PHYSICAL REVIEW D 102, 015001 (2020)

Custodial symmetry violation in the Georgi-Machacek model
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We study the effects of custodial symmetry violation in the Georgi-Machacek (GM) model. The GM
model adds isospin-triplet scalars to the Standard Model in a way that preserves custodial symmetry at tree
level; however, this custodial symmetry has long been known to be violated at the one-loop level by
hypercharge interactions. We consider the custodial-symmetric GM model to arise at some high scale as a
result of an unspecified ultraviolet completion and quantify the custodial symmetry violation induced as the
model is run down to the weak scale. The measured value of the electroweak p parameter (along with
perturbative unitarity) lets us constrain the scale of the ultraviolet completion to lie below tens to hundreds
of tera-electron volts (TeV) over almost all of the parameter space. Subject to this constraint, we quantify
the size of other custodial-symmetry-violating effects at the weak scale, including custodial symmetry
violation in the couplings of the 125 GeV Higgs boson to W and Z boson pairs and mixings and mass
splittings among the additional Higgs bosons in the theory. We find that these effects are small enough that
they are unlikely to be probed by the Large Hadron Collider (LHC), but may be detectable at a future et e~
collider. We note that the upper bound on the scale of the ultraviolet completion is large enough that virtual
effects from the ultraviolet completion will also be undetectable at the LHC. This means that the GM model

is a valid effective theory for LHC physics.

DOI: 10.1103/PhysRevD.102.015001

I. INTRODUCTION

With the discovery of a Standard Model (SM)-like
Higgs boson at the CERN Large Hadron Collider (LHC)
in 2012 [1], we have the first direct access to the dynamics
of electroweak symmetry breaking. The simplest imple-
mentation of this dynamics is through a single complex
scalar field transforming as a doublet under the weak
SU(2), gauge symmetry; this is consistent with experi-
mental data to date [2].

While at least one SU(2); doublet is required to generate
the masses of the SM fermions in a gauge-invariant way,
the masses of the W and Z bosons can in principle also
receive contributions from scalars in larger representations
of SU(2),. Such an extension to the Higgs sector is
severely constrained by measurements of the p parameter
[3], defined as the ratio of the strengths of the neutral
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and charged weak currents in the low-energy limit
and measured to very high precision via the global
electroweak fit [4]. Indeed, unless the vacuum expectation
values (VEVs) of the larger representations are negligibly
small, the only viable models are those that preserve p = 1
at tree level:

(i) models with extra SU(2), doublet(s) and/or

singlet(s);

(ii) a model with an extra SU(2), septet with appro-

priately chosen hypercharge [5,6]; and

(iii) the Georgi-Machacek (GM) model [7,8] and its

generalizations to larger SU(2), representations
[9-13].

In this paper we consider the GM model. In addition to
the usual SU(2), doublet, this model contains two SU(2), -
triplet scalar fields, arranged in such a way that the scalar
potential is invariant under a global SU(2), x SU(2),
symmetry; upon electroweak symmetry breaking, this
global symmetry breaks down to its diagonal subgroup
[known as the custodial SU(2)] and p =1 is thereby
preserved. The GM model gives rise to a rich and exotic
phenomenology, including singly and doubly charged
scalars that couple to vector boson pairs at tree level and
the possibility that the SM-like Higgs boson’s couplings to
WW and ZZ could be larger than in the SM. It has been used
as a benchmark by the LHC experiments for interpreting
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searches for singly charged Higgs bosons decaying into
vector boson pairs [14,15].

However, it has been known since the early 1990s
that the custodial symmetry in the GM model holds
only at tree level [16]: the global SU(2), symmetry is
explicitly violated by the gauging of hypercharge, which
leads to an uncontrolled violation of the custodial sym-
metry at one loop. The most obvious manifestation of this
is that the standard calculation of the Peskin-Takeuchi T
parameter [17] yields an infinite result; this infinity is
to be canceled by a counterterm that is absent in the
SU(2), x SU(2)g-invariant potential of the GM model but
appears in the full gauge-invariant but custodial-symmetry-
violating theory [16].

A further manifestation, most relevant for our
purposes, is that it is not possible to compute a consistent
set of renormalization group equations (RGEs) for the
Lagrangian parameters of the custodial-symmetric GM
model unless one sets the hypercharge gauge coupling
to zero [18]. This implies that it is possible to choose the
Lagrangian parameters to preserve the custodial symmetry,
but only at one energy scale. To run away from that special
scale, one must use the RGEs computed in the full gauge-
invariant but custodial-symmetry-violating potential; the
hypercharge contribution then causes custodial symmetry
violation to build up as one runs. Reference [18] studied
this effect by assuming that the theory is custodial
symmetric at the weak scale and quantifying the amount
of custodial symmetry violation that develops as one runs
to higher scales.

In this paper we take a different approach. We imagine
that the custodial-symmetric GM model arises at some high
scale, for example as a theory of composite scalars with an
accidental global SU(2); x SU(2), symmetry in the scalar
sector. (Such models have been constructed in the context
of little Higgs theories in Refs. [19,20].) Below the
compositeness scale, custodial symmetry violation accu-
mulates through the running of the Lagrangian parameters
down to the weak scale. Weak-scale measurements of the p
parameter can then be used to constrain how high the
custodial-symmetric scale can be. Subject to this constraint,
we can also quantify the physical effects of custodial
symmetry violation in Higgs-sector observables, such as
the ratio of the SM-like Higgs boson couplings to WW and
ZZ and custodial-violating mixings and mass splittings
among the additional scalars in the GM model. We will
show that the custodial-symmetric scale can be as high as
tens to hundreds of TeV, and that the effects of custodial
symmetry violation at the weak scale are typically too small
to be detected at the LHC. The custodial-violation-induced
mass splittings may, however, be detectable at a future
e" e collider. The fermiophobic scalars of the GM model
acquire small fermion couplings due to custodial-violation-
induced mixing, but the resulting branching ratios remain
subdominant even for scalar masses below about 160 GeV,

where fermionic decays could compete against the loop-
induced diphoton decays that otherwise put strong exper-
imental constraints on such light scalars.

Because our main objective is to quantify the custodial
symmetry violation allowed in the model given the stringent
experimental constraints on the p parameter, we find it
sufficient to work in the leading log approximation—i.e., we
use one-loop RGEs and tree-level matching. This is justified
by the tiny size of the custodial-violating effects that we find
over most of the parameter space. Larger custodial-violating
effects arise when scalar masses in the custodial-symmetric
theory are tuned to be nearly degenerate, so that custodial
symmetry violation induces resonant mixing among mass
eigenstates. We handle these situations by exactly diagonal-
izing the resulting mass matrices; nevertheless, in the small
regions of parameter space around these resonances our
perturbative calculation remains unstable.

This paper is organized as follows. In Sec. II we review
the GM model with exact custodial symmetry in order to set
our notation. In Sec. Il we write down the most general
gauge invariant scalar potential for the custodial-violating
theory with the same field content. In Sec. IV we compute
the masses and mixing angles of the physical scalars in the
custodial-violating theory and derive formulas for the most
interesting custodial-violating couplings. In Sec. V we
describe our calculational procedure and give our numeri-
cal results, using full scans of the parameter space as well as
a convenient benchmark plane for ease of interpretation. In
Sec. VI we conclude. In Appendix A we collect the one-
loop RGEs for the custodial-violating theory and give a
translation between our notation and that of Ref. [18]. In
Appendix B we collect the expressions for triple scalar
couplings in the custodial-violating theory. Finally in
Appendix C we give some details of our calculation method
for the RGEs.

II. GEORGI-MACHACEK MODEL WITH EXACT
CUSTODIAL SYMMETRY

The scalar sector of the GM model [7,8] consists of the
usual complex doublet (¢, ¢°) with hypercharge' ¥ = 1,
a real triplet (&1,89,67) with ¥ =0, and a complex
triplet (y*+, ., ¥°) with Y = 2. The doublet is responsible
for the fermion masses as in the SM. To make the global
SU(2); x SU(2), symmetry explicit, we write the doublet
in the form of a bidoublet ® and combine the triplets to
form a bitriplet X:

0% +
0 gt X &
¢=< ¢+* ¢0), X=|—" & . ()
AN e —gte 0

'"We use Q = T3 + Y/2.
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The VEVs are defined by (®) = %IZXZ and (X) = v, 13,3,

where [ is the appropriate identity matrix and the W and Z
boson masses constrain

1
V2Gp

2:

vy +8vy = ~ (246 GeV)?, (2)

where G is the Fermi constant.

Upon electroweak symmetry breaking, the global
SU(2), x SU(2), symmetry breaks down to the diagonal
subgroup, which is the custodial SU(2) symmetry.

The most general gauge-invariant scalar potential involv-
ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [21], by2

V(®.X) = ”22T r(D D) —|—%%Tr(XTX) + 2, [Tr(@F ®))2
+ 2, Tr(@H0)Tr(XTX) + A, Tr(X XX 1X)
24 [Tr(XTX)]2 = A5 Tr (@ 79Dt ) Tr(X T 17X 1)
— M, Tr(® @) (UXUT),,
—M,Tr(XTt2X ") (UXUT) . (3)

Here the SU(2) generators for the doublet representation
are ¢ =o0“/2 with ¢ being the Pauli matrices, the
generators for the triplet representation are

1010 10—i0
tft=—110 1|, A=—|i 0 =i,
2 2
f010 V2 i 0
1 0 0
=10 0 0 (4)
0 0

and the matrix U, which rotates X into the Cartesian basis,
is given by [22]

1 1
- 0
U=1-% 0 - )
0 1 0

*A translation table to other parametrizations in the literature
has been given in the appendix of Ref. [21].

The minimization conditions for the scalar potential read

ov 3
0 = a—% = ’U¢ [ﬂ% +4ﬂ.10§5 + 3(2/12 —/15)1))2{ _EMIUZ] s
ov
0 = 8_1]){ = 3/!%1))( + 3(2/12 - /15)1);1))(
3
12(/13 + 3].4)’[1)3( - ZMIU% - 18M21J§ (6)

The physical fields can be organized by their trans-
formation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and

triplet states are given by
1
0,r 0,r
e

0.i 0,i
=Sy +epxts

(7)

(xt=¢&%)
SV R
(xt+&)
BV

HIT=yt*, H{=

H;—:_SH¢++CH Hg

where the VEVs are parametrized by

v . 2\/51))(

cHEcosé’H:—'ﬁ, sy =sinfy =
v

(8)

v

and we have decomposed the neutral fields into real and
imaginary parts according to

v ¢O.r + i¢0‘i )(O,r + l')(O,i
o, 2,7 T¥ 0>y, +5—ZF—,
Yot S AN
50 N U)( _~_§0,r' (9)

The masses within each custodial multiplet are degenerate
at tree level and can be wr1tten (after eliminating y3 and /43
in favor of the VEVs) as’

M,
2 _
m5 4UZ1J¢+12M21))(+ 150¢+8/13U)(,
M

A M, s
8 8v =)0
m} = 41)){( 5+ 8v7) + 2(U¢+ 2) = <4”z+2)v

(11)

The two custodial SU(2)-singlet mass eigenstates are
given by

*Note that the ratio M,/ v, is finite in the limit v, — 0,

M, 4
M Zae
4

Uy

(2/’{2 — /15)1}4, + 4(},3 + 3/14) 6M21.) ] (10)

which follows from the minimization condition 9V /v, = 0.
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h=cosa¢® —sinaHY, H=sina¢’ +cosaHY, (12)

HY = \/%50” + \/g;(o (13)

Their mixing angle and masses are given by

where

2 2 2
. - M12 _M22_M11
sm2a_ﬁ, COSZa—ﬁ,
my —mj, my —mj,

1
=5 | MR+ MG\ (ME =AM 4(ME? |
(14)

where we choose m; < my, and

M%l = 8&]7};,
V3
Mi, = 5 Vy[=My + 422, = As)v, ],

2

L 2
M22 = 4y - 6M2/UX + 8(13 + 32«4)7.})(. (15)
X

We will later apply constraints on the parameters
of the custodial-symmetric scalar potential from perturba-
tive unitarity of two-to-two scalar scattering amplitudes
and bounded-from-belowness of the scalar potential.
Perturbative unitarity requires that the 4; obey the following
relations [21,22]:

V(62 =T = 1144 4 3673 + (64, + Tds + 1144] < 4,

V(@ Ay = 2042 4 2+ 2y — 15 + 244 < 4.

|2ﬂ3 =+ ﬂ4| <7,
Mz —15| < 2r.
(16)

Requiring that the scalar potential is bounded from below
imposes the following constraints [21]:

A1 >0,

—%/13 for /13 > 0,
/14 >
—/13 for /13 < O,

35 =24/ 4 (%/13 +44)

2> 9 0, (0)As—21/2(CA3 +44) fords>0 and 3 <O,
a)_(C)/IS—Zwll(C/h +l4) fOI‘/IS <0,

forAs>0 and 43 >0,

(17)

where
oty =g0-n= L [a-n(3+5)] "
B= %(cj—%)e[o,l], (18)

and Eq. (17) must be satisfied for all values of ¢ € [, 1].

III. CUSTODIAL VIOLATION AND THE MOST
GENERAL GAUGE-INVARIANT SCALAR
POTENTIAL

To allow for custodial symmetry violation, we rewrite
the scalar potential in Eq. (3) in the most general SU(2), x
U(1), gauge invariant form, following Ref. [16]. We define
the scalar fields in SU(2), vector notation as

n P &t
¢=<¢0>, =1 | &= & |. (19
2 =&t

with VEVs given by [compare Eq. (9)]

b3 0,r + i¢0,i )(O,r + l')(O,i
0 e d i —I— 7¢ N 0 - i} + bl
YontT s N
& - e+ . (20)

We use tildes to denote the VEVs, parameters, and mass
eigenstates of the custodial-violating theory. The VEVs of
these three fields will be determined by G according to
[compare Eq. (2)]

1
Uy 440y + A0 =17 = =’ 21
¢ X I3 \/iGF ( )
and will be constrained by the p parameter,
0+ AT + 40 »?
P = ~2 ~2 2 VR VAN (22)
vy, + 87 v+ 4(v, — 73)

For convenience, we define the conjugate multiplets,

S Ot — 0 1 . P
r=cd _<—1 0>¢ _<—¢+*)’

0 0 1 7%
7=Cyr=[0 -1 0|y =" (23
1 0 O VAR

We also define the following matrix forms of the triplet
fields,
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)(Jr/\/i _)(++ >
Ay = V20U ;= ,
2 \/_T aiXi ( )(O —)(+/\/§
&/V2 gt )
Ay = V20U ;& = ,
0 fT mgl ( _§+* _50/\/5
=& &0
Do=—1Uy&=| & 0 & . (24)
0 ¢ &

The most general gauge invariant scalar potential can then be written as

~2
V(p.x. &) =B3d"d + iy x + %cf*é + (@ )+ |7 x* + A3 (d" ) (r tx) + [As(@T19) (xT1€) + Hoc ]

+ 45T ') + A6 (DT ) (ETE) + A7 (" x)? + A (ETE)? + Aol x TE1> + 1o (X Tx) (£7€)

1, - ~ M _ Lo
—5 (7147 80 + He ] + \T;WAOd) — 6,y Agy. (25)
~ ~ /72 — ﬂZ
Note that 4, and M| are complex in general, while the 2 z
rest of the parameters are real. We have adopted /7/32 :/l%,
the same notation as in Eq. (3.2) of Ref. [16] for 2 =2
the coefficients of the quartic terms, and we have added ~3 3
the trilinear terms that were eliminated in Ref. [16] Ay =44,
by the imposition of a Z, symmetry. This scalar S
. . ~ 12 - 2/137
potential has also been written down (for real 1, and -
M’l) in Ref. [18]; we give a translation table to their A3 = =245,
notation in Appendix A. . Ju = —V22s,
We note that the last term in Eq. (25) can also be -
written as As = 44y,
16 — 2/12,
6l A 6l ye, 0 7iE (26) Ay = 2+ 4
— 1 = — €axi€Ere, ~
2 AoX 2 Uk)(l ])(k /18 223 +ﬂ4,
29 == 4/13,
where €;; is the totally antisymmetric tensor with dio = 44,
€123 =+1. -
In the custodially symmetric limit, the Lagrangian My =M,,
parameters in the gauge-invariant scalar potential in M, =M,,
Eq. (25) reduce to those in the custodially symmetric -
M, =M,, (27)

potential in Eq. (3) according to
|

where the relations among the quadratic and quartic couplings are in agreement with Ref. [16].
Replacing the fields with their VEVs and assuming CP conservation, the most general scalar potential becomes

~2 72 y) §) i ) A < < ~
V(vg. v, 0g) = %1}5) + 2T +%v§ + TS +74§a§,a,(a§ + DT S T+ Ay + AT+ o}
My, M, L
—711)551))( —Tvévf — 6M, 720, (28)

Minimizing this potential yields three equations:
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v [, <, A
0:8—%:1]45 ﬂ%—i-/hl);} 2 )(+\/_/14U 1}5
+/1517§+/1617§—M’1171—71175 : (29)
ov y pi - .
0= o = 2, + 3355)@ + 7‘5@;@5 + 5030, + 47
X
~ M _
+ 2107, 0% — 71 i3, — 12,7, 7, (30)
OV A 5
0 _8—176 /"%1}5—’_751}551};( +ﬂ.61)$51}§+4/187)2
M
+2ﬂ|01f 1);; 4 6M2U (31)

When the SU(2); x SU(2), symmetry is imposed, these
conditions reduce to those in Eq. (6).

The one-loop RGEs for the parameters of the most
general gauge invariant potential are given in Appendix A
for completeness.

IV. PHYSICAL MASSES AND MIXING IN THE
CUSTODIAL SYMMETRY VIOLATING THEORY

Isolating all terms quadratic in scalar fields from the
potential and using Egs. (29)—(31) to eliminate i3, fi’7, and
ji3 in favor of the VEVs yields the following mass matrices
for the physical scalars.

There is only one doubly charged scalar, i = ;" =
H;*, and its mass is given by

13’U¢ 141145’[15 M/
—I— 2+ 12M, 0 32
D) 2\/51} (/; 2Y¢- ( )

There are two CP-odd neutral scalars (one of which
becomes the neutral Goldstone boson), whose mass-
squared matrix in the basis (y*/, ¢*%) is given by

H++ - 4'/12

My M
2 _ 1, l,
Mi - <M2 M2 )’ (33)
i12 i22
where
30: M
My =~ S (/)f 41%’
2\/51)1 Uy
M2y, = =2V20,0, 0, + 2M' 3,
M/
Mz 12 = ﬂ4U¢U§ - quj (34)

Note that the mass-squared matrix for the neutral
imaginary states can be written as

M = [@_ Al ] A
b4 2v20, )\ By, 87

Xt

This matrix is easily diagonalized, yielding exact mass
eigenstates

G() _ 1~}¢¢0.i 4 \/gi)()(o,i I:I() _

) 3
[~2 ~2
U¢+8UX

—\/gifxqﬁo'i 4 1~j¢)(0'i

\/ Ty + 87y

(36)

where G is the (massless) neutral Goldstone boson and the
mass of /Y is given by

m

My, B

2 1 4% (2 ~2

20 = |—— 807). 37
HY [4@1 2\/5@] (7 + 82;) (37)
There are three singly charged scalars (one of which

becomes the charged Goldstone boson), whose mass-
squared matrix in the basis (y ™, &, ¢1) is given by

My, M+ n Ml
Mi: M%—,IZ M+22 Mi23 ’ (38)
M2+,13 M o M+33
where
302 Ao ! _
— b _TA7p7E
M2 - 2, + Ao 2+4 v, + 6M, T,
714172 M 72
M2 ¢ Z+/1 — 2 4+ 6M, X,
+22 = \ﬁfz 90U 4 ) 27 :

M1’33 - —;135)% - \/5/147))(55 + M11~}§ + Mll T)){,

2 )«4’[] ~ o
M+’12 2\/_ lg’l)ll)é—6M2U s
13’U¢’U M’
M ="5""75"
dayd, M,
M+23— \/EX—TU(/,. (39)

We first transform this mass-squared matrix into the basis
of custodial-symmetric states (H{, Hy,G") using

M? =R, M2RT, (40)

where the orthogonal matrix R, is defined according to
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H? Vel
Hf | =R, | & |. (41)
G+ or
with
1 1
s w0
R.=|% & —sul. (42)

Because the custodial-symmetry-violating effects will be
small, we can diagonalize the mass-squared matrix M2
using first-order perturbation theory over most of the
parameter space, as detailed below. This gives some
analytic insight into the structure of the custodial-
symmetry-violating effects. Of course, the perturbative
diagonalization only works well when the diagonal ele-
ments of the mass-squared matrix are not too degenerate;
this condition is satisfied over the parameter space of the
H5plane benchmark, but is violated in some regions of
parameter space in our general scans. For this reason, in
Sec. V we will use the first-order perturbative formulas
below in our scans of the H5plane benchmark, but exact
numerical diagonalization for our general scans. We have
checked numerically that the perturbative diagonalization is
a very good approximation where we use it.

To first order in the custodial violation, the masses of the
singly charged physical mass eigenstates 7 and A7 are
just given by the diagonal elements of the mass-squared
matrix,

M+ 11 MJr 22° (43)

The compositions of the mass eigenstates are given to first
order using

S
H,I—H + 5 nm 5 H,, (44)
LM, — M,

where M? is the mass-squared matrix in the appropriate
basis. Applying this to the singly charged states and using
the fact that M2 ;; = 0, we get

i M/+212 M2 3
H;:H;+M+11 /\/l+22H3++/\/l+uGJr
:)(+—§++ {C M+ 13_SH M+ 12 ]¢+
V2 M+11 M+11 M+22
n {SH/\/IIJ%IS+ cn ME 1 })( ‘HH’ (45)
M+11 ME L -MEp] V2

N M/z . ./\/1/223
H;*:ngjL—JrHJr 23 G, (46)
M+22 M+11 ’ M+11

_ M/z M/Z
Gt=G*+ 0 Dl 4 MHS Hf. (47)
+.11 +.22

We highlight the composition of ng in particular because
the custodial symmetry violation results in an admixture of
¢ into this state. This allows 1:15+ to couple to fermions,
which does not occur in the custodial-symmetric GM
model. Indeed, we can write the Feynman rule for the
HYud vertex as

~ 2 i
Aiud: i% Viaky® (m,Py —mgPr).  (48)

where the coupling to fermions induced by the custodial
symmetry violation is, to first order,

2
H+ M+]g M+12

M+ 22

(49)

For comparison, in the custodial-symmetric GM model we

can write the analogous coupling of HJ to fermion pairs
+

H
as Kf3 = —tanfy.

Finally, there are three CP-even neutral scalars, whose
mass-squared matrix in the basis (y*", £, ¢%") is given by

M%n M%.12 Mr13
M; = Mr 12 M%.zz Mr23 ) (50)
Mr 13 Mz,23 Mr 33
where
T30 i,
M%,ll == = +4A'75;2(+T7735»
2\/51}){ 41})(

W i 2
4¢l+8/18 1”2+6M2~,

M2, = —
r22 = \/_’U§ 4 ¢ B
M%,}fﬁ = 2/11U¢,
Mr 2= T + 2\/51101}){1&3 - 6\/§M2’U){7
1371 1] M/I/D¢

M%,lﬁi + 141)451)5 + \/_/1571[137)

V2

MG 2y = V2404, + 2060y =

A

M7,

(51)

We first transform this mass-squared matrix into the basis
of custodial-symmetric states (H2, HY, ¢*") using
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M? = R, M2RT, (52)

where the orthogonal matrix R, is defined according to

H e
H(l), =R, [ & |. (53)
¢0.r ¢O,r
with
SV
R, = 54
RV >y
0 0 1

To first order in the custodial symmetry violation, the mass
of Hg is given by

Mrll (55)

It is most straightforward to find the masses of 7 and H by
diagonalizing the remaining 2 x 2 block of M? as follows:

2

[M/233 + My

:F\/ r33

The mixing angle that achieves this diagonalization is
given by

r22>2 +4(M/r2,23)2 (56)

ha = Ca¢0'r - SaH(l)/, H& = S&¢O'r + CaHO/, (58)
and we have defined c; = cosa, s; = sina. (Note that
these are not yet the mass eigenstates: there is still a small
mixing with H(S) to be dealt with below.) We introduce a

second orthogonal rotation matrix R;, defined according to

Hj H
H; | =Rz| HY |, (59)
hg PO
with
1 0 0
Ra — 0 Ca S& (60)
0 —-s5z cz

The mass-squared matrix in the basis (Hg, Hg, hy) is then
given by

"2 "2 "2
Mr.ll Mr,12 Mr,13
n __ 2 "2 "2
M2 = RMPRL = | M, M2, 0 (61)
2 2
Mr,13 0 Mr,33

Note that M3, = M'?|. The masses of h and H can
then be written (to first order in the custodial symmetry
violation) in terms of the diagonal elements of this
matrix as

n m]% - MIV/%S, = M:.l,222 (62)
. ~ Mr2'3 ~ Mr22 _Mr.3'3
$in2d = ———">, cos2a = 5 =,  (57) ) .
my —m; my, — m; We now use Eq. (44) to write the compositions of the
CP-even neutral mass eigenstates to first order in the
where the states are given in terms of & by custodial violation as
J
H() HO M;’IZIZ H, + M/r/213 h-
T TV S T A v
"2 "2
\/750 ro_ \/T 0.r N Mr,12 +cx Mr,13 ¢0‘,
)~ M M - M
M/r/212 /r/213 \/7 \/7
+ |c; : — 55 0.r 0.r 63
e v [ U ) s
M2 We highlight the composition of A2 in particular
H=H,+ ”2—’12”2 HY, (64)  because the custodial symmetry violation results in an
M2 = M admixture of ¢% into this state. This allows 172 to couple
M to fermions, which does not occur in the custodial-
h=hy+ ”2—”3//2 HY. (65)  symmetric GM model. The coupling of H? to ff, normal-
M5 = M ized to the corresponding coupling of the SM Higgs boson,
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TABLE 1.

Input parameters for the HS5plane benchmark scenario [23] in the custodial-symmetric GM model.

Fixed parameters

Variable parameters

Dependent parameters

Gr = 1.1663787 x 107 GeV~2

m, = 125 GeV
/13 = —01
Jy =02

ms € [200,3000] GeV
Sy S (0, l)

2y = 0.4ms/(1000 GeV)

My = 2sy(m? 4+ 1) /v
My =M,/6

is then given to first order in the custodial symmetry
violation by

- 2 "2
g _ L4 M5 iy M

a 12 2 a 2 m |-
cu | MG = M5, MG = M5

(66)

Finally, the mixing of a small amount of custodial-
fiveplet HY into the physical Higgs boson A, together with
U, # D¢, leads to a violation of custodial symmetry in the

couplings of & to WW and ZZ. This is parametrized in
terms of the physical observable

| E

By =3 (67)
where K’;’V and Ké are the couplings of 7 to WW and ZZ,
respectively, normalized to the corresponding couplings of
the SM Higgs boson. We can write this in terms of the
VEVs and the mixing with H? as follows:
s H)
. Ky + €exyy)
Hy, =B (68)
K, +ek,’
where the couplings of h; to W and Z boson pairs,
including the effects of 7, # 7, are given by

the couplings of H? to W and Z boson pairs are given by

_HY \/5455—217){ 1
Ky =A\|z——"~——=5p,
W 3 0w V3 H

_HO 249 2
Kz5 :_\/;TZE—%SH’ (70)

and the mixing of H? into & from Eq. (65) is

"
€= //QMMS mn o (71)
Mr,33 - Mr,ll

V. NUMERICAL RESULTS

A. Calculational procedure

In this paper, we imagine that the custodially symmetric
GM model emerges at some scale A as an effective theory

of some unspecified ultraviolet (UV) completion. For
example, the scalars in the GM model could be composites
and the custodial symmetry an accidental global symmetry
resulting from the particle content of the UV theory. The
running of the scalar potential parameters down to the weak
scale induces custodial symmetry violation. We can then
use the experimental constraint on the p parameter at the
weak scale to set an upper bound on the scale A. Subject to
this constraint, we can also predict the size of other
custodial symmetry violating effects such as mass splittings
among the members of the custodial fiveplet and triplet
scalars, mixing between scalars in different custodial-
symmetry representations (which, for example, can induce
fermionic decays of the otherwise fermiophobic Hj states),
and the value of the ratio Ay, = ky/k, of the 125 GeV
Higgs boson (predicted as Ay = 1 in custodial-symmetric
theories).

For concreteness, we start our analysis within the context
of the so-called H5plane benchmark, which is a two-
dimensional slice through the custodial-symmetric GM
model parameter space as defined in Table I at the weak
scale. This benchmark was introduced in Ref. [23] for
interpretation of LHC searches for H: and H:™*, and its
phenomenology was studied in some detail in Ref. [24].
The H5plane benchmark takes ms and sy as its two free
parameters: this will allow us to plot our results as contours
in the ms — sy plane. The benchmark is defined for m;
values of 200 GeV and higher. To test the generality of our
results in the HS5plane benchmark we then perform a
general parameter scan and compare the results to the
benchmark region. The parameter points are generated and
checked for theoretical consistency using the public code
GMCALC [25]. The input parameters used in the general
scan are given in Table II. We finally perform a second
dedicated parameter scan focusing on ms masses below
200 GeV, to cover the region in which the HS5plane
benchmark is not defined. A dedicated scan is needed in

TABLE II. Input parameters for the general scan in the
custodial-symmetric GM model.

Variable parameters

43 € [-(200 GeV)?,
(4200 GeV)?]

/12’ j'3’ /14’ j'5

Ml ’ M2

Fixed parameters

Gr = 1.1663787 x 107> GeV~2

my, = 125 GeV
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TABLE III. Input parameters for the dedicated low-ms scan in
the custodial-symmetric GM model.

Fixed parameters Variable parameters

Gp = 1.1663787 x 107 GeV~2 ms < 200 GeV
my, = 125 GeV sy € (0,1)
j'27 }'3’ ’14’ }'5
M, € [-1200 GeV,
1200 GeV]

this region because only a small fraction of scanned points
satisfy the theoretical constraints. The input parameters
used in this dedicated low-ms scan are given in Table III.
Results of this dedicated scan are collected in Sec. V F.

We perform the calculations as follows. We start by
specifying an input point in the custodial-symmetric GM
model at the weak scale. Because it is not possible to separate
the scale of the GM model states from the SM weak scale so
long as the triplets contribute to electroweak symmetry
breaking, for the purposes of renormalization group running
we will define the “weak scale” to be ms as defined in the
custodial-symmetric low-scale input parameter set. We
define the electroweak gauge couplings at the weak scale
in terms of the inputs Gp, My, and M,, and we take
ay,(Mz) = 0.118 to define the strong coupling at the weak
scale (we ignore the running of the strong coupling between
M 7 and ms; this is a small effect because the strong coupling
only enters in the running of the top Yukawa coupling). We
extract the value of the top Yukawa coupling using the
relation y, = v/2m,/ v, evaluated in terms of the custodial-
symmetric input parameters at the weak scale. For simplic-
ity, we set y, = y, = 0; their effects would be very small.

We then run the parameters of the custodial-symmetric
scalar potential up to a scale A using the RGEs in
Egs. (A1)~(A16) but with g; set to zero. We also run
the gauge couplings (including the actual value of g;) and
the top Yukawa coupling from ms to A using Egs. (A18)-
(A21). For the running we use fourth-order Runge-Kutta
with a small step size. The result of this is a custodial-
symmetric scalar potential at the scale A. At this stage we
can check whether any of the quartic scalar couplings has
grown large enough to violate perturbative unitarity (indi-
cating that we have almost run into a Landau pole). This
allows us to determine the maximum scale allowed by
perturbativity. We also check whether the potential has
become unbounded from below; this turns out not to
happen for any of our scan points in the H5plane bench-
mark or in the general parameter scans. Because the
potential is still custodial symmetric, we can use the
requirements for perturbative unitarity and boundedness
from below as derived for the custodial-symmetric theory
[21] as given at the end of Sec. II.

From the custodial-symmetric scalar potential at scale A,
we then run back down to the scale ms using the full RGEs

in Egs. (A1)-(A21) with g; # 0. The nonzero hypercharge
coupling induces custodial symmetry violation in the scalar
potential, causing violation of the custodial-symmetry
relations of Eq. (27) among the parameters of the most
general gauge invariant scalar potential. Having determined
the custodial violating parameters we can now solve the
minimization conditions in Egs. (29), (30), and (31) for the
custodial-violating VEVs %, 7,, and .. First we solve
Eq. (29) for T’?; in terms of the other VEVs and plug this into

Egs. (30) and (31), which we then solve numerically using
a two-dimensional Newton’s method. For the initial guess
we take v, = Uy = v,, where v, is the custodial-symmetric
triplet VEV in our original weak-scale input point.
However, this procedure suffers from a complication.
The definition of the original weak-scale input point uses
the measured m,;, and Gy as input parameters. These are
used to fix 4; and 43 in the weak-scale custodial-symmetric
theory. After running the parameters up to the scale A using
the custodial-symmetric RGEs (with ¢ set to zero) and then
running them back down to the weak scale with the full
custodial-violating RGEs, the new weak-scale calculations
of mj, and G7' = V2(73 + 47} + 492) yield numbers that
do not match the original input values. To address this, we
need to adjust the custodially symmetric weak-scale input
values for 4, and 43 (while keeping all the other weak-scale
inputs fixed) until we obtain the correct experimental
values of mj and G after implementing the custodial
symmetry violation. We do this by defining two functions,

£l = m%ak(,ll,ﬂ%) -m;® and f, = G$¢(4y,43) — G,

where 1; and 3 are the inputs at the weak scale, m$*
and G$¥° are calculated using the procedure described

above, and m;™ and G3"" are the desired (experimental)
values. The solution is the point at which f; = f, =0,
which we find iteratively using a two-dimensional
Newton’s method. This involves running the full RGE
machinery up and down multiple times and is the slowest
part of our numerical work. The same is generically true for
m, (which we use to fix the top quark Yukawa coupling y,
at the weak scale). In the H5plane benchmark, the change to
m, after running up and back down again is within the
current experimental error so we ignore this effect. In the
general parameter scans, however, the change in m, can be
larger, so in these scans we extend the iterative procedure to
include y,.

Having solved for the appropriate input values of 4; and
43, we now have a self-consistent set of scalar potential
input parameters at the weak scale (4 = ms), corresponding
to a custodial-symmetric theory at the high scale (1 = A),
which we then run back down to obtain the custodial-
violating theory at the weak scale (again ms) with the
correct predictions for m,, and Gr. We then calculate our
desired observables including the p parameter, the mass
splittings among the states of the would-be custodial

015001-10



CUSTODIAL SYMMETRY VIOLATION IN THE GEORGI- ... PHYS. REV. D 102, 015001 (2020)

1 T T T 1
09 F 0.9 |

08 F 08k
0.7 F
0.6 F

SH

05 f
0.4 F

03 f
0.2 F
0.1 F

©
)

A

®

0
1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
mg [GeV] mg [GeV]

600 800

FIG. 1. Constraints on the custodial-symmetric cutoff scale due to perturbativity of the model in the H5plane benchmark. Left: the
scale of the Landau pole, defined as the scale at which any of the 4; in the custodial-symmetric theory becomes larger than 10°. This
scale varies between 2.5 TeV and 2594.2 TeV over the benchmark considered. Right: the highest scale at which the perturbative unitarity
constraints of Eq. (16) in the custodial-symmetric theory remain satisfied. This scale varies between 346.8 GeV and 291.1 TeV over the

benchmark considered.

multiplets, and the effects of the mixing among the would-
be custodial eigenstates.

In the rest of this section we present our results as
contour plots in the H5plane benchmark in the ms — sy
plane and as scatter plots for the general scans. We
emphasize that ms and sy here are defined as part of
the weak-scale custodial-symmetric input parameter point,
and do not directly correspond to the physical masses,
couplings, or VEVs of the corresponding parameter point
in the weak-scale custodial-violating theory. However, as
we will show in what follows, the deviations of these
physical observables from the custodial-symmetric input
parameters are small enough that the differences are
unlikely to be observable at the LHC.

B. Constraints on the cutoff scale from
perturbativity and the p parameter

We begin by determining the maximum scale allowed for
the custodial-symmetric ultraviolet completion by running
the custodial-symmetric model up until we hit a Landau
pole. This is shown in the left panel of Fig. 1 in the H5plane
benchmark. The shaded region at large sy in these plots is
excluded by theoretical constraints on the custodial-
symmetric model. We define the Landau pole as the scale
at which any of the custodial-symmetric quartic couplings
A; become larger than 10%; the true divergence happens
extremely close to this scale. In the right panel of Fig. 1 we
also show the scale at which the quartic couplings in the
custodial-symmetric theory violate any of the conditions
for perturbative unitarity of two-to-two scattering ampli-
tudes given in Eq. (16). We can see that the scale at which
perturbative unitarity is violated is roughly an order of
magnitude below the scale of the Landau pole. Within the
H5plane benchmark, if the theory is to remain perturbative

the ultraviolet completion has to appear at 290 TeV or
below, and the maximum scale of the Landau pole in this
benchmark is around 2600 TeV. For ms 2 400 GeV, the
upper bound on sy from theory constraints in the H5plane
benchmark is due to the perturbative unitarity constraint;
therefore along this boundary the scale of perturbative
unitarity violation is essentially the same as ms, and the
Landau pole occurs around 10 TeV.

We also note that in the H5plane benchmark, the value of
A, atthe weak scale grows linearly with m5 (see Table I). This
is responsible for the decrease in the scale of perturbative
unitarity violation and the subsequent Landau pole with
increasing ms at small sy values, and is a quirk of the
H5plane benchmark.

In all the scans that follow, we take the scale of
perturbative unitarity violation to be an upper bound on
the scale of the custodial-symmetric theory, and we do not
run above this scale.

The maximum allowed scale of the custodial-symmetric
ultraviolet completion can also be constrained by the
stringent experimental limits on the p parameter, as defined
in Eq. (22). For this calculation (and those that follow), we
bring to bear the full computational machinery described in
Sec. VA, including adjusting the input values of 1, and 43
to obtain the correct measured values of G5 and my, in the
custodial-violating theory at the weak scale. We take the
current value of p from the 2016 Particle Data Group
electroweak fit [4],

p = 1.00037 £ 0.00023, (72)
and require that the value of p in the weak-scale custodial-
violating theory be within 2¢ of this value, i.e., between
Plower = 0.99991  and  pypper = 1.00083.  Because the
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FIG. 2. Values of and constraints due to the p parameter in the H5plane benchmark. Left: the highest scale at which the perturbative
unitarity constraints of Eq. (16) in the custodial-symmetric theory remain satisfied as in the right panel of Fig. 1 (solid lines), showing
also the highest allowed custodial-symmetric scale after requiring that the p parameter remain within +2¢ of its experimental value
[Eq. (72)] in the custodial-violating weak-scale theory (dashed lines). The range of scales allowed after imposing the p parameter
constraint remains the same as in Fig. 1. Right: the value of p in the weak-scale custodial-violating theory when the custodial-symmetric
scale is taken as large as possible subject to perturbative unitarity at the high scale and the experimental limits on p. The values of p range

between the £2¢ limits of 0.99991 and 1.00083.

deviation in the p parameter in the custodial-violating
weak-scale theory grows as the scale of the custodial-
symmetric ultraviolet completion increases, this constraint
puts a stronger upper bound on the scale of the ultraviolet
completion in part of the H5plane benchmark parameter
space, as shown in the left panel of Fig. 2, where we also
plot the upper bound from requiring perturbative unitarity.
The p parameter constraint is stronger than that from
perturbative unitarity for moderate sy values and ms below
about 850 GeV.

In the right panel of Fig. 2 we plot contours of p at the
weak scale in the custodial-violating theory after running

Te+11 ' ' ' ' General Scan

Benchmark
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1e+07 : . ' :

1e+06 X . * % s 5

utoff Scale A [GeV]
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FIG. 3.

down from the maximum scale allowed by the stronger
of the perturbative unitarity and p parameter constraints.
p > 1 in almost all of the HS5plane benchmark, except for a
tiny sliver of parameter space at low ms < 250 GeV and sy
below 0.4.

In Fig. 3 we show scatter plots comparing the perturba-
tive unitarity constraints in the H5plane benchmark to the
results of the general scan. In the left panel we plot the
maximum cutoff scale A versus ms while in the right panel
we plot it versus 5. For high values of m5 we find that the
H5plane benchmark gives cutoff scales lower than are
typical in the general scan. This is expected because the

Te+11 1 ' ' ' ' ‘General Scan
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The highest allowed custodial-symmetric cutoff scale due to perturbative unitarity of the quartic couplings in a general scan

(red) and in the H5plane benchmark (black), as a function of ms (left) and sy (right). The highest allowed cutoff scale in the general scan
ranges between 207 GeVand 1.6 x 10" GeV, though almost all points lie below ~2 x 10° GeV. (The point with the highest cutoff scale

is at the upper edge of the plots at ms = 681 GeV and sy ~0.12.)
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FIG. 4. The highest allowed custodial-symmetric cutoff scale imposing perturbative unitarity and the requirement that the weak-scale
p parameter lies within +2¢ of its measured value. Red points are for a general scan and black are for the H5plane benchmark. The
highest allowed cutoff scale in the general scan ranges between 205 GeV and 1.8 x 10° GeV, though almost all the points lie below
~2 x 10° GeV. (The point with the highest cutoff scale is at the upper edge of the plots at ms = 681 GeV and sy ~0.12.)

quartic coupling 4, grows with ms in the H5plane bench-
mark, putting those points closer to the limit from pertur-
bative unitarity. For lower ms values, the HS5plane
benchmark tends to give cutoff scales which are larger
than typical in the general scan. This is a statistical effect
caused by the fact that much of the parameter space in the
general scan tends to have one or more quartic coupling
already moderately large, while in the H5plane benchmark
specific (smaller) parameter values have been chosen by
hand. Similarly, points in the H5plane benchmark yield
higher maximum cutoff scales than typical points in the
general scan for all values of sg. The points in the general
scan with very high maximum cutoff scales cluster at low
sy below 0.2.

In Fig. 4 we again show scatter plots comparing the
maximum cutoff scale in the H5plane benchmark to the
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FIG. 5.

results of the general scan, now imposing the requirement
that the p parameter at the weak scale is within 2¢ of its
experimental value in addition to the perturbative unitarity
requirement. The p parameter constraint lowers the maxi-
mum allowed cutoff scale in both the H5plane benchmark
and the general scan, and brings the two distributions
closer to each other. At lower ms values the HS5plane
benchmark still permits somewhat atypically large cutoffs
but it gives mostly typical cutoff values for higher values of
sy- The general scan still admits higher cutoff scales than
the HS5plane benchmark (particularly at large ms), but the
highest cutoff scale in the general scan is now less than
an order of magnitude higher than that in the H5plane
benchmark.

In Fig. 5 we plot the value of the weak-scale p parameter
when the cutoff scale is at its maximum value allowed by
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The weak-scale p parameter evaluated with the cutoff scale at its maximum allowed value in a general scan (red) and in the

HS5plane benchmark (black). Both the general scan and the HS5plane benchmark populate the entire +£2¢ allowed region of

p € (0.99991, 1.00083).
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FIG. 6. Contours of Mf,’vz = }f‘jvz — 1 in the H5plane bench-
mark, taking the scale of the custodial-symmetric theory to be as
large as possible subject to perturbative unitarity and the p
parameter constraint. 6/1’;'4,2 varies between —5.1 x 1073 and
1.4 x 1073,

perturbative unitarity and the experimental constraints on p
in the H5plane benchmark and the general scan. We see
that, as in the H5plane benchmark, the general scan yields
p > 1 in the overwhelming majority of parameter space (as
mildly favored by experiment). Indeed, the region at very
low ms in the H5plane benchmark in which p < 1 is quite
atypical in the general scan. The general scan also tends to
give slightly larger values of p at higher ms, as one would
expect given the higher maximum cutoff scales (and hence
more custodial-symmetry-violation-inducing running) in
this mass range in the general scan.

C. Custodial violation in couplings

Custodial symmetry violation can modify the phenom-
enology of the GM model by changing the decay patterns
of the physical Higgs bosons. The most experimentally
interesting manifestations of this are in the ratio of the
couplings of the SM-like Higgs boson mass eigenstate / to
W boson and Z boson pairs, A%, = «f, /x% [Eq. (67)], and
in the couplings of the otherwise-fermiophobic mass
eigenstates I:I§C and I:Ig to fermion pairs induced by
custodial-violating mixing among the custodial-symmetry
eigenstates [Eqs. (49) and (66)]. In what follows we
maximize the custodial-violating effects by taking the scale
of the custodial-symmetric theory as high as possible,
subject to the constraints from perturbative unitarity and the
p parameter. In what follows, we focus on the H5plane
benchmark and its comparison to a general parameter scan.
We discuss the dedicated low-ms parameter scan in
Sec. VE. i

In Fig. 6 we plot the deviation of 1f,,, from its SM value
of 1 in the H5plane benchmark. The effect is tiny, reaching
at most half a percent in a small region of the H5plane

benchmark with ms <250 GeV and moderate values of
sg; for larger ms, the deviation is below two per mille.
This deviation is well below the sensitivity of the current

experimental measurement at the LHC, A%, = 0.88700
[2]. Tt is also below the expected sensitivity obtained by
combining the projections for the measurement precision
of the SM Higgs couplings xy and x, at the High-
Luminosity LHC (a few percent) and the proposed
International Linear ete™ Collider (ILC) (roughly half
a percent) as summarized in Ref. [26]. The proposed
Future Circular Collider (FCC-ee) could begin to reach
the required precision, with projected sensitivity for ky
and «; of 1.5 to 2 per mille [27].4~

In Fig. 7 we compare the value of A%, evaluated with the
maximum allowed cutoff scale in the HSplane benchmark
(black points) to the results of a general parameter scan (red
points). The range of deviations in the H5plane benchmark
is representative of that in the general scan, except for
ms ~ 200 GeV and moderate sy in which the HS5plane
benchmark probes a rather atypical region of parameter
space in which negative deviations of up to half a percent
are possible. In the general scan the deviation is typically
below 0.2%.

In Fig. 8 we plot the custodial-violation-induced cou-
pling and branching ratio of 1:1(5) to fermions in the H5plane

benchmark. The H? coupling to fermions K;-I(S) reaches a
magnitude of at most 0.04 in the HS5plane benchmark,
leading to fermion-induced (e.g., via gluon fusion) pro-
duction cross sections at most (0.04)> = 1.6 x 107> times
that of a SM Higgs boson of the same mass. Potentially
more interesting is the effect of this coupling on the A2
decays: as shown in the right panel of Fig. 8, the branching
ratio of 1:12 to fermions can reach almost half a percent in
the H5plane benchmark. For Flg masses above 350 GeV,
these fermionic decays are overwhelmingly into /7 pairs.

In Fig. 9 we compare these results to the range of K?g
accessible in the general parameter scan. The general scan
can yield significantly larger values of this custodial-
violation-induced coupling, reaching as high as +0.5
and populating both positive and negative values. The
maximum size of the coupling grows with sy. In contrast,
the HS5plane benchmark yields quite small couplings of
magnitude at most 0.04 and mainly negative values. The
large custodial-symmetry-violating coupling values in the

general scan are due to resonant mixing between the H(s)

“Because these coupling extraction methods are based on
measurements of Higgs production cross sections and decay
branching ratios, they probe only the magnitude of A%,,, not the
sign; a method involving the dependence of the i — 47 decay
distributions on the AWW coupling at one loop provides

sensitivity to the sign of /1’;}‘,2, but can achieve a precision only
of order 20%-50% at the High-Luminosity LHC [28].
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FIG. 7. /Ii‘g,z = K;‘f‘, / Ké evaluated with the maximum allowed cutoff scale for a general parameter scan (red) and in the HS5plane
benchmark (black), as a function of m5 (left) and sy (right). The minimum value in the general scan is 0.99934, and the maximum value

is 1.00197.

and H states when their masses are nearly degenerate. We
illustrate this in the left panel of Fig. 10, where we
plot BR(H? — ff) as a function of the mass difference
between ﬁg and H. In the mass-degenerate region the
mixing is enhanced and fermionic branching ratios on the
order of 10%—20% are possible. We also show this branch-
ing ratio as a function of ms in the right panel of Fig. 10; the
branching ratio to fermions reaches its maximum for ms
between 600 and 800 GeV and falls with increasing ms.
In Fig. 11 we plot the custodial-violation-induced
coupling and branching ratio of HZ to fermions in the

i+

H5plane benchmark. The IEI§E coupling to fermions K?S

200 400 600 800

1000 1200 1400
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2000

reaches a magnitude of at most 0.052 in the H5plane
benchmark. Again, production processes involving H3J
coupling to fermions, such as associated production
with a top quark, will have cross sections that are far
too small to be interesting at the LHC. The branching ratio
of A — tb can reach 1.2%, as shown in the right panel
of Flg 11.

In Fig. 12 we compare these results to the range of K‘f
accessible in the general parameter scan. The general scan
can again yield larger values of this custodial-violation-
induced coupling, reaching a magnitude of at most 0.3
and populating both positive and negative values. The

+
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The coupling of A? to fermions and the resulting fermionic branching ratio in the H5plane benchmark, taking the scale of the

custodlal -symmetric theory to be as large as possible subject to perturbative unitarity and the p parameter constraint. Left: contours of

[deﬁned above Eq. (66)]. The allowed values range between —4.0 x 1072

and 2.0 x 1073, Right: contours of the branching ratio of

H 0 to fermions. We compute only the partial width to the heaviest kinematically accessible pair of fermions; i.e., to 7 for m > 2m, and

bb otherwise. The branching ratio of H? to fermions ranges from 3.5 x 107!! t0 4.8 x 1073.
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FIG.9. The coupling K3 of H? to fermions evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in
the H5plane benchmark (black), as a function of ms (left) and sy (right). In the general scan the coupling ranges between —0.50 and
+0.50 (for rare points at large sz between 0.5 and 0.6). This coupling is zero in the custodial-symmetric model.

maximum size of the coupling again grows with sy. In
contrast, the HSplane benchmark yields somewhat smaller
values of this coupling of at most 0.052 and only populates
positive values. The large custodial-symmetry-violating
coupling values that can be obtained in the general scan
are again a consequence of resonant mixing, this time
between the HJ and the H; states when they are nearly
degenerate. We illustrate this in the left panel of Fig. 13,
where we plot BR(H — ff’) as a function of the mass
difference between HY and H;. In this mass-degenerate
region the mixing is enhanced and fermionic branching
ratios on the order of 20%—30% are possible. We also show
this branching ratio as a function of m5 in the right panel of
Fig. 13; the branching ratio to fermions again falls with
increasing ms.
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The custodial-violation-induced decays of H? and HZ
to fermion pairs do not dramatically alter the phenom-
enology within the H5plane benchmark, and do so in the
general scans only when there are near mass degeneracies
with the fermiophilic heavy Higgs bosons H or Hj.
Potentially more interesting is the effect of fermionic
decays of these particles for low masses below the WW
or WZ thresholds, when the dominant diboson decays of
these scalars go off shell. In the custodial-symmetric GM
model, Hg decays to yy and H;r decays to Wty become
interesting for these low masses [29-31]; competition
from custodial-violation-induced fermionic decays could
dramatically change the phenomenology in this mass
region. We perform a detailed study of this low ms region
in Sec. VR
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FIG. 10. Branching ratio of 1:1(5’ — ff evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the
H5plane benchmark (black), as a function of the mass difference myo — mp showing the resonant mixing effect (left) and ms (right).

The maximum branching ratio to fermions in the general scan is 19%.
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FIG. 11. The coupling of HY to fermions and the resulting fermionic branching ratio in the H5plane benchmark, taking the scale of the
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K_I;5 [defined in Eq. (48)]. The allowed values range between 1.0 x 10 and 5.2 x 1072, Right: contours of the branching ratio of #: to
fermions, including only the decay to tb. This branching ratio ranges from 2.0 x 108 to 1.2 x 1072
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H5plane benchmark (black), as a function of ms (left) and sy (right). In the general scan the coupling ranges between —0.22 and +0.29.
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FIG. 13. Branching ratio of IZI5+ — tb evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the
H5plane benchmark (black), as a function of the mass difference m B~ Mp; showing the resonant mixing effect (left) and ms (right).

The maximum branching ratio to fermions in the general scan is 29%.
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FIG. 14. The mass splittings within the custodial triplet in the HSplane benchmark, taking the scale of the custodial-symmetric theory
to be as large as possible subject to perturbative unitarity and the p parameter constraint. Left: m Y~ M- This quantity is negative
because A 1 is lighter than H° The mass splitting ranges between zero and 5.3 GeV. Right: Mg . ms, where my is the weak-scale
custodial-symmetric input value of the custodial triplet mass. m I and m fr; are both larger than ms over the entire benchmark. In our
numerical scan, the difference between Mg and m5 ranges between 4 MeV and 9.1 GeV.

D. Custodial-violating mass splittings

Custodial symmetry violation also induces splittings
between the masses of the otherwise-degenerate custodial
fiveplet and triplet states. These splittings follow a universal
pattern everywhere within the HSplane benchmark and
over the vast majority of the parameter space of our general
scans. We again maximize the custodial-violating effects in
what follows by taking the scale of the custodial-symmetric
theory as high as possible, subject to the constraints from
perturbative unitarity and the p parameter.

Among the custodial-triplet mass eigenstates, HY is
almost always heavier than A7, and both of these masses
are shifted up relative to the weak-scale custodial-symmetric
input value of ms. The splittings are small, as shown in

s
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FIG. 15.

Fig. 14 for the H5plane benchmark: the mass difference
between A9 and A7 reaches at most 5.3 GeV (left panel of
Fig. 14). The shift of the I:Ig mass upward from the input
value of m; is shown in the right panel of Fig. 14 and is at
most 9.1 GeV. The shift of the A 1 mass from the input m;
value is smaller, reaching at most 3.9 GeV in the benchmark.

In Fig. 15 we compare the mass splittings among the
custodial triplet states in the HS5plane benchmark (black
points) to the results of a general scan (red points). In the
left panel we plot Mpg: = Mo VErsus s, and in the right
panel we plot M = mHo versus sg. The range of mass
splittings obtained in the H5plane benchmark is generally
typical of the results of the general scan, except that the
general scan generates a small number of points with mass
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Mass splitting m T M evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the

H5plane benchmark (black), as a function of ms (left) and sy (right). This quantity is negative because H is lighter than Y. The mass
splitting in the general scan ranges between +0.25 GeV and —23 GeV.
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FIG. 16. The mass splittings within the custodial fiveplet in the H5plane benchmark, taking the scale of the custodial-symmetric
theory to be as large as possible subject to perturbative unitarity and the p parameter constraint. Top left: m e = M- This mass

splitting ranges between 4.0 MeV and 7.2 GeV. Top right: Mpg: = M. This mass splitting ranges between 6.0 MeV and 1.8 GeV.
Bottom left: m Y~ Mss where mj is the weak-scale custodial-symmetric input value of the custodial fiveplet mass. This mass difference

ranges between —1.5 GeV and 2.3 GeV. Bottom right: m Fir = Mse My is always larger than ms, with the difference ranging between

7.0 MeV and 9.0 GeV.

splittings up to 4 times as large as in the benchmark. There
are also a very small number of points in the general scan
with the opposite mass hierarchy, for which 1:13+ becomes
heavier than Y by up to 0.25 GeV.

Among the custodial-fiveplet mass eigenstates, H;* is
almost always the heaviest, followed by I:Igr and then I:Ig.
Again the mass splittings are small, as shown in Fig. 16 for
the H5plane benchmark. The top left panel of Fig. 16 shows
the mass difference between A{ " and A2, which is at most
7.2 GeV. The mass of I:IgL falls between these two, but
closer to the lighter H(s) state: the mass difference between
1:15+ and 1:1(5) reaches at most 1.8 GeV, as shown in the top
right panel of Fig. 16. The mass of f]‘s’ remains within
2.3 GeV of the weak-scale custodial-symmetric input value
of ms, but can be heavier or lighter: this is plotted in the
bottom left panel of Fig. 16. The mass of H;* is always

larger than ms, with the difference reaching a maximum
of 9.0 GeV, as shown in the bottom right panel of Fig. 16.
The smallness of these shifts of the physical A5 masses
relative to the weak-scale custodial-symmetric input value
of ms justifies our use of this input value on the x axis of
the plots.

In Fig. 17 we compare the mass splittings among the
custodial fiveplet states in the HS5plane benchmark (black
points) to the results of a general scan (red points) as a
function of ms. We show mpg—+ — mpgo (top left), mg+ —
mp (top right), and m A ~m i (bottom). Again the
ranges of mass splittings obtained in the H5plane bench-
mark are generally typical of the results in the general scan,
except that the general scan generates a small number of
points with mass splittings up to 6 times as large as in the
benchmark. There are also a very small number of points in
the general scan with the opposite mass hierarchy for which
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FIG. 17.  Mass splittings mp -+ —m A (top left), mp: —m A (top right), and m m = Mg (bottom) as a function of ms, evaluated
with the maximum allowed cutoff scale in a general parameter scan (red) and in the H5plane benchmark (black). In the general scan
Mo = My ranges between zero and 34.5 GeV, Mp: = Mo ranges between —1.45 GeV and 22.3 GeV, and Mpjs+ = Mp: ranges

between zero and 34.4 GeV.

HY becomes lighter than A2 by up to 1.5 GeV. It is also
possible in the general scan to have a large mass spitting
between the I:I;Jr and I:I(S) but a small mass splitting
between H{ and the H2.

Examining the contours in Figs. 14 and 16, it is apparent
that within the H5plane benchmark the mass splittings
|

within the fiveplet and within the triplet tend to follow a
common pattern albeit with different scaling. In particular,
the splitting Mg+ = Mo is very close to 4 times that of
Mpge = Mo To ‘understand this behavior we expand the

mass sphttmgs to first order in the custodial violation, such
that ¥ = x 4 &,. The mass splittings become

1 Ml 32 21)2
ﬂ’lI:I;rJr - mI:I(S) = 2m5 |:<D¢d2 + 1J¢6 d3 + 1]¢6 2d1 ?13(11 + 16M2d1> +3—Uj/15d1 + ﬂ§d4:| . (73)
11 , M, 32 vy
mﬁé — HS = 2—’”5 |:4 (U(/)dz + U(/)6 d3 + ’U¢6 zdl ?/13(11 + 16M2d1> _6_1j)(ﬂsd1 + U)z(d/:| s (74)
1 1}2 15 M /1
IS S L U oM, + 2 (1602 - 75
ey~ 2m3[4 2Bt 1( v){<2+81})+ ‘+4yx( U ”)ﬂ (75)

where d; through d, and d) are zero in the limit of exact custodial symmetry and are given by
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The approximate relation m;+ — mpo = 4(mp: —mpo) is
therefore to be expected because only the last two terms in
Eqgs. (73) and (74) break this proportionality. Simply from
the generic size of the dimensionful parameters in the terms
that break this relation, we naively expect that they will be
subdominant contributors to the mass splittings. In the
general scan shown in Fig. 17 this relation tends to hold to a
good approximation throughout the parameter space but
can be badly broken by the enhanced mixing caused by
approximately degenerate charged eigenstates.

The similarities in the patterns of the fiveplet and triplet
mass splittings can also be explained by comparing their
approximate forms, as they both depend on the same terms
as the sources of custodial violation. Although these terms
come in with different coefficients, when a single term
dominates one expression, it will generally dominate all of
them. In the case of the custodial triplet, the splitting is
always negative because the dominant terms (mainly the
term proportional to ds, but the term proportional to d; is
usually significant and sometimes dominant) tend not to
change sign throughout the whole parameter space. This
remains true for the general parameter scan shown in
Fig. 15 where the triplet mass splittings are overwhelm-
ingly negative even when p is less than 1.

In Fig. 18 we plot the shift of the mass of the physical
mass eigenstate H relative to the weak-scale custodial-
symmetric input value of my. The H mass is shifted
upwards over almost all of the HSplane benchmark, and the
shift is by at most 5.6 GeV. We conclude that, within the
HS5plane benchmark and even allowing for custodial
symmetry violation, the custodial-symmetric predictions
for the masses of the scalars in the model are reliable to
within better than 10 GeV.

Experimentally checking the mass degeneracy of the
scalars within the custodial triplet and the custodial fiveplet
has been proposed as a way to test the custodial symmetry
in the GM model [32,33]. At the LHC, mass reconstruction
of the Hj; states relies on their decays to dijets, Hy — ¢,
HY — bb [32]. Considering that the dijet invariant mass
resolution at the LHC is not sufficient to kinematically
separate the hadronic decays of the W and the Z with
their 11 GeV mass difference, it will not be possible
to resolve a custodial-symmetry-violation-induced mass
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FIG. 18. Deviation mj — my of the physical H mass from the
mass of the heavier custodial singlet H in the weak-scale
custodial-symmetric theory, computed in the H5plane benchmark
taking the scale of the custodial-symmetric theory to be as large
as possible subject to perturbative unitarity and the p parameter
constraint. This mass difference ranges between —0.059 GeV and
+5.6 GeV.

splitting between A 7 and H 9 of at most 5.3 GeV within the
H5plane benchmark. Mass reconstruction of the H states
at the LHC relies on their decays to vector boson pairs VV.
Reference [32] studied the fully leptonic final states, in
which the masses of Hi *, H{, and H? could be determined
from the end point of the transverse mass distribution of the
VV final state. The resolution is worse than for a dijet
resonance. The ATLAS experiment has performed a search
for HS — W*Z — jj¢ "¢~ [14], in which reconstruction of
a mass peak for H;’ becomes possible; however, the mass
resolution is still limited by the dijet invariant mass reso-
lution of the LHC, which is too poor to resolve the custodial-
symmetry-violation-induced mass splitting among the Hs
states spanning at most 7.2 GeV in the H5plane benchmark.
Larger mass splittings are possible for a small number of
points in the general scan, but these tend to appear at
relatively large m5 values so that the splittings remain below
a few percent of the overall scalar masses, smaller than the
single jet energy resolution of the LHC experiments at these
energies (see, e.g., Ref. [34]).

Prospects are somewhat better at the ILC, as studied
in Ref. [33]. I:Ig and HE can be singly produced in
e"e™ collisions via vector boson fusion or in association
with a Z or WT boson, respectively. In the clean lepton
collider environment, the H5 decays to dibosons can be
reconstructed using the fully hadronic final states.
With the ILC target dijet energy resolution of o5 = 0.3 x
\/E_” GeV [35], the dijet resolution will be 6y ~3 GeV
for E;; ~100 GeV, famously allowing for W and Z
bosons to be distinguished in the all-hadronic channel.
Unfortunately, even this excellent mass resolution is too
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FIG. 19. The fractional change in 7, relative to the weak-scale

custodial-symmetric input v, defined as f—* — 1, in the H5plane
x

benchmark taking the scale of the custodial-symmetric theory to

be as large as possible subject to perturbative unitarity and the p

parameter constraint. The fractional change is always negative

and its absolute value reaches a maximum of 1.0%.

poor to resolve the custodial-symmetry-violation-induced
mass splitting between A J and H (5), which reaches at most
1.8 GeV in the H5plane benchmark. One could hope to do
better by using the leptonic decays of HY — ZZ — 4£ and
HE —» W*Z — ¢XEPS¢T¢7; these suffer from smaller
branching fractions, but may offer good enough mass
resolution to detect the mass splitting effect of the custodial
symmetry violation.

E. Direct search constraints

The most stringent direct search constraint on the
custodial-symmetric H5plane benchmark comes from a
CMS search for H Sii produced in vector boson fusion and
decaying to WEW=* — £+ EMss [36]. This constraint
excludes sy above 0.2 for ms = 200 GeV, rising to sy =
0.45 at ms = 1000 GeV. We can apply this straightfor-
wardly to the model with custodial symmetry violation by
noting the following. First, as shown in the bottom right
panel of Fig. 16, the physical mass of /4™ is at most 5 GeV
higher than ms in the region of interest in the H5plane
benchmark (and not much different in the general scan).
Second, we show in Figs. 19 and 20 the shift in T}X, which
controls the AZ*WFWT coupling and hence the vector
boson fusion production cross section, relative to the
value of v, in the weak-scale custodial-symmetric theory.
In the H5plane benchmark this shift is negative and
amounts to less than a percent, so that the cross section
is suppressed by no more than 2% due to the custodial
symmetry violation. In the general scan this conclusion
holds for s values above 0.1 of interest to us here. Finally,
the custodial-symmetry-violation-induced mass splitting
between H{' and H{ is less than 5 GeV in the region

of interest, too small for the cascade decay H¥* — W*HZ
to compete significantly with the dominant == — W*W=
signal channel. Thus we conclude that this direct search
constraint on the custodial symmetry violating parameter
space studied in this paper will be almost identical to that in
the custodial-symmetric H5plane benchmark .’

F. Low-ms region

Finally in this subsection we present the results of a
dedicated general scan of the low-ms region, focusing on
ms < 200 GeV. As usual, we take the cutoff as large as
allowed by perturbative unitarity and the p parameter
constraint to maximize the amount of custodial symmetry
violation.

In Fig. 21 we show the maximum allowed cutoff
scale subject to perturbative unitarity of the quartic cou-
plings in the custodial-symmetric theory and the p param-
eter constraint, as a function of ms (left) and sy (right).
Compared to the general scan for higher ms, the maximum
allowed cutoff tends to be lower, but large cutoff scales
on the order of 100 TeV are still somewhat common and
the maximum cutoff scale found in our scan is of order
10'° GeV.

Subject to these constraints, in Fig. 22 we show the value
of the p parameter in the weak-scale theory, again as a
function of ms (left) and sy (right). The scan populates the
entirety of the allowed region; in particular, the small
allowed region with p < 1 is heavily populated. This is in
contrast to the general scan at larger ms, which strongly
favors p > 1.

We next consider custodial symmetry violation effects in
couplings. In Fig. 23 we show the ratio A%, of the 125 GeV
Higgs boson’s couplings to WW and to ZZ. In the left panel

we plot versus ms while the right panel zooms in to A;v'vz
between 0.9 and 1.1. The most dramatic feature is the
resonant mixing when H? and i become degenerate, for

which deviations in A%, of tens of percent in either
direction are possible. Such large mixing also substantially
modifies the other couplings of /. Away from the resonant
region, A%, can deviate from one by as much as 1%-2%,
which is large enough to be probed at future e*e™ colliders.

Of particular interest are decays of the would-be fermio-
phobic Hs states to fermion pairs induced by custodial
symmetry violation. We study this for A $ in Fig. 24. In the

left panel we plot KI;; as a function of ms. While the values
are tiny for most scan points, they can reach values as large
as about £0.3 for ms close to 200 GeV. However, this does
not change the overall pattern of HJ decays; as shown in
the right panel of Fig. 24, the branching ratio into WZ (red)

5Very recent LHC searches for H) — Zh and H — hh may
further constrain the custodial-symmetric HSplane benchmark
[37] and are worth examining more closely in future work.
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FIG. 22. Value of the p parameter in a general scan of the low-m5 region as a function of m5 (left) and sy (right), taking the scale of the
custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the p parameter constraint.
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FIG. 23. li‘ﬁvz in a general scan of the low-ms region as a function of ms, taking the scale of the custodial-symmetric theory to be as
large as possible subject to perturbative unitarity and the p parameter constraint. The right panel is a zoom of the y axis. In the resonant

mixing region ms ~ 125 GeV we find values between 0.43 and 1.76, while away from this region ﬂiv’vz can deviate from one by as much

as 1%—2%.

continues to dominate, with the loop-induced decay into
Wy (green) becoming important for ms below the WZ
kinematic threshold. The branching ratio into fermions
(black) remains small.

Decays of H? to fermion pairs are studied in Fig. 25. In

the left panel we plot K;]g as a function of ms. The values
are reasonably small except for ms around 125 GeV,
where mixing between H(S) and h becomes resonant. In the
right panel we show the branching ratios of H2. Decays to
fermion pairs (black points) can become dominant only in
the resonant-mixing region; away from ms =~ 125 GeV

0.4 T T T T T T T T

100 120 140 160 180
mg [GeV]

20 40 60 80 200

the branching ratio to fermion pairs generally remains
below 10%, including at very low ms values where the
branching ratio into yy (red) remains dominant. This is
good news for the continued viability of the diphoton
resonance search to constrain ﬁg at low masses as
proposed in Ref. [29].

Mass splittings among the members of the custodial
fiveplet and triplet are shown in Fig. 26. As in the general
scans for larger ms, H;Jr tends to be the heaviest of the
fiveplet states, followed by HY, with f{g the lightest.
Likewise HY tends to be heavier than HJ, though this

200

120

FIG. 24. Custodial-symmetry-violation-induced couplings of A7 to fermions in a general scan of the low-mjs region, taking the scale

of the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the p parameter constraint. Left: k.* as a

function of ms. The minimum and maximum values are —0.29 and 0.34, respectively. Right: decay branching ratios of & Jto WW (red),
Wy (green), and ff (black) as a function of m5. Decays to fermions are computed including only the dominant modes: b above the tb
threshold and ¢s and cd below. The calculation of H — Wy assumes an on-shell final-state W, so we plot the branching ratios only

between 80 and 200 GeV.
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FIG.25. Custodial-symmetry-violation-induced couplings of A’ ? to fermions in a general scan of the low-ms region, taking the scale of
the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the p parameter constraint. Left: K;*asa

function of ms. The minimum and maximum values are —0.46 and 0.71, respectively. Right: decay branching ratios of I:I(S) to WW/ZZ

(blue), yy (red), ff (black), Zy (orange), and custodial-violating decays to pairs of other scalars (green—a few points in the upper right
of the plot).
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FIG. 26. Mass splittings among the members of the custodial fiveplet and triplet in a general scan of the low-ms region, taking the
scale of the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the p parameter constraint. For the
fiveplet we show m A ) (top left, ranging between —0.08 GeV and 10.6 GeV), m M (top right, ranging between

—0.33 GeV and 2.51 GeV), and Mpgee = M (bottom left, ranging between —0.06 GeV and 8.44 GeV), and for the triplet we show
Mis = Mg (bottom right, ranging between —4.17 GeV and 0.78 GeV).
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FIG. 27.  Fractional deviation of ¥, relative to the weak-scale custodial-symmetric input v,,, defined as -+ — 1, as a function of ms (left)

and sy (right) in a general scan of the low-m5 region, taking the scale of the custodial- symmetrlc theory to be as large as possible subject
to perturbative unitarity and the p parameter constraint. Positive deviations are shown in black and negative in red so that both can be
plotted on a log scale. The fractional deviation ranges between —1.66 and 0.55, with these large deviations appearing mainly at very

small sg.

ordering can be reversed for a minority of the scan points.
The approximate relation Mpgrs = My = 4(m,~1§+ - mgg)
holds true in the low-ms scan as well. The custodial-
violating mass splittings are below 2 GeV in most of the
parameter space, and less than about 10 GeV over the
whole scan.

Finally in Fig. 27 we plot the fractional change in

x
relative to the weak-scale custodial-symmetric input v,,

defined as 3—”— 1. This deviation can be positive (black
x

points) or negative (red points), though negative deviations
tend to occur only for ms above 100 GeV. The absolute
value of the deviation is again small, below the percent
level unless s is very small.

VI. CONCLUSIONS

In this paper we studied the effects of custodial
symmetry violation in the Georgi-Machacek model.
We considered the scenario in which the exactly
custodial-symmetric GM model emerges at some high
scale A as an effective low energy theory of an
unspecified ultraviolet completion, and then ran the
model down to the weak scale, through which running
the hypercharge interactions give rise to custodial
symmetry violation at one loop. The amount and pattern
of custodial symmetry violation at the weak scale, as
manifested through the couplings and masses of the
physical scalars, is uniquely determined by the param-
eters of the high-scale custodial-symmetric theory and
the value of the scale A and hence can be meaningfully
constrained by the measured value of the electroweak p
parameter.

To implement this program we used the most general
gauge invariant scalar potential for the theory, from

which we computed the minimization conditions for
the VEVs, and the expressions for the physical scalar
mass eigenstates. These allowed us to calculate the
custodial symmetry violating couplings of the physical
I:IO and 1:15+ states to fermions, as well as the parameter

Al =k /Kl for the 125 GeV Higgs boson. We reder-
ived the renormalization group equations for the param-
eters of the most general scalar potential including CP
violation and confirm the results of Ref. [18] in the CP-
conserving limit. In our numerical implementation of the
RGE running we self-consistently adjusted the custodial-
symmetric inputs to obtain the correct values of the
physical 125 GeV Higgs boson mass, top quark mass,
and Fermi constant G in the weak-scale custodial-
violating theory.

We presented numerical results in the H5plane bench-
mark (which helped make evident patterns such as the
relationship between the A¢*-H and the H{-H? mass
splittings) as well as a general scan over the full
parameter space. We showed that the results in the
HS5plane benchmark are broadly typical of the full
parameter scan, though more extreme values can be
obtained in small regions of parameter space in the
general scan, particularly when the custodial-symmetric
mass spectrum is such that the mixing among scalars
in different custodial representations becomes resonant.
We also performed a dedicated general scan for low
ms < 200 GeV, which is not captured in the HS5plane
benchmark.

In each case, we determined the maximum allowed scale
of the custodial-symmetric theory imposing perturbative
unitarity of two-to-two scalar scattering amplitudes and the
experimental constraint on the p parameter. This allowed us

to quantify the maximum possible deviation of ii‘jvz from its
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SM value, as well as the branching ratios of the other-
wise-fermiophobic A? and A% scalars into fermions and
the mass splittings within the custodial triplet and
fiveplet. We found that the scale of the custodial-
symmetric theory could be as high as tens to hundreds
of TeV, with an upper bound of 290 TeV in the H5plane

benchmark. We showed that 1f,, can deviate from its
SM value by at most two per mille when ms > 200 GeV,
though larger deviations at the percent level are possible
in the low-ms region even away from the resonant
mixing region ms ~ m;. We also showed that the mass
splittings within the custodial triplet and the custodial
fiveplet are below 10 GeV over almost the entire
parameter space, reaching larger values only for large
scalar masses. Both of these custodial-violating effects
are too small to be probed at the LHC, but may be
detectable at a future e™e™ collider. Finally we showed
that the fermionic branching ratios of I:I(S) and I:I§r remain
below the 10% level, even for 1:15 masses below the WW
and WZ thresholds where they can compete directly with
the loop-induced yy and Wy decay modes (with the
exception of a narrow region of resonant mixing between
H(S) and & at 125 GeV). This preserves the usefulness of
the yy decay mode to put strong constraints on Flg at low
masses.

From these results, we can draw two important con-
clusions about the GM model. The generically small
custodial-violating effects allow us to conclude that the
use of the custodial-symmetric GM model as a benchmark
model for LHC searches is justified. Furthermore, the large
upper bound on the scale of the UV completion suggests
that virtual effects from particles at the UV completion
scale will be highly suppressed and their contribution to
effective operators measured at the LHC will be too small
to detect. This means that not only is the GM model a

|

useful benchmark at the LHC but it is also a valid effective
theory at the weak scale.
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APPENDIX A: RENORMALIZATION
GROUP EQUATIONS FOR
LAGRANGIAN PARAMETERS

To run the parameters down from a custodial-symmetric
high scale to the weak scale, we need the RGEs for the
parameters of the most general gauge-invariant potential as
given in Eq. (25). RGEs can be calculated with the public
codes PyR@TE [38], a PYTHON code that generates two-loop
RGEs for nonsupersymmetric models, and SARAH [39],
a Mathematica package which can generate two-loop
RGE:s for supersymmetric and nonsupersymmetric models.
PyR@TE requires the user to supply their own GM model card
while SARAH provides a GM model card in an alternate
parametrization of the scalar potential. We determine the
RGEs using the formalism presented in Ref. [40], some
details of which are given in Appendix C. The resulting
equations are then (with #=logu, where u is the
energy scale),

dip3) 3. _ . 9 9 ~ e s
16 0 it st 3 (0 + 6+ 22— R -+ 120 ) O 6T (AD)
2d(ﬂ§2) YAy e~ Q7 = 18, 2 ~273 ~2(7 3
1671' 7 = |M1| + 144M2 +ﬂ3 8/12 + 1617 - ?gl - 1292 + 4/,{215 + 2[13(},9 + 3/’{10), (AZ)
16 2 d753) = M? + 144M3 + 472 (10]g — 3¢2) + 8ji2dg + 42 (Ao + 31 A3
T |+ 5+ 4fi5(1043 — 3g3) + 8fizde + 415 (Ao + 3419), (A3)
» dhy 4 _evh _ovh g 2 2 2 22 _gp i
167z o = —06y;, — 6y; — 2y; + Ay | 12y, + 12y7 + 4y; —ggl —9g5 + 244,
T 4,945,955, 15 7 52 32
+mgl+§gz +Eglgz+§/13+2|/14| +3ﬂ,5+6/1 s (A4)
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di 36 3
167:27; =343 - s — g g+ 121, </12 + 27, — gg1 2g ) —12 + 72, (AS5)
dls =~ ~ < < <9 33 36 -
16;:2d—t3 =15 <6y,2, + 6y? 4+ 2y2 + 41, — 81y + 815 + 447 — Eg% - 795) + ?ggg% + 4|14, (A6)
2d’~14 7 2 2 2 2 33 2 3 7 7 7 3 3
167 E = ﬂ4 6yb + 6_)7[ + 2_)7., —Egl —792 + 4),1 + 2&3 ‘|‘4ﬂ.5 + 816 — 2&9 + 4&10 s (A7)
,dls = 9 33
1672 d—5 s <6y,, + 6y +2y2 + 415 + 122, + 81, + 161, — 54 —Tg%>
27 . )
+55 gt 4 68 4 273 + 4247 + dgdo + 1276410, (A8)
dz < 9 33 - - .
di; 54 , 36 36 ~ <
167° —F =22 g} + 993 + 5 G397 + <—gg% = 2495+ 164 + 28@7)
~ 1-~ ~ ~ ~ - ~
+ 1613 +§/1§ + 222 + 75 + 22,0(3219 + 249), (A10)
, d - o B B
167> d—f = 34 + 815(=3g3 + 1115) + 222 + Jo(do + 210) + 3430, (A11)
2d’~19 4 3 29, 3 3 3 3 3 72
167 o 63 + 279 =123 — S+ 54 + 44y + 207 + 815 + 8410 | — 2|4)?. (A12)

di < 9 < < < - < < <~ . <
16;:27;0 = 694 + 220 <—§g% —12¢3 + 42, + 847 + 2015 + 4110) + 2024 ? + 223 + 4dsde + 4A9 (A7 + 24g),  (A13)

am, 27 , 21 ~ ~ < S _
1672 dtl = M <6yb + 6y7 +2y2 — 1092 795 +44 + 44 + 4/15> +4V275(M, + 6M,), (Al14)
,dMy 21 5 = on . _
16 = = 6y2 + 62 + 22 — logl 505+ 4 + 8 | +24M05 + 8V2Re[M) 4], (A15)
am, . 18 1
1671201—t2 =M, <—?gf — 1893 — 84, + 417 — 49 + 8/110) + 6M 1A+ 5 fRe[M ), (Al6)

where g; and g, are gauge couplings (see below) and y,, y,, and y, are Yukawa couplings, normalized according to
Vr = V2m #/¥4. These RGEs agree with those of Ref. [18] (for real J4 and ]\71’1) after translating the notation for the
Lagrangian parameters as follows:
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o) = —%4-;15,
6y = As,
03 = ;16,
04 = ;14,
A=,
p1 =22+ 27,
P2 = —2;12,
P3 = 2;1&
P4 = 1107
Ps = ;19,
— M,
Hi = ﬁ’
Y
Hy = %
H3 = —6\61‘712’
mg, = i3,
=i
) I3
my =" (A17)

A few possible symmetries are apparent in these RGEs.
Setting M = M, = M, = 0, the potential becomes invari-
ant under (y,&) — (—y,—¢), and therefore these three
parameters are not regenerated by the running. Setting
instead 4, = ]\N/I’1 = 0, the potential becomes invariant under
¥ — —x, and therefore these two parameters are not regen-
erated by the running. Setting Jya =M, =M, =0, the
potential becomes invariant under £ — —¢&, and therefore
these three parameters are not regenerated by the running.
Finally, if all the Lagrangian parameters are taken to be real
at some scale, as will be the case when the most general
potential is matched onto the intrinsically CP-conserving
custodial-symmetric Georgi-Machacek model, they remain
real at all scales.

Throughout we use the Grand Unified Theory (GUT)

normalization ¢ = \/égl, g=g¢,, and g, =gs;. The
renormalization group equations for the electroweak gauge
couplings, including all the particle content of the GM
model in the spectrum, are [41]

d 47 dg 47
ﬂ—_g? orequivalently 16ﬂ2—g:€g’3, (A1B)

2
167 =10 dt

d 13
1622292 = - (A19)

dr

and that for the strong gauge coupling is the same as in the
SM (including the top quark contribution),

d
1622 25 — 743

- (A20)

The RGEs for the Yukawa couplings are identical to those
of the SM [42],

dy 17 9 3 9
16,[2d_t’: <_%g% —Zg% - 8g3 +§y,27 +§yt2 +y%)yn

(A21)

dy 1, 9 9, 3
16722 =2 = (——9%——9%—893 +35 +—y?+y$>yb,

dt 477y 2702
(A22)
dy, 9 9 5
162>~ = (—49% — 2%+ Zy%)yf-
(A23)

In our numerical work we will ignore y, and y,.

As a consistency check, we can turn off the custodial-
violating parts of the RGEs by setting g; =0 and
substituting the relations given in Eq. (27). We then find
a self-consistent set of RGEs for the custodial-preserving
Lagrangian parameters:

d(u?) 9 9

161 a1y (@,3 FOT - Tgt 48/11> 3620, (A24)

2 d(ﬂ%) 2 2 2 2 2
167 = M3 + 144M5 + 1632, + p3 (=123 + 5645 + 881y), (A25)

di, 3 3 1 9 3
16;12? = —Ey‘g —Ey? —Ey;‘ + A1(12y7 + 12y7 + 4y? — 9g5 + 964,) +§g‘2‘ + 1843 +§,12, (A26)
24k 2 2 233, 3 0 a0

167 = Ao | 693 + 6y? +2y2 — S+ 481, + 164, + 5645 + 8844 | + 9+ 42, (A27)
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di; 3
1677 d—; =503+ 23(=24g3 + 8045 + 964) —

diy, 3
167z2d—;‘ = Egg + A4 (=243 4 13644 + 11223) + 823 + 2422 + 22,

dis

167245
T

33

,dM 21
1672 7 =M, <6yb 637+ 2% = g3 + 164, + 164, = 16/15> — 48M s,

,dM
1672 d—t2 = —M A5 4+ M, (—18¢% — 24); + 484,).

APPENDIX B: SCALAR COUPLINGS OF THE CUSTODIAL VIOLATING STATES

The custodial violating couplings of the custodial symmetric eigenstates are included below.

1. Couplings of the H?

The modified couplings for decays to scalars allowed by custodial symmetry:

s (SuCHVy Sy, 1 L~ 2\/§ 42 \/§ 42 <
gHgH;H; 213( 2\/_¢+ \H/_) +ﬂ4\/.SHCH’U¢—/15 \/§ SH )(+/16 \/§ S%_I 5 \/. H )(+ \/’ASCHU/,:
~ ﬂ( v, b V) _ 2 .
+Ao~= (R, — X L THE 6217)4—/1 (e = D) + My ~= 5% — 6k M,
9\/§ HYE B D) HYy 10\/§H(5 )() 1\/§H HM2
S8 M e s o oy o 168 o 16T L 45T s 2V200
QH;H(;H(;:_ NTE fAZ( _161’)(_8”;(”4;) \/_Az 6 V3A2 - 7\/6A2+ 10 /342
~2
_ir 81)1 i, 81))( —]\7[26\&%
fvear T /eA? V342

(A28)

(A29)

(A30)

(A31)

(A32)

{ ~2 72 = = SHT)Zﬁ 5 CHUpVe | o o o 6eply
Iutmia) =~ 1 A3 sHv —l—T + 4 \/isHUI+2ch¢vZ+2 — 49 +Mv,sy—M sy, —M, )

9HI T H7H; = ~2(=a, + 30y),

where A* = 7 + 87,
The modified couphngs for loop decays mediated by a Hs loop:

v ~ 420 ~ 20 D, D 20 ~ 20 20 _
X ) \/_,Uée _’_29 <\/_’U‘f U)( 1)5 +@> _+_l10 <\/_1}5 _%) _ \/6M2,

~ D
g = =M —=+ -2 = ——c
IHOH H 7\/6 3 \/§ \/§ 6 6 \/§ \/§

g = =M —2 = —~+ 1 — .
IHHTHH 2\/6 7\/6 10 \/§ \/§ 2
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The couplings for decays to scalars that violate custodial symmetry:

13( 77)((7&
0 = —\ —
it =5\ 23 3 3

2 D4CaSa ~ VyCsS5
+ ¢aa>+/14<_ ¢aa+c~

i
(=7 3

~ (\/27756'% 2\/§T]¢Cas(~l> 1 2\/5{))(
- -V

2 A28 - V20,2 . 2 . 2
sal+/18 \/_U§Sa+/110 \/_UXSG+M’1 c5 i, S,
V3 V3 V3 2v6 2v6

J3 (V5 i¢casa> < <@¢cas& <b U )) < < v,s2 2¢5557,
o =——= | X2+ + 1 +s2(L-—=) )+ —E=-
Jistatls = =5 <2\6 3 73 3 23 "6 3
< (V2052 22040855\~ 2V20,ck < 4V2D:ck < V20,2 L s 52
+16< £a 9 >—/17 2% 4 T Uy T B —
V3 3 V3 V3 3 2v6 2V6
I3 ,54Ca ﬁ,ﬁcza) ~ (T),ﬁcza (171 e >> ~ < D,54Cq \/iczaf),ﬁ)
H = ——0= + + 1 +2s5¢c5| —=——=] | +1s( 2 -
gH(s)haHa \/i( \/§ 3 4 3 \/§ 2\/§ 5 \/6 3
" (2\/5@5s&c& N 2\/517(/,02;1> 3 4\/517)(0;,&; i 8\/§b§casa i 2\/§bxc&s(~, i SaCa _ py Sala
6 \/g 3 7 \/g 8 \/g 10 \/§ 1 \/6 1 \/6 .

APPENDIX C: CALCULATING THE
RENORMALIZATION GROUP EQUATIONS

We calculate the one-loop RGE:s in this paper using the
formalism of Cheng, Eichten, and Li [40]. They considered
a Lagrangian for non-Abelian gauge fields A4, real scalar
fields ¢;, and fermionic fields y, of the form

4w
—whiyp;, —V(p),

1 1 . _
L ==  FuF" +5(Du),(D'); + igy" Dy — ymoy
(C1)

where the gauge field strength tensor and covariant deriv-
atives are

Fé, = 0,A% — 0,A% — gC AL AL, (C2)
(Dug); = 0uh; + ig0fih; AL, (C3)
(D;tl//)a = aul//a + igtg/}WﬂAﬁ' (C4)

Here g is the gauge coupling, 67; and 17, are the generators
of the gauge group acting on the scalar and fermion
representations, respectively, and C%* are the structure
constants of the gauge group. The fermion masses m, and
Yukawa couplings /; are matrices in the space of fermions.
The (quartic) scalar potential is given by

V) = 3 gif bbb

ijkl

(C5)

The quartic scalar couplings f;j; are defined to be
symmetric under the interchange of any pair of indices;

after collecting terms in the scalar potential, they can be
extracted using

coefficientof ¢;¢pjprp;in V

=41 x '
Liju number of permutations of (ijkl)

(Co)

The trilinear couplings and quadratic mass-squared
coefficients in Eq. (25) can be integrated into this formal-
ism by inserting one or two factors of a nondynamical
scalar field ¢, that has no gauge or fermion couplings,
e.g., W, = uWrdopop:p;. The trilinear and quadratic
coefficients can then be treated in the same way as the
quartic coupling coefficients f/;, setting one or two of i jk/
equal to O.

The RGEs for the quartic scalar couplings are given by
Eq. (2.8) of Ref. [40],

dfiju
1672 d; :ﬂijkh

(€7)
with t = log 4 where u is the energy scale and

ﬁijk/ = fijmnfmnkl + fikmnfmnjl =+ filmnfmnjk
—12°S5(8) fijur + 39 Aijua + 8Trhihy ) fonina

— 12H . (C8)
Repeated indices are to be summed over. In this expression
the first three terms come from one-loop diagrams with two
quartic scalar vertices, the fourth term comes from dia-
grams in which an external leg is decorated with a gauge
boson loop, the fifth term is a four-scalar coupling induced
by a closed loop of gauge bosons, the sixth term comes
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from diagrams in which an external leg is decorated with a
fermion loop, and the last term is a four-scalar coupling
induced by a closed box of fermions (see Fig. 3 in
Ref. [40]). The new symbols in Eq. (C8) are defined as [40]

52(5)5ij = [eaea][j’ (C9)
Ay ={0°.0"},,{0°.0"},, + {00}, {0°.6"}
+ {Ha’eb}il{ea’gb}jlw (C10)

with repeated gauge indices summed over, and

1
Hjy = aTr[hihj{hkv b} + hilg{hy, by} + hilg{hy, by ]

(C11)

The formalism in Ref. [40] assumes a single gauge group
and a single representation containing all the scalars. This
can be straightforwardly generalized to our theory in which
the scalars transform under SU(2), x U(1), as a doublet
and two triplets as follows. We first write out all the scalar
fields in terms of their real components, using ¢; = (¢; +

ihy)/ /2 for the complex scalars. The covariant derivative
for the scalars can then be written as

. Y
(Dug); = 0ubi + 905, Wi + @7(]51'3;4» (C12)

where g and ¢’ are now the SU(2), and U(l), gauge
couplings and 6, and Y;;/2 are the SU(2), and U(1)y
generators written as big matrices in the space of the 13 real
scalars ¢; in our model (plus one nondynamical scalar
field ¢y).

Equation (C8) must then be modified slightly to take into
account the two gauge groups:

/Bijkl = fijmnfmnkl + fikmnfmnjl + filmnfmnjk
— 126"285(8) fiju = 126%82(S) f ijua

+ 34,0 + 8Tr[h;h, ) fojrs — 12H jyy. (C13)
The new gauge terms are given as follows. The S5(S) term
comes from diagrams in which a U(1), gauge boson loop
decorates one of the external scalar legs. Using Eq. (C9)

with 6¢; = (Y;/2)d;;, this term is given for each ijkl by

o= Y [

el () (]

(C14)

The S,(S) term comes from diagrams in which an SU(2),
gauge boson loop decorates one of the external scalar legs.

It will have different values depending on the SU(2),
representation of the scalar on each leg. Using the SU(2),
generators for doublets and triplets, we obtain from
Eq. (C9) for each leg

doublet
triplet

6 = [00°];; = 4 20y

82(8)1eg0ij = ij =
[(n* —1)/4]5;; nplet

leg

(C15)
Summing over the four legs then gives, for each ijkl,

—12¢75,(S) = =3¢%[S2(S); + S2(S); + S2(8), + S2(S5),]

3
:_ZgQ(n%+n?+n%+nlz—4), (C16)

where n; = 2T; + 1 is the dimensionality of the SU(2),
representation of the ith leg.

The 34, ;, term in Eq. (C13) yields terms in the RGEs of
order g*, ¢*, and ¢>¢. The couplings that give rise to these
terms are the quartic scalar-scalar-vector-vector vertices,
which can be found by examining the anticommutation
relations among the generators of the relevant gauge
groups. We derive the form of A,-jk, as follows. First,
starting from Eq. (C10) we absorb the gauge coupling into
the generators and define

- — - - Y
O'=gt', 0>=gr*, 6> =gr, 94:j51nxn, (C17)

where 1 are the appropriate SU(2), generators acting on
the relevant subspaces of the scalars and /,,,, is the unit
matrix on the subspace of scalars with a common hyper-
charge. Then,

Ajju = {éaﬁb}zj{éa’ 0"} +{0°.6°} {07, éb}jz

+{6,6},,{6°, ‘_9b}jk- (C18)
To actually calculate this, we write
. 4
A = Z a?jhazf’ + a;‘,fa;‘f + afl”az?, (C19)

a,b=1

where for a real scalar multiplet the gauge-covariant terms
yield

DT (076" + 6°0° ) = > " pich s (C20)
i.j

and for a complex scalar multiplet they give
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207(06" + 0°0)® = > pipjast.  (C21)
i.j

Note that aﬁ’j” is symmetric under the interchange of 7 and j;
care must be taken with factors of 2 in extracting the a;‘j”
from terms involving two different real scalar fields.

Finally for the fermion contributions, it is most straight-
forward to separate the contributions into a sum of terms
each involving only leptons, down-type quarks, or up-type
quarks. In our model only the SU(2); doublet couples to
fermions, as in the SM, and we can write the Yukawa
matrices in the fermion mass basis as

yvo 0 0 v 0 0
Ye=10 y. 0|, Yé=10 y, 0|,
0 0 vy 0 0 vy,
ye 0 0
Yi=10 y, 0], (C22)
0 0 vy,

for i being one of the four real fields in the scalar
doublet, and

v/ =

1

(C23)

oS O O
o O O
oS O O

for f € {u,d, e} and i being any other scalar field.

The contribution from diagrams in which an external
leg is decorated with a fermion loop is then given for each
ijkl by

8Tr (il fjis = (i + X+ Yo + 1)) fij,  (C24)

where
T, =Tr { (C25)

A@Y@Yﬁ}
-fe{u,d.e}

with N/ being the number of colors of fermion type f.
The contribution from the fermion box diagram will be

—12H;jy = —4(8;j0u + Sudji + 8udx)
» 1
No. of permutations of (ijkl)

xﬂlf}j

€{u,d,e} permutations of (ijkl)

fyl vy v
WAAAATAR

(C26)

This yields the RGEs for the coefficients f;;;; defined in
Eq. (C5). To obtain the RGEs for the individual quartic
couplings /; in Eq. (25), one can write the f; ki as linear
combinations of the 4; and solve the set of linear equations.
The multiple redundant solutions for each /; can be used as
a check of the algebraic implementation.
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