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For low-mass (frequency ≪GHz) axions, dark matter detection experiments searching for an axion-
photon-photon coupling generally have suppressed sensitivity, if they use a static background magnetic
field. This geometric suppression can be alleviated by using a high-frequency oscillating background
field. Here, we present a high-level sketch of such an experiment, using superconducting cavities
at ∼GHz frequencies. We discuss the physical limits on signal power arising from cavity properties,
and point out cavity geometries that could circumvent some of these limitations. We also consider how
backgrounds, including vibrational noise and drive signal leakage, might impact sensitivity. While
practical microwave field strengths are significantly below attainable static magnetic fields, the lack of
geometric suppression, and higher quality factors, may allow superconducting cavity experiments to be
competitive in some regimes.
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I. INTRODUCTION

While dark matter (DM) has so far only been observed
through its gravitational interactions, many theoretical
candidates have additional interactions with the Standard
Model (SM). This has motivated a wide range of laboratory
searches for DM, most famously through the WIMP direct
detection program. Another well-motivated dark matter
candidate is the QCD axion (and more generally, axionlike
particles), for which an extensive experimental program
also exists [1].
A major part of this program involves searches for axion

DM through the aFμνF̃μν axion-photon-photon coupling.
This coupling is a generic prediction of QCD axion models
[2,3], and arises in many other theories of axionlike DM
[4]. For axion masses corresponding to frequencies ≳GHz,
simple experimental designs such as cavity haloscopes
(e.g., the ADMX experiment [5,6]) or dielectric haloscopes
[7,8] can achieve almost-optimal [9] axion-mass-averaged
power absorption from the DM field.
However, the situation is different for much smaller

axion masses, corresponding to Compton wavelengths
significantly longer than the length scale of the experiment
(either the shielding scale or the extent of the magnetic
field, whichever is smaller). The EM fields at these
frequencies are naturally in the quasistatic regime, and
for axion detection experiments using a static background

magnetic field, this means that the absorbed power is
parametrically suppressed by ∼ðmaLÞ2, where L is the
experimental length scale. The origin of this suppression is
discussed in a number of papers [9–11]; roughly speaking,
it arises because the electric field oscillations associated
with current fluctuations are suppressed compared to the
magnetic field oscillations, reducing the interaction with
the axion-sourced effective current. This suppression
affects low-frequency axion detection proposals such as
ABRACADABRA [12] and DM Radio [13], reducing their
sensitivity.1

One way to avoid these issues is to use an oscillat-
ing background magnetic field. If this is oscillating at a
frequency ω0, then it combines with the axion field
oscillation to generate an effective current oscillating at
ω0 �ma. By taking ω0 ≳ L−1 ≫ ma, the response excited
by this effective current is no longer in the quasistatic
regime, and the absorbed power is no longer suppressed.
Since the signal excitation is at a much higher frequency
than the axion field, this approach is referred to as “up-
conversion” [14]. The idea of using an oscillating back-
ground magnetic field in axion detection experiments was
first proposed in [15], but they were mostly concerned with
GHz-scale axion frequencies, and did not consider the
parametric scaling at low axion masses.
Up-conversion experiments using optical-frequency

background fields have been proposed in [16–18].
However, these encounter a number of issues. The most
serious is that achievable magnetic field strengths at
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1While the sensitivity of experiments such as ABRACA-
DABRA is not directly related to absorbed power, the gaγγ
sensitivity is still suppressed by ∼ðmaLÞ, compared to its
theoretical scaling at higher frequencies [9].
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optical frequencies are very small, compared to static
magnetic fields. Another is that, even if other noise
sources are overcome, the shot noise suppression coming
from absorbing fewer, but higher-energy, optical photons
degrades the theoretical sensitivity limits still further.
Consequently, it would be very difficult to match the
sensitivity of static-field experiments, despite the lack of
a ðmaLÞ2 suppression.
We can address both of these issues by using lower-

frequency magnetic field oscillations. In particular, rea-
sonably large magnetic fields (∼0.2 T) are routinely
attained at ∼GHz frequencies inside superconducting
(SRF) cavities [19,20], and as we discuss below, it may
be possible to achieve even higher fields. The lower
frequency also alleviates shot noise issues. Thus, while
the average magnetic fields will still be lower than those
used in static-field experiments, the relative ðmaLÞ2
enhancement may be enough to make up-conversion
experiments interesting.
SRF up-conversion experiments were first proposed in

[15], but as stated above, they were mainly concerned with
∼GHz axion frequencies. Up-conversion experiments for
low-mass axions were considered in [14], but their sensi-
tivity estimates are affected by some calculational errors
[21], and seem to violate theoretical bounds [9].
In this paper, we discuss the basic physics and design

considerations involved in microwave cavity up-conversion
experiments. One of the most obvious questions is how to
choose the cavity geometry. We derive constraints on the
signal power attainable from cavities, and show that for
simple geometries (in which all of the walls are visible
from an interior point) the RMS magnetic field is limited
by the magnetic field at the walls. Since, for super-
conducting cavities, this is limited by the superconduc-
tor’s material properties, the signal power from such
cavities is bounded. We also show how this bound can
be circumvented using cavities with more complicated
shapes, and illustrate that, to probe significant QCD axion
parameter space with small cavity volumes, such geom-
etries may be practically necessary.
In addition to such considerations, which would be

important for more advanced experiments, we also outline
a nominal first-generation experiment, aiming to be as
simple as possible while still having interesting reach. We
give a high-level discussion of the noise issues that might
arise, and derive representative sensitivity estimates. This
discussion is not intended as a design study, and a realistic
experiment might be significantly more complicated.
Instead, our goal is to illustrate the physical parameters
that might be required, and to motivate further study of this
experimental direction.

II. AXION DM UP-CONVERSION

We will assume that dark matter consists of a light
axionlike particle a, which couples to the SM via

the electromagnetic FμνF̃μν operator. This has
Lagrangian2

L ⊃
1

2
ð∂μaÞ2 − VðaÞ − 1

4
gaγγaFμνF̃μν

¼ 1

2
ð∂μaÞ2 − VðaÞ þ gaγγaE · B; ð1Þ

where VðaÞ is the potential for the axion—in general,
only the mass term VðaÞ ¼ 1

2
m2

aa2 will be important
for us.
For light DM (ma ≪ eV), the occupation number in the

Milky Way is ≫1, and almost all cosmological histories
result in its state today being a coherent, classical-like
oscillation [2,22–25]. Since gaγγ (and other couplings) are
constrained to be very small, interactions with a detector
will have a negligible effect on the DM’s state.
Consequently, for the purposes of detection, we can treat
the DM oscillation as a fixed classical background field.
Under integration by parts, the interaction term is

equivalent to L ⊃ − 1
2
AμJ

μ
ðaÞ, where the “axion current”

JμðaÞ is given by

JμðaÞ ¼ g

� −∇a · B

_aBþ∇a × E

�
ð2Þ

Since axion DM in the galaxy is nonrelativistic, with
typical velocity ∼10−3, the dominant term is the spatial
current JðaÞ ≃ g _aB. Hence, the effects of the axion field are
equivalent to those of an oscillating current density, with
profile set by the background magnetic field.
As described in the introduction, we will consider up-

conversion experiments, in which the background magnetic
field is oscillating at a frequency ω0 ≫ ma. Writing the
background magnetic field as B0ðt; xÞ ≃ B0 cosðω0tÞbðxÞ,
and given a single-frequency axion oscillation, aðtÞ ¼
a0 cosðmatÞ, the effective current JðaÞ will have frequency
components at ω0 �ma. As illustrated in Fig. 1, the basic
idea is to arrange things so that there is another EM
mode with resonant frequency ≃ω0 þma (or ω0 −ma),
so that it can efficiently absorb power from the effective
current oscillation. The larger this absorbed power, the
easier it is to detect an axion DM signal (other things
being equal).
For an EM mode with electric field profile E1ðxÞ, the

instantaneous power input from the axion current is
Pa ¼ −

R
dVE1 · JðaÞ. Considering only a single frequency

component of JðaÞ, say ωJ ¼ ma þ ωB, the cycle-averaged
input power at this frequency is

2We take the ðþ − −−Þ signature, and use the convention
ϵ0123 ¼ −1. Except where indicated, we use natural units with
c ¼ ℏ ¼ 1. In general, we will abbreviate gaγγ ¼ g.
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P̄a ¼
1

4
cos αgωJa0B0

Z
dVE1 · b ð3Þ

where α is the relative phase of the electric field response
and the −JðaÞ oscillation. The average power dissipated is
Pdiss ¼ ωJU=Ql, where U ¼ 1

2

R
dVE2

1 is the stored energy
in the mode (at this frequency), and Ql is the (loaded)
quality factor of the mode. In a steady state, the absorbed
and dissipated powers will be equal. Equating P̄a ¼ Pdiss,
we find that the cycle-averaged absorbed power, once fully
rung up, is

Psig ¼
1

8
cos2 αðga0B0Þ2m2

a
Ql

ωJ

ðR dVb · E1Þ2R
dVE2

1

: ð4Þ

We can define the geometric overlap factor

C01 ≡ ðR dVb · E1Þ2
ðR dVE2

1Þð
R
dVb2Þ ð5Þ

which measures the degree of overlap between the back-
ground magnetic field and the E1 electric field; this has
C01 ≤ 1, with equality iff E1ðxÞ ∝ bðxÞ. Using this, we can
write the signal power as

Psig ¼
1

4
cos2 αðga0Þ2m2

a
Ql

ωJ
C01U0 ð6Þ

where U0 ¼ 1
2
B2
0Vb. For a high quality factor mode, if

the signal frequency ω is close to the resonance frequency
ω1, then

cos2 α ≃
1

1þQ2
l
ðω2−ω2

1
Þ2

ω4
1

≃
1

1þ 4Q2
l ð ωω1

− 1Þ2 : ð7Þ

The expression in Eq. (6) is equivalent to Eq. (3) in [15],
and gives the cycle-averaged power absorbed by a parti-
cular mode (assuming that the mode bandwidth is small
compared to ma). In most of the cases we are interested in,
only one mode of the cavity will have a resonance
frequency close to the signal frequency, so only that mode
will absorb appreciable power from the axion current.
In many circumstances (see Appendix B), we are

interested in the signal power averaged over different axion
masses. If we integrate over an axion mass range Δm
significantly larger than the bandwidth of the target mode,
then the average power absorbed is

P̄ ≃
π

4
g2

ρ

Δm
C01U0: ð8Þ

This formula is valid even for low-frequency B0 oscilla-
tions, as long as the integration time is long enough to
resolve the variation of B. However, if ω0 ≪ L−1, where
L−1 is the linear scale of the shielded experimental volume
(or the magnetic field extent, whichever is smaller), then
C01 is generally suppressed compared to the theoretical
limit, with C01 ∼ ðω0LÞ2. This is because the EM fields in
the volume are in the quasistatic regime, as discussed in [9].
Consequently, to avoid this geometrical suppression, we
want to take ω0 ≳ L−1, i.e., ≳GHz for laboratory-scale
experiments. In such cases, if C01 is close to 1, then the
absorbed power can be close to the theoretically obtainable
limit, for a given background magnetic field energy [9].
A common limitation on the rate at which large

magnetic fields can be varied is the large amount of

FIG. 1. Schematic illustration of an up-conversion experiment for axion DM detection. The left-most panel (“cavity modes”)
illustrates a cavity in which we are interested in two modes, one with magnetic field profile B0, and another with electric field profile E1.
The adjacent graph (“mode frequencies”) illustrates the frequencies of these modes as we vary the shape of the cavity (here, the length
d), showing that they become degenerate at some d. When the cavity length is tuned to be close to this point, the frequency splitting
between the modes will be small. If the ω0 mode is driven with high amplitude, then in the presence of an axion DM oscillation with
ma ≃ jω1 − ω0j, power will be transferred to the ω1 mode (illustrated in the “interaction” panel). This signal can be detected as excess
power, above thermal (or quantum) fluctuations, in the ω1 mode, as indicated in the “signal” panel. While some of the power in the ω0

mode may leak into the detected signal (indicated as a dashed peak in the signal panel), the frequency difference between ω0 and ω1

helps to distinguish this from the axion signal (see Sec. III C). The mode profiles shown here are schematic—Fig. 2 shows actual mode
profiles for a particular cavity geometry.
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field energy stored—taking some nominal parameters,
Tesla2×m3∼MJ. Feeding that amount of energy into
and out of a system must generally be done rather slowly.
For example, the currents through high-field superconduct-
ing magnets generally take minutes or more to build up to
their full values, with faster changes damaging the system.
Faster rates of change are possible with specially-designed
superconducting systems [26], but the dissipated power
increases with frequency, and is generally prohibitive for
rates of change ≳1 T=s. Resistive conductors can tolerate
more heating / stresses, but sustained operation at high field
strengths dissipates very large powers. Similarly, varying
the fields from magnetic materials will either involve
mechanical motion, or hysteretic energy losses. In all of
these cases, achieving strong ∼GHz frequency magnetic
fields will not be possible.

A. SRF cavities

We can get around these issues by using cavities with
high quality factors, in which magnetic field energy is
exchanged back and forth with the electric field energy
inside the cavity, rather than needing to be transferred in
and out each cycle. Filling the cavity to high field
amplitude is still a slow process, but once this amplitude
has been established, a high-field oscillation can be main-
tained with only a small energy input, to counteract the
small dissipation rate.
The basic setup of a cavity up-conversion experiment is

illustrated in Fig. 1. The cavity’s shape is tuned so that there
are two modes with frequency difference jω1 − ω0j ≃ma.
One of these modes is driven to a high field amplitude, and
in the presence of this background oscillation, an axion DM
oscillation would lead to signal power in the other mode,
according to Eq. (6). To maximise the signal power, we
want C01 to be close to one.
To achieve a high quality factor, and allow for high drive

fields without excessive energy dissipation, the cavity walls
should be superconducting. SRF (superconducting radio
frequency) cavities have been extensively developed for
particle acceleration [19]. They are also starting to be used
directly in hidden sector particle searches—the Fermilab
DarkSRF project [27] is constructing a dark photon
detection experiment using SRF cavities, and there have
been other proposals for axion detection [28,29]. For axion
DM detection experiments, oscillating background mag-
netic fields inside SRF cavities were first proposed in [15].
In this section, we will review some of the important
properties of SRF cavities, which will affect the design and
operation of an up-conversion experiment.

(i) Peak surface magnetic field: if the magnetic field at
thewalls of the cavity becomes too large, the behavior
of the superconducting material will change. Type-I
superconductors generally have rather low critical
fields (e.g., for Aluminium,Hc ≃ 0.01 T [30]), so are
unsuitable for high-field cavities. SRF cavities are

fabricated using Type-II superconductors, and almost
always use niobium. This has a critical field valueHc1
above which vortices penetrate; if this happens, then
the radio-frequency oscillation of these vortices will
lead to increased dissipation, and generally runaway
thermal instability [19]. It is actually possible to
operate slightly aboveHc1 , in ametastable “Meissner
state”—while it energetically favorable to have flux
deep within the bulk, establishing this configuration
involves penetrating a surface energy barrier [19].
Vortices start penetrating the surface atHsh, which for
niobium is ≃0.2 T. Consequently, the magnetic field
at the cavity walls should always be ≲0.2 T. As we
will see below, this puts limits on the achievable fields
inside the cavity, and correspondingly, on the signal
power attainable from axion DM.

(ii) Surface resistance: the quality factor of a cavity
mode is set by its magnetic fields at the cavity walls
(which determine the wall currents), and the surface
resistance there. This resistance has a “BCS” com-
ponent, and a “residual” component,

Rs ¼ RBCS þ Rres ð9Þ

The BCS component, for oscillations at frequencyω,
is given approximately by

RBCS ≃ ω2λ3σn
Δ
T
log

�
2.246T

ω

�
e−Δ=T ð10Þ

where λ is the (effective) penetration depth, σn is the
normal-state conductivity, and Δ is the supercon-
ducting gap energy [31]. The residual resistance is
the component that persists as T → 0, and is
measured to be ∼few nΩ for good niobium cavities
(physically, it is not entirely clear what this residual
resistance is dominated by [19,31]). The RBCS ∝ ω2

dependence means that, for frequencies ≳3 GHz,
the BCS resistance starts to dominate. Since it is an
increasing function of temperature, this can lead to
thermal instability problems [19]. Hence, SRF
cavities are generally operated at lower frequencies.

(iii) Cooling: The quality factor of a mode sets the power
dissipated, for a given energy stored. As we will we
see in the next section, taking the Hsh limit and Rs
values from above, and applying them to a simple
laboratory-scale (∼60L) cavity, gives Pdiss ∼ 30 W
(with Q ≃ 2 × 1011). Since this heat eventually
needs to be dissipated to the TH ∼ 300 K environ-
ment, the maximum efficiency of the cooling system
is ηC ¼ T0

TH−T0
≃ T0=TH ≃ 3 × 10−3T0=K, where T0

is the temperature of the cavity. So, we would
need at least 10 kW of electrical power to cool
the cavity to T0 ¼ 1 K. Taking a typical thermal
efficiency of ηT ≃ 0.2, this becomes≳50 kW. These
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figures illustrate that cooling the cavity to signifi-
cantly sub-kelvin temperature would be prohibi-
tively power-hungry. The high cooling powers
required generally necessitate the use of liquid
helium cooling systems. The pump machinery in-
volved leads to mechanical vibrations of the cavity,
which can introduce noise and tuning issues, as we
discuss in Sec. III B.

(iv) Field emission: if the electric fields at the cavity
walls are high enough, then electrons can escape
from the surface via tunneling. The field emission
rate can be approximated via a modified Fowler-
Nordheim formula [19],

IF ≃ 10−7
ϕ

eV
AeðβE0Þ2

ϕ2
exp ð−6ϕ3=2 ffiffiffiffiffiffi

me
p

=ðβE0ÞÞ

ð11Þ

where ϕ is the work function of the wall material,
Ae is the effective emitting area, E0 is the electric
field at the wall, and β is a phenomenological “field
enhancement factor.” For pure niobium, ϕ ≃ 4.3 eV
[32], so 6ϕ3=2 ffiffiffiffiffiffi

me
p ≃60GV=m≃200 T. As we will

see in Sec. II B, for the cavities of interest to us, the
peak electric field at the walls will be ≲ the peak
magnetic field, which is restricted to Hsh ≃ 0.2 T.
Consequently, if β ∼ 1, we would naively expect
field emission to be negligible. However, experi-
mentally, field emission is observed at significantly
lower electric fields, down to ∼10 MV=m ≃ 0.03 T
[33]. This appears to arise from defects (especially
foreign objects, such as metallic fragments) on the
walls of the cavity, which can have β up to ∼700
[33]. Too much field emission can lead to quality
factor degradation, as EM energy is lost to electrons.
Even if this is not a concern, we may be worried
about much smaller levels of field emission, if the
electrons deposit energy into the signal mode. We
discuss this noise source in Sec. III D.

(v) Tuning: to change the axion mass that we are
sensitive to, we need to change the frequency
splitting between the drive and signal modes, which
entails changing the shape of the cavity. If the axion
mass is small compared to the mode frequencies,
then only a small fractional change in the frequency
of each mode is needed to cover anOð1Þ axion mass
range, simplifying the tuning problem. The usual
method of tuning SRF cavities is simply via elastic
deformation of the cavity walls, through an external
forcing (such as a piezoelectric transducer, and/or a
mechanical screw) [19,34]. To stay within the (low-
temperature) elastic limit of niobium, the material
strain should be ≲few × 10−3 [35]. For typical
∼GHz cavities, this usually translates to a tunable
range of a few hundred kHZ [19]—for higher cavity

modes, the absolute range may be greater. As well as
static deformations, we also need to worry about
vibrations, as discussed in Sec. III B.

These points only represent a simple sketch of the issues
that an experiment would encounter, and much more
detailed analysis would be needed for a real implementa-
tion. However, they give some idea of the properties of SRF
cavities that are relevant to our setup.

B. Cavity geometry

In designing an SRF up-conversion experiment, the most
obvious question is what cavity geometry to use. To detect
low-frequency axions, we need a pair of almost degenerate
modes to act as the drive and signal modes, and these
should have large C01. If we want to use low-lying cavity
modes, this generally requires a tuning of the cavity shape.
For example, if we take a cylindrical cavity, and consider
e.g., the TE011 mode, the mode this is naturally degenerate
with is TM111 (i.e., they are degenerate at all height-to-
radius ratios). However, due to the m mismatch, these
modes have C01 ¼ 0. We can attain good overlap with e.g.,
the TE011=TM020 mode pair, but the mode frequencies are
only degenerate at d=R ≃ 0.79, where d is the height of the
cylinder and R is its radius [14]. For more symmetrical
cavities, such as a sphere, the overlaps for degenerate
modes are always zero.
If we are only concerned with thermal noise, the best

possible sensitivity is determined by the signal power,
and the bandwidths of the drive and signal modes (see
Sec. III A). Since the signal power scales as B2

0, where B0 is
the magnetic field strength in the driven mode, the simplest
way to increase the signal power is to increase the
amplitude of the driven mode. However, the power dis-
sipated increases ∝ B2

0 as well, and even if this is not a
problem (or other issues such as field emission), at some
point the maximum magnetic field at the cavity walls
will increase past Hsh ≃ 0.2 T. This means that, for a
given cavity geometry, there is a maximum achievable
signal power.
Given some constraints on available volume and cooling

power, we can ask how large a signal power can be obtained
by optimising the cavity geometry. The volume constraint
is necessary; since dissipation is a wall effect, whereas
signal scales with volume (for fixed field amplitudes), if we
increase the cavity dimensions by a factor α, while reducing
the field amplitudes to keep the signal power constant, the
dissipated power scales ∝ 1=α. Hence, by scaling up the
cavity, we can always reduce the required cooling power
for a given signal level.
Taking a cylindrical cavity geometry as our example,

which height-to-radius ratio gives rise to a degenerate mode
pair with the best (axion-mass-averaged) signal power per
volume? If we hold max∂V B2 constant (where V denotes
the volume of the cavity, and ∂V its boundary walls), then
among the low-lying modes, the best choice is to drive
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TE012, and pick up in TM013, which are degenerate at
d=R ≃ 2.35. This mode pair has C01 ¼ 0.19, and max-
imizes U0C01=V (for example, driving TM013 and picking
up in TM012 gives the same C01, but the stored energy in the
TM mode is smaller, if we restrict the magnetic field at the
walls to be <0.2 T). The field profiles for these modes are
illustrated in Fig. 2. In addition to giving high signal power,
this mode pair also has attractive noise-rejection properties,
as discussed in Sec. III. Consequently, we will use it as our
nominal experimental setup for most of this paper. Some
features of this mode are summarized in Table I, where its
properties for R ¼ 20 cm and R ¼ 50 cm are given (at the
degenerate d=R ratio). Properties for other sizes can be
obtained by scaling.

1. General constraints

We can also consider more general cavity geometries.
Both the cooling power and Hsh limitations are based on
the magnetic fields of the drive mode at the cavity walls. It
is not immediately obvious that these cannot be made small
by a clever choice of cavity geometry. For example, the
wall electric fields for the cylindrical TE012 mode are
everywhere zero (with the consequence that field emission
can be highly suppressed; see Sec. III D). However, as

shown in Appendix A, the wall fields can be related to the
energy stored in the cavity via

U ¼ 1

2

�I
∂V

dAðB2 − E2Þðx · nÞ
�

ð12Þ

where x is the vector from some origin to the wall location,
n is the outward-pointing normal to the wall, and the angle
brackets denote time averaging. Since

H
dAx · n ¼ 3V,

if we can choose an origin for which x · n ≥ 0 everywhere,
then

U ≤
3

2
Vmax∂V hB2 − E2i ≤ 3

4
Vmax∂V B2 ð13Þ

for a harmonic oscillation, so the magnetic field
energy inside the cavity can be bounded by the maximum
magnetic field at the walls. Similarly, the power dissi-
pated is

Pdiss ¼ Rs

�I
dAB2

�
ð14Þ

Since, if x · n ≥ 0 everywhere,

FIG. 2. Illustration of the optimum drive and signal modes for a cylindrical cavity, as discussed in Sec. II B. The B0 · E1 panel shows
the dot product of the drive mode’s magnetic field with the signal mode’s electric field, with green indicating a positive value, and red a
negative value—the integrated value over the volume gives C01 ≃ 0.19, as defined in Sec. II.

TABLE I. Parameters for the nominal SRF cavity experiments referred to in Fig. 5. In each case, the maximum magnetic field at the
cavity walls is taken to be 0.2 T, and the surface resistance of the cavity walls is taken to be Rs ¼ 5nΩ. The various quantities are defined
in Sec. II. Note that the quality factors given are in the sense of dissipation, i.e., Pdiss ¼ ωU=Q, rather than frequency stability. The latter
will depend on how well vibrations can be controlled, as per Sec. III B 1. The Brms column shows the RMS magnetic field, averaged over
time and space.

V f Umax C01Umax Pmax Q0 Q1 Brms

‘60 L cylinder’ 60 L 1.1 GHz 690 J 132 J 27 W 1.8 × 1011 9.5 × 1010 0.12 T
‘900 L cylinder’ 920 L 440 MHz 11 kJ 2 kJ 170 W 1.8 × 1011 9.5 × 1010 0.12 T
‘8m toroid’ ∼2700 L 2.8 GHz ∼210 kJ ∼210 kJ ∼650W ∼6 × 1012 ∼6 × 1012 ∼0.3 T
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U ≤
1

2
ðmax x · nÞ

�I
dAB2

�
ð15Þ

we have

Pdiss ≥
2RsU

max x · n
ð16Þ

From Eq. (8), the signal power is bounded by the energy
in the drive mode. Consequently, for “simple” cavities,
for which there is an interior point from which all of the
walls are visible, a given signal power implies a lower
bound on max∂V B2, and on Pdiss (in the latter case,
assuming a given linear extent for the experiment, as per
the scaling discussion above).
Comparing these limits to the properties of the

TE012=TM013 mode pair, the maximum signal power per
volume, for a given max∂V B2, is ≲10 times larger, using
the above limits. Similarly, for a cavity with the same
maximum linear extent, the signal power is ≲12 times
larger, for a given dissipated power. For realistic geo-
metries, the limits are probably significantly lower.

2. Nonconvex geometries

However, Eq. (12) also makes it fairly obvious how to
get around these limitations. If

H
dAjx · nj ≫ 3V, then U

can be large even if the wall fields are small. As an explicit
example, we can consider a toroidal cavity (illustrated in
Fig. 3), formed by bending a corrugated cylindrical wave-
guide of radius a around to meet itself, resulting in a toroid
with overall radius R. If we assume quarter-wavelength-
deep corrugations, then at frequencies for which ωa ≫ 1,
the modes of a corrugated waveguide are dominantly
transverse, and the wall fields are suppressed by
∼ðωaÞ−1 relative to the fields in the interior [36–38].
Taking an explicit example, the linearly polarized HE11

modes have transverse fields jE⊥j; jB⊥j ∼ J0ðk0rÞ, where
k0a is the first zero of J0, and have

����Bðr ¼ aÞ
Bðr ¼ 0Þ

���� ≃ 1.25
ωa

≃
0.2
a=λ

ð17Þ

where λ is the free-space wavelength of the mode (and
similarly for the electric fields) [36]. Consequently, by
making ωa large, the interior fields can be made para-
metrically larger than the wall fields.
For a linear waveguide, the problem comes at the end

caps—here, the wall fields are ∼jBðr ¼ 0Þj. Bending the
waveguide into a toroid eliminates these end caps. Of
course, in order to preserve the smallness of the wall fields,
the radius of curvature R must be large compared to a.
Performing a naive perturbative calculation [39], in which
we take both R=a and ω=a to be large, and treating the
corrugated wall as a surface with uniform effective react-
ance [36], the correction to the wall fields from the
waveguide’s curvature is approximately

δBðr ¼ aÞ
Bðr ¼ aÞjR¼∞

≃ 0.5
a
R
ðaωÞ2 ð18Þ

The constant factor in this estimate should be treated as an
Oð1Þ estimate, since we do not calculate the actual behavior
in the corrugations. However, the parametric form should
hold, and illustrates that as long as R ≫ a, it is possible to
make aω large and obtain interior fields significantly larger
than the wall fields.
Taking some illustrative numbers, if we assume a toroid

with waveguide radius a ¼ 10 cm, and take R ¼ 4 m, then
choosing as high as mode frequency as practical,
ω ≃ 2π × 3 GHz, gives aω ≃ 6. The total energy stored
in the HE11 mode, for wall fields ≲0.2 T, is ≃40 kJ. For a
TE012=TM013 cylinder of comparable volume, U ≃ 10 kJ.
To use the toroidal cavity for axion detection, we need

almost degenerate modes with good overlap. Conceptually,
this is very simple—we simply use the HE11 modes with
orthogonal polarizations, offset by a quarter-wavelength
along the toroid. This is in exact analogy to the optical up-
conversion experiments proposed in [16–18], which con-
vert linearly-polarized optical photons to the orthogonal
polarization. It has the advantage of having, in the large-R
limit, perfect overlap between the drive and signal modes.
Consequently, the advantage in axion signal strength is
even larger than the advantage in stored energy—using the
same nominal parameters as above, the toroid’s signal
strength would be ∼20 times higher (a more detailed
calculation would be required to find the proper finite-R
behavior). This compares to the factor 10 limit derived
above for simple cavities, showing that the nontrivial
geometry is necessary for such improvements. If we instead
used a linear corrugated waveguide, then the drive ampli-
tude would be constrained by the end caps, and the signal
strength would be ∼ the same as a TE012=TM013 cylinder of
the same volume.

FIG. 3. Illustration of a toroidal corrugated waveguide, as
discussed in Sec. II B 2. The radius of curvature R is taken to
be much larger than the waveguide radius a.
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The toroidal cavity serves as a particularly symmetrical,
and thus easy-to-analyze, example of a cavity with largeH
dAjx · nj. There are, of course, many other possibilities.

For example, we could instead take a linear corrugated
waveguide, and replace its end caps by large-area reflec-
tors. In [40], it is claimed that this can reduce the peak
magnetic field at the walls by a factor ∼2; for a long
waveguide, this would result in a signal power per volume
∼4 times larger than for the TE012=TM013 cylinder pair. It is
not immediately clear whether the enhancement can be
made parametrically large, as for the toroid example.
These kinds of cavities may be significantly more

complicated to fabricate than the simple cylindrical cavities
discussed above. In addition, as we will discuss in the next
section, they lack some of the noise-rejection properties of
more symmetrical cavities, and would be more complicated
to tune and control. Consequently, we will not attempt to
analyse them in detail. They do, however, serve as an
example of how larger signal powers could potentially be
realized.
In Table I, we list some estimated parameters for a

R ¼ 8 m, a ¼ 13 cm toroidal cavity used as an up-
conversion experiment. This size is chosen make signifi-
cant QCD axion sensitivity possible, at least theoretically
(see section III A and figure 5). Even these large sizes are
significantly smaller than the axion coherence length
for the masses of interest, la ∼ 103ν−1a ∼ 300 mGHz

νa
, so

our approximation of the axion field as spatially constant
will be valid.

III. BACKGROUNDS & SENSITIVITY

A. Thermal and amplifier noise

The signal of axion DM in our experiment would be
excess power in the signal mode (as illustrated in
Figure 1), and any noise present at these frequencies will
make this harder to detect. As mentioned in section II A,
the power dissipated at high drive fields means that
cooling the cavity to sub-kelvin temperatures is imprac-
tical. Since 2πGHz ≃ 50 mK, this means that the physical
temperature is always significantly higher than the signal
mode frequency, and thermal noise needs to be taken into
account. In addition, the system we use to read out the
signal—generally, a chain of microwave amplifiers—will
introduce its own noise.
In appendix B, we review the theory of signal detection

for a high-Q target mode, assuming readout via an
amplifier isolated behind a circulator (as for most micro-
wave systems). If the noise associated with the amplifier
system corresponds to a smaller temperature than the
physical temperature of the cavity, then it is favorable to
‘overcouple’ the signal mode to the output port (i.e., have it
lose more power to the output port than to environmental
dissipation) [41]. This reduces the loaded quality factor of
the target mode, which is naively bad, but also dilutes the

thermal noise reaching the amplifier; the latter effect turns
out to dominate.
The high quality factors attainable in SRF cavities

mean that, even given this overcoupling, the bandwidth
of the target mode will be≪νa, for axion masses of interest.
This means that, to cover an Oð1Þ range in axion masses,
we need to operate the experiment in multiple different
configurations, with different frequency splittings between
the drive and target modes (as discussed briefly in Sec. II
A). As demonstrated in Appendix B, in the limit of long
integration times, any sufficiently dense, and roughly equal,
spacing of these frequency splittings will give approxi-
mately the same expected SNR,

SNR ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5

ðP1=Q1Þ2ttotQaQ1ω1

T0TnmaΔma

s
ð19Þ

Here, T0 is the physical temperature of the cavity walls
(assumed to be ≫ω1), Tn is related to the noise of the
amplifier system (see Appendix B), Δma is the range of
axion masses we want to cover (assumed to be ≲Oð1Þ),
Qa ≃ 106 is the inverse fractional bandwidth of the axion
signal, ttot is the total integration time for all configurations,
Q1 is the unloaded quality factor of the target mode, ω1 is
the frequency of the target mode (assumed to change by a
small fractional amount between configurations), and P1 is
the power absorbed by the (unloaded) target mode when
on-resonance with a monochromatic signal [see Eq. (6)].
Since P1 ∝ g2, the smallest coupling we have sensitivity to
scales as gsens ∝ t−1=4tot Q−1=4

1 T1=4
0 T1=4

n , as expected [41].
From [9], we know that for fixed ttot, this improvement

with increasing Q1 must saturate at some point. Fairly
obviously, this will happen when the time spent in each
configuration is not long enough to resolve the loaded
bandwidth of the target mode. If, as is the case in most
of our parameter space, Δωa ≃ma=Qa is such that
Δωa ≫ ω1=Ql, where Ql is the loaded quality factor of
the target mode, then the minimum spacing of frequency
splittings is ∼Δωa (otherwise some axion masses will fall
into the gaps). This means that the time spent in each
configuration is t1 ≃ ttot

Δωa
Δma

≃ ttot
Qa

ma
Δma

. If t1 ≲Ql=ω1, then
the mode cannot fully ring up in the time available, and it
would be more favorable to reduce Ql by overcoupling
further. In this regime, the best attainable SNR is

SNR≲ 0.2
W̄
Tn

ð20Þ

where W̄ ≡ P̄ttot is the expected power absorbed from the
axion signal.
In Fig. 4, the dot-dashed line shows the thermal-noise-

limited sensitivity for the nominal 60 L cavity discussed
above, given a total integration time of one year to cover an
e-fold in axion mass range. It assumes that the physical
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temperature of the cavity is T0 ¼ 1.4 K, and the amplifier
system is quantum-limited, so Tn ¼ ω1. Near-quantum-
limited amplifiers have been demonstrated at microwave
frequencies, and incorporated in the ADMX [5,6] and
HAYSTAC [42] axion DM experiments. The loaded quality
factor, for the optimal overcoupling level, is Ql ≃ 2 × 109,
so it takes ∼2 s to resolve the signal mode bandwidth, and a

total integration time of ≳2 × 106 s ≃ 24 days to be in the
regime of Eq. (19). Since the coupling sensitivity scales like
gsens ∝ m1=2

a , but g ∝ ma for the QCD axion, lower-mass
QCD axions are still harder to detect. As the figure shows,
an experiment with these parameters could not attain QCD
axion sensitivity over an Oð1Þ axion mass range, even at
higher masses (without violating our assumptions, e.g., by
injecting a highly nonclassical state into the target mode).
Moreover, though we extend the sensitivity projection up to
νa ∼ 100 MHz, tuning a cavity over an Oð1Þ range of
frequency splittings would be difficult at such high masses,
as discussed in Sec. II A.
The simplest way to obtain higher sensitivities would be

to use larger cavities. Figure 5 shows the thermal-noise-
limited sensitivities for two such examples. The first is a
simple scaling-up of the TE012=TM013 configuration, using
a cylinder of radius 50 cm (giving a volume of ∼900 L). Its
properties are summarized in Table I—compared a smaller
cylinder, the signal power scales with the volume. Even an
experiment of this size could not reach KSVZ axion
sensitivity over an Oð1Þ axion mass range, at reasonable
axion masses. At this size, the mode frequency is
∼440 MHz, which is at the lower end of the frequency
range generally used in SRF cavities.
To illustrate the kind of parameters that would be

required for significant DFSZ axion sensitivity, Fig. 5
also shows the approximate thermally-limited sensitivity
for a corrugated toroidal cavity, as introduced in Sec. II B 2.
This is taken to have waveguide radius a ¼ 13 cm, and
R ¼ 8 m; the resulting properties are summarized in
Table I. The naive estimate of the signal mode quality
factor is high enough to put us in the regime of Eq. (20),
even for a total integration time of a year.
As emphasized in Sec. II B 2, this kind of projection

should not be taken as a concrete experimental proposal—
for that, one would need to understand the control issues,
noise problems etc. associated with these cavity designs.
Instead, it illustrates what would be necessary, in principle,
to probe very small couplings.

B. Vibrations

While thermal noise must be taken into account in all
axion detection experiments, up-conversion experiments
have the additional challenge of a very large-amplitude
background EM oscillation. If there are any environmental
oscillations at the axion frequency, and any nonlinear
processes which couple these to the drive and signal
modes, then power can be delivered to the signal mode,
representing an additional noise source.
The most obvious such process is mechanical vibrations

of the cavity walls. If we write δxðt; xÞ as the displacement
of the cavity wall from initial position x, and n as the
outward pointing normal to the initial wall position, then to
linear order in δx, the interaction Hamiltonian of the wall
displacement with the EM fields is

FIG. 4. Sensitivity projection for an up-conversion experiment
using a 60 litre (20 cm radius) cylindrical cavity, where the TE012

mode is driven, and signals are picked up in the TM013 mode. We
assume that the maximummagnetic field for the drive mode at the
cavity wall is Hsh ¼ 0.2 T, and an integration time of one year
per e-fold in axion mass range. The sensitivity threshold is set at
an expected SNR value of 3. The “thermal EM” line shows
the sensitivity limit in the presence of thermal EM noise, at the
assumed physical temperature of 1.4 K (see Sec. III A). The
“thermal vibrations” line is an estimate of the effect of thermal
vibrations of the cavity walls, which up-convert power from the
signal mode to the drive mode (Sec. III B). The “acoustic
vibrations” line also incorporates extra acoustic noise from
external sources. The dashed line between them is an estimate
of the effects of time-varying drive signal leakage (Sec. III C).
Taking all of these noise sources into account, the estimated
sensitivity reach of the experiment is given by the blue shaded
region. It should be noted that, while the “thermal EM” limit is set
by basic physical parameters, the vibrational limits depend on
guesses about the properties of the cavity system, and could be
very different in a real experiment. Also, while we have extended
the projected reach to axion frequencies ∼100 MHz, scanning an
order one axion mass range at these frequencies would be
difficult (see Sec. II A). In Fig. 5, this reach is compared to
other proposed experiments. The gray shaded regions correspond
to the parameter space ruled out by observations of horizontal
branch stars [43–45], SN1987A [46], existing cavity haloscope
experiments [5,47–51], and the ABRACADABRA-10 cm experi-
ment [52]. The green diagonal band corresponds to the “natural”
range of gaγγ values at each QCD axion mass—if we write gaγγ ¼
αEM
2πfa

ðEN − 1.92Þ [2], then the upper edge of the band is at E=N ¼ 5

[3], and the lower edge at E=N ¼ 2 [2]. The gray diagonal lines
indicate the Kim-Shifman-Vainshtein-Zakharov (KSVZ) (upper,
E=N ¼ 0) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)
(lower, E=N ¼ 8=3) models.
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Hint ¼
1

2

Z
dAðB2 − E2Þn · δx ð21Þ

The resulting interaction between the drive and signal
modes is

Hint ¼
Z

dAðB0 · B1 − E0 · E1Þn · δx ð22Þ

This interaction actually represents the signal mechanism
for proposed SRF gravitational-wave detectors, such as
MAGO [54–56]—the effect of a gravitational wave can be
treated as a deformation of the cavity walls, which up-
converts photons from the drive mode to the signal mode.
We can see from Eq. (22) that, if the drive and signal

modes of the unperturbed cavity are orthogonal at the walls,
then to linear order in δx, wall vibrations do not couple
them. This is one reason why the TE012=TM013 mode pair
introduced in Sec. II B is attractive—in an ideal cylinder,
these modes have E0 · E1 ¼ 0, B0 · B1 ¼ 0 throughout the
whole cavity. However, it will not be possible to fabricate
the cavity shape perfectly, and some deformations will
result in nonorthogonal fields at the walls. For example, if
the cavity cross-section is elliptical rather than cylindrical,
then the deformed TE012 mode has a small electric field at
the cylinder’s walls,

Er ≃ 40 kVm−1 f
10−3

sinð2ϕÞ sin
�
2πz
d

�
ð23Þ

where f is the flattening of the ellipse (f ¼ ða − bÞ=aÞ,
where a ≥ b ≥ 0 are the axis lengths), and the normaliza-
tion is set by taking the maximum magnetic field at the
walls to be ¼ 0.2 T. Since the TM013 mode has Er ∝
sinð3πz=dÞ at the walls, the effect of a cavity vibration is
controlled by

Z
dAsinð2ϕÞsin

�
2πz
d

�
sin

�
3πz
d

�
n ·δx≡0.09CAwxðtÞ

ð24Þ

where Aw is the area of the cavity walls, and we
have normalized so that a vibration with δx ¼
sinð2ϕÞsinð2πzd Þsinð3πzd ÞxðtÞ has C ¼ 1. Then, for mono-
chromatic oscillations, the power transferred to the
signal mode is

P ≃ 7 WC2Q1

�
f

10−3

�
2
�

x
mm

�
2

ð25Þ

where we have taken the parameters of the 20 cm
cylindrical cavity listed in Table I. Consequently, the
displacement noise in the relevant bandwidth must
be very small, in order not to overwhelm the axion
signal power.
The example of an elliptical cavity illustrates the general

feature that, for a cavity deformation of fractional size ∼f,
we expect the wall fields to be perturbed by ∼f [57,58], and
in general to be nonorthogonal. It may be possible to
deform the cavity post-fabrication to alleviate such issues,
but we do not attempt to consider such possibilities here.

FIG. 5. Comparison of sensitivity projections for different
kinds of low-frequency axion DM detection experiments. The
“60 L cylinder” region corresponds to the 20 cm cavity up-
conversion experiment described in the text, with parameters
given in Table I (we assume an integration time of 1 year per e-
fold in axion mass range). At high frequencies (νa ≳ 200 kHz),
its sensitivity is limited by thermal EM noise from the cavity
walls, while at lower frequencies it is limited by (a rough estimate
of) up-converted acoustic noise from external sources (see
Sec. III B and Fig. 4). We also display the thermal-noise-limited
sensitivities for the larger up-conversion experiments listed in
Table I. The “900 L cylinder” line corresponds to a scaled-up
TE012 → TM013 experiment, with 50 cm radius. The “8 m toroid”
line corresponds to a corrugated toroidal cavity, as described in
Sec. II B 2; we assume an overall radius of 8 m, a waveguide
radius of 13 cm, and a frequency of 2.8 GHz, resulting in the
parameters listed in Table I. We leave an analysis of the less
fundamental noise sources for these larger up-conversion experi-
ments to future work. The red lines are thermal noise limited
sensitivity projections for representative static-magnetic-field
experiments, modeled on the Dark Matter Radio proposal
[13,53]. The “0.5 T, 50 L” line corresponds to a 50 liter
experiment, with a background magnetic field of 0.5T, and a
physical temperature of 10 mK—the resonator quality factor is
taken to be 106, and the geometric overlap factor to be 0.2 [13] (in
the sense that Psig ≃ 0.22g2B2

0VQ
ρ
m ðmLÞ2, where L is the

shielding length scale [9]). The “4 T, 1000 L” line corresponds
to the same assumptions, but with a cubic metre volume, and a
background magnetic field of 4 T. The quasistatic ∼ðmLÞ2
suppression used is only a dimensional estimate; the actual value
would depend on the geometry of the experiment. We also show
an example of a proposed optical-frequency up-conversion
experiment, the “ADBC” proposal from [18]. This assumes a
2 meter Faby-Perot cavity, with a circulating optical power of
10 kW. The existing haloscope limits, QCD axion band, and
astrophysical constraints are as per Fig. 4.
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Conversely, for other cavity geometries, such as a corru-
gated waveguide, the wall fields are nonorthogonal even for
an unperturbed cavity.
The other information we need to determine the vibra-

tion-induced noise spectrum is the vibration spectrum of
the cavity’s walls. At high enough frequencies, this will
probably be dominated by thermal vibrations. If ultrasonic
waves from outside the cavity are sufficiently attenuated,
then the amplitude will be set by the cavity’s physical
temperature. The ultrasonic attenuation length scale in
liquid helium is ∼cm for frequencies ≳10 MHz [59,60],
though it may be significantly smaller for metals [59,61].
Investigation would be required to determine the actual
properties of a cavity setup.
At lower frequencies, external acoustic noise will not be

strongly attenuated, and in addition, above-thermal noise
sources (such as machinery) will be present. A nominal
spectrum for this external displacement noise, in a reason-
ably “quiet” setting, is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxðνÞ

p
≃ 10−7

cmffiffiffiffiffiffi
Hz

p
�
10 Hz

ν

�
2

ð26Þ

for ν≳ 10 Hz [62]. The measured acoustic noise in the
vicinity of the MAGO prototype (Fig. 14 of [56]) also
shows a Sxx ∼ 1=ν4 spectral density for ν≳ 3 kHz, with
displacement amplitude a factor ∼10 higher than Eq. (26).
At lower frequencies, especially with the helium cooling
system in operation, there is a complicated, spiky spectrum
with significantly larger amplitude.
We can compare these acoustic spectra to the spectrum

from thermal oscillations by noting that, if we can treat the
material as a bulk medium of large extent, with a linear
acoustic dispersion relation, then the PSD of surface
displacements is given by [63]

Sxx ≃
2pT
9πρv3s

ð27Þ

where ρ is the density of the material, T is the temperature,
vs is the sound speed, and p is a dimensionless constant
governing the interaction of the surface with bulk phonons
(e.g., for aluminium, p ≃ 2.3 [63]). Plugging in represen-
tative parameters for niobium, we obtain

ffiffiffiffiffiffiffiffiffiffiffi
Sthermxx

q
≃ 10−17

cmffiffiffiffiffiffi
Hz

p
�

T
1.4 K

�
1=2

ð28Þ

suggesting that, very roughly, thermal noise will dominate
for ν≳MHz.
Properly calculating the effects of vibrations would

require assumptions about the imperfections of the cavity
shape, and modeling the mechanical modes of the cavity-
cryostat system. Here, we only attempt to make a rough
estimate of these effects. To calculate the vibration-induced

noise power as a function of frequency, we need the
PSD Svxx for oscillations with profile set by B0 · B1 − E0 ·
E1 at the cavity walls. We will assume that this profile
is reasonably smooth, corresponding to slowly-varying
deviations from a cylindrical shape (e.g., the ellipse
example above).
Decomposing the cavity vibrations into weakly-

damped modes, there will be contributions to Svxx from
modes with different resonant frequencies. At ω much
higher than the resonant frequency of low-order mechani-
cal modes, the vibrational modes with similar frequencies
will have small overlap with the (assumed smooth)
profile, while the low-order vibrational modes will have
much smaller frequencies. For thermal vibrations, the
contribution from the latter will be Sxx ∼ 1

Qm

T
Mω3, where M

is the mass of the cavity walls, and Qm is the mechanical
quality factor of the low-order modes. The modes with
resonant frequency ∼ω will contribute Sxx ∼ ðλ=LÞc T

Mω3,
where λ ∼ vs=ω is the wavelength of the modes, and
ðλ=LÞc corresponds to the suppressed spatial overlap with
the profile (with higher c corresponding to smoother
profiles). At frequencies low enough that individual
modes stop overlapping in frequency, the contributions
to Sxx will be spikier. For ω around that of the low-
lying mechanical modes, it will have maximum value
Sxx ∼Qm

T
Mω3.

For acoustic, rather than thermal, noise, the same
general considerations will apply, but the effective T in
the above equations will be frequency dependent. In Fig. 4,
we display an example of the vibration-noise-limited
sensitivity, using the estimates discussed above. Taking
acoustic noise with spectrum as per Eq. (26), we find that
vibration-induced noise dominates thermal EM noise for
νa ≲ 300 kHz (we assume that Qm ≃ 103 and c ¼ 2, in the
notation of the previous paragraph, and assume 3 mm thick
cavity walls, giving a cavity mass of ∼20 kg). The thermal
vibrations, assuming T ¼ 1.4 K, are subdominant. We
emphasize that all of these estimates are best viewed as
guesses, and a much more careful treatment would be
necessary for a realistic experiment.

1. Frequency variability

So far, we have considered how vibrations can give rise
to a coupling between the drive and signal modes.
However, vibrations will also change the energy of each
of these modes themselves. Typically, this “detuning” will
(before any compensation) be Oð10 HzÞ, corresponding to
∼ nm-scale displacements of the cavity walls [64–66].
Most of this variation will come from low-frequency
(≲Oð10 HzÞ) vibrations.
If these vibrations cause the frequency splitting between

the drive and signal modes to change over time, by more
than their bandwidths, then we are effectively changing the
up-conversion tuning over time. This change in “scan
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strategy” can affect the thermal noise limited sensitivity, as
discussed in Sec. III A.
For SRF accelerator cavities, large frequency detunings

can increase the power needed to drive the cavity [67], as
well as moving the accelerating voltage out of phase with
the electron bunches [66]. Consequently, feedback systems
are general employed which measure the detuning of the
cavity, and apply a mechanical deformation (via a piezo
transducer) to correct this. Using such systems, frequency
stabilization to ≲Hz has been demonstrated [66] In our
case, measurement of the changing mode frequencies is
very important, since any unknown variation of the
frequencies over time will reduce sensitivity. Further
investigation of how well such a measurement system
(and feedback control system) could perform in our setup
would be required.
In principle, it may also be possible to measure the

higher-frequency mechanical vibrations of the cavity dis-
cussed above, and use this to compensate for, or subtract
out, the induced noise in the signal mode. We do not
attempt to model the feasibility of such measurements here.

C. Drive leakage

In an ideal experiment, the cavity input power would
couple only to the drive mode, and the detector would be
coupled only to the signal mode. For mode pairs such as our
TE012=TM013 example, it is easy to see how this could be
accomplished in principle. Input and output is usually
accomplished through small slots in the cavity wall, which
connect to waveguides. For a slot much smaller than the
wavelength of a cavity mode, the coupling is approximately
∝ Bslot · Bcav, where Bcav is the mode’s magnetic field at the
cavity wall [68]. Since the signal and drive modes are
everywhere orthogonal, a correctly polarized input/output
port should, to a good approximation, couple only to one of
them. The different spatial profiles of the modes (see Fig. 2)
provide an extra discriminator—for example, we could
place an input port at a wall location where the signal
mode’s magnetic field is very small, and an output port
where the drive mode is small.
However, as was the case for the vibrational couplings

discussed above, nonperfect fabrication of the cavity will
spoil these assumptions. For example, if the output slot was
slightly misaligned, it would have a small coupling to the
drive mode. Generally, for a Fourier-domain signal SIðωÞ at
the input port, and assuming that the drive and signal modes
are the only ones at nearby frequencies, the output signal
will be

SOðωÞ ≃ CoDGDðωÞCDi þ CoSGSðωÞCSiÞSIðωÞ: ð29Þ

Here, CoD represents the coupling between the drive mode
and the output port, and GDðωÞ is the response function of
the drive mode, etc. For a well-constructed cavity, CoD and
CSi will be small, but still nonzero. Since the signal and

drive modes have very narrow-bandwidth response func-
tions, we expect SOðωÞ to be peaked around ω0 and ω1.
Naively, the output signal near ω0 is not an issue—we

can just Fourier transform the output data, and ignore it.
However, the nonideal nature of the output electronics may
introduce problems. Most directly, if the amplitude of the
∼ω0 noise, relative to the ∼ω1 signal, is too large, then the
dynamic range of the amplifier may be exceeded. One way
to address this is to place a frequency filter on the output
port, to reject frequencies too far from ω1. However, if this
is not enough (which is especially likely at smaller ma), it
may be necessary to reduce CoD through some feedback
control mechanism.
Using the nominal experimental parameters from above,

the energy stored in the drive mode of the 60 L cavity is
∼700 J. If the output port were critically coupled to the
drive mode, this would result in ∼30 W output power. At
the thermal-noise-limited sensitivity (Sec. III A), the axion-
sourced signal power is Psig ≃ 2 × 10−23 W for νa ∼MHz
(assuming an integration time of 1 year per e-fold in axion
mass range). If we assume an amplifier with a dynamic
range of 50 dB, then to avoid swamping this signal, the
output power needs to be a factor of ∼10−20 lower than the
30 W level, corresponding to a ∼10−10 amplitude suppres-
sion. These numbers make it clear why leakage suppression
might be challenging. Furthermore, in addition to leakage
through the cavity, we would also need to worry about
leakage through the laboratory environment. An experi-
mental rule of thumb is apparently [69] that suppressions of
more than ∼10−19 in power are difficult to achieve, for
electronics in the same laboratory space.
These kinds of issues were encountered by the MAGO

SRF gravitational-wave detector mentioned in the previous
section. Their setup used two identical cavities with a small
coupling between them, giving rise to almost degenerate
symmetric and antisymmetric modes. To drive the sym-
metric mode, a magic-tee was used to split the drive signal
into in-phase components, while to sample the antisym-
metric mode, another magic-tee was used to take the
difference of outputs from each cavity. Since the drive
and signal modes had the same profiles in each cavity, this
relative phase was the only way of distinguishing between
them.With this setup, they achieved a power suppression of
∼48 dB for the output, corresponding to an amplitude
suppression of ∼1=250 [54]. The output power was
dominated by the ∼ω0 peak.
To improve this, they implemented a feedback system,

using a variable phase shifter to control the phase of one of
the input ports (and another to control the phase of an
output port). This phase shifter was controlled by a feed-
back loop, designed to suppress the output power. Using
this system, they achieved an output power suppression of
∼140 dB [54] (which would seem to indicate that the
amplitudes at the two output lines were matched to one part
in ∼107 by the geometry of the setup, unless they also
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applied feedback control the amplitudes). One could imag-
ine other ways of implementing feedback schemes—for
example, combining the (attenuated) drive signal with the
output directly—but theMAGO scheme provides a concrete
example of the kind of control system that may be required.
In our case, the extra geometric rejection provided by the
profiles of the drive and signal modes, along with a high-Q
bandpass filter on the output, make it seem plausible that
sufficiently high rejections could be obtained.
If the drive signal has narrow bandwidth compared to the

frequency splitting between the drive and signal modes,
then leakage at frequencies close to ω1 will be suppressed.
However, it may interfere with the axion signal we hope to
detect, so more care is required in dealing with it. Since we
can measure the input drive signal, it does not necessarily
represent irreducible noise—if we know the transfer
function from the input to the output, e.g., via the signal
mode of the cavity, then we can simply subtract it out. This
can either be done in software, or via analogue mixing
(though in the former case, dynamic range issues may
still arise).
The more worrying case is if the transfer function varies

over time, in an a priori unknown way (for example,
MAGO observed that temperature fluctuations in their
input and output cables affected the phase shift experienced
by the signal [56]). As a quantitative example, suppose that
the time delay δðtÞ along the signal path is time-varying,
δðtÞ ¼ δ cosωδt. For ω0δ ≪ 1, we can use the Jacobi-
Anger expansion [70],

eiω0ðtþδ cosωδtÞ ¼ eiω0tðJ0ðω0δÞ þ 2iJ1ðω0δÞ cosωδtþ…Þ
ð30Þ

So, given leakage at frequencies ∼ω0, the amplitude of the
noise component at frequencies close to ω1 is ∼ðω0δÞ times
the constant leakage amplitude. This gives a noise power,
for our nominal setup, of

Pnoise ∼ 3 × 10−21W

�jCSij
10−3

�
2
�
MHz
νa

�
2

ðω0δÞ2 ð31Þ

where we take jCSij to be the amplitude suppression,
compared to critical coupling, of the output ports to the
drive mode. Translating this into an equivalent noise
temperature,

Teff ≃ 1 K

�jCSij
10−3

�
2
�
50 kHz

νa

�
3

Qδðω0δÞ2 ð32Þ

for a δ PSD of fractional bandwidth 1=Qδ, and total power
δ2. Consequently, unless the temporal variation in transfer
characteristics is substantial, this noise contribution is
likely to be smaller than e.g., that of the acoustic noise
considered in the previous section. In Fig. 4, we show the
effect on sensitivity for Qδ ≃ 1, ω0δ ≃ 0.1, illustrating that,

for these parameters, it is fairly similar to our estimate for
thermal vibrations.
Of course, as well as this in-principle issue, there may be

technical issues in suppressing the ∼ω1 leakage, especially
for low-dynamic-range amplifiers. For the purposes of
our sensitivity estimates, we will assume that these are
surmountable at high axion masses, and subdominant to
vibrational noise at lower ones.
If there are other modes close-to-degenerate with the

drive and signal modes, then these may affect signal
leakage. For example, in a perfect cylindrical cavity, the
TE012 mode is exactly degenerate with the TM112 mode.
While such degeneracies will be lifted by the inevitable
cavity shape imperfections (e.g., the ∼10−3 fractional
deformations we were assuming would generically give
∼MHz splittings), if they are still a problem, then it may be
simplest to give the cavity an intentional, slight deforma-
tion, as was done for the cylindrical MAGO prototype [54].

D. Free charges

As well as wall effects, such as the vibrational back-
grounds considered in Sec. III B, EM noise can also arise
through currents inside the volume, i.e., from the move-
ment of free charges inside the cavity. These charges may
originate from the cavity walls via field emission, or may
come from outside the cavity.
For initially low-energy charged particles, such as

those arising from field emission, the oscillating drive
field inside the cavity will have a significant effect on
their motion, and it is necessary to solve for their
trajectories inside the cavity. However, for particles
with sufficiently high initial kinetic energy, the effect
of the drive field on the trajectory is unimportant, and the
particle effectively travels in straight line. This is the case
for e.g., cosmic ray muons, which provide a simple test
case we can work out.
We are interested in the effect of the charged particle on

the signal mode. Working in a gauge where A0 ¼ 0, we can
write the interaction Hamiltonian as

Hint ¼
Z

dVA · J ¼ qvðtÞ · ÂðxðtÞÞ ð33Þ

If we write the vector potential for the signal mode as
A⃗ðt; xÞ ¼ AsðtÞa⃗ðxÞ, then the dynamics of As are analogous
to those of a harmonic oscillator with “mass” ¼ R

dVa2 ≡
Va [9]. Writing Hint ¼ ðqvðtÞ · aðxðtÞÞÞAsðtÞ≡ jðtÞAsðtÞ,
the linear response function governing the response of As to

the forcing j is χ̃ðωÞ ≃ V−1
a

ω2
1
−ω2þiωω1=Q1

. The expected energy

delivered to the signal mode is

hWi ¼ 1

2π

Z
∞

−∞
dωωjj̃ðωÞj2Imχ̃ðωÞ ð34Þ
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where the averaging is taken over different phases of the
signal mode oscillation. For a high quality factor mode,
Imχ̃ will be very narrowly peaked compared to j̃, so

hWi ≃ 1

2Va
jj̃ðω1Þj2 ð35Þ

Consequently, for a low-lying mode of the cavity, a single
relativistic transit of a charged particle will deposit, on
average, ∼Cq2 photons into the signal mode, where q is
the charge of the particle, and C is a dimensionless
geometric overlap factor. It should be noted that, in the
presence of an oscillation of definite phase in the signal
mode (for example, due to thermal fluctuations), there will
also be an OðqÞ contribution to the energy absorbed.
However, the energy uncertainty of a coherent state is also
larger, and the relative detectability of the perturbation is
still set by hWi=T.
The flux of cosmic ray muons at sea level is

∼1=ðð10 cmÞ2 sÞ [71]. They have an average energy of
∼4 GeV, so are certainly high-energy for the purposes of
our calculation. Considering our nominal 20 cm-radius
cylindrical cavity, there are≲20muons passing through the
cavity per second, corresponding to a delivered power of
∼C̄ × 10−24 W to the signal mode, where C̄ is the average
value of C over different trajectories. A large value of C,
e.g., for a trajectory along the central z-axis, is C ≃ 0.17.
In comparison, the thermal-noise-limited signal power,
assuming an integration time per e-fold in axion mass
range of one year, is Psig ≃ 2 × 10−23 W νa

MHz. Since we do
not expect the flux of other high-energy charged particles
to be significantly larger than the muon flux, we can
conclude that cosmic rays will not be a significant back-
ground at higher νa. These calculations would apply to
standard cavity haloscopes as well, with similar results
(see also [72]).
For cavities with small enough electric fields at the walls,

field emission should be negligible. Taking the previous
example of a slightly elliptical cavity, if the TE012 drive
mode has maximum magnetic field of 0.2 T at the walls,
then from equation (23), the maximum wall electric field
is Emax ≃ 40 kV=m f

10−3
, where f is the flattening of the

ellipse. Since electric fields ≳few MV=m are required for
field emission, even fairly loose mechanical tolerances
should be enough to suppress it. This is contrast to the
modes used in SRF cavities for particle acceleration, such
as the TM010 mode—to obtain an accelerating voltage
down the axis of the cavity, these have large electric fields
at the walls.
Other cavity geometries, such as a corrugated wave-

guide, do not necessarily have such suitable drive modes
with small electric fields at the walls. In these cases, proper
simulations would need to be carried out to determine
whether the resulting electron trajectories transfer too much
energy to the signal mode. If the rate of field emission is

high enough, then multiple electrons could contribute
coherently to such energy transfer, potentially worsening
the problem.

IV. SENSITIVITY COMPARISONS

As mentioned in the Introduction, there are a number of
different approaches to low-frequency axion DM detection
through the FF̃ coupling. Whether SRF up-conversion
experiments are worth pursuing depends on their plausible
sensitivity, relative to these alternatives.
Static background field experiments, such as the

ABRACADABRA [12] and DM Radio [13] proposals,
offer the best theoretical sensitivity at higher axion masses.
In Fig. 5, we show thermal-noise-limited sensitivity pro-
jections for nominal static field experiments, modeled on
the DM Radio proposals3 [53], and compare them to the
sensitivity projections for the nominal SRF experiments
discussed in the previous section, with parameters sum-
marized in Table I. Compared to the nominal static field
parameters, the corresponding SRF experiments have
significantly smaller RMS magnetic fields, but gain by
avoiding the quasistatic geometric suppression, and by
having higher target mode quality factor. Correspondingly,
they have different scaling of sensitivity with axion mass.
Figure 5 illustrates that, for significant QCD axion

sensitivity in a SRF up-conversion experiment, either very
large (many cubic meters) conventional cavities, or few
cubic meter advanced cavities, would be required (ignoring
potential quantum enhancements). This is true even if we
only take thermal noise into account—further study would
be required to determine whether other noise sources could
be mitigated. As discussed in the previous section, such
mitigations will likely work best at higher axion masses;
more realistic sensitivity projections for the larger cavities
would likely have shapes similar to the small-scale cylinder
projection of Fig. 4.
The projections of [73], which proposes similar SRF up-

conversion experiments, are presented somewhat more
optimistically, particularly regarding QCD axion sensitiv-
ity. This seems to be mostly due to two factors. The first is
that they take their sensitivity threshold as SNR ¼ 1, rather
than SNR ¼ 3 as we use. The second is that they present
their projections for a nominal cavity with peak spatial-
RMS magnetic field of 0.2 T, and an overlap factor
C01 ¼ 1. This gives a signal power per volume ∼6 times
better than our TE012=TM013 cylindrical mode pair (which
has ∼ the same signal power as the corrugated cylindrical
cavities discussed in [73]). As we discussed in Sec. II B,

3As discussed in [9], the quantum-limited sensitivity of
ABRACADABRA-style experiments may theoretically be better,
but it is less clear whether it is plausibly reachable. The DM
Radio projections are more closely related to the SQL-limited
sensitivity for a static-field experiment, so provide a simpler point
of comparison here.
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such a high signal power likely requires more complicated,
nonconvex cavity geometries, such as our corrugated
toroids.
We can also compare SRF up-conversion experiments to

those at optical frequencies, as proposed in [16–18]. In
Fig. 5, we show the projections for the ADBC experiment
[18], taking the 2 meter cavity version for commonality
with the other meter-scale experiments on the plot. They
assume a circulating optical power of 10 kW, giving a
stored energy of ∼10−4 J. This is many orders of magnitude
below the cavity energies of the SRF experiments, and the
shot-noise-limited sensitivity shown in the plot is corre-
spondingly many orders of magnitude worse. The ADBC
projection does not consider experimental issues such as
polarizer efficiency, vibrational noise, etc, so the sensitivity
of a realistic experiment may be worse. Of course, optical
experiments may also be easier to easier and/or cheaper to
implement than SRF experiments.

V. CONCLUSIONS

The nominal SRF experiments we considered above
have signal power limited by the maximum magnetic
field at the cavity walls. Apart from increasing the
cavity size, one possibility for improving this is to use a
different superconducting material for the walls. For
example, Nb3Sn has Hsh ≃ 0.41 T, and has been exten-
sively investigated as a potential alternative to niobium
[19,74]. While existing fabrication methods lead to worse
high-field performance than niobium (potentially due to
defects), research into improving these is ongoing [75].
Another potential benefit of alternative materials is that
they can have higher Tc (e.g., Tc ≃ 18 K for Nb3Sn [19]);
this can help by suppressing RBCS, or by allowing operation
at higher temperatures, where cooling systems are more
efficient.
If the thermal noise limited sensitivity projections can

actually be achieved, then further progress (for the same
cavity geometry) would depend on “quantum engineer-
ing.” Preparing the target mode in a nonclassical state,
such as a squeezed state or a Fock state, can improve
sensitivity. At microwave frequencies, such technologies
are being developed as part of the ≳GHz axion detection
program. For example, squeezed state injection is being
incorporated into Phase II of the HAYSTAC experi-
ment [42].
Looking beyond axion DM detection experiments, the

more complicated cavity geometries we have discussed
may be useful in other situations where large, high-
frequency magnetic fields are required. For example,
microwave frequency light-through-wall experiments to
search for hidden sector particles, independent of whether
they are DM, have been proposed [29,76], and a dark
photon experiment of this form is being constructed at
Fermilab [27]. The signal strength in these experiments
depends on how large a field amplitude can be sustained in

the driven cavity. Understanding whether or not high-
field cavities can be constructed with the correct geometry
to source hidden-sector particles would require fur-
ther work.
Coming back to the prospects for low-frequency axion

DM detection, a pathfinder SRF experiment that covers
significant ALP parameter space, along the lines of our
nominal 60 L cavity, seems plausibly feasible. In principle,
larger volumes and/or more advanced cavity geometries
could allow for QCD axion sensitivity, at least insofar as
fundamental noise limits are concerned. Further work
would be required to understand whether other back-
grounds, such as drive leakage, could be mitigated. As
an alternative to static background field approaches, SRF
up-conversion would present very different experimental
challenges, and may be worth further investigation. Unlike
SRF experiments aimed at ∼GHz frequency axions [15],
up-conversion of low-frequency axions does possess para-
metrically better scaling than static-field approaches,
though (as we have reviewed) there are many compensating
difficulties. To draw an analogy, resonant bar detectors and
laser interferometers represented very different approaches
to gravitational wave detection. While static-field experi-
ments may well prove to be more practical, it is important
to understand the alternatives, especially as technology
(such as superconducting materials) evolves.
Similar experimental concepts to those we have dis-

cussed are also proposed in [73], which we became aware
of while this work was in progress.
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APPENDIX A: CAVITY WALL FIELDS

TheMaxwell SET is traceless, with Tμ
μ ¼ 0, so T00 ¼ Tii.

Consequently, the total energy inside a cavity is

U ¼
Z

dVT00 ¼
Z

dVTii ðA1Þ

We can use the standard trick [77,78] of rewriting Tij as
follows,

Tij ¼ ∂kðxiTkjÞ − xi∂kTkj ðA2Þ
Tij ¼ ∂kðxiTkjÞ − xi∂kTkj

¼ ∂kðxiTkjÞ þ xi∂tT0j ðA3Þ
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where we have used conservation of the SET, ∂μTμν ¼ 0.
Then, time-averaging over an oscillation period of the
fields inside the cavity,

U ¼
Z

dVTii ¼
�I

∂V
dSkxiTki

�
: ðA4Þ

Using the boundary conditions at the conducting walls,
n × E ¼ 0, n · B ¼ 0, and the form of the Maxwell SET,
we have

nkTik ¼ −nk
�
EiEk þ BiBk −

1

2
ðE2 þ B2Þδik

�
ðA5Þ

¼ 1

2
ðB2 − E2Þni ðA6Þ

where n is the outward-pointing normal to the cavity
wall. Thus,

U ¼ 1

2

�I
∂V

dAðB2 − E2Þðx · nÞ
�
: ðA7Þ

Physically, this is an integrated version of the Slater
formula for the energy change due to cavity wall defor-
mations [79]. If we imagine dilating the cavity dimensions
from their initial value to zero, while keeping the wall fields
fixed, we obtain Eq. (A7).

APPENDIX B: SNR OF RESONANT SEARCHES

In the text, we emphasized that the physical temperature
T0 of the cavity will generally be significantly greater than
the signal frequency ω1. However, as discussed in [9,41], it
is possible to reduce the thermal noise contaminating the
signal, by overcoupling the signal mode to a “cold”
detector. Here, we review these SNR calculations, as they
apply to our setup.
Figure 6 illustrates the readout system we assume, with

an amplifier isolated behind a circulator, and a cold load
absorbing the amplifier’s back-action noise. If the output
port is coupled to the signal mode ξ times more strongly
than environmental dissipation (i.e., a mode fluctuation
loses ξ times more of its energy to the output port), then the
transmission coefficient for thermal noise from the walls is
AðωÞ ¼ 4ξ

ð1þξÞ2 cos
2 αðωÞ, where cos2 α is as per Sec. II. If

we assume that the output line is impedance matched to its
load, so that no reflections are sent back to the cavity, then
the (single-sided) noise PSD at the detector input is

Sin ¼
4ξ

ð1þ ξÞ2 cos
2 αðST0

− STc
Þ þ STc

ðB1Þ

where Tc the effective temperature of the back-action noise
from the detector. Here, STðωÞ ¼ nTðωÞω [80], where

nTðωÞ≡ ðeω=T − 1Þ−1 is the thermal occupation number,
so ST ≃ T for T ≫ ω. As expected, if T0 ¼ Tc, then the
system is in equilibrium, and the noise PSD is the same at
all frequencies.
Integrating over frequencies close to the resonance, the

energy flux from the environment to the detector is
approximately P01 ¼ ðT0 − TcÞ γ0γ1

γ0þγ1
¼ ðT0 − TcÞγ ξ

ð1þξÞ2,
where γ0 and γ1 are the damping rates to the environment
and the detector, and γ ¼ γ0 þ γ1. This is generically the
result obtained when a single harmonic oscillator interacts
with baths at different temperatures [81,82]. The energy in
the cavity mode corresponds to an effective temperature of
Teff ¼ γ0T0þγ1Tc

γ0þγ1
, and there is an energy flux ðTeff − TcÞγ1 ¼

P01 to the detector port, as we would expect from a naive
analysis.
Assuming a high-gain amplifier, the noise PSD at the

amplifier output also has contributions from the amplifier’s
output noise, and from the amplification of vacuum
fluctuations at the input. We can refer the amplifier’s
output fluctuations to its input by dividing by the power
gain G,

Sn ≡ Sout
G

≃ Sin þ Svac þ Samp: ðB2Þ

For a phase-insensitive amplifier, if the input state is
coherent, then Svac ¼ ω

2
. For a SQL-limited amplifier,

Samp ¼ ω
2
as well, so vacuum plus amplifier noise combine

to give “a single photon” of output noise, in the usual
phrasing [80]. Below, we will write Sa ≡ Svac þ Samp,
which for a phase-insensitive amplifier with coherent input
state is ≥ω.
The PSD of absorbed power from the axion field can be

written as

FIG. 6. Signal diagram of a cavity readout system using an
amplifier isolated by a circulator, as discussed in Appendix B.
The T0 load represents the thermal noise from the environment
(i.e., the cavity walls etc), while the Tc load is a cold load that
absorbs the amplifier’s back-action noise.
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Sabs ≃ Sjj
P0

jj0j2
cos2 αðωÞ≡ S0 cos2 αðωÞ ðB3Þ

where jðtÞ ¼ _aðtÞB0ðtÞVb (in the notation of Sec. II),
and P0 is the power that would be absorbed on-
resonance from a monochromatic jðtÞ ¼ j0 cos2ðωtÞ
oscillation. For a top-hat j spectrum of bandwidth
δωa, we would have Sjj=jj0j2 ¼ 2π=δωa. A fraction
ξ

1þξ of this will enter the detector port. Consequently,
the ratio of signal to noise PSDs, referred to the
amplifier input, is

Ssig
Sn

≃
ξ

1þξ cos
2 αS0

4ξ
ð1þξÞ2 cos

2 αðST0
− STc

Þ þ STc
þ Sa

: ðB4Þ

From the Dicke radiometer formula [83], the SNR
contribution from a small frequency bin, of bandwidth

δν, is SNR ≃ Ssig
Sn

ffiffiffiffiffiffiffiffi
t1δν

p
, where t1 is the integration time.

The contributions from different frequency bins add in
quadrature, so assuming that the integration time is
long enough to resolve the spectral features of Ssig and
Sn, we have

SNR2 ≃ t1

Z
dν

�
Ssig
Sn

�
2

ðB5Þ

At this point, the obvious question is what value of ξ we
should select to maximize the total SNR, in different
circumstances. To answer this, it is helpful to extract the
ξ dependence from P0 and cos2 α; this gives

Ssig
Sn

≃
Sjj
jj0j2

ξP1

4ξðST0
− STc

Þ þ ðSTc
þ SaÞðð1þ ξÞ2 þ 4Q2

1ð ωω1
− 1Þ2Þ ðB6Þ

whereQ1 is the unloaded quality factor, and P1 is the power
that would be absorbed on-resonance in the unloaded case
(cf. Eq. (6) with Ql ¼ Q1). Plugging this into Eq. (B5)
reproduces the form of Eq. (167) in [41].
If Sjj is even narrower than the unloaded bandwidth of

the signal mode, then to maximize sensitivity at the axion
mass we are tuned to, we simply want to maximize Ssig=Sn
on-resonance, which is achieved at ξ ¼ 1 (i.e., the usual
critical coupling [80]). If, on the other hand, Sjj is wide
compared to the unloaded signal mode bandwidth, then we
want to maximize

SNR2 ≃ t1

�
SjjP1

jj0j2
����
ω1

�
2
Z

dν

�
ξ

4ξðST0
− STc

Þ þ…

�
2

ðB7Þ

Wewrite ξopt for the value of ξ that maximizes this integral.
For example, if Tc ¼ T0, then ξopt ¼ 2. Another case of
physical interest is if T0 ≫ Tc; Sa. For an SRF cavity, while
cooling the cavity walls to below 1 K would be prohibi-
tively difficult, realising a cold load at significantly lower
temperatures, and an amplifier noise temperature ≪1 K, is

feasible. In this case, ξopt ≃
2ST0

STcþSa
. The best achievable

parameters for a SQL-limited amplifier are Tc ¼ 0,
Sa ¼ ω, in which case ξopt ≃ 2T0=ω1. This is the optimum
overcoupling found in [41].
In the T0 ≫ Tc; Sa case, with ξ ¼ ξopt, the loaded quality

factor of the signal mode is Ql ≃Q1
ω1

2T0
. The equivalent

quality factor for the expression in Eq. (B6) is
Qs ≃Ql=

ffiffiffi
3

p
, labeled the “sensitivity quality factor” in

[41]. Physically, overcoupling by ξopt reduces the loaded
quality factor of the mode, but also dilutes the thermal noise
reaching the amplifier down to Sin ≃

ω1

2
cos2 α. Increasing ξ

further results in Sa dominating over Sin, so we reduce the
quality factor for little gain.
In [41], the improvement in scan-averaged sensitivity

coming from using ξ ¼ ξopt ≃ 2T0=ω1 versus ξ ≃ 1 is
phrased as gaining sensitivity “outside of the resonator
bandwidth.” For scattering-type setups, this applies to the
unloaded resonator bandwidth ∼ω1=Q1. At ξ ¼ ξopt, the
loaded resonator bandwidth (i.e., the physical bandwidth of
mode fluctuations in the experiment) is, to within a Oð1Þ
factor, the same as the sensitivity bandwidth, as per the
previous paragraph. The improved scan-averaged sensitiv-
ity comes from this bandwidth being parametrically larger
than the unloaded bandwidth, but the on-resonance SNR
being only a Oð1Þ factor smaller. Overcoupling the signal
mode reduces the on-resonance signal power, but reduces
the thermal fluctuations in the signal mode by parametri-
cally the same amount, while increasing the signal mode’s
loaded bandwidth.
This situation can be contrasted with the case of an

amplifier used in “op-amp” mode [80], which is discussed
in [13,41] for the case of flux-to-voltage amplifiers. In the
limit of very large amplifier power gain, the power lost
from the mode to the amplifier necessarily vanishes, and
the effect on the signal mode’s quality factor is very small.
As discussed in [13,41], one can obtain an analogous
increase in scan-averaged sensitivity by overcoupling to the
amplifier, by the same ξopt ≃ 2T0=ω1 factor relative to the
“critical” coupling that optimizes on-resonance sensitivity.
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In this case, however, the sensitivity bandwidth is ∼ξopt
times larger than the physical resonator bandwidth, and the
mode’s fluctuations are larger than those expected from the
temperature T0.
Returning to the scattering case, if we take ξ ¼ ξopt, then

for an axion signal with bandwidth δωa ≫ ω1=Ql, Eq. (B7)
tells us that the SNR from a single tuned configuration,
with frequency splitting within the axion bandwidth, is

SNR2 ≃ 0.7
ðP1=Q1Þ2t1Q2

aQ1ω1

T0Tnm2
a

ðB8Þ

where Tn ≡ STc
þ Sa. P1 is evaluated for a monochromatic

j oscillation with a0 set by the dark matter density, and B0

set by the RMS magnetic field in the drive mode.
More generally, unless the axion mass is small compared

to the sensitivity bandwidth, covering an Oð1Þ range in
axion masses requires running the experiment in multiple
different configuration—for up-conversion, with multiple
different frequency splittings between the drive and signal
modes. A scan strategy specifies which frequency splittings
to choose, and how long to stay in each of them. In order to
cover the axion mass range equally, the frequency splittings
should be spaced equally,4 at frequencies differing by ≲νb,
where νb ¼ maxðδνa; ν1=QsÞ.
If the SNR formulas derived above apply, then any

such scan strategy will give approximately the same SNR.

The simplest example we can consider is to take Sjj to be a
top-hat of width δωa, and take the different frequency
splittings to be spaced equally at δωa, such that only a
single configuration responds strongly at each possible
axion mass. Then, the time spent in each configuration is
t1 ≃ ttot

δωa
Δma

, and the SNR from the responding configura-
tion is

SNR2 ≃ 0.7
ðP1=Q1Þ2ttotQaQ1ω1

T0TnmaΔma
: ðB9Þ

For a denser set of frequency splittings, multiple configu-
rations will have significant response at each axion mass.
Since the absorbed power, averaged over axion masses, is
given by Eq. (8), any sufficiently dense set of ∼ equal
spacings will give ∼ the same signal power at each axion
mass, so the SNR will still be given by Eq. (B9).
However, once the time spent covering each frequency

becomes too small, these SNR formulas become invalid. In
the case of a single configuration, once t1 ≲Ql=ν1, we
cannot resolve the signal mode bandwidth, and the axion
signal does not have time to fully ring up the mode.
We can gain some insight into this behavior by rewriting

Eq. (B9) in terms of the average energy absorbed over the
lifetime of the experiment, W̄ ≃ P̄ttot. This gives

SNR2 ≃ 0.2
Q1

t1T0Tn

W̄2

ω1

≃ 0.4
Ql

ω1t1

W̄2

T2
n
: ðB10Þ

As discussed in [9], SNR=W̄ stops growing for Ql ≳ t1ν1,
attaining a maximum value of SNR ≃ 0.2W̄=Tn.
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