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We study the effects of custodial symmetry violation in the Georgi-Machacek (GM) model. The GM
model adds isospin-triplet scalars to the Standard Model in a way that preserves custodial symmetry at tree
level; however, this custodial symmetry has long been known to be violated at the one-loop level by
hypercharge interactions. We consider the custodial-symmetric GM model to arise at some high scale as a
result of an unspecified ultraviolet completion and quantify the custodial symmetry violation induced as the
model is run down to the weak scale. The measured value of the electroweak ρ parameter (along with
perturbative unitarity) lets us constrain the scale of the ultraviolet completion to lie below tens to hundreds
of tera-electron volts (TeV) over almost all of the parameter space. Subject to this constraint, we quantify
the size of other custodial-symmetry-violating effects at the weak scale, including custodial symmetry
violation in the couplings of the 125 GeV Higgs boson to W and Z boson pairs and mixings and mass
splittings among the additional Higgs bosons in the theory. We find that these effects are small enough that
they are unlikely to be probed by the Large Hadron Collider (LHC), but may be detectable at a future eþe−

collider. We note that the upper bound on the scale of the ultraviolet completion is large enough that virtual
effects from the ultraviolet completion will also be undetectable at the LHC. This means that the GMmodel
is a valid effective theory for LHC physics.
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I. INTRODUCTION

With the discovery of a Standard Model (SM)–like
Higgs boson at the CERN Large Hadron Collider (LHC)
in 2012 [1], we have the first direct access to the dynamics
of electroweak symmetry breaking. The simplest imple-
mentation of this dynamics is through a single complex
scalar field transforming as a doublet under the weak
SUð2ÞL gauge symmetry; this is consistent with experi-
mental data to date [2].
While at least one SUð2ÞL doublet is required to generate

the masses of the SM fermions in a gauge-invariant way,
the masses of the W and Z bosons can in principle also
receive contributions from scalars in larger representations
of SUð2ÞL. Such an extension to the Higgs sector is
severely constrained by measurements of the ρ parameter
[3], defined as the ratio of the strengths of the neutral

and charged weak currents in the low-energy limit
and measured to very high precision via the global
electroweak fit [4]. Indeed, unless the vacuum expectation
values (VEVs) of the larger representations are negligibly
small, the only viable models are those that preserve ρ ¼ 1

at tree level:
(i) models with extra SUð2ÞL doublet(s) and/or

singlet(s);
(ii) a model with an extra SUð2ÞL septet with appro-

priately chosen hypercharge [5,6]; and
(iii) the Georgi-Machacek (GM) model [7,8] and its

generalizations to larger SUð2ÞL representations
[9–13].

In this paper we consider the GM model. In addition to
the usual SUð2ÞL doublet, this model contains two SUð2ÞL-
triplet scalar fields, arranged in such a way that the scalar
potential is invariant under a global SUð2ÞL × SUð2ÞR
symmetry; upon electroweak symmetry breaking, this
global symmetry breaks down to its diagonal subgroup
[known as the custodial SU(2)] and ρ ¼ 1 is thereby
preserved. The GM model gives rise to a rich and exotic
phenomenology, including singly and doubly charged
scalars that couple to vector boson pairs at tree level and
the possibility that the SM-like Higgs boson’s couplings to
WW and ZZ could be larger than in the SM. It has been used
as a benchmark by the LHC experiments for interpreting

*BenKeeshan@cmail.carleton.ca
†logan@physics.carleton.ca
‡Terence.Pilkington@fuw.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 015001 (2020)

2470-0010=2020=102(1)=015001(34) 015001-1 Published by the American Physical Society

https://orcid.org/0000-0002-1963-974X
https://orcid.org/0000-0002-0004-8675
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.015001&domain=pdf&date_stamp=2020-07-07
https://doi.org/10.1103/PhysRevD.102.015001
https://doi.org/10.1103/PhysRevD.102.015001
https://doi.org/10.1103/PhysRevD.102.015001
https://doi.org/10.1103/PhysRevD.102.015001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


searches for singly charged Higgs bosons decaying into
vector boson pairs [14,15].
However, it has been known since the early 1990s

that the custodial symmetry in the GM model holds
only at tree level [16]: the global SUð2ÞR symmetry is
explicitly violated by the gauging of hypercharge, which
leads to an uncontrolled violation of the custodial sym-
metry at one loop. The most obvious manifestation of this
is that the standard calculation of the Peskin-Takeuchi T
parameter [17] yields an infinite result; this infinity is
to be canceled by a counterterm that is absent in the
SUð2ÞL × SUð2ÞR-invariant potential of the GM model but
appears in the full gauge-invariant but custodial-symmetry-
violating theory [16].
A further manifestation, most relevant for our

purposes, is that it is not possible to compute a consistent
set of renormalization group equations (RGEs) for the
Lagrangian parameters of the custodial-symmetric GM
model unless one sets the hypercharge gauge coupling
to zero [18]. This implies that it is possible to choose the
Lagrangian parameters to preserve the custodial symmetry,
but only at one energy scale. To run away from that special
scale, one must use the RGEs computed in the full gauge-
invariant but custodial-symmetry-violating potential; the
hypercharge contribution then causes custodial symmetry
violation to build up as one runs. Reference [18] studied
this effect by assuming that the theory is custodial
symmetric at the weak scale and quantifying the amount
of custodial symmetry violation that develops as one runs
to higher scales.
In this paper we take a different approach. We imagine

that the custodial-symmetric GMmodel arises at some high
scale, for example as a theory of composite scalars with an
accidental global SUð2ÞL × SUð2ÞR symmetry in the scalar
sector. (Such models have been constructed in the context
of little Higgs theories in Refs. [19,20].) Below the
compositeness scale, custodial symmetry violation accu-
mulates through the running of the Lagrangian parameters
down to the weak scale. Weak-scale measurements of the ρ
parameter can then be used to constrain how high the
custodial-symmetric scale can be. Subject to this constraint,
we can also quantify the physical effects of custodial
symmetry violation in Higgs-sector observables, such as
the ratio of the SM-like Higgs boson couplings toWW and
ZZ and custodial-violating mixings and mass splittings
among the additional scalars in the GM model. We will
show that the custodial-symmetric scale can be as high as
tens to hundreds of TeV, and that the effects of custodial
symmetry violation at the weak scale are typically too small
to be detected at the LHC. The custodial-violation-induced
mass splittings may, however, be detectable at a future
eþe− collider. The fermiophobic scalars of the GM model
acquire small fermion couplings due to custodial-violation-
induced mixing, but the resulting branching ratios remain
subdominant even for scalar masses below about 160 GeV,

where fermionic decays could compete against the loop-
induced diphoton decays that otherwise put strong exper-
imental constraints on such light scalars.
Because our main objective is to quantify the custodial

symmetry violation allowed in the model given the stringent
experimental constraints on the ρ parameter, we find it
sufficient towork in the leading log approximation—i.e., we
use one-loop RGEs and tree-level matching. This is justified
by the tiny size of the custodial-violating effects that we find
overmost of the parameter space. Larger custodial-violating
effects arise when scalar masses in the custodial-symmetric
theory are tuned to be nearly degenerate, so that custodial
symmetry violation induces resonant mixing among mass
eigenstates. We handle these situations by exactly diagonal-
izing the resulting mass matrices; nevertheless, in the small
regions of parameter space around these resonances our
perturbative calculation remains unstable.
This paper is organized as follows. In Sec. II we review

the GMmodel with exact custodial symmetry in order to set
our notation. In Sec. III we write down the most general
gauge invariant scalar potential for the custodial-violating
theory with the same field content. In Sec. IV we compute
the masses and mixing angles of the physical scalars in the
custodial-violating theory and derive formulas for the most
interesting custodial-violating couplings. In Sec. V we
describe our calculational procedure and give our numeri-
cal results, using full scans of the parameter space as well as
a convenient benchmark plane for ease of interpretation. In
Sec. VI we conclude. In Appendix A we collect the one-
loop RGEs for the custodial-violating theory and give a
translation between our notation and that of Ref. [18]. In
Appendix B we collect the expressions for triple scalar
couplings in the custodial-violating theory. Finally in
Appendix C we give some details of our calculation method
for the RGEs.

II. GEORGI-MACHACEK MODEL WITH EXACT
CUSTODIAL SYMMETRY

The scalar sector of the GM model [7,8] consists of the
usual complex doublet ðϕþ;ϕ0Þ with hypercharge1 Y ¼ 1,
a real triplet ðξþ;ξ0;ξ−Þ with Y ¼ 0, and a complex
triplet ðχþþ; χþ; χ0Þwith Y ¼ 2. The doublet is responsible
for the fermion masses as in the SM. To make the global
SUð2ÞL × SUð2ÞR symmetry explicit, we write the doublet
in the form of a bidoublet Φ and combine the triplets to
form a bitriplet X:

Φ¼
�

ϕ0� ϕþ

−ϕþ� ϕ0

�
; X¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA: ð1Þ

1We use Q ¼ T3 þ Y=2.
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The VEVs are defined by hΦi ¼ vϕffiffi
2

p I2×2 and hXi ¼ vχI3×3,

where I is the appropriate identity matrix and the W and Z
boson masses constrain

v2ϕ þ 8v2χ ≡ v2 ¼ 1ffiffiffi
2

p
GF

≈ ð246 GeVÞ2; ð2Þ

where GF is the Fermi constant.
Upon electroweak symmetry breaking, the global

SUð2ÞL × SUð2ÞR symmetry breaks down to the diagonal
subgroup, which is the custodial SU(2) symmetry.
The most general gauge-invariant scalar potential involv-

ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [21], by2

VðΦ;XÞ¼ μ22
2
TrðΦ†ΦÞþμ23

2
TrðX†XÞþλ1½TrðΦ†ΦÞ�2

þλ2TrðΦ†ΦÞTrðX†XÞþλ3TrðX†XX†XÞ
þλ4½TrðX†XÞ�2−λ5TrðΦ†τaΦτbÞTrðX†taXtbÞ
−M1TrðΦ†τaΦτbÞðUXU†Þab
−M2TrðX†taXtbÞðUXU†Þab: ð3Þ

Here the SU(2) generators for the doublet representation
are τa ¼ σa=2 with σa being the Pauli matrices, the
generators for the triplet representation are

t1 ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; t2 ¼ 1ffiffiffi

2
p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA;

t3 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ð4Þ

and the matrix U, which rotates X into the Cartesian basis,
is given by [22]

U ¼

0
B@

− 1ffiffi
2

p 0 1ffiffi
2

p

− iffiffi
2

p 0 − iffiffi
2

p

0 1 0

1
CA: ð5Þ

The minimization conditions for the scalar potential read

0 ¼ ∂V
∂vϕ ¼ vϕ

h
μ22 þ 4λ1v2ϕ þ 3ð2λ2 − λ5Þv2χ −

3

2
M1vχ

i
;

0 ¼ ∂V
∂vχ ¼ 3μ23vχ þ 3ð2λ2 − λ5Þv2ϕvχ

þ 12ðλ3 þ 3λ4Þv3χ −
3

4
M1v2ϕ − 18M2v2χ : ð6Þ

The physical fields can be organized by their trans-
formation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and
triplet states are given by

Hþþ
5 ¼ χþþ; Hþ

5 ¼ðχþ−ξþÞffiffiffi
2

p ; H0
5¼

ffiffiffi
2

3

r
ξ0;r−

ffiffiffi
1

3

r
χ0;r;

Hþ
3 ¼−sHϕþþcH

ðχþþξþÞffiffiffi
2

p ; H0
3¼−sHϕ0;iþcHχ0;i;

ð7Þ

where the VEVs are parametrized by

cH ≡ cos θH ¼ vϕ
v
; sH ≡ sin θH ¼ 2

ffiffiffi
2

p
vχ

v
; ð8Þ

and we have decomposed the neutral fields into real and
imaginary parts according to

ϕ0 →
vϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ; χ0 → vχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → vχ þ ξ0;r: ð9Þ

The masses within each custodial multiplet are degenerate
at tree level and can be written (after eliminating μ22 and μ23
in favor of the VEVs) as3

m2
5 ¼

M1

4vχ
v2ϕþ12M2vχ þ

3

2
λ5v2ϕþ8λ3v2χ ;

m2
3 ¼

M1

4vχ
ðv2ϕþ8v2χÞþ

λ5
2
ðv2ϕþ8v2χÞ¼

�
M1

4vχ
þ λ5

2

�
v2:

ð11Þ

The two custodial SU(2)–singlet mass eigenstates are
given by

2A translation table to other parametrizations in the literature
has been given in the appendix of Ref. [21].

3Note that the ratio M1=vχ is finite in the limit vχ → 0,

M1

vχ
¼ 4

v2ϕ
½μ23 þ ð2λ2 − λ5Þv2ϕ þ 4ðλ3 þ 3λ4Þv2χ − 6M2vχ �; ð10Þ

which follows from the minimization condition ∂V=∂vχ ¼ 0.
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h¼ cosαϕ0;r− sinαH00
1 ; H¼ sinαϕ0;rþ cosαH00

1 ; ð12Þ

where

H00
1 ¼

ffiffiffi
1

3

r
ξ0;r þ

ffiffiffi
2

3

r
χ0;r: ð13Þ

Their mixing angle and masses are given by

sin2α¼ 2M2
12

m2
H−m2

h

; cos2α¼M2
22−M2

11

m2
H −m2

h

;

m2
h;H ¼ 1

2

�
M2

11þM2
22∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11−M2
22Þ2þ4ðM2

12Þ2
q �

;

ð14Þ

where we choose mh < mH, and

M2
11 ¼ 8λ1v2ϕ;

M2
12 ¼

ffiffiffi
3

p

2
vϕ½−M1 þ 4ð2λ2 − λ5Þvχ �;

M2
22 ¼

M1v2ϕ
4vχ

− 6M2vχ þ 8ðλ3 þ 3λ4Þv2χ : ð15Þ

We will later apply constraints on the parameters
of the custodial-symmetric scalar potential from perturba-
tive unitarity of two-to-two scalar scattering amplitudes
and bounded-from-belowness of the scalar potential.
Perturbative unitarity requires that the λi obey the following
relations [21,22]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6λ1 − 7λ3 − 11λ4Þ2 þ 36λ22

q
þ j6λ1 þ 7λ3 þ 11λ4j < 4π;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2λ1 þ λ3 − 2λ4Þ2 þ λ25

q
þ j2λ1 − λ3 þ 2λ4j < 4π;

j2λ3 þ λ4j < π;

jλ2 − λ5j < 2π:

ð16Þ

Requiring that the scalar potential is bounded from below
imposes the following constraints [21]:

λ1> 0;

λ4>

(
−1

3
λ3 for λ3 ≥ 0;

−λ3 for λ3< 0;

λ2>

8>>><
>>>:

1
2
λ5−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ð13λ3þλ4Þ

q
for λ5 ≥ 0 and λ3 ≥ 0;

ωþðζÞλ5−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðζλ3þλ4Þ

p
for λ5 ≥ 0 and λ3< 0;

ω−ðζÞλ5−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðζλ3þλ4Þ

p
for λ5 < 0;

ð17Þ

where

ω�ðζÞ ¼
1

6
ð1 − BÞ �

ffiffiffi
2

p

3

�
ð1 − BÞ

�
1

2
þ B

��
1=2

;

B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
ζ −

1

3

�s
∈ ½0; 1�; ð18Þ

and Eq. (17) must be satisfied for all values of ζ ∈ ½1
3
; 1�.

III. CUSTODIAL VIOLATION AND THE MOST
GENERAL GAUGE-INVARIANT SCALAR

POTENTIAL

To allow for custodial symmetry violation, we rewrite
the scalar potential in Eq. (3) in the most general SUð2ÞL ×
Uð1ÞY gauge invariant form, following Ref. [16]. We define
the scalar fields in SUð2ÞL vector notation as

ϕ¼
�
ϕþ

ϕ0

�
; χ¼

0
B@
χþþ

χþ

χ0

1
CA; ξ¼

0
B@

ξþ

ξ0

−ξþ�

1
CA; ð19Þ

with VEVs given by [compare Eq. (9)]

ϕ0 →
ṽϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ; χ0 → ṽχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → ṽξ þ ξ0;r: ð20Þ

We use tildes to denote the VEVs, parameters, and mass
eigenstates of the custodial-violating theory. The VEVs of
these three fields will be determined by GF according to
[compare Eq. (2)]

ṽ2ϕ þ 4ṽ2χ þ 4ṽ2ξ ≡ ṽ2 ¼ 1ffiffiffi
2

p
GF

¼ v2 ð21Þ

and will be constrained by the ρ parameter,

ρ ¼ ṽ2ϕ þ 4ṽ2χ þ 4ṽ2ξ
ṽ2ϕ þ 8ṽ2χ

¼ v2

v2 þ 4ðṽ2χ − ṽ2ξÞ
: ð22Þ

For convenience, we define the conjugate multiplets,

ϕ̃≡ C2ϕ
� ¼

�
0 1

−1 0

�
ϕ� ¼

�
ϕ0�

−ϕþ�

�
;

χ̃ ≡ C3χ
� ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CAχ� ¼

0
B@

χ0�

−χþ�

χþþ�

1
CA: ð23Þ

We also define the following matrix forms of the triplet
fields,
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Δ2 ≡
ffiffiffi
2

p
τaUaiχi ¼

�
χþ=

ffiffiffi
2

p
−χþþ

χ0 −χþ=
ffiffiffi
2

p
�
;

Δ0 ≡
ffiffiffi
2

p
τaUaiξi ¼

�
ξ0=

ffiffiffi
2

p
−ξþ

−ξþ� −ξ0=
ffiffiffi
2

p
�
;

Δ̄0 ≡ −taUaiξi ¼

0
B@

−ξ0 ξþ 0

ξþ� 0 ξþ

0 ξþ� ξ0

1
CA: ð24Þ

The most general gauge invariant scalar potential can then be written as

Vðϕ; χ; ξÞ ¼ μ̃22ϕ
†ϕþ μ̃023 χ

†χ þ μ̃23
2
ξ†ξþ λ̃1ðϕ†ϕÞ2 þ λ̃2j χ̃†χj2 þ λ̃3ðϕ†τaϕÞðχ†taχÞ þ ½λ̃4ðϕ̃†τaϕÞðχ†taξÞ þ H:c:�

þ λ̃5ðϕ†ϕÞðχ†χÞ þ λ̃6ðϕ†ϕÞðξ†ξÞ þ λ̃7ðχ†χÞ2 þ λ̃8ðξ†ξÞ2 þ λ̃9jχ†ξj2 þ λ̃10ðχ†χÞðξ†ξÞ

−
1

2
½M̃0

1ϕ
†Δ2ϕ̃þ H:c:� þ M̃1ffiffiffi

2
p ϕ†Δ0ϕ − 6M̃2χ

†Δ̄0χ: ð25Þ

Note that λ̃4 and M̃0
1 are complex in general, while the

rest of the parameters are real. We have adopted
the same notation as in Eq. (3.2) of Ref. [16] for
the coefficients of the quartic terms, and we have added
the trilinear terms that were eliminated in Ref. [16]
by the imposition of a Z2 symmetry. This scalar
potential has also been written down (for real λ̃4 and
M̃0

1) in Ref. [18]; we give a translation table to their
notation in Appendix A.
We note that the last term in Eq. (25) can also be

written as

−6M̃2χ
†Δ̄0χ ¼ −6M̃2ϵijk χ̃iξjχk; ð26Þ

where ϵijk is the totally antisymmetric tensor with
ϵ123¼þ1.
In the custodially symmetric limit, the Lagrangian

parameters in the gauge-invariant scalar potential in
Eq. (25) reduce to those in the custodially symmetric
potential in Eq. (3) according to

μ̃22 ¼ μ22;

μ̃023 ¼ μ23;

μ̃23 ¼ μ23;

λ̃1 ¼ 4λ1;

λ̃2 ¼ 2λ3;

λ̃3 ¼ −2λ5;

λ̃4 ¼ −
ffiffiffi
2

p
λ5;

λ̃5 ¼ 4λ2;

λ̃6 ¼ 2λ2;

λ̃7 ¼ 2λ3 þ 4λ4;

λ̃8 ¼ λ3 þ λ4;

λ̃9 ¼ 4λ3;

λ̃10 ¼ 4λ4;

M̃0
1 ¼ M1;

M̃1 ¼ M1;

M̃2 ¼ M2; ð27Þ

where the relations among the quadratic and quartic couplings are in agreement with Ref. [16].
Replacing the fields with their VEVs and assuming CP conservation, the most general scalar potential becomes

Vðvϕ; vχ ; vξÞ ¼
μ̃22
2
ṽ2ϕ þ μ̃023 ṽ

2
χ þ

μ̃23
2
ṽ2ξ þ

λ̃1
4
ṽ4ϕ þ

λ̃3
4
ṽ2ϕṽ

2
χ þ

λ̃4ffiffiffi
2

p ṽ2ϕṽχ ṽξ þ
λ̃5
2
ṽ2ϕṽ

2
χ þ

λ̃6
2
ṽ2ϕṽ

2
ξ þ λ̃7ṽ4χ þ λ̃8ṽ4ξ þ λ̃10ṽ2χ ṽ2ξ

−
M̃0

1

2
ṽ2ϕṽχ −

M̃1

4
ṽ2ϕṽξ − 6M̃2ṽ2χ ṽξ: ð28Þ

Minimizing this potential yields three equations:
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0 ¼ ∂V
∂ṽϕ ¼ ṽϕ

�
μ̃22 þ λ̃1ṽ2ϕ þ

λ̃3
2
ṽ2χ þ

ffiffiffi
2

p
λ̃4ṽχ ṽξ

þ λ̃5ṽ2χ þ λ̃6ṽ2ξ − M̃0
1ṽχ −

M̃1

2
ṽξ

�
; ð29Þ

0 ¼ ∂V
∂ṽχ ¼ 2μ̃023 ṽχ þ

λ̃3
2
ṽ2ϕṽχ þ

λ̃4ffiffiffi
2

p ṽ2ϕṽξ þ λ̃5ṽ2ϕṽχ þ 4λ̃7ṽ3χ

þ 2λ̃10ṽχ ṽ2ξ −
M̃0

1

2
ṽ2ϕ − 12M̃2ṽχ ṽξ; ð30Þ

0 ¼ ∂V
∂ṽξ ¼ μ̃23ṽξ þ

λ̃4ffiffiffi
2

p ṽ2ϕṽχ þ λ̃6ṽ2ϕṽξ þ 4λ̃8ṽ3ξ

þ 2λ̃10ṽ2χ ṽξ −
M̃1

4
ṽ2ϕ − 6M̃2ṽ2χ : ð31Þ

When the SUð2ÞL × SUð2ÞR symmetry is imposed, these
conditions reduce to those in Eq. (6).
The one-loop RGEs for the parameters of the most

general gauge invariant potential are given in Appendix A
for completeness.

IV. PHYSICAL MASSES AND MIXING IN THE
CUSTODIAL SYMMETRY VIOLATING THEORY

Isolating all terms quadratic in scalar fields from the
potential and using Eqs. (29)–(31) to eliminate μ̃22, μ̃

02
3 , and

μ̃23 in favor of the VEVs yields the following mass matrices
for the physical scalars.
There is only one doubly charged scalar, H̃þþ

5 ¼ χþþ ¼
Hþþ

5 , and its mass is given by

m2
H̃þþ

5

¼ 4λ̃2ṽ2χ −
λ̃3ṽ2ϕ
2

−
λ̃4ṽ2ϕṽξ

2
ffiffiffi
2

p
ṽχ

þ M̃0
1

4ṽχ
ṽ2ϕþ12M̃2ṽξ: ð32Þ

There are two CP-odd neutral scalars (one of which
becomes the neutral Goldstone boson), whose mass-
squared matrix in the basis ðχ0;i;ϕ0;iÞ is given by

M2
i ¼

�M2
i;11 M2

i;12

M2
i;12 M2

i;22

�
; ð33Þ

where

M2
i;11 ¼ −

λ̃4ṽ2ϕṽξ

2
ffiffiffi
2

p
ṽχ

þ M̃0
1

4ṽχ
ṽ2ϕ;

M2
i;22 ¼ −2

ffiffiffi
2

p
λ̃4ṽχ ṽξ þ 2M̃0

1ṽχ ;

M2
i;12 ¼ λ̃4ṽϕṽξ −

M̃0
1ffiffiffi
2

p ṽϕ: ð34Þ

Note that the mass-squared matrix for the neutral
imaginary states can be written as

M2
i ¼

�
M̃0

1

4ṽχ
−

λ̃4ṽξ
2
ffiffiffi
2

p
ṽχ

� ṽ2ϕ −
ffiffiffi
8

p
ṽϕṽχ

−
ffiffiffi
8

p
ṽϕṽχ 8ṽ2χ

!
: ð35Þ

This matrix is easily diagonalized, yielding exact mass
eigenstates

G̃0 ¼ ṽϕϕ0;iþ ffiffiffi
8

p
ṽχχ0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ṽ2ϕþ8ṽ2χ
q ; H̃0

3¼
−
ffiffiffi
8

p
ṽχϕ0;iþ ṽϕχ0;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṽ2ϕþ8ṽ2χ

q ;

ð36Þ

where G̃0 is the (massless) neutral Goldstone boson and the
mass of H̃0

3 is given by

m2
H̃0

3

¼
�
M̃0

1

4ṽχ
−

λ̃4ṽξ
2
ffiffiffi
2

p
ṽχ

�
ðṽ2ϕ þ 8ṽ2χÞ: ð37Þ

There are three singly charged scalars (one of which
becomes the charged Goldstone boson), whose mass-
squared matrix in the basis ðχþ; ξþ;ϕþÞ is given by

M2þ ¼

0
BB@

M2
þ;11 M2

þ;12 M2
þ;13

M2
þ;12 M2

þ;22 M2
þ;23

M2
þ;13 M2

þ;23 M2
þ;33

1
CCA; ð38Þ

where

M2
þ;11 ¼ −

λ̃3ṽ2ϕ
4

−
λ̃4ṽ2ϕṽξ

2
ffiffiffi
2

p
ṽχ

þ λ̃9ṽ2ξ þ
M̃0

1

4ṽχ
ṽ2ϕ þ 6M̃2ṽξ;

M2
þ;22 ¼ −

λ̃4ṽ2ϕṽχffiffiffi
2

p
ṽξ

þ λ̃9ṽ2χ þ
M̃1

4ṽξ
ṽ2ϕ þ 6M̃2

ṽ2χ
ṽξ

;

M2
þ;33 ¼ −λ̃3ṽ2χ −

ffiffiffi
2

p
λ̃4ṽχ ṽξ þ M̃1ṽξ þ M̃0

1ṽχ ;

M2
þ;12 ¼

λ̃4ṽ2ϕ
2
ffiffiffi
2

p − λ̃9ṽχ ṽξ − 6M̃2ṽχ ;

M2
þ;13 ¼

λ̃3ṽϕṽχ
2

−
M̃0

1

2
ṽϕ;

M2
þ;23 ¼

λ̃4ṽϕṽχffiffiffi
2

p −
M̃1

2
ṽϕ: ð39Þ

We first transform this mass-squared matrix into the basis
of custodial-symmetric states ðHþ

5 ; H
þ
3 ; G

þÞ using

M02þ ¼ RþM2þRTþ; ð40Þ

where the orthogonal matrix Rþ is defined according to
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0
B@

Hþ
5

Hþ
3

Gþ

1
CA ¼ Rþ

0
B@

χþ

ξþ

ϕþ

1
CA; ð41Þ

with

Rþ ¼

0
BBB@

1ffiffi
2

p − 1ffiffi
2

p 0

cHffiffi
2

p cHffiffi
2

p −sH
sHffiffi
2

p sHffiffi
2

p cH

1
CCCA: ð42Þ

Because the custodial-symmetry-violating effects will be
small, we can diagonalize the mass-squared matrix M02þ
using first-order perturbation theory over most of the
parameter space, as detailed below. This gives some
analytic insight into the structure of the custodial-
symmetry-violating effects. Of course, the perturbative
diagonalization only works well when the diagonal ele-
ments of the mass-squared matrix are not too degenerate;
this condition is satisfied over the parameter space of the
H5plane benchmark, but is violated in some regions of
parameter space in our general scans. For this reason, in
Sec. V we will use the first-order perturbative formulas
below in our scans of the H5plane benchmark, but exact
numerical diagonalization for our general scans. We have
checked numerically that the perturbative diagonalization is
a very good approximation where we use it.
To first order in the custodial violation, the masses of the

singly charged physical mass eigenstates H̃þ
5 and H̃þ

3 are
just given by the diagonal elements of the mass-squared
matrix,

m2
H̃þ

5

¼ M02
þ;11; m2

H̃þ
3

¼ M02
þ;22: ð43Þ

The compositions of the mass eigenstates are given to first
order using

H̃n ¼ Hn þ
X
m≠n

M2
nm

M2
nn −M2

mm
Hm; ð44Þ

where M2 is the mass-squared matrix in the appropriate
basis. Applying this to the singly charged states and using
the fact that M2

þ;33 ¼ 0, we get

H̃þ
5 ¼Hþ

5 þ M02
þ;12

M02
þ;11−M02

þ;22
Hþ

3 þM02
þ;13

M02
þ;11

Gþ

¼ χþ−ξþffiffiffi
2

p þ
�
cH

M02
þ;13

M02
þ;11

− sH
M02

þ;12

M02
þ;11−M02

þ;22

�
ϕþ

þ
�
sH

M02
þ;13

M02
þ;11

þcH
M02

þ;12

M02
þ;11−M02

þ;22

�
χþþξþffiffiffi

2
p ; ð45Þ

H̃þ
3 ¼ Hþ

3 þ M02
þ;12

M02
þ;22 −M02

þ;11
Hþ

5 þM02
þ;23

M02
þ;11

Gþ; ð46Þ

G̃þ ¼ Gþ þ M02
þ;13

−M02
þ;11

Hþ
5 þ M02

þ;23

−M02
þ;22

Hþ
3 : ð47Þ

We highlight the composition of H̃þ
5 in particular because

the custodial symmetry violation results in an admixture of
ϕþ into this state. This allows H̃þ

5 to couple to fermions,
which does not occur in the custodial-symmetric GM
model. Indeed, we can write the Feynman rule for the
H̃þ

5 ūd vertex as

H̃þ
5 ūd∶ i

ffiffiffi
2

p

v
Vudκ

H̃þ
5

f ðmuPL −mdPRÞ; ð48Þ

where the coupling to fermions induced by the custodial
symmetry violation is, to first order,

κ
H̃þ

5

f ¼ M02
þ;13

M02
þ;11

− tan θH
M02

þ;12

M02
þ;11 −M02

þ;22
: ð49Þ

For comparison, in the custodial-symmetric GM model we
can write the analogous coupling of Hþ

3 to fermion pairs

as κ
Hþ

3

f ¼ − tan θH.
Finally, there are three CP-even neutral scalars, whose

mass-squared matrix in the basis ðχ0;r; ξ0;r;ϕ0;rÞ is given by

M2
r ¼

0
BB@

M2
r;11 M2

r;12 M2
r;13

M2
r;12 M2

r;22 M2
r;23

M2
r;13 M2

r;23 M2
r;33

1
CCA; ð50Þ

where

M2
r;11 ¼ −

λ̃4ṽ2ϕṽξ

2
ffiffiffi
2

p
ṽχ

þ 4λ̃7ṽ2χ þ
M̃0

1

4ṽχ
ṽ2ϕ;

M2
r;22 ¼ −

λ̃4ṽ2ϕṽχffiffiffi
2

p
ṽξ

þ 8λ̃8ṽ2ξ þ
M̃1

4ṽξ
ṽ2ϕ þ 6M̃2

ṽ2χ
ṽξ

;

M2
r;33 ¼ 2λ̃1ṽ2ϕ;

M2
r;12 ¼

λ̃4ṽ2ϕ
2

þ 2
ffiffiffi
2

p
λ̃10ṽχ ṽξ − 6

ffiffiffi
2

p
M̃2ṽχ ;

M2
r;13 ¼

λ̃3ṽϕṽχffiffiffi
2

p þ λ̃4ṽϕṽξ þ
ffiffiffi
2

p
λ̃5ṽϕṽχ −

M̃0
1ṽϕffiffiffi
2

p ;

M2
r;23 ¼

ffiffiffi
2

p
λ̃4ṽϕṽχ þ 2λ̃6ṽϕṽξ −

M̃1ṽϕ
2

: ð51Þ

We first transform this mass-squared matrix into the basis
of custodial-symmetric states ðH0

5; H
00
1 ;ϕ

0;rÞ using
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M02
r ¼ RrM2

rRT
r ; ð52Þ

where the orthogonal matrix Rr is defined according to

0
B@

H0
5

H00
1

ϕ0;r

1
CA ¼ Rr

0
B@

χ0;r

ξ0;r

ϕ0;r

1
CA; ð53Þ

with

Rr ¼

0
BBBBB@

−
ffiffi
1
3

q ffiffi
2
3

q
0ffiffi

2
3

q ffiffi
1
3

q
0

0 0 1

1
CCCCCA: ð54Þ

To first order in the custodial symmetry violation, the mass
of H̃0

5 is given by

m2
H̃0

5

¼ M02
r;11: ð55Þ

It is most straightforward to find the masses of h̃ and H̃ by
diagonalizing the remaining 2 × 2 block ofM02

r as follows:

m2
h̃;H̃

¼ 1

2

�
M02

r;33þM02
r;22

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM02

r;33−M02
r;22Þ2þ4ðM02

r;23Þ2
q �

: ð56Þ

The mixing angle that achieves this diagonalization is
given by

sin 2α̃ ¼ 2M02
r;23

m2
H̃
−m2

h̃

; cos 2α̃ ¼ M02
r;22 −M02

r;33

m2
H̃
−m2

h̃

; ð57Þ

where the states are given in terms of α̃ by

hα̃ ¼ cα̃ϕ0;r − sα̃H00
1 ; Hα̃ ¼ sα̃ϕ0;r þ cα̃H00

1 ; ð58Þ

and we have defined cα̃ ¼ cos α̃, sα̃ ¼ sin α̃. (Note that
these are not yet the mass eigenstates: there is still a small
mixing with H0

5 to be dealt with below.) We introduce a
second orthogonal rotation matrix Rα̃, defined according to0

B@
H0

5

Hα̃

hα̃

1
CA ¼ Rα̃

0
B@

H0
5

H00
1

ϕ0;r

1
CA; ð59Þ

with

Rα̃ ¼

0
B@

1 0 0

0 cα̃ sα̃
0 −sα̃ cα̃

1
CA: ð60Þ

The mass-squared matrix in the basis ðH0
5; Hα̃; hα̃Þ is then

given by

M002
r ¼ Rα̃M02

r RT
α̃ ¼

0
BB@

M002
r;11 M002

r;12 M002
r;13

M002
r;12 M002

r;22 0

M002
r;13 0 M002

r;33

1
CCA: ð61Þ

Note that M002
r;11 ¼ M02

r;11. The masses of h̃ and H̃ can
then be written (to first order in the custodial symmetry
violation) in terms of the diagonal elements of this
matrix as

m2
h̃
¼ M002

r;33; m2
H̃
¼ M002

r;22: ð62Þ

We now use Eq. (44) to write the compositions of the
CP-even neutral mass eigenstates to first order in the
custodial violation as

H̃0
5 ¼ H0

5 þ
M002

r;12

M002
r;11 −M002

r;22
Hα̃ þ

M002
r;13

M002
r;11 −M002

r;33
hα̃

¼
� ffiffiffi

2

3

r
ξ0;r −

ffiffiffi
1

3

r
χ0;r
�
þ
�
sα̃

M002
r;12

M002
r;11 −M002

r;22
þ cα̃

M002
r;13

M002
r;11 −M002

r;33

�
ϕ0;r

þ
�
cα̃

M002
r;12

M002
r;11 −M002

r;22
− sα̃

M002
r;13

M002
r;11 −M002

r;33

�� ffiffiffi
1

3

r
ξ0;r þ

ffiffiffi
2

3

r
χ0;r
�
; ð63Þ

H̃ ¼ Hα̃ þ
M002

r;12

M002
r;22 −M002

r;11
H0

5; ð64Þ

h̃ ¼ hα̃ þ
M002

r;13

M002
r;33 −M002

r;11
H0

5: ð65Þ

We highlight the composition of H̃0
5 in particular

because the custodial symmetry violation results in an
admixture of ϕ0;r into this state. This allows H̃0

5 to couple
to fermions, which does not occur in the custodial-
symmetric GM model. The coupling of H̃0

5 to f̄f, normal-
ized to the corresponding coupling of the SM Higgs boson,

KEESHAN, LOGAN, and PILKINGTON PHYS. REV. D 102, 015001 (2020)

015001-8



is then given to first order in the custodial symmetry
violation by

κ
H̃0

5

f ¼ 1

cH

�
sα̃

M002
r;12

M002
r;11 −M002

r;22
þ cα̃

M002
r;13

M002
r;11 −M002

r;33

�
: ð66Þ

Finally, the mixing of a small amount of custodial-
fiveplet H0

5 into the physical Higgs boson h̃, together with
ṽχ ≠ ṽξ, leads to a violation of custodial symmetry in the
couplings of h̃ to WW and ZZ. This is parametrized in
terms of the physical observable

λh̃WZ ≡ κh̃W
κh̃Z

; ð67Þ

where κh̃W and κh̃Z are the couplings of h̃ to WW and ZZ,
respectively, normalized to the corresponding couplings of
the SM Higgs boson. We can write this in terms of the
VEVs and the mixing with H0

5 as follows:

λh̃WZ ¼ κ̃hα̃W þ ϵκ̃
H0

5

W

κ̃hα̃Z þ ϵκ̃
H0

5

Z

; ð68Þ

where the couplings of hα̃ to W and Z boson pairs,
including the effects of ṽχ ≠ ṽξ, are given by

κ̃hα̃W ¼cα̃
ṽϕ
v
−sα̃

4ffiffiffi
3

p ṽχþ ṽξ
v

; κ̃hα̃Z ¼cα̃
ṽϕ
v
−sα̃

8ffiffiffi
3

p ṽχ
v
; ð69Þ

the couplings of H0
5 to W and Z boson pairs are given by

κ̃
H0

5

W ¼
ffiffiffi
2

3

r
4ṽξ − 2ṽχ

v
≃

1ffiffiffi
3

p sH;

κ̃
H0

5

Z ¼ −
ffiffiffi
2

3

r
4ṽχ
v

≃ −
2ffiffiffi
3

p sH; ð70Þ

and the mixing of H0
5 into h̃ from Eq. (65) is

ϵ ¼ M002
r;13

M002
r;33 −M002

r;11
: ð71Þ

V. NUMERICAL RESULTS

A. Calculational procedure

In this paper, we imagine that the custodially symmetric
GM model emerges at some scale Λ as an effective theory

of some unspecified ultraviolet (UV) completion. For
example, the scalars in the GM model could be composites
and the custodial symmetry an accidental global symmetry
resulting from the particle content of the UV theory. The
running of the scalar potential parameters down to the weak
scale induces custodial symmetry violation. We can then
use the experimental constraint on the ρ parameter at the
weak scale to set an upper bound on the scale Λ. Subject to
this constraint, we can also predict the size of other
custodial symmetry violating effects such as mass splittings
among the members of the custodial fiveplet and triplet
scalars, mixing between scalars in different custodial-
symmetry representations (which, for example, can induce
fermionic decays of the otherwise fermiophobic H5 states),
and the value of the ratio λWZ ≡ κW=κZ of the 125 GeV
Higgs boson (predicted as λWZ ¼ 1 in custodial-symmetric
theories).
For concreteness, we start our analysis within the context

of the so-called H5plane benchmark, which is a two-
dimensional slice through the custodial-symmetric GM
model parameter space as defined in Table I at the weak
scale. This benchmark was introduced in Ref. [23] for
interpretation of LHC searches for H�

5 and H��
5 , and its

phenomenology was studied in some detail in Ref. [24].
The H5plane benchmark takes m5 and sH as its two free
parameters: this will allow us to plot our results as contours
in the m5 − sH plane. The benchmark is defined for m5

values of 200 GeV and higher. To test the generality of our
results in the H5plane benchmark we then perform a
general parameter scan and compare the results to the
benchmark region. The parameter points are generated and
checked for theoretical consistency using the public code
GMCALC [25]. The input parameters used in the general
scan are given in Table II. We finally perform a second
dedicated parameter scan focusing on m5 masses below
200 GeV, to cover the region in which the H5plane
benchmark is not defined. A dedicated scan is needed in

TABLE I. Input parameters for the H5plane benchmark scenario [23] in the custodial-symmetric GM model.

Fixed parameters Variable parameters Dependent parameters

GF ¼ 1.1663787 × 10−5 GeV−2 m5 ∈ ½200; 3000� GeV λ2 ¼ 0.4m5=ð1000 GeVÞ
mh ¼ 125 GeV sH ∈ ð0; 1Þ M1 ¼

ffiffiffi
2

p
sHðm2

5 þ v2Þ=v
λ3 ¼ −0.1 M2 ¼ M1=6
λ4 ¼ 0.2

TABLE II. Input parameters for the general scan in the
custodial-symmetric GM model.

Fixed parameters Variable parameters

GF ¼ 1.1663787 × 10−5 GeV−2 μ23 ∈ ½−ð200 GeVÞ2;
ð4200 GeVÞ2�

mh ¼ 125 GeV λ2, λ3, λ4, λ5
M1, M2
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this region because only a small fraction of scanned points
satisfy the theoretical constraints. The input parameters
used in this dedicated low-m5 scan are given in Table III.
Results of this dedicated scan are collected in Sec. V F.
We perform the calculations as follows. We start by

specifying an input point in the custodial-symmetric GM
model at theweak scale. Because it is not possible to separate
the scale of the GMmodel states from the SMweak scale so
long as the triplets contribute to electroweak symmetry
breaking, for the purposes of renormalization group running
we will define the “weak scale” to be m5 as defined in the
custodial-symmetric low-scale input parameter set. We
define the electroweak gauge couplings at the weak scale
in terms of the inputs GF, MW , and MZ, and we take
αsðMZÞ ¼ 0.118 to define the strong coupling at the weak
scale (we ignore the running of the strong coupling between
MZ andm5; this is a small effect because the strong coupling
only enters in the running of the top Yukawa coupling). We
extract the value of the top Yukawa coupling using the
relation yt ¼

ffiffiffi
2

p
mt=vϕ evaluated in terms of the custodial-

symmetric input parameters at the weak scale. For simplic-
ity, we set yb ¼ yτ ¼ 0; their effects would be very small.
We then run the parameters of the custodial-symmetric

scalar potential up to a scale Λ using the RGEs in
Eqs. (A1)–(A16) but with g1 set to zero. We also run
the gauge couplings (including the actual value of g1) and
the top Yukawa coupling from m5 to Λ using Eqs. (A18)–
(A21). For the running we use fourth-order Runge-Kutta
with a small step size. The result of this is a custodial-
symmetric scalar potential at the scale Λ. At this stage we
can check whether any of the quartic scalar couplings has
grown large enough to violate perturbative unitarity (indi-
cating that we have almost run into a Landau pole). This
allows us to determine the maximum scale allowed by
perturbativity. We also check whether the potential has
become unbounded from below; this turns out not to
happen for any of our scan points in the H5plane bench-
mark or in the general parameter scans. Because the
potential is still custodial symmetric, we can use the
requirements for perturbative unitarity and boundedness
from below as derived for the custodial-symmetric theory
[21] as given at the end of Sec. II.
From the custodial-symmetric scalar potential at scale Λ,

we then run back down to the scale m5 using the full RGEs

in Eqs. (A1)–(A21) with g1 ≠ 0. The nonzero hypercharge
coupling induces custodial symmetry violation in the scalar
potential, causing violation of the custodial-symmetry
relations of Eq. (27) among the parameters of the most
general gauge invariant scalar potential. Having determined
the custodial violating parameters we can now solve the
minimization conditions in Eqs. (29), (30), and (31) for the
custodial-violating VEVs ṽϕ, ṽχ , and ṽξ. First we solve
Eq. (29) for ṽ2ϕ in terms of the other VEVs and plug this into
Eqs. (30) and (31), which we then solve numerically using
a two-dimensional Newton’s method. For the initial guess
we take ṽχ ¼ ṽξ ¼ vχ , where vχ is the custodial-symmetric
triplet VEV in our original weak-scale input point.
However, this procedure suffers from a complication.

The definition of the original weak-scale input point uses
the measured mh and GF as input parameters. These are
used to fix λ1 and μ22 in the weak-scale custodial-symmetric
theory. After running the parameters up to the scale Λ using
the custodial-symmetric RGEs (with g0 set to zero) and then
running them back down to the weak scale with the full
custodial-violating RGEs, the new weak-scale calculations
of mh̃ and G−1

F ¼ ffiffiffi
2

p ðṽ2ϕ þ 4ṽ2χ þ 4ṽ2ξÞ yield numbers that
do not match the original input values. To address this, we
need to adjust the custodially symmetric weak-scale input
values for λ1 and μ22 (while keeping all the other weak-scale
inputs fixed) until we obtain the correct experimental
values of mh̃ and GF after implementing the custodial
symmetry violation. We do this by defining two functions,
f1 ¼ mcalc

h̃
ðλ1; μ22Þ −mexpt

h and f2 ¼ Gcalc
F ðλ1; μ22Þ − Gexpt

F ,

where λ1 and μ22 are the inputs at the weak scale, mcalc
h̃

and Gcalc
F are calculated using the procedure described

above, and mexpt
h and Gexpt

F are the desired (experimental)
values. The solution is the point at which f1 ¼ f2 ¼ 0,
which we find iteratively using a two-dimensional
Newton’s method. This involves running the full RGE
machinery up and down multiple times and is the slowest
part of our numerical work. The same is generically true for
mt (which we use to fix the top quark Yukawa coupling yt
at the weak scale). In the H5plane benchmark, the change to
mt after running up and back down again is within the
current experimental error so we ignore this effect. In the
general parameter scans, however, the change in mt can be
larger, so in these scans we extend the iterative procedure to
include yt.
Having solved for the appropriate input values of λ1 and

μ22, we now have a self-consistent set of scalar potential
input parameters at the weak scale (μ ¼ m5), corresponding
to a custodial-symmetric theory at the high scale (μ ¼ Λ),
which we then run back down to obtain the custodial-
violating theory at the weak scale (again m5) with the
correct predictions for mh and GF. We then calculate our
desired observables including the ρ parameter, the mass
splittings among the states of the would-be custodial

TABLE III. Input parameters for the dedicated low-m5 scan in
the custodial-symmetric GM model.

Fixed parameters Variable parameters

GF ¼ 1.1663787 × 10−5 GeV−2 m5 < 200 GeV
mh ¼ 125 GeV sH ∈ ð0; 1Þ

λ2, λ3, λ4, λ5
M2 ∈ ½−1200 GeV;
1200 GeV�
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multiplets, and the effects of the mixing among the would-
be custodial eigenstates.
In the rest of this section we present our results as

contour plots in the H5plane benchmark in the m5 − sH
plane and as scatter plots for the general scans. We
emphasize that m5 and sH here are defined as part of
the weak-scale custodial-symmetric input parameter point,
and do not directly correspond to the physical masses,
couplings, or VEVs of the corresponding parameter point
in the weak-scale custodial-violating theory. However, as
we will show in what follows, the deviations of these
physical observables from the custodial-symmetric input
parameters are small enough that the differences are
unlikely to be observable at the LHC.

B. Constraints on the cutoff scale from
perturbativity and the ρ parameter

We begin by determining the maximum scale allowed for
the custodial-symmetric ultraviolet completion by running
the custodial-symmetric model up until we hit a Landau
pole. This is shown in the left panel of Fig. 1 in the H5plane
benchmark. The shaded region at large sH in these plots is
excluded by theoretical constraints on the custodial-
symmetric model. We define the Landau pole as the scale
at which any of the custodial-symmetric quartic couplings
λi become larger than 103; the true divergence happens
extremely close to this scale. In the right panel of Fig. 1 we
also show the scale at which the quartic couplings in the
custodial-symmetric theory violate any of the conditions
for perturbative unitarity of two-to-two scattering ampli-
tudes given in Eq. (16). We can see that the scale at which
perturbative unitarity is violated is roughly an order of
magnitude below the scale of the Landau pole. Within the
H5plane benchmark, if the theory is to remain perturbative

the ultraviolet completion has to appear at 290 TeV or
below, and the maximum scale of the Landau pole in this
benchmark is around 2600 TeV. For m5 ≳ 400 GeV, the
upper bound on sH from theory constraints in the H5plane
benchmark is due to the perturbative unitarity constraint;
therefore along this boundary the scale of perturbative
unitarity violation is essentially the same as m5, and the
Landau pole occurs around 10 TeV.
We also note that in the H5plane benchmark, the value of

λ2 at theweak scale grows linearlywithm5 (seeTable I). This
is responsible for the decrease in the scale of perturbative
unitarity violation and the subsequent Landau pole with
increasing m5 at small sH values, and is a quirk of the
H5plane benchmark.
In all the scans that follow, we take the scale of

perturbative unitarity violation to be an upper bound on
the scale of the custodial-symmetric theory, and we do not
run above this scale.
The maximum allowed scale of the custodial-symmetric

ultraviolet completion can also be constrained by the
stringent experimental limits on the ρ parameter, as defined
in Eq. (22). For this calculation (and those that follow), we
bring to bear the full computational machinery described in
Sec. VA, including adjusting the input values of λ1 and μ22
to obtain the correct measured values of GF and mh in the
custodial-violating theory at the weak scale. We take the
current value of ρ from the 2016 Particle Data Group
electroweak fit [4],

ρ ¼ 1.00037� 0.00023; ð72Þ

and require that the value of ρ in the weak-scale custodial-
violating theory be within 2σ of this value, i.e., between
ρlower ¼ 0.99991 and ρupper ¼ 1.00083. Because the
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FIG. 1. Constraints on the custodial-symmetric cutoff scale due to perturbativity of the model in the H5plane benchmark. Left: the
scale of the Landau pole, defined as the scale at which any of the λi in the custodial-symmetric theory becomes larger than 103. This
scale varies between 2.5 TeVand 2594.2 TeVover the benchmark considered. Right: the highest scale at which the perturbative unitarity
constraints of Eq. (16) in the custodial-symmetric theory remain satisfied. This scale varies between 346.8 GeVand 291.1 TeVover the
benchmark considered.
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deviation in the ρ parameter in the custodial-violating
weak-scale theory grows as the scale of the custodial-
symmetric ultraviolet completion increases, this constraint
puts a stronger upper bound on the scale of the ultraviolet
completion in part of the H5plane benchmark parameter
space, as shown in the left panel of Fig. 2, where we also
plot the upper bound from requiring perturbative unitarity.
The ρ parameter constraint is stronger than that from
perturbative unitarity for moderate sH values and m5 below
about 850 GeV.
In the right panel of Fig. 2 we plot contours of ρ at the

weak scale in the custodial-violating theory after running

down from the maximum scale allowed by the stronger
of the perturbative unitarity and ρ parameter constraints.
ρ > 1 in almost all of the H5plane benchmark, except for a
tiny sliver of parameter space at lowm5 < 250 GeV and sH
below 0.4.
In Fig. 3 we show scatter plots comparing the perturba-

tive unitarity constraints in the H5plane benchmark to the
results of the general scan. In the left panel we plot the
maximum cutoff scale Λ versus m5 while in the right panel
we plot it versus sH. For high values of m5 we find that the
H5plane benchmark gives cutoff scales lower than are
typical in the general scan. This is expected because the
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FIG. 2. Values of and constraints due to the ρ parameter in the H5plane benchmark. Left: the highest scale at which the perturbative
unitarity constraints of Eq. (16) in the custodial-symmetric theory remain satisfied as in the right panel of Fig. 1 (solid lines), showing
also the highest allowed custodial-symmetric scale after requiring that the ρ parameter remain within �2σ of its experimental value
[Eq. (72)] in the custodial-violating weak-scale theory (dashed lines). The range of scales allowed after imposing the ρ parameter
constraint remains the same as in Fig. 1. Right: the value of ρ in the weak-scale custodial-violating theory when the custodial-symmetric
scale is taken as large as possible subject to perturbative unitarity at the high scale and the experimental limits on ρ. The values of ρ range
between the �2σ limits of 0.99991 and 1.00083.

FIG. 3. The highest allowed custodial-symmetric cutoff scale due to perturbative unitarity of the quartic couplings in a general scan
(red) and in the H5plane benchmark (black), as a function ofm5 (left) and sH (right). The highest allowed cutoff scale in the general scan
ranges between 207 GeVand 1.6 × 1011 GeV, though almost all points lie below∼2 × 109 GeV. (The point with the highest cutoff scale
is at the upper edge of the plots at m5 ¼ 681 GeV and sH ≃ 0.12.)
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quartic coupling λ2 grows with m5 in the H5plane bench-
mark, putting those points closer to the limit from pertur-
bative unitarity. For lower m5 values, the H5plane
benchmark tends to give cutoff scales which are larger
than typical in the general scan. This is a statistical effect
caused by the fact that much of the parameter space in the
general scan tends to have one or more quartic coupling
already moderately large, while in the H5plane benchmark
specific (smaller) parameter values have been chosen by
hand. Similarly, points in the H5plane benchmark yield
higher maximum cutoff scales than typical points in the
general scan for all values of sH. The points in the general
scan with very high maximum cutoff scales cluster at low
sH below 0.2.
In Fig. 4 we again show scatter plots comparing the

maximum cutoff scale in the H5plane benchmark to the

results of the general scan, now imposing the requirement
that the ρ parameter at the weak scale is within 2σ of its
experimental value in addition to the perturbative unitarity
requirement. The ρ parameter constraint lowers the maxi-
mum allowed cutoff scale in both the H5plane benchmark
and the general scan, and brings the two distributions
closer to each other. At lower m5 values the H5plane
benchmark still permits somewhat atypically large cutoffs
but it gives mostly typical cutoff values for higher values of
sH. The general scan still admits higher cutoff scales than
the H5plane benchmark (particularly at large m5), but the
highest cutoff scale in the general scan is now less than
an order of magnitude higher than that in the H5plane
benchmark.
In Fig. 5 we plot the value of the weak-scale ρ parameter

when the cutoff scale is at its maximum value allowed by

FIG. 4. The highest allowed custodial-symmetric cutoff scale imposing perturbative unitarity and the requirement that the weak-scale
ρ parameter lies within �2σ of its measured value. Red points are for a general scan and black are for the H5plane benchmark. The
highest allowed cutoff scale in the general scan ranges between 205 GeV and 1.8 × 109 GeV, though almost all the points lie below
∼2 × 106 GeV. (The point with the highest cutoff scale is at the upper edge of the plots at m5 ¼ 681 GeV and sH ≃ 0.12.)

FIG. 5. The weak-scale ρ parameter evaluated with the cutoff scale at its maximum allowed value in a general scan (red) and in the
H5plane benchmark (black). Both the general scan and the H5plane benchmark populate the entire �2σ allowed region of
ρ ∈ ð0.99991; 1.00083Þ.
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perturbative unitarity and the experimental constraints on ρ
in the H5plane benchmark and the general scan. We see
that, as in the H5plane benchmark, the general scan yields
ρ ≥ 1 in the overwhelming majority of parameter space (as
mildly favored by experiment). Indeed, the region at very
low m5 in the H5plane benchmark in which ρ < 1 is quite
atypical in the general scan. The general scan also tends to
give slightly larger values of ρ at higher m5, as one would
expect given the higher maximum cutoff scales (and hence
more custodial-symmetry-violation-inducing running) in
this mass range in the general scan.

C. Custodial violation in couplings

Custodial symmetry violation can modify the phenom-
enology of the GM model by changing the decay patterns
of the physical Higgs bosons. The most experimentally
interesting manifestations of this are in the ratio of the
couplings of the SM-like Higgs boson mass eigenstate h̃ to
W boson and Z boson pairs, λh̃WZ ≡ κh̃W=κ

h̃
Z [Eq. (67)], and

in the couplings of the otherwise-fermiophobic mass
eigenstates H̃�

5 and H̃0
5 to fermion pairs induced by

custodial-violating mixing among the custodial-symmetry
eigenstates [Eqs. (49) and (66)]. In what follows we
maximize the custodial-violating effects by taking the scale
of the custodial-symmetric theory as high as possible,
subject to the constraints from perturbative unitarity and the
ρ parameter. In what follows, we focus on the H5plane
benchmark and its comparison to a general parameter scan.
We discuss the dedicated low-m5 parameter scan in
Sec. V F.
In Fig. 6 we plot the deviation of λh̃WZ from its SM value

of 1 in the H5plane benchmark. The effect is tiny, reaching
at most half a percent in a small region of the H5plane

benchmark with m5 ≲ 250 GeV and moderate values of
sH; for larger m5, the deviation is below two per mille.
This deviation is well below the sensitivity of the current
experimental measurement at the LHC, λh̃WZ ¼ 0.88þ0.10

−0.09
[2]. It is also below the expected sensitivity obtained by
combining the projections for the measurement precision
of the SM Higgs couplings κW and κZ at the High-
Luminosity LHC (a few percent) and the proposed
International Linear eþe− Collider (ILC) (roughly half
a percent) as summarized in Ref. [26]. The proposed
Future Circular Collider (FCC-ee) could begin to reach
the required precision, with projected sensitivity for κW
and κZ of 1.5 to 2 per mille [27].4

In Fig. 7 we compare the value of λh̃WZ evaluated with the
maximum allowed cutoff scale in the H5plane benchmark
(black points) to the results of a general parameter scan (red
points). The range of deviations in the H5plane benchmark
is representative of that in the general scan, except for
m5 ≃ 200 GeV and moderate sH in which the H5plane
benchmark probes a rather atypical region of parameter
space in which negative deviations of up to half a percent
are possible. In the general scan the deviation is typically
below 0.2%.
In Fig. 8 we plot the custodial-violation-induced cou-

pling and branching ratio of H̃0
5 to fermions in the H5plane

benchmark. The H̃0
5 coupling to fermions κ

H̃0
5

f reaches a
magnitude of at most 0.04 in the H5plane benchmark,
leading to fermion-induced (e.g., via gluon fusion) pro-
duction cross sections at most ð0.04Þ2 ¼ 1.6 × 10−3 times
that of a SM Higgs boson of the same mass. Potentially
more interesting is the effect of this coupling on the H̃0

5

decays: as shown in the right panel of Fig. 8, the branching
ratio of H̃0

5 to fermions can reach almost half a percent in
the H5plane benchmark. For H̃0

5 masses above 350 GeV,
these fermionic decays are overwhelmingly into tt̄ pairs.

In Fig. 9 we compare these results to the range of κ
H̃0

5

f

accessible in the general parameter scan. The general scan
can yield significantly larger values of this custodial-
violation-induced coupling, reaching as high as �0.5
and populating both positive and negative values. The
maximum size of the coupling grows with sH. In contrast,
the H5plane benchmark yields quite small couplings of
magnitude at most 0.04 and mainly negative values. The
large custodial-symmetry-violating coupling values in the
general scan are due to resonant mixing between the H0

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200  400  600  800  1000  1200  1400  1600  1800  2000

s H

m5 [GeV]

-1 ×
 10

-3
0

5 × 10 -4

1 × 10-3

2.5 × 10-4

1.4 × 10-3

FIG. 6. Contours of δλh̃WZ ≡ λh̃WZ − 1 in the H5plane bench-
mark, taking the scale of the custodial-symmetric theory to be as
large as possible subject to perturbative unitarity and the ρ

parameter constraint. δλh̃WZ varies between −5.1 × 10−3 and
1.4 × 10−3.

4Because these coupling extraction methods are based on
measurements of Higgs production cross sections and decay
branching ratios, they probe only the magnitude of λh̃WZ, not the
sign; a method involving the dependence of the h̃ → 4l decay
distributions on the h̃WW coupling at one loop provides
sensitivity to the sign of λh̃WZ, but can achieve a precision only
of order 20%–50% at the High-Luminosity LHC [28].
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and H states when their masses are nearly degenerate. We
illustrate this in the left panel of Fig. 10, where we
plot BRðH̃0

5 → ff̄Þ as a function of the mass difference
between H̃0

5 and H̃. In the mass-degenerate region the
mixing is enhanced and fermionic branching ratios on the
order of 10%–20% are possible. We also show this branch-
ing ratio as a function ofm5 in the right panel of Fig. 10; the
branching ratio to fermions reaches its maximum for m5

between 600 and 800 GeV and falls with increasing m5.
In Fig. 11 we plot the custodial-violation-induced

coupling and branching ratio of H̃�
5 to fermions in the

H5plane benchmark. The H̃�
5 coupling to fermions κ

H̃þ
5

f

reaches a magnitude of at most 0.052 in the H5plane
benchmark. Again, production processes involving H̃þ

5

coupling to fermions, such as associated production
with a top quark, will have cross sections that are far
too small to be interesting at the LHC. The branching ratio
of H̃þ

5 → tb̄ can reach 1.2%, as shown in the right panel
of Fig. 11.
In Fig. 12 we compare these results to the range of κ

H̃þ
5

f
accessible in the general parameter scan. The general scan
can again yield larger values of this custodial-violation-
induced coupling, reaching a magnitude of at most 0.3
and populating both positive and negative values. The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200  400  600  800  1000  1200  1400  1600  1800  2000

s H

m5 [GeV]

-0.03

-0.01

-0.001

-0.001

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200  400  600  800  1000  1200  1400  1600  1800  2000

s H

m5 [GeV]

1 ×
 10

-6

3 × 10-3

4.5 × 10-3

1 × 10-3

1 × 10-4

FIG. 8. The coupling of H̃0
5 to fermions and the resulting fermionic branching ratio in the H5plane benchmark, taking the scale of the

custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Left: contours of

κ
H̃0

5

f [defined above Eq. (66)]. The allowed values range between −4.0 × 10−2 and 2.0 × 10−3. Right: contours of the branching ratio of

H̃0
5 to fermions. We compute only the partial width to the heaviest kinematically accessible pair of fermions; i.e., to tt̄ formH̃0

5
> 2mt and

bb̄ otherwise. The branching ratio of H̃0
5 to fermions ranges from 3.5 × 10−11 to 4.8 × 10−3.

FIG. 7. λh̃WZ ≡ κh̃W=κ
h̃
Z evaluated with the maximum allowed cutoff scale for a general parameter scan (red) and in the H5plane

benchmark (black), as a function ofm5 (left) and sH (right). The minimum value in the general scan is 0.99934, and the maximum value
is 1.00197.
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maximum size of the coupling again grows with sH. In
contrast, the H5plane benchmark yields somewhat smaller
values of this coupling of at most 0.052 and only populates
positive values. The large custodial-symmetry-violating
coupling values that can be obtained in the general scan
are again a consequence of resonant mixing, this time
between the Hþ

5 and the Hþ
3 states when they are nearly

degenerate. We illustrate this in the left panel of Fig. 13,
where we plot BRðH̃þ

5 → ff̄0Þ as a function of the mass
difference between H̃þ

5 and H̃þ
3 . In this mass-degenerate

region the mixing is enhanced and fermionic branching
ratios on the order of 20%–30% are possible. We also show
this branching ratio as a function ofm5 in the right panel of
Fig. 13; the branching ratio to fermions again falls with
increasing m5.

The custodial-violation-induced decays of H̃0
5 and H̃�

5

to fermion pairs do not dramatically alter the phenom-
enology within the H5plane benchmark, and do so in the
general scans only when there are near mass degeneracies
with the fermiophilic heavy Higgs bosons H or Hþ

3 .
Potentially more interesting is the effect of fermionic
decays of these particles for low masses below the WW
or WZ thresholds, when the dominant diboson decays of
these scalars go off shell. In the custodial-symmetric GM
model, H0

5 decays to γγ and Hþ
5 decays to Wþγ become

interesting for these low masses [29–31]; competition
from custodial-violation-induced fermionic decays could
dramatically change the phenomenology in this mass
region. We perform a detailed study of this low m5 region
in Sec. V F.

FIG. 10. Branching ratio of H̃0
5 → ff̄ evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the

H5plane benchmark (black), as a function of the mass difference mH̃0
5
−mH̃ showing the resonant mixing effect (left) and m5 (right).

The maximum branching ratio to fermions in the general scan is 19%.

FIG. 9. The coupling κ
H̃0

5

f of H̃0
5 to fermions evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in

the H5plane benchmark (black), as a function of m5 (left) and sH (right). In the general scan the coupling ranges between −0.50 and
þ0.50 (for rare points at large sH between 0.5 and 0.6). This coupling is zero in the custodial-symmetric model.
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FIG. 11. The coupling of H̃þ
5 to fermions and the resulting fermionic branching ratio in the H5plane benchmark, taking the scale of the

custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Left: contours of

κ
H̃þ

5

f [defined in Eq. (48)]. The allowed values range between 1.0 × 10−4 and 5.2 × 10−2. Right: contours of the branching ratio of H̃þ
5 to

fermions, including only the decay to tb̄. This branching ratio ranges from 2.0 × 10−8 to 1.2 × 10−2.

FIG. 12. The coupling κ
H̃þ

5

f of H̃þ
5 to fermions evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the

H5plane benchmark (black), as a function of m5 (left) and sH (right). In the general scan the coupling ranges between −0.22 and þ0.29.

FIG. 13. Branching ratio of H̃þ
5 → tb̄ evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the

H5plane benchmark (black), as a function of the mass difference mH̃þ
5
−mH̃þ

3
showing the resonant mixing effect (left) and m5 (right).

The maximum branching ratio to fermions in the general scan is 29%.
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D. Custodial-violating mass splittings

Custodial symmetry violation also induces splittings
between the masses of the otherwise-degenerate custodial
fiveplet and triplet states. These splittings follow a universal
pattern everywhere within the H5plane benchmark and
over the vast majority of the parameter space of our general
scans. We again maximize the custodial-violating effects in
what follows by taking the scale of the custodial-symmetric
theory as high as possible, subject to the constraints from
perturbative unitarity and the ρ parameter.
Among the custodial-triplet mass eigenstates, H̃0

3 is
almost always heavier than H̃þ

3 , and both of these masses
are shifted up relative to theweak-scale custodial-symmetric
input value of m3. The splittings are small, as shown in

Fig. 14 for the H5plane benchmark: the mass difference
between H̃0

3 and H̃
þ
3 reaches at most 5.3 GeV (left panel of

Fig. 14). The shift of the H̃0
3 mass upward from the input

value of m3 is shown in the right panel of Fig. 14 and is at
most 9.1 GeV. The shift of the H̃þ

3 mass from the input m3

value is smaller, reaching at most 3.9GeVin the benchmark.
In Fig. 15 we compare the mass splittings among the

custodial triplet states in the H5plane benchmark (black
points) to the results of a general scan (red points). In the
left panel we plot mH̃þ

3
−mH̃0

3
versus m5, and in the right

panel we plot mH̃þ
3
−mH̃0

3
versus sH. The range of mass

splittings obtained in the H5plane benchmark is generally
typical of the results of the general scan, except that the
general scan generates a small number of points with mass
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FIG. 14. The mass splittings within the custodial triplet in the H5plane benchmark, taking the scale of the custodial-symmetric theory
to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Left: mH̃þ

3
−mH̃0

3
. This quantity is negative

because H̃þ
3 is lighter than H̃0

3. The mass splitting ranges between zero and 5.3 GeV. Right: mH̃0
3
−m3, where m3 is the weak-scale

custodial-symmetric input value of the custodial triplet mass. mH̃0
3
and mH̃þ

3
are both larger than m3 over the entire benchmark. In our

numerical scan, the difference between mH̃0
3
and m3 ranges between 4 MeV and 9.1 GeV.

FIG. 15. Mass splitting mH̃þ
3
−mH̃0

3
evaluated with the maximum allowed cutoff scale in a general parameter scan (red) and in the

H5plane benchmark (black), as a function of m5 (left) and sH (right). This quantity is negative because H̃þ
3 is lighter than H̃0

3. The mass
splitting in the general scan ranges between þ0.25 GeV and −23 GeV.
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splittings up to 4 times as large as in the benchmark. There
are also a very small number of points in the general scan
with the opposite mass hierarchy, for which H̃þ

3 becomes
heavier than H̃0

3 by up to 0.25 GeV.
Among the custodial-fiveplet mass eigenstates, H̃þþ

5 is
almost always the heaviest, followed by H̃þ

5 and then H̃0
5.

Again the mass splittings are small, as shown in Fig. 16 for
the H5plane benchmark. The top left panel of Fig. 16 shows
the mass difference between H̃þþ

5 and H̃0
5, which is at most

7.2 GeV. The mass of H̃þ
5 falls between these two, but

closer to the lighter H̃0
5 state: the mass difference between

H̃þ
5 and H̃0

5 reaches at most 1.8 GeV, as shown in the top
right panel of Fig. 16. The mass of H̃0

5 remains within
2.3 GeVof the weak-scale custodial-symmetric input value
of m5, but can be heavier or lighter: this is plotted in the
bottom left panel of Fig. 16. The mass of H̃þþ

5 is always

larger than m5, with the difference reaching a maximum
of 9.0 GeV, as shown in the bottom right panel of Fig. 16.
The smallness of these shifts of the physical H̃5 masses
relative to the weak-scale custodial-symmetric input value
of m5 justifies our use of this input value on the x axis of
the plots.
In Fig. 17 we compare the mass splittings among the

custodial fiveplet states in the H5plane benchmark (black
points) to the results of a general scan (red points) as a
function of m5. We show mH̃þþ

5
−mH̃0

5
(top left), mH̃þ

5
−

mH̃0
5
(top right), and mH̃þþ

5
−mH̃þ

5
(bottom). Again the

ranges of mass splittings obtained in the H5plane bench-
mark are generally typical of the results in the general scan,
except that the general scan generates a small number of
points with mass splittings up to 6 times as large as in the
benchmark. There are also a very small number of points in
the general scan with the opposite mass hierarchy for which
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FIG. 16. The mass splittings within the custodial fiveplet in the H5plane benchmark, taking the scale of the custodial-symmetric
theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Top left: mH̃þþ

5
−mH̃0

5
. This mass

splitting ranges between 4.0 MeV and 7.2 GeV. Top right: mH̃þ
5
−mH̃0

5
. This mass splitting ranges between 6.0 MeV and 1.8 GeV.

Bottom left:mH̃0
5
−m5, wherem5 is the weak-scale custodial-symmetric input value of the custodial fiveplet mass. This mass difference

ranges between −1.5 GeV and 2.3 GeV. Bottom right: mH̃þþ
5

−m5. mH̃þþ
5

is always larger than m5, with the difference ranging between

7.0 MeV and 9.0 GeV.
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H̃þ
5 becomes lighter than H̃0

5 by up to 1.5 GeV. It is also
possible in the general scan to have a large mass spitting
between the H̃þþ

5 and H̃0
5 but a small mass splitting

between H̃þ
5 and the H̃0

5.
Examining the contours in Figs. 14 and 16, it is apparent

that within the H5plane benchmark the mass splittings

within the fiveplet and within the triplet tend to follow a
common pattern albeit with different scaling. In particular,
the splitting mH̃þþ

5
−mH̃0

5
is very close to 4 times that of

mH̃þ
5
−mH̃0

5
. To understand this behavior we expand the

mass splittings to first order in the custodial violation, such
that x̃ ¼ xþ δx. The mass splittings become

mH̃þþ
5

−mH̃0
5
¼ 1

2m5

��
v2ϕd2 þ v2ϕ

1

6vχ
d3 þ v2ϕ

M1

6v2χ
d1 − vχ

32

3
λ3d1 þ 16M2d1

�
þ 2v2ϕ

3vχ
λ5d1 þ v2χd4

�
; ð73Þ

mH̃þ
5
−mH̃0

5
¼ 1

2m5

�
1

4

�
v2ϕd2 þ v2ϕ

1

6vχ
d3 þ v2ϕ

M1

6v2χ
d1 − vχ

32

3
λ3d1 þ 16M2d1

�
−

v2ϕ
6vχ

λ5d1 þ v2χd04

�
; ð74Þ

mH̃þ
3
−mH̃0

3
¼ 1

2m3

�
v2

4
d2 −

v2

8
d3 þ d1

�
−
v2

vχ

�
λ5
2
þ M1

8vχ

�
þ 2M1 þ

λ5
4vχ

ð16v2χ − v2Þ
��

; ð75Þ

where d1 through d4 and d04 are zero in the limit of exact custodial symmetry and are given by

FIG. 17. Mass splittings mH̃þþ
5

−mH̃0
5
(top left), mH̃þ

5
−mH̃0

5
(top right), and mH̃þþ

5
−mH̃þ

5
(bottom) as a function of m5, evaluated

with the maximum allowed cutoff scale in a general parameter scan (red) and in the H5plane benchmark (black). In the general scan
mH̃þþ

5
−mH̃0

5
ranges between zero and 34.5 GeV, mH̃þ

5
−mH̃0

5
ranges between −1.45 GeV and 22.3 GeV, and mH̃þþ

5
−mH̃þ

5
ranges

between zero and 34.4 GeV.
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d1 ¼ ṽξ − ṽχ ¼
v2

4vχ
Δρ;

d2 ¼
λ̃4ffiffiffi
2

p −
λ̃3
2
;

d3 ¼ M̃0
1 − M̃1;

d4 ¼ 4λ̃2 −
4

3
λ̃7 −

16

3
λ̃8 þ

8

3
λ̃10;

d04 ¼ 2λ̃9 −
4

3
λ̃7 −

16

3
λ̃8 þ

8

3
λ̃10: ð76Þ

The approximate relation mH̃þþ
5

−mH̃0
5
≃ 4ðmH̃þ

5
−mH̃0

5
Þ is

therefore to be expected because only the last two terms in
Eqs. (73) and (74) break this proportionality. Simply from
the generic size of the dimensionful parameters in the terms
that break this relation, we naively expect that they will be
subdominant contributors to the mass splittings. In the
general scan shown in Fig. 17 this relation tends to hold to a
good approximation throughout the parameter space but
can be badly broken by the enhanced mixing caused by
approximately degenerate charged eigenstates.
The similarities in the patterns of the fiveplet and triplet

mass splittings can also be explained by comparing their
approximate forms, as they both depend on the same terms
as the sources of custodial violation. Although these terms
come in with different coefficients, when a single term
dominates one expression, it will generally dominate all of
them. In the case of the custodial triplet, the splitting is
always negative because the dominant terms (mainly the
term proportional to d3, but the term proportional to d1 is
usually significant and sometimes dominant) tend not to
change sign throughout the whole parameter space. This
remains true for the general parameter scan shown in
Fig. 15 where the triplet mass splittings are overwhelm-
ingly negative even when ρ is less than 1.
In Fig. 18 we plot the shift of the mass of the physical

mass eigenstate H̃ relative to the weak-scale custodial-
symmetric input value of mH. The H̃ mass is shifted
upwards over almost all of the H5plane benchmark, and the
shift is by at most 5.6 GeV. We conclude that, within the
H5plane benchmark and even allowing for custodial
symmetry violation, the custodial-symmetric predictions
for the masses of the scalars in the model are reliable to
within better than 10 GeV.
Experimentally checking the mass degeneracy of the

scalars within the custodial triplet and the custodial fiveplet
has been proposed as a way to test the custodial symmetry
in the GM model [32,33]. At the LHC, mass reconstruction
of the H3 states relies on their decays to dijets, Hþ

3 → cs̄,
H0

3 → bb̄ [32]. Considering that the dijet invariant mass
resolution at the LHC is not sufficient to kinematically
separate the hadronic decays of the W and the Z with
their 11 GeV mass difference, it will not be possible
to resolve a custodial-symmetry-violation-induced mass

splitting between H̃þ
3 and H̃0

3 of at most 5.3 GeV within the
H5plane benchmark. Mass reconstruction of the H5 states
at the LHC relies on their decays to vector boson pairs VV.
Reference [32] studied the fully leptonic final states, in
which the masses ofHþþ

5 ,Hþ
5 , andH

0
5 could be determined

from the end point of the transverse mass distribution of the
VV final state. The resolution is worse than for a dijet
resonance. The ATLAS experiment has performed a search
forHþ

5 → WþZ → jjlþl− [14], in which reconstruction of
a mass peak for H̃þ

5 becomes possible; however, the mass
resolution is still limited by the dijet invariant mass reso-
lution of the LHC,which is too poor to resolve the custodial-
symmetry-violation-induced mass splitting among the H̃5

states spanning at most 7.2 GeV in the H5plane benchmark.
Larger mass splittings are possible for a small number of
points in the general scan, but these tend to appear at
relatively largem5 values so that the splittings remain below
a few percent of the overall scalar masses, smaller than the
single jet energy resolution of the LHC experiments at these
energies (see, e.g., Ref. [34]).
Prospects are somewhat better at the ILC, as studied

in Ref. [33]. H̃0
5 and H̃�

5 can be singly produced in
eþe− collisions via vector boson fusion or in association
with a Z or W∓ boson, respectively. In the clean lepton
collider environment, the H5 decays to dibosons can be
reconstructed using the fully hadronic final states.
With the ILC target dijet energy resolution of σE ¼ 0.3 ×ffiffiffiffiffiffiffi
Ejj

p
GeV [35], the dijet resolution will be σE ≃ 3 GeV

for Ejj ≃ 100 GeV, famously allowing for W and Z
bosons to be distinguished in the all-hadronic channel.
Unfortunately, even this excellent mass resolution is too
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FIG. 18. Deviation mH̃ −mH of the physical H̃ mass from the
mass of the heavier custodial singlet H in the weak-scale
custodial-symmetric theory, computed in the H5plane benchmark
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poor to resolve the custodial-symmetry-violation-induced
mass splitting between H̃þ

5 and H̃0
5, which reaches at most

1.8 GeV in the H5plane benchmark. One could hope to do
better by using the leptonic decays of H0

5 → ZZ → 4l and
H�

5 → W�Z → l�Emiss
T lþl−; these suffer from smaller

branching fractions, but may offer good enough mass
resolution to detect the mass splitting effect of the custodial
symmetry violation.

E. Direct search constraints

The most stringent direct search constraint on the
custodial-symmetric H5plane benchmark comes from a
CMS search for H��

5 produced in vector boson fusion and
decaying to W�W� → l�l�Emiss

T [36]. This constraint
excludes sH above 0.2 for m5 ¼ 200 GeV, rising to sH ¼
0.45 at m5 ¼ 1000 GeV. We can apply this straightfor-
wardly to the model with custodial symmetry violation by
noting the following. First, as shown in the bottom right
panel of Fig. 16, the physical mass of H̃þþ

5 is at most 5 GeV
higher than m5 in the region of interest in the H5plane
benchmark (and not much different in the general scan).
Second, we show in Figs. 19 and 20 the shift in ṽχ , which
controls the H̃��

5 W∓W∓ coupling and hence the vector
boson fusion production cross section, relative to the
value of vχ in the weak-scale custodial-symmetric theory.
In the H5plane benchmark this shift is negative and
amounts to less than a percent, so that the cross section
is suppressed by no more than 2% due to the custodial
symmetry violation. In the general scan this conclusion
holds for sH values above 0.1 of interest to us here. Finally,
the custodial-symmetry-violation-induced mass splitting
between H̃þþ

5 and H̃þ
5 is less than 5 GeV in the region

of interest, too small for the cascade decay H̃��
5 → W�H̃�

5

to compete significantly with the dominant H̃��
5 → W�W�

signal channel. Thus we conclude that this direct search
constraint on the custodial symmetry violating parameter
space studied in this paper will be almost identical to that in
the custodial-symmetric H5plane benchmark.5

F. Low-m5 region

Finally in this subsection we present the results of a
dedicated general scan of the low-m5 region, focusing on
m5 < 200 GeV. As usual, we take the cutoff as large as
allowed by perturbative unitarity and the ρ parameter
constraint to maximize the amount of custodial symmetry
violation.
In Fig. 21 we show the maximum allowed cutoff

scale subject to perturbative unitarity of the quartic cou-
plings in the custodial-symmetric theory and the ρ param-
eter constraint, as a function of m5 (left) and sH (right).
Compared to the general scan for higher m5, the maximum
allowed cutoff tends to be lower, but large cutoff scales
on the order of 100 TeV are still somewhat common and
the maximum cutoff scale found in our scan is of order
1010 GeV.
Subject to these constraints, in Fig. 22 we show the value

of the ρ parameter in the weak-scale theory, again as a
function of m5 (left) and sH (right). The scan populates the
entirety of the allowed region; in particular, the small
allowed region with ρ < 1 is heavily populated. This is in
contrast to the general scan at larger m5, which strongly
favors ρ > 1.
We next consider custodial symmetry violation effects in

couplings. In Fig. 23 we show the ratio λh̃WZ of the 125 GeV
Higgs boson’s couplings toWW and to ZZ. In the left panel
we plot versus m5 while the right panel zooms in to λh̃WZ
between 0.9 and 1.1. The most dramatic feature is the
resonant mixing when H̃0

5 and h become degenerate, for

which deviations in λh̃WZ of tens of percent in either
direction are possible. Such large mixing also substantially
modifies the other couplings of h. Away from the resonant
region, λh̃WZ can deviate from one by as much as 1%–2%,
which is large enough to be probed at future eþe− colliders.
Of particular interest are decays of the would-be fermio-

phobic H5 states to fermion pairs induced by custodial
symmetry violation. We study this for H̃þ

5 in Fig. 24. In the

left panel we plot κ
H̃þ

5

f as a function ofm5. While the values
are tiny for most scan points, they can reach values as large
as about �0.3 for m5 close to 200 GeV. However, this does
not change the overall pattern of Hþ

5 decays; as shown in
the right panel of Fig. 24, the branching ratio intoWZ (red)
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FIG. 19. The fractional change in ṽχ relative to the weak-scale

custodial-symmetric input vχ , defined as ṽχ
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benchmark taking the scale of the custodial-symmetric theory to
be as large as possible subject to perturbative unitarity and the ρ
parameter constraint. The fractional change is always negative
and its absolute value reaches a maximum of 1.0%.

5Very recent LHC searches for H0
3 → Zh and H → hh may

further constrain the custodial-symmetric H5plane benchmark
[37] and are worth examining more closely in future work.
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FIG. 21. Maximum value of the custodial-symmetric cutoff scale subject to perturbative unitarity and the experimental constraint on
the ρ parameter in a general scan of the low-m5 region, as a function of m5 (left) and sH (right). The maximum cutoff scale ranges from
35 GeV (for very low m5) to 1.6 × 1010 GeV.

FIG. 20. The fractional change in ṽχ relative to the weak-scale custodial-symmetric input vχ , defined as ṽχ
vχ
− 1, as a function of m5

(left) and sH (right), evaluated with the maximum allowed cutoff scale in a general parameter scan (blue and red points) and in the
H5plane benchmark (black points). The fractional change can be positive (blue points) or negative (red points) in the general scan, but is
always negative in the H5plane benchmark (black points). The fractional change reaches maxima and minima of 0.55 and −1.66,
respectively, at very low sH, but for sH > 0.1 its absolute value reaches at most 0.0114.

FIG. 22. Value of the ρ parameter in a general scan of the low-m5 region as a function ofm5 (left) and sH (right), taking the scale of the
custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint.
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continues to dominate, with the loop-induced decay into
Wγ (green) becoming important for m5 below the WZ
kinematic threshold. The branching ratio into fermions
(black) remains small.
Decays of H0

5 to fermion pairs are studied in Fig. 25. In

the left panel we plot κ
H̃0

5

f as a function of m5. The values
are reasonably small except for m5 around 125 GeV,
where mixing between H0

5 and h becomes resonant. In the
right panel we show the branching ratios of H̃0

5. Decays to
fermion pairs (black points) can become dominant only in
the resonant-mixing region; away from m5 ≃ 125 GeV

the branching ratio to fermion pairs generally remains
below 10%, including at very low m5 values where the
branching ratio into γγ (red) remains dominant. This is
good news for the continued viability of the diphoton
resonance search to constrain H̃0

5 at low masses as
proposed in Ref. [29].
Mass splittings among the members of the custodial

fiveplet and triplet are shown in Fig. 26. As in the general
scans for larger m5, H̃

þþ
5 tends to be the heaviest of the

fiveplet states, followed by H̃þ
5 , with H̃0

5 the lightest.
Likewise H̃0

3 tends to be heavier than H̃þ
3 , though this

FIG. 23. λh̃WZ in a general scan of the low-m5 region as a function of m5, taking the scale of the custodial-symmetric theory to be as
large as possible subject to perturbative unitarity and the ρ parameter constraint. The right panel is a zoom of the y axis. In the resonant
mixing regionm5 ≃ 125 GeV we find values between 0.43 and 1.76, while away from this region λh̃WZ can deviate from one by as much
as 1%–2%.

FIG. 24. Custodial-symmetry-violation-induced couplings of H̃þ
5 to fermions in a general scan of the low-m5 region, taking the scale

of the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Left: κ
H̃þ

5

f as a

function ofm5. The minimum and maximum values are −0.29 and 0.34, respectively. Right: decay branching ratios of H̃þ
5 toWW (red),

Wγ (green), and ff̄ (black) as a function of m5. Decays to fermions are computed including only the dominant modes: tb above the tb
threshold and cs and cd below. The calculation of Hþ

5 → Wγ assumes an on-shell final-state W, so we plot the branching ratios only
between 80 and 200 GeV.
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FIG. 25. Custodial-symmetry-violation-induced couplings of H̃0
5 to fermions in a general scan of the low-m5 region, taking the scale of

the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. Left: κ
H̃0

5

f as a

function of m5. The minimum and maximum values are −0.46 and 0.71, respectively. Right: decay branching ratios of H̃0
5 to WW=ZZ

(blue), γγ (red), ff̄ (black), Zγ (orange), and custodial-violating decays to pairs of other scalars (green—a few points in the upper right
of the plot).

FIG. 26. Mass splittings among the members of the custodial fiveplet and triplet in a general scan of the low-m5 region, taking the
scale of the custodial-symmetric theory to be as large as possible subject to perturbative unitarity and the ρ parameter constraint. For the
fiveplet we show mH̃þþ

5
−mH̃0

5
(top left, ranging between −0.08 GeV and 10.6 GeV), mH̃þ

5
−mH̃0

5
(top right, ranging between

−0.33 GeV and 2.51 GeV), and mH̃þþ
5

−mH̃þ
5
(bottom left, ranging between −0.06 GeV and 8.44 GeV), and for the triplet we show

mH̃þ
3
−mH̃0

3
(bottom right, ranging between −4.17 GeV and 0.78 GeV).
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ordering can be reversed for a minority of the scan points.
The approximate relation mH̃þþ

5
−mH̃0

5
≃ 4ðmH̃þ

5
−mH̃0

5
Þ

holds true in the low-m5 scan as well. The custodial-
violating mass splittings are below 2 GeV in most of the
parameter space, and less than about 10 GeV over the
whole scan.
Finally in Fig. 27 we plot the fractional change in ṽχ

relative to the weak-scale custodial-symmetric input vχ ,

defined as ṽχ
vχ
− 1. This deviation can be positive (black

points) or negative (red points), though negative deviations
tend to occur only for m5 above 100 GeV. The absolute
value of the deviation is again small, below the percent
level unless sH is very small.

VI. CONCLUSIONS

In this paper we studied the effects of custodial
symmetry violation in the Georgi-Machacek model.
We considered the scenario in which the exactly
custodial-symmetric GM model emerges at some high
scale Λ as an effective low energy theory of an
unspecified ultraviolet completion, and then ran the
model down to the weak scale, through which running
the hypercharge interactions give rise to custodial
symmetry violation at one loop. The amount and pattern
of custodial symmetry violation at the weak scale, as
manifested through the couplings and masses of the
physical scalars, is uniquely determined by the param-
eters of the high-scale custodial-symmetric theory and
the value of the scale Λ and hence can be meaningfully
constrained by the measured value of the electroweak ρ
parameter.
To implement this program we used the most general

gauge invariant scalar potential for the theory, from

which we computed the minimization conditions for
the VEVs, and the expressions for the physical scalar
mass eigenstates. These allowed us to calculate the
custodial symmetry violating couplings of the physical
H̃0

5 and H̃þ
5 states to fermions, as well as the parameter

λh̃WZ ≡ κh̃W=κ
h̃
Z for the 125 GeV Higgs boson. We reder-

ived the renormalization group equations for the param-
eters of the most general scalar potential including CP
violation and confirm the results of Ref. [18] in the CP-
conserving limit. In our numerical implementation of the
RGE running we self-consistently adjusted the custodial-
symmetric inputs to obtain the correct values of the
physical 125 GeV Higgs boson mass, top quark mass,
and Fermi constant GF in the weak-scale custodial-
violating theory.
We presented numerical results in the H5plane bench-

mark (which helped make evident patterns such as the
relationship between the H̃þþ

5 –H̃þ
5 and the H̃þ

5 –H̃
0
5 mass

splittings) as well as a general scan over the full
parameter space. We showed that the results in the
H5plane benchmark are broadly typical of the full
parameter scan, though more extreme values can be
obtained in small regions of parameter space in the
general scan, particularly when the custodial-symmetric
mass spectrum is such that the mixing among scalars
in different custodial representations becomes resonant.
We also performed a dedicated general scan for low
m5 < 200 GeV, which is not captured in the H5plane
benchmark.
In each case, we determined the maximum allowed scale

of the custodial-symmetric theory imposing perturbative
unitarity of two-to-two scalar scattering amplitudes and the
experimental constraint on the ρ parameter. This allowed us
to quantify the maximum possible deviation of λh̃WZ from its

FIG. 27. Fractional deviation of ṽχ relative to the weak-scale custodial-symmetric input vχ , defined as
ṽχ
vχ
− 1, as a function ofm5 (left)

and sH (right) in a general scan of the low-m5 region, taking the scale of the custodial-symmetric theory to be as large as possible subject
to perturbative unitarity and the ρ parameter constraint. Positive deviations are shown in black and negative in red so that both can be
plotted on a log scale. The fractional deviation ranges between −1.66 and 0.55, with these large deviations appearing mainly at very
small sH .
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SM value, as well as the branching ratios of the other-
wise-fermiophobic H̃0

5 and H̃�
5 scalars into fermions and

the mass splittings within the custodial triplet and
fiveplet. We found that the scale of the custodial-
symmetric theory could be as high as tens to hundreds
of TeV, with an upper bound of 290 TeV in the H5plane
benchmark. We showed that λh̃WZ can deviate from its
SM value by at most two per mille when m5 > 200 GeV,
though larger deviations at the percent level are possible
in the low-m5 region even away from the resonant
mixing region m5 ≃mh. We also showed that the mass
splittings within the custodial triplet and the custodial
fiveplet are below 10 GeV over almost the entire
parameter space, reaching larger values only for large
scalar masses. Both of these custodial-violating effects
are too small to be probed at the LHC, but may be
detectable at a future eþe− collider. Finally we showed
that the fermionic branching ratios of H̃0

5 and H̃þ
5 remain

below the 10% level, even for H̃5 masses below the WW
and WZ thresholds where they can compete directly with
the loop-induced γγ and Wγ decay modes (with the
exception of a narrow region of resonant mixing between
H0

5 and h at 125 GeV). This preserves the usefulness of
the γγ decay mode to put strong constraints on H̃0

5 at low
masses.
From these results, we can draw two important con-

clusions about the GM model. The generically small
custodial-violating effects allow us to conclude that the
use of the custodial-symmetric GM model as a benchmark
model for LHC searches is justified. Furthermore, the large
upper bound on the scale of the UV completion suggests
that virtual effects from particles at the UV completion
scale will be highly suppressed and their contribution to
effective operators measured at the LHC will be too small
to detect. This means that not only is the GM model a

useful benchmark at the LHC but it is also a valid effective
theory at the weak scale.
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APPENDIX A: RENORMALIZATION
GROUP EQUATIONS FOR

LAGRANGIAN PARAMETERS

To run the parameters down from a custodial-symmetric
high scale to the weak scale, we need the RGEs for the
parameters of the most general gauge-invariant potential as
given in Eq. (25). RGEs can be calculated with the public
codes PyR@TE [38], a PYTHON code that generates two-loop
RGEs for nonsupersymmetric models, and SARAH [39],
a Mathematica package which can generate two-loop
RGEs for supersymmetric and nonsupersymmetric models.
PyR@TE requires the user to supply their ownGMmodel card
while SARAH provides a GM model card in an alternate
parametrization of the scalar potential. We determine the
RGEs using the formalism presented in Ref. [40], some
details of which are given in Appendix C. The resulting
equations are then (with t≡ log μ, where μ is the
energy scale),

16π2
dðμ̃22Þ
dt

¼ 3

2
M̃2

1 þ 3jM̃0
1j2 þ μ̃22

�
6y2b þ 6y2t þ 2y2τ −

9

10
g21 −

9

2
g22 þ 12λ̃1

�
þ 6μ̃23λ̃6 þ 6μ̃023 λ̃5; ðA1Þ

16π2
dðμ̃023 Þ
dt

¼ jM̃0
1j2 þ 144M̃2

2 þ μ̃023

�
8λ̃2 þ 16λ̃7 −

18

5
g21 − 12g22

�
þ 4μ̃22λ̃5 þ 2μ̃23ðλ̃9 þ 3λ̃10Þ; ðA2Þ

16π2
dðμ̃23Þ
dt

¼ M̃2
1 þ 144M̃2

2 þ 4μ̃23ð10λ̃8 − 3g22Þ þ 8μ̃22λ̃6 þ 4μ̃023 ðλ̃9 þ 3λ̃10Þ; ðA3Þ

16π2
dλ̃1
dt

¼ −6y4b − 6y4t − 2y4τ þ λ̃1

�
12y2b þ 12y2t þ 4y2τ −

9

5
g21 − 9g22 þ 24λ̃1

�

þ 27

200
g41 þ

9

8
g42 þ

9

20
g21g

2
2 þ

1

2
λ̃23 þ 2jλ̃4j2 þ 3λ̃25 þ 6λ̃26; ðA4Þ
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16π2
dλ̃2
dt

¼ 3g42 −
36

5
g21g

2
2 þ 12λ̃2

�
λ̃2 þ 2λ̃7 −

3

5
g21 − 2g22

�
−
1

2
λ̃23 þ λ̃29; ðA5Þ

16π2
dλ̃3
dt

¼ λ̃3

�
6y2b þ 6y2t þ 2y2τ þ 4λ̃1 − 8λ̃2 þ 8λ̃5 þ 4λ̃7 −

9

2
g21 −

33

2
g22

�
þ 36

5
g22g

2
1 þ 4jλ̃4j2; ðA6Þ

16π2
dλ̃4
dt

¼ λ̃4

�
6y2b þ 6y2t þ 2y2τ −

27

10
g21 −

33

2
g22 þ 4λ̃1 þ 2λ̃3 þ 4λ̃5 þ 8λ̃6 − 2λ̃9 þ 4λ̃10

�
; ðA7Þ

16π2
dλ̃5
dt

¼ λ̃5

�
6y2b þ 6y2t þ 2y2τ þ 4λ̃5 þ 12λ̃1 þ 8λ̃2 þ 16λ̃7 −

9

2
g21 −

33

2
g22

�

þ 27

25
g41 þ 6g42 þ 2λ̃23 þ 4jλ̃4j2 þ 4λ̃6λ̃9 þ 12λ̃6λ̃10; ðA8Þ

16π2
dλ̃6
dt

¼ λ̃6

�
6y2b þ 6y2t þ 2y2τ þ 8λ̃6 þ 12λ̃1 þ 40λ̃8 −

9

10
g21 −

33

2
g22

�
þ 3g42 þ 4jλ̃4j2 þ 2λ̃5λ̃9 þ 6λ̃5λ̃10; ðA9Þ

16π2
dλ̃7
dt

¼ 54

25
g41 þ 9g42 þ

36

5
g22g

2
1 þ

�
−
36

5
g21 − 24g22 þ 16λ̃2 þ 28λ̃7

�

þ 16λ̃22 þ
1

2
λ̃23 þ 2λ̃25 þ λ̃29 þ 2λ̃10ð3λ̃10 þ 2λ̃9Þ; ðA10Þ

16π2
dλ̃8
dt

¼ 3g42 þ 8λ̃8ð−3g22 þ 11λ̃8Þ þ 2λ̃26 þ λ̃9ðλ̃9 þ 2λ̃10Þ þ 3λ̃210; ðA11Þ

16π2
dλ̃9
dt

¼ 6g42 þ 2λ̃9

�
−12g22 −

9

5
g21 þ 5λ̃9 þ 4λ̃2 þ 2λ̃7 þ 8λ̃8 þ 8λ̃10

�
− 2jλ̃4j2; ðA12Þ

16π2
dλ̃10
dt

¼ 6g42 þ 2λ̃10

�
−
9

5
g21 − 12g22 þ 4λ̃2 þ 8λ̃7 þ 20λ̃8 þ 4λ̃10

�
þ 2jλ̃4j2 þ 2λ̃29 þ 4λ̃5λ̃6 þ 4λ̃9ðλ̃7 þ 2λ̃8Þ; ðA13Þ

16π2
dM̃0

1

dt
¼ M̃0

1

�
6y2b þ 6y2t þ 2y2τ −

27

10
g21 −

21

2
g22 þ 4λ̃1 þ 4λ̃3 þ 4λ̃5

�
þ 4

ffiffiffi
2

p
λ̃�4ðM̃1 þ 6M̃2Þ; ðA14Þ

16π2
dM̃1

dt
¼ M̃1

�
6y2b þ 6y2t þ 2y2τ −

9

10
g21 −

21

2
g22 þ 4λ̃1 þ 8λ̃6

�
þ 24M̃2λ̃3 þ 8

ffiffiffi
2

p
Re½M̃0

1λ̃4�; ðA15Þ

16π2
dM̃2

dt
¼ M̃2

�
−
18

5
g21 − 18g22 − 8λ̃2 þ 4λ̃7 − 4λ̃9 þ 8λ̃10

�
þ 1

6
M̃1λ̃3 þ

1

3

ffiffiffi
2

p
Re½M̃0

1λ̃4�; ðA16Þ

where g1 and g2 are gauge couplings (see below) and yb, yt, and yτ are Yukawa couplings, normalized according to
yf ¼ ffiffiffi

2
p

mf=ṽϕ. These RGEs agree with those of Ref. [18] (for real λ̃4 and M̃0
1) after translating the notation for the

Lagrangian parameters as follows:
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σ1 ¼ −
λ̃3
2
þ λ̃5;

σ2 ¼ λ̃3;

σ3 ¼ λ̃6;

σ4 ¼ λ̃4;

λ ¼ λ̃1;

ρ1 ¼ 2λ̃2 þ λ̃7;

ρ2 ¼ −2λ̃2;

ρ3 ¼ 2λ̃8;

ρ4 ¼ λ̃10;

ρ5 ¼ λ̃9;

μ1 ¼
M̃1ffiffiffi
2

p ;

μ2 ¼
M̃0

1

2
;

μ3 ¼ −6
ffiffiffi
2

p
M̃2;

m2
ϕ ¼ μ̃22;

m2
χ ¼ μ̃023 ;

m2
ξ ¼

μ̃23
2
: ðA17Þ

A few possible symmetries are apparent in these RGEs.
Setting M̃0

1 ¼ M̃1 ¼ M̃2 ¼ 0, the potential becomes invari-
ant under ðχ; ξÞ → ð−χ;−ξÞ, and therefore these three
parameters are not regenerated by the running. Setting
instead λ̃4 ¼ M̃0

1 ¼ 0, the potential becomes invariant under
χ → −χ, and therefore these two parameters are not regen-
erated by the running. Setting λ̃4 ¼ M̃1 ¼ M̃2 ¼ 0, the
potential becomes invariant under ξ → −ξ, and therefore
these three parameters are not regenerated by the running.
Finally, if all the Lagrangian parameters are taken to be real
at some scale, as will be the case when the most general
potential is matched onto the intrinsically CP-conserving
custodial-symmetric Georgi-Machacek model, they remain
real at all scales.

Throughout we use the Grand Unified Theory (GUT)

normalization g0 ¼
ffiffi
3
5

q
g1, g ¼ g2, and gs ¼ g3. The

renormalization group equations for the electroweak gauge
couplings, including all the particle content of the GM
model in the spectrum, are [41]

16π2
dg1
dt

¼47

10
g31 orequivalently 16π2

dg0

dt
¼47

6
g03; ðA18Þ

16π2
dg2
dt

¼ −
13

6
g32; ðA19Þ

and that for the strong gauge coupling is the same as in the
SM (including the top quark contribution),

16π2
dg3
dt

¼ −7g33: ðA20Þ

The RGEs for the Yukawa couplings are identical to those
of the SM [42],

16π2
dyt
dt

¼
�
−
17

20
g21 −

9

4
g22 − 8g23 þ

3

2
y2b þ

9

2
y2t þ y2τ

�
yt;

ðA21Þ

16π2
dyb
dt

¼
�
−
1

4
g21 −

9

4
g22 − 8g23 þ

9

2
y2b þ

3

2
y2t þ y2τ

�
yb;

ðA22Þ

16π2
dyτ
dt

¼
�
−
9

4
g21 −

9

4
g22 þ 3y2b þ 3y2t þ

5

2
y2τ

�
yτ:

ðA23Þ

In our numerical work we will ignore yb and yτ.
As a consistency check, we can turn off the custodial-

violating parts of the RGEs by setting g1 ¼ 0 and
substituting the relations given in Eq. (27). We then find
a self-consistent set of RGEs for the custodial-preserving
Lagrangian parameters:

16π2
dðμ22Þ
dt

¼ 9

2
M2

1 þ μ22

�
6y2b þ 6y2t þ 2y2τ −

9

2
g22 þ 48λ1

�
þ 36μ23λ2; ðA24Þ

16π2
dðμ23Þ
dt

¼ M2
1 þ 144M2

2 þ 16μ22λ2 þ μ23ð−12g22 þ 56λ3 þ 88λ4Þ; ðA25Þ

16π2
dλ1
dt

¼ −
3

2
y4b −

3

2
y4t −

1

2
y4τ þ λ1ð12y2b þ 12y2t þ 4y2τ − 9g22 þ 96λ1Þ þ

9

32
g42 þ 18λ22 þ

3

2
λ25; ðA26Þ

16π2
dλ2
dt

¼ λ2

�
6y2b þ 6y2t þ 2y2τ −

33

2
g22 þ 48λ1 þ 16λ2 þ 56λ3 þ 88λ4

�
þ 3

2
g42 þ 4λ25; ðA27Þ
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16π2
dλ3
dt

¼ 3

2
g42 þ λ3ð−24g22 þ 80λ3 þ 96λ4Þ − λ25; ðA28Þ

16π2
dλ4
dt

¼ 3

2
g42 þ λ4ð−24g22 þ 136λ4 þ 112λ3Þ þ 8λ22 þ 24λ23 þ λ25; ðA29Þ

16π2
dλ5
dt

¼ λ5

�
6y2b þ 6y2t þ 2y2τ −

33

2
g22 þ 16λ1 þ 32λ2 − 8λ3 þ 16λ4 − 4λ5

�
; ðA30Þ

16π2
dM1

dt
¼ M1

�
6y2b þ 6y2t þ 2y2τ −

21

2
g22 þ 16λ1 þ 16λ2 − 16λ5

�
− 48M2λ5; ðA31Þ

16π2
dM2

dt
¼ −M1λ5 þM2ð−18g22 − 24λ3 þ 48λ4Þ: ðA32Þ

APPENDIX B: SCALAR COUPLINGS OF THE CUSTODIAL VIOLATING STATES

The custodial violating couplings of the custodial symmetric eigenstates are included below.

1. Couplings of the H0
5

The modified couplings for decays to scalars allowed by custodial symmetry:

gH0
5
Hþ

3
H−

3
¼ λ̃3

�
sHcHṽϕ
2
ffiffiffi
3

p þ s2Hṽχffiffiffi
6

p
�
þ λ̃4

1ffiffiffi
6

p sHcHṽϕ − λ̃5
2
ffiffiffi
2

pffiffiffi
3

p s2Hṽχ þ λ̃6
4
ffiffiffi
2

pffiffiffi
3

p s2Hṽξ − λ̃7

ffiffiffi
2

pffiffiffi
3

p c2Hṽχ þ
4
ffiffiffi
2

pffiffiffi
3

p λ̃8c2Hṽξ

þ λ̃9

ffiffiffi
2

pffiffiffi
3

p
�
c2Hṽξ −

c2Hṽχ
2

þ c2Hṽξ
2

− c2Hṽχ

�
þ λ̃10

ffiffiffi
2

pffiffiffi
3

p c2Hðṽξ − ṽχÞ þ M̃1

ffiffiffi
2

pffiffiffi
3

p s2H −
ffiffiffi
6

p
c2HM̃2;

gHþ
5
H̃0

3
H̃0

3
¼ −λ̃3

8ṽ3χffiffiffi
6

p
A2

þ λ̃4ffiffiffi
3

p
A2

ð8ṽξṽ2χ − 16ṽ3χ − 8ṽχ ṽ2ϕÞ − λ̃5
16ṽ3χffiffiffi
6

p
A2

þ λ̃6
16

ffiffiffi
2

p
ṽ2χ ṽξffiffiffi

3
p

A2
− λ̃7

4ṽχ ṽ2ϕffiffiffi
6

p
A2

þ λ̃10
2
ffiffiffi
2

p
ṽ2ϕṽξffiffiffi
3

p
A2

− M̃0
1

8ṽ2χffiffiffi
6

p
A2

− M̃1

8ṽ2χffiffiffi
6

p
A2

− M̃2

6
ffiffiffi
2

p
ṽ2ϕffiffiffi

3
p

A2
;

gHþ
5
Hþ

3
H̃0

3
¼−

i
A

�
λ̃3

�
sHṽ2χ þ

sHṽ2ϕ
4

�
þ λ̃4

� ffiffiffi
2

p
sHṽ2χ þ2cHṽϕṽχ þ

sHṽ2ϕ
2
ffiffiffi
2

p
�
− λ̃9

cHṽϕṽξffiffiffi
2

p þ M̃0
1ṽχsH− M̃1sHṽχ − M̃2

6cHṽϕffiffiffi
2

p
�
;

ðB1Þ

gHþþ
5

H−
3
H−

3
¼ −2

�
−λ̃2c2Hṽχ − λ̃3

sHcHṽϕ
2
ffiffiffi
2

p þ λ̃4

�
s2Hṽξffiffiffi

2
p −

sHcHṽϕ
2

�
− M̃0

1

s2H
2
− 3M̃2c2H

�
; ðB2Þ

gHþþ
5

H−
5
H−

5
¼ −2ð−λ̃2ṽχ þ 3M̃2Þ; ðB3Þ

where A2 ¼ ṽ2ϕ þ 8ṽ2χ .
The modified couplings for loop decays mediated by a H5 loop:

gH0
5
Hþ

5
H−

5
¼ −λ̃7

ṽχffiffiffi
6

p þ λ̃8
4
ffiffiffi
2

p
ṽξffiffiffi
3

p þ λ̃9

� ffiffiffi
2

p
ṽξffiffiffi
3

p −
ṽχ
6
−
ṽξ
6
þ

ffiffiffi
2

p
ṽχffiffiffi
3

p
�
þ λ̃10

� ffiffiffi
2

p
ṽξffiffiffi
3

p −
2ṽχ
6

�
−

ffiffiffi
6

p
M̃2; ðB4Þ

gH0
5
Hþþ

5
H−−

5
¼ −λ̃2

8ṽχffiffiffi
6

p − λ̃7
4ṽχffiffiffi
6

p þ λ̃10
2
ffiffiffi
2

p
ṽξffiffiffi
3

p −
6
ffiffiffi
2

pffiffiffi
3

p M̃2: ðB5Þ
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The couplings for decays to scalars that violate custodial symmetry:

gH0
5
hα̃hα̃ ¼

λ̃3ffiffiffi
2

p
�
−
ṽχc2α̃
2
ffiffiffi
3

p þ ṽϕcα̃sα̃
3

�
þ λ̃4

�
−
ṽϕcα̃sα̃

3
þ c2α̃

�
ṽχffiffiffi
3

p −
ṽξ
2
ffiffiffi
3

p
��

þ λ̃5

�
−
ṽχc2α̃ffiffiffi

6
p þ

ffiffiffi
2

p
cα̃sα̃ṽϕ
3

�

þ λ̃6

� ffiffiffi
2

p
ṽξc2α̃ffiffiffi
3

p −
2
ffiffiffi
2

p
ṽϕcα̃sα̃
3

�
− λ̃7

2
ffiffiffi
2

p
ṽχs2α̃ffiffiffi
3

p þ λ̃8
4
ffiffiffi
2

p
ṽξs2α̃ffiffiffi
3

p þ λ̃10

ffiffiffi
2

p
ṽχs2α̃ffiffiffi
3

p þ M̃0
1

c2α̃
2
ffiffiffi
6

p − M̃1

c2α̃
2
ffiffiffi
6

p ;

gH0
5
Hα̃Hα̃

¼ −
λ̃3ffiffiffi
2

p
�
ṽχs2α̃
2
ffiffiffi
3

p þ ṽϕcα̃sα̃
3

�
þ λ̃4

�
ṽϕcα̃sα̃

3
þ s2α̃

�
ṽχffiffiffi
3

p −
ṽξ
2
ffiffiffi
3

p
��

þ λ̃5

�
−
ṽχs2α̃ffiffiffi

6
p −

ffiffiffi
2

p
cα̃sα̃ṽϕ
3

�

þ λ̃6

� ffiffiffi
2

p
ṽξs2α̃ffiffiffi
3

p þ 2
ffiffiffi
2

p
ṽϕcα̃sα̃
3

�
− λ̃7

2
ffiffiffi
2

p
ṽχc2α̃ffiffiffi
3

p þ λ̃8
4
ffiffiffi
2

p
ṽξc2α̃ffiffiffi
3

p þ λ̃10

ffiffiffi
2

p
ṽχc2α̃ffiffiffi
3

p þ M̃0
1

s2α̃
2
ffiffiffi
6

p − M̃1

s2α̃
2
ffiffiffi
6

p ;

gH0
5
hα̃Hα̃

¼ −
λ̃3ffiffiffi
2

p
�
ṽχsα̃cα̃ffiffiffi

3
p þ ṽϕc2α̃

3

�
þ λ̃4

�
ṽϕc2α̃
3

þ 2sα̃cα̃

�
ṽχffiffiffi
3

p −
ṽξ
2
ffiffiffi
3

p
��

þ λ̃5

�
−2

ṽχsα̃cα̃ffiffiffi
6

p −
ffiffiffi
2

p
c2α̃ṽϕ
3

�

þ λ̃6

�
2
ffiffiffi
2

p
ṽξsα̃cα̃ffiffiffi
3

p þ 2
ffiffiffi
2

p
ṽϕc2α̃
3

�
− λ̃7

4
ffiffiffi
2

p
ṽχcα̃sα̃ffiffiffi
3

p − λ̃8
8
ffiffiffi
2

p
ṽξcα̃sα̃ffiffiffi
3

p − λ̃10
2
ffiffiffi
2

p
ṽχcα̃sα̃ffiffiffi
3

p þ M̃0
1

sα̃cα̃ffiffiffi
6

p − M̃1

sα̃cα̃ffiffiffi
6

p :

APPENDIX C: CALCULATING THE
RENORMALIZATION GROUP EQUATIONS

We calculate the one-loop RGEs in this paper using the
formalism of Cheng, Eichten, and Li [40]. They considered
a Lagrangian for non-Abelian gauge fields Aa

μ, real scalar
fields ϕi, and fermionic fields ψα of the form

L ¼ −
1

4
Fa
μνFaμν þ 1

2
ðDμϕÞiðDμϕÞi þ iψ̄γμDμψ − ψ̄m0ψ

− ψ̄hiψϕi − VðϕÞ; ðC1Þ

where the gauge field strength tensor and covariant deriv-
atives are

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gCabcAb

μAc
ν; ðC2Þ

ðDμϕÞi ¼ ∂μϕi þ igθaijϕjAa
μ; ðC3Þ

ðDμψÞα ¼ ∂μψα þ igtaαβψβAa
μ: ðC4Þ

Here g is the gauge coupling, θaij and taαβ are the generators
of the gauge group acting on the scalar and fermion
representations, respectively, and Cabc are the structure
constants of the gauge group. The fermion masses m0 and
Yukawa couplings hi are matrices in the space of fermions.
The (quartic) scalar potential is given by

VðϕÞ ¼
X
ijkl

1

4!
fijklϕiϕjϕkϕl: ðC5Þ

The quartic scalar couplings fijkl are defined to be
symmetric under the interchange of any pair of indices;

after collecting terms in the scalar potential, they can be
extracted using

fijkl ¼ 4! ×
coefficient of ϕiϕjϕkϕl inV

number of permutations of ðijklÞ : ðC6Þ

The trilinear couplings and quadratic mass-squared
coefficients in Eq. (25) can be integrated into this formal-
ism by inserting one or two factors of a nondynamical
scalar field ϕ0 that has no gauge or fermion couplings,
e.g., μ2ϕiϕi → μ2ϕ0ϕ0ϕiϕi. The trilinear and quadratic
coefficients can then be treated in the same way as the
quartic coupling coefficients fijkl, setting one or two of ijkl
equal to 0.
The RGEs for the quartic scalar couplings are given by

Eq. (2.8) of Ref. [40],

16π2
dfijkl
dt

¼ βijkl; ðC7Þ

with t ¼ log μ where μ is the energy scale and

βijkl ≡ fijmnfmnkl þ fikmnfmnjl þ filmnfmnjk

− 12g2S2ðSÞfijkl þ 3g4Aijkl þ 8Tr½hihm�fmjkl

− 12Hijkl: ðC8Þ

Repeated indices are to be summed over. In this expression
the first three terms come from one-loop diagrams with two
quartic scalar vertices, the fourth term comes from dia-
grams in which an external leg is decorated with a gauge
boson loop, the fifth term is a four-scalar coupling induced
by a closed loop of gauge bosons, the sixth term comes
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from diagrams in which an external leg is decorated with a
fermion loop, and the last term is a four-scalar coupling
induced by a closed box of fermions (see Fig. 3 in
Ref. [40]). The new symbols in Eq. (C8) are defined as [40]

S2ðSÞδij ≡ ½θaθa�ij; ðC9Þ

Aijkl ≡ fθa; θbgijfθa; θbgkl þ fθa; θbgikfθa; θbgjl
þ fθa; θbgilfθa; θbgjk; ðC10Þ

with repeated gauge indices summed over, and

Hijkl ≡ 1

3!
Tr½hihjfhk; hlg þ hihkfhj; hlg þ hihlfhj; hkg�:

ðC11Þ

The formalism in Ref. [40] assumes a single gauge group
and a single representation containing all the scalars. This
can be straightforwardly generalized to our theory in which
the scalars transform under SUð2ÞL ×Uð1ÞY as a doublet
and two triplets as follows. We first write out all the scalar
fields in terms of their real components, using φ1 ¼ ðϕ1 þ
iϕ2Þ=

ffiffiffi
2

p
for the complex scalars. The covariant derivative

for the scalars can then be written as

ðDμϕÞi ¼ ∂μϕi þ igθaijϕjWa
μ þ ig0

Yii

2
ϕiBμ; ðC12Þ

where g and g0 are now the SUð2ÞL and Uð1ÞY gauge
couplings and θaij and Yii=2 are the SUð2ÞL and Uð1ÞY
generators written as big matrices in the space of the 13 real
scalars ϕi in our model (plus one nondynamical scalar
field ϕ0).
Equation (C8) must then be modified slightly to take into

account the two gauge groups:

βijkl ¼ fijmnfmnkl þ fikmnfmnjl þ filmnfmnjk

− 12g02S02ðSÞfijkl − 12g2S2ðSÞfijkl
þ 3Āijkl þ 8Tr½hihm�fmjkl − 12Hijkl: ðC13Þ

The new gauge terms are given as follows. The S02ðSÞ term
comes from diagrams in which a Uð1ÞY gauge boson loop
decorates one of the external scalar legs. Using Eq. (C9)
with θaij ¼ ðYi=2Þδij, this term is given for each ijkl by

−12g02S02ðSÞ¼−3g02
X
legs

�
Y
2

Y
2

�
leg

¼−3g02
��

Yi

2

�
2

þ
�
Yj

2

�
2

þ
�
Yk

2

�
2

þ
�
Yl

2

�
2
�
:

ðC14Þ
The S2ðSÞ term comes from diagrams in which an SUð2ÞL
gauge boson loop decorates one of the external scalar legs.

It will have different values depending on the SUð2ÞL
representation of the scalar on each leg. Using the SUð2ÞL
generators for doublets and triplets, we obtain from
Eq. (C9) for each leg

S2ðSÞlegδij ¼ ½θaθa�ij ¼

8>><
>>:

ð3=4Þδij doublet

2δij triplet

½ðn2 − 1Þ=4�δij nplet

:

ðC15Þ

Summing over the four legs then gives, for each ijkl,

−12g2S2ðSÞ ¼ −3g2½S2ðSÞi þ S2ðSÞj þ S2ðSÞk þ S2ðSÞl�

¼ −
3

4
g2ðn2i þ n2j þ n2k þ n2l − 4Þ; ðC16Þ

where ni ¼ 2Ti þ 1 is the dimensionality of the SUð2ÞL
representation of the ith leg.
The 3Āijkl term in Eq. (C13) yields terms in the RGEs of

order g4, g04, and g2g02. The couplings that give rise to these
terms are the quartic scalar-scalar-vector-vector vertices,
which can be found by examining the anticommutation
relations among the generators of the relevant gauge
groups. We derive the form of Āijkl as follows. First,
starting from Eq. (C10) we absorb the gauge coupling into
the generators and define

θ̄1¼ gt1; θ̄2¼ gt2; θ̄3 ¼ gt3; θ̄4¼ g0
Y
2
In×n; ðC17Þ

where ta are the appropriate SUð2ÞL generators acting on
the relevant subspaces of the scalars and In×n is the unit
matrix on the subspace of scalars with a common hyper-
charge. Then,

Āijkl ≡ fθ̄a; θ̄bgijfθ̄a; θ̄bgkl þ fθ̄a; θ̄bgikfθ̄a; θ̄bgjl
þ fθ̄a; θ̄bgilfθ̄a; θ̄bgjk: ðC18Þ

To actually calculate this, we write

Āijkl ¼
X4
a;b¼1

αabij α
ab
kl þ αabik α

ab
jl þ αabil α

ab
kj ; ðC19Þ

where for a real scalar multiplet the gauge-covariant terms
yield

ΦTðθ̄aθ̄b þ θ̄bθ̄aÞΦ ¼
X
i;j

ϕiϕjα
ab
ij ; ðC20Þ

and for a complex scalar multiplet they give
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2Φ†ðθ̄aθ̄b þ θ̄bθ̄aÞΦ ¼
X
i;j

ϕiϕjα
ab
ij : ðC21Þ

Note that αabij is symmetric under the interchange of i and j;
care must be taken with factors of 2 in extracting the αabij
from terms involving two different real scalar fields.
Finally for the fermion contributions, it is most straight-

forward to separate the contributions into a sum of terms
each involving only leptons, down-type quarks, or up-type
quarks. In our model only the SUð2ÞL doublet couples to
fermions, as in the SM, and we can write the Yukawa
matrices in the fermion mass basis as

Yu
i ¼

0
B@

yu 0 0

0 yc 0

0 0 yt

1
CA; Yd

i ¼

0
B@

yd 0 0

0 ys 0

0 0 yb

1
CA;

Ye
i ¼

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CA; ðC22Þ

for i being one of the four real fields in the scalar
doublet, and

Yf
i ¼

0
B@

0 0 0

0 0 0

0 0 0

1
CA ðC23Þ

for f ∈ fu; d; eg and i being any other scalar field.

The contribution from diagrams in which an external
leg is decorated with a fermion loop is then given for each
ijkl by

8Tr½hihm�fmjkl ¼ ðϒi þϒj þϒk þϒlÞfijkl; ðC24Þ

where

ϒm ¼ Tr

� X
f∈fu;d;eg

Nf
cY

f
mY

f
m

�
; ðC25Þ

with Nf
c being the number of colors of fermion type f.

The contribution from the fermion box diagram will be

−12Hijkl ¼ −4ðδijδkl þ δikδjl þ δilδjkÞ

×
1

No. of permutations of ðijklÞ

× Tr

" X
f∈fu;d;eg

X
permutations of ðijklÞ

Nf
cY

f
i Y

f
j Y

f
kY

f
l

#
:

ðC26Þ

This yields the RGEs for the coefficients fijkl defined in
Eq. (C5). To obtain the RGEs for the individual quartic
couplings λ̃i in Eq. (25), one can write the fijkl as linear
combinations of the λ̃i and solve the set of linear equations.
The multiple redundant solutions for each λ̃i can be used as
a check of the algebraic implementation.
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