0 1

1
CCCCCCCCCA
; ð35Þ

such that

M02 ¼ U1M2UT
1 ¼

�
0 0

0 M02
s

�
; ð36Þ

2The effects of nonvanishing kinetic mixings have been discussed in Refs. [30–32].
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with

M02
s ¼ g2L

2
×

0
BBBBB@

ðv2
1
þv2

2
Þð4t2Xþ3Þ

2ðt2Xþ3Þ

ffiffiffiffiffiffiffiffiffi
4t2Xþ3

p
½v2

1
ð4t2Xþ3Þþv2

2
ð2t2x−3Þ�

6ðt2Xþ3Þ − 2
3
ðv21 − v22ÞtN

	
4t2Xþ3

t2Xþ3



1=2

ffiffiffiffiffiffiffiffiffi
4t2Xþ3

p
½v2

1
ð4t2Xþ3Þþv2

2
ð2t2X−3Þ�

6ðt2Xþ3Þ
v2
1
ð3þ4t2XÞ2þv2

2
ð3−t2XÞ2þ4w2ð3þt2XÞ2

18ðt2Xþ3Þ − 2tN ½2ð2v21−v22þ2w2Þt2Xþ3ðv2
1
þv2

2
þ4w2Þ�

9
ffiffiffiffiffiffiffiffi
t2Xþ3

p

− 2
3
ðv21 − v22ÞtN

	
4t2Xþ3

t2Xþ3



1=2

− 2tN ½2ð2v21−v22þ2w2Þt2Xþ3ðv2
1
þv2

2
þ4w2Þ�

9
ffiffiffiffiffiffiffiffi
t2Xþ3

p 2m2

g2L
þ 8

9
ðv21 þ v22 þ 4w2Þt2N

1
CCCCCA: ð37Þ

Therefore, the photon is identified as

Aμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t2X þ 3
p ð

ffiffiffi
3

p
tXW3

μ þ tXW8
μ þ

ffiffiffi
3

p
BμÞ: ð38Þ

For the second diagonalization to the basis ðAμ; Zμ; Z0
2μ; C

0
μÞ, we use a “seesaw approximation,” [34]

U2 ≈

0
BBB@

1 0 0 0

0 1 ε1 ε2

0 −ε1 1 0

0 −ε2 0 1

1
CCCA; ð39Þ

where ε1 and ε1 are the two components of a small vector given by

ε≡ −ðm2
Z1Z0

1
; m2

Z1C
Þ
 

m2
Z0
1

m2
Z0
1
C

m2
Z01C m2

C

!−1

;

ε1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2X þ 3

p
f2t2X½8g2Lt2Nðw2v21 þ v22w

2 þ v21v
2
2Þ þ 3m2ð2v21 þ v22Þ� þ 9m2ðv21 − v22Þg

4t4X½4g2Lt2Nðw2v21 þ v22w
2 þ v21v

2
2Þ þm2ð4v21 þ v22 þ w2Þ� þ 3m2½4t2Xð2v21 − v22 þ 2w2Þ þ 3ðv21 þ v22 þ 4w2Þ� ;

ε2 ¼ −
4g2LtNt

2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2X þ 3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2X þ 3

p
ðv21ðv22 þ w2Þ þ v22w

2Þ
4t4Xf4g2Lt2N ½w2ðv21 þ v22Þ þ v21v

2
2� þm2ð4v21 þ v22 þ w2Þg þ 3m2½4t2Xð2v21 − v22 þ 2w2Þ þ 3ðv21 þ v22 þ 4w2Þ� ; ð40Þ

which are suppressed by the hierarchy v1; v2 ≪ w, m.
Then, after the second diagonalization, we have

M002 ¼ U2M02UT
2 ¼

0
B@

0 0 0

0 m2
Z 0

0 0 M002
s

1
CA; ð41Þ

with

m2
Z ≈m2

Z1
þ 2ðε1; ε2Þ

 
m2

Z1Z0
1

m2
Z1C

!

≈
g2Lðv21 þ v22Þð4t2X þ 3Þ

4ðt2X þ 3Þ ; ð42Þ

which can be identified with the squared mass of the
physical electroweak Zμ boson and

M002
s ≈

 
m2

Z0
2

m2
Z0
2
C0

m2
Z0
2
C0 m2

C0

!
: ð43Þ

Finally, we can diagonalize M002
s to the ðAμ; Zμ; Z0

μ; Z00
μÞ

basis through

U3 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 cζ sζ
0 0 −sζ cζ

1
CCCA; ð44Þ

and the diagonal squared mass matrix for the physical
gauge bosons becomes

M0002 ¼ U3M002UT
3 ; ð45Þ

where the mixing angle is given by

tan 2ζ ≈
8w2g2LtN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2X þ 3

p
w2g2Lð16t2N − t2X − 3Þ þ 9m2

; ð46Þ

and the diagonal entries can be identified as the squared
masses for the physical Z0 and Z00 bosons,
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m2
Z0;Z00 ¼ 1

18
fw2g2Lð16t2N þ t2X þ 3Þ þ 9m2 ∓ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½w2g2Lð16t2N − t2X − 3Þ þ 9m2�2 þ 64w4g4Lt

2
Nðt2X þ 3Þ

q
g; ð47Þ

with G ¼ sign½w2g2Lð16t2N − t2X − 3Þ þ 9m2�.

B. Complex neutral gauge bosons

The complex gauge boson X0
μ, with B − L ¼ 2, does not

mix with the other neutral vector fields. After spontaneous
symmetry breaking, X0

μ, whose associated would-be
Goldstone boson is G3 in Eq. (15), gets the following
mass term:

m2
X0 ¼ g2L

4
ðv22 þ w2Þ: ð48Þ

C. Charged gauge bosons

The charged gauge bosons present in the model,W�
μ and

W0�
μ , become massive after electroweak symmetry breaking

but do not mix due to their different B − L charges.
The first mass eigenstate is identified with the charged

standard model electroweak W boson, whose would-be
Goldstone bosons given by G�

4 , and has the squared mass,

m2
W ¼ g2L

4
ðv21 þ v22Þ: ð49Þ

Finally, the other charged gauge boson is heavy and eats up
the complex would-be Goldstone boson G�

5 in order to
acquire the squared mass,

m2
W0 ¼ g2L

4
ðv21 þ w2Þ: ð50Þ

To sum up we note that, despite the conservation of B − L,
all of the gauge bosons acquire adequate masses through
the interplay of the standard Higgs mechanism with the
Stueckelberg mechanism, leaving only the photon mass-
less, as in the Standard Model. In particular, we would like
to reinforce the importance of the Stueckelberg mechanism
which provides the B − L gauge boson with a mass, while
keeping the associated symmetry fully preserved. As
mentioned above, the conservation of the B − L symmetry,
not affected by the Stueckelberg mechanism, is what
ensures two appealing features of our model, namely,
the Dirac nature of neutrinos and the stability of dark
matter.

V. CHARGED FERMIONS

The Yukawa interactions invariant under all the defining
symmetries of the model are

−LYuk ¼ yeabe
a
RΦ

†
1ψ

b
L þ ySabS

a
RΦ

†
4ψ

b
L þMS

ab

2
ðSaRÞcSbR

þ yuaαuaRΦT
1Q

α
L þ yua3u

a
RΦ

†
2Q

3
L þ yda3d

a
RΦ

†
1Q

3
L

þ ydaαdaRΦT
2Q

α
L þ yU33U

3
RΦ

†
3Q

3
L

þ yDαβD
α
RΦT

3Q
β
L þ H:c: ð51Þ

After spontaneous symmetry breaking, the above inter-
actions lead to the following mass matrices for the
fermions:

(i) Charged leptons,

Me
ab ¼ yeab

v1ffiffiffi
2

p : ð52Þ

(ii) Up-type quarks, basis ðu; c; t; U3Þ,

Mu ¼
1ffiffiffi
2

p

0
BBB@

v1yu11 v1yu12 −v2yu13 0

v1yu21 v1yu22 −v2yu23 0

v1yu31 v1yu32 −v2yu33 0

0 0 0 wyU33

1
CCCA: ð53Þ

(iii) Down-type quarks, basis ðd; s; b;D1; D2Þ,

Md ¼
1ffiffiffi
2

p

0
BBBBBB@

v2yd11 v2yd12 v1yd13 0 0

v2yd21 v2yd22 v1yd23 0 0

v2yd31 v2yd32 v1yd33 0 0

0 0 0 wyD11 wyD12
0 0 0 wyD12 wyD22

1
CCCCCCA
:

ð54Þ

Realistic quark masses can be easily obtained from the
above mass matrices, as the standard model and exotic
quarks remain unmixed by virtue of the unusual B − L
charges of the exotic sector. This is reflected by the block-
diagonal form of the above matrices, which also implies the
unitarity of the Cabibbo-Kobayashi-Maskawa matrix
describing quark mixing.
Notice that, from the above Yukawa interactions, neu-

trinos remain massless at the tree level.

VI. SCOTOGENIC NEUTRINO MASSES

As previously shown, in the present model the gauged
B − L symmetry remains unbroken and so does the matter
parityMP. Furthermore, the Uð1ÞPQ symmetry, only broken
softly in the scalar sector, forbids the appearance of
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a tree-level neutrino-mass-giving Yukawa term. However,
the Yukawa interactions in Eq. (51) allow the emergence of
a calculable one-loop contribution to the neutrino masses
via the diagram in Fig. 1.
Assuming that the Majorana mass of the fermion singlets

SR is already diagonal MS ¼ diagðM1;M2;M3Þ, the neu-
trino mass matrix generated by the scotogenic loop in the
basis ðνL; ðνRÞcÞ reads

Mν ¼
�

0 mν

mT
ν 0

�
; ð55Þ

with neutrino Dirac masses,

ðmνÞab ¼
X3
k¼1

MkySkay
S
kb sin 2θ

32π2

×

�
m2

η1

m2
η1 −M2

k

ln
m2

η1

M2
k

−
m2

η2

m2
η2 −M2

k

ln
m2

η2

M2
k

�
: ð56Þ

Notice that from Eq. (19), if the relevant quartic couplings
are of the same order, the angle θ is already suppressed, of

Oðv2=wÞ. Besides, the internal fields in the loop are odd
under MP, while the standard model fields are even. Thus,
the lightestMP-odd field is automatically stable and, if it is
electrically neutral, can be identified as a dark matter
candidate. In our model, the stable dark matter candidate
will be the lightest field among the complex scalars ηi and
Majorana fermions SaR.

VII. DARK MATTER

In order to illustrate the viability of our model as a theory
of dark matter, we study a simplified scenario in which all
the non-SM fields are heavy and decouple, except for the
complex scalars η1 and η2. In this case, only the Higgs and
the Z-boson portals are available. In general, the region of
the parameters compatible with the observed relic abun-
dance and direct dark matter detection experiments is very
constrained for a complex scalar, unless coannihilation
takes place due to η1 and η2 being almost degenerate [37].
Besides, consistency with direct detection experiments
requires the coupling between the complex dark matter
candidate and the Z boson to be very small. This can be
easily achieved in our model since the mixing angle θ in
Eq. (19) is naturally of Oðv2=w−1Þ. We assume that η1 is
our dark matter candidate, composed mostly by the SUð2ÞL
singlet ϕ̃0

4, and couples to the Z boson only through its
suppressed mixing with η2.
From our previous analysis of the scalar spectrum, the

condition mη1 < mη2 in Eq. (20) translates to λ̃24v22 −
λ̃34w2 > 0, easily achieved by a natural negative value of
λ̃34. Defining

μ2S ≡ 1

2
½w2ðλ34 þ λ̃34Þ þ 2μ24�;

μ2D ≡ 1

2
½v22λ̃24 þ w2λ34 þ 2μ24�; ð57Þ

in Eq. (17), one can eliminate these scales and v2wλ0 in
terms of the physical massesmη1 ,mη2 , and the mixing angle
θ as

v2wλ0 ¼ 2ðm2
η2 −m2

η1Þ sin 2θ;

μ2S ¼ m2
η2 sin

2 θ þm2
η1 cos

2 θ −
1

2
λ14v21 −

1

2
λ24v22;

μ2D ¼ m2
η1 sin

2 θ þm2
η2 cos

2 θ −
1

2
λ14v21 −

1

2
λ24v22: ð58Þ

We have studied the relic abundance and direct detection
constraints for this scenario, setting for simplicity v1 ¼
v2 ¼ vEW=

ffiffiffi
2

p
and λ14 ¼ λ24 ¼ λ with vanishing nonrele-

vant couplings. In our analysis, we have varied randomly
the relevant parameters in the ranges 0 < jλj < 1,
0 < jθj < 0.01, 0 < mη1 < 104 GeV and mη1 < mη2 <
1.1mη1 . The results are shown in Fig. 2, where each blue

FIG. 2. The direct detection and relic abundance constraints on
the dark matter mass mη1 . Each blue point corresponds to a
solution ðλ; θ; mη1 ; mη2Þ with the correct relic abundance
Ωh2 ¼ 0.120. See the text for details. The red shaded region
is ruled out by direct detection experiments, XENON1T [35] and
LUX [36]. Notice that the stronger constraint below 1 TeV comes
from XENON1T and above 1 TeV from LUX.

FIG. 1. One-loop scotogenic Dirac neutrino mass generation
mechanism.
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point corresponds to a solution ðλ; θ; mη1 ; mη2Þ in parameter
space complying with the correct relic abundance Ωh2 ¼
0.120 [38]. One can see that the model contains plenty of
parameter combinations well below the current direct
detection bounds, but also within the sensitivity of the
current experiments, like Xenon1T.
Before ending this section, we wish to remark that Fig. 2

is plotted for a simplified scenario in which only the Higgs
and Z-boson portals are available. This need not be the
case. In our model, the allowed parameter space can be
considerably richer due to the presence of Majorana
fermions, like SaR, providing new channels for dark matter
annihilation. Similarly, more parameter combinations
become available when the vector bosons Z0 and Z00,
whose masses are given in Eq. (47), are active in mediating
dark matter annihilation processes, instead of simply
decoupled, as assumed in the above example. A dedicated
study lies outside the scope of this paper.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have proposed a simple scotogenic
extension of the original Singer-Valle-Schechter 3-3-1
model in which neutrinos are Dirac fermions as a result
of a conserved B − L gauge symmetry. In such minimal
SVS gauge extension of the standard model neutrino
masses arise through the radiative exchange of the simplest
scotogenic “dark” sector, as indicated by the diagram in
Fig. 1. Conservation of B − L gauge symmetry in the
SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN theory ensures the
stability of dark matter, linked to the Dirac nature of
neutrinos. By combining the Higgs and the Stueckelberg
mechanisms, one ensures that all neutral gauge bosons
acquire adequate nonzero masses. Our present construction
bears similarities with that in Ref. [22], but within a richer
theoretical framework. Indeed, the present one also touches
other standard model shortcomings, such as the existence
of three families, which emerges just from anomaly
cancellation. Stable dark matter is “predestined” [23], in
the sense that the imposition of additional symmetries is not
required. We have given a detailed study of the basic
structure of the theory. For example, we noted that due to
our quantum numbers we have block-diagonal quark mass
matrices, Eqs. (53) and (54), implying the unitarity of the
CKMmatrix describing quark mixing. This implies that the
new neutral gauge bosons can have flavor-changing inter-
actions at the tree level, as in the SVS model. These arise
from the underlying structure of the neutral current dictated
by the anomaly cancellation. As a result, in addition to
direct searches through dilepton studies at the LHC, heavy

neutral gauge bosons induce mass differences in neutral
meson systems. These can lead to observable phenomena if
they lie within the few TeV scale. For example, for v1 ∼
v2 GeV if one takes m → ∞, w ∼ 104 GeV as a bench-
mark, one finds that the B − L Stueckelberg gauge boson
decouples, leaving adequate masses for the other new
intermediate gauge bosons, around 4 TeV, consistent with
current limits from flavor changing neutral current and
searches at the LHC run 2 at 13 TeV [39]. Likewise, one
can check that the scalar masses expected, e.g., from
Eqs. (9) and (13), are also phenomenologically viable.
The same happens for finite values of the Stueckelberg
gauge boson mass parameter: in this case, one also obtains
gauge boson mass values in agreement with current limits.
We expect, however, that they can lie within the sensitiv-
ities expected, for example, at the High Luminosity-LHC,
LHCb as well as upcoming B factories.
Concerning the dark matter content of our model, in

Sec. VII, we have analyzed the case for a complex dark
matter scalar candidate. For definiteness, we took a simple
scenario where only the Higgs and Z-boson portals are
available. We have shown that, even in this simplified
scenario, there are parameter combinations that accommo-
date the correct dark matter relic abundance in agreement
with direct detection constraints. The viable parameter
space is expected to be substantially widened when other
channels for dark matter annihilation are taken into
account, e.g., those mediated by the vector bosons Z0
and Z00.
Last, but not least, we stress that, in contrast to previous

3-3-1-1 models, here neutrinos get radiative scotogenic
Dirac masses, rather than Majorana masses from the
conventional seesaw mechanism. A discovery of neutrino-
less double beta decay would therefore invalidate our
present construction.
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