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We investigate some properties of Karsten-Wilczek and Borici-Creutz fermions, which are the best
known varieties in the class of minimally doubled lattice fermion actions. Our focus is on the dispersion
relation and the distribution of eigenvalues in the free-field theory. We consider the situation in two and four
spacetime dimensions, and we discuss how properties vary as a function of the Wilson-like lifting
parameter r.
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I. INTRODUCTION

The choice of any lattice fermion action is a bit of a
compromise. Ideally, one would want to realize ultralocality,
chiral symmetry, and the absence of doublers (in addition to
a correct continuum limit, of course). But these are precisely
the ingredients which, according to the Nielsen-Ninomiya
theorem, cannot possibly coexist [1,2]. Furthermore, in real
life computational expedience is an important criterion. It
follows that the choice of a lattice action which is well-suited
to the specific needs of a planned numerical investigation is
an important decision which impacts the subsequent analysis
of the lattice data in a profound manner.
Staggered fermions and Wilson fermions represent two

popular choices in this context. Staggered fermions put a
focus on ultralocality and chiral symmetry, at the expense
of having four species in the continuum [3]. Wilson
fermions, on the other hand, prioritize ultralocality and
the absence of doublers, at the expense of breaking chiral
symmetry [4].
Staggered fermions seem ideally suited to study theories

with four degenerate fermions (or a multiple thereof) in
the continuum. The details of taste-breaking [5–9] and the
noncommutativity of the continuum limit (a → 0) and the
chiral limit (m → 0) [10] impose practical difficulties, but to
the best of our knowledge there is no concern about the
theoretical soundness of this formulation of QCD with Nf ∈
4N dynamical flavors.

Things are different, if one desires to study QCD with
fewer than four degenerate fermions, such as real-life QCD
where md, mu, ms, mc are pairwise different. Given the
continuum argument that Nf degenerate fermions would
raise the functional determinant of a single species to the
Nfth power,Marinari, Parisi, andRebbi suggested bymeans
of “reverse engineering” that one would take the square root
of the staggered determinant to simulate two degenerate
fermions or the quarter-root for a nondegenerate fermion
species [11].
Inpractice, it seems the approachof“rooting” the staggered

determinant yields convincing numerical results for real-life
QCD, with small statistical error bars even at physical values
of the quark massesmd,mu,ms,mc [12–14], and with some
field-theoretic underpinning through rooted staggered chiral
perturbation theory [15–17]. Nevertheless, this approach has
been criticized [18,19] on the grounds of the argument that—
in the presence of the cutoff—no local theory can be
constructed (or has been constructed) that would implement
exactly (i.e., down tomachine precision) the square root of the
staggered determinant as the determinant of a valid two
species formulation. There have been several reviews of the
issue at lattice conferences [20–24] which essentially col-
lected pieces of evidence in favor of the approach.But it holds
true that no strict mathematical proof has been found, and no
side has been able to convince the opponent.
Given this situation it is natural to ask whether a local

formulation with chiral symmetry and just two species (the
minimum required by the Nielsen-Ninomiya theorem)
would shed some light on the issue. Since staggered
fermions emerge from the naive formulation by an ingenious
procedure of “thinning out” the degrees of freedom by a
factor of 2d=2 in d spacetime dimensions, onemight dream of
a similarly ingenious second step that would reduce the
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degeneracy from 4 to 2 in d ¼ 4 dimensions. However, the
eigenvalue spectrum of staggered fermions on interacting
backgrounds shows a fourfold near-degeneracy (i.e., no
exact degeneracy) [25,26], and this means that such a second
reduction step cannot possibly take place.
However, there is a better approach. It is based on adding

an extra term (of mass-dimension five) to the naive action
which lifts 14 of the 16 species in d ¼ 4 dimensions, albeit
with the important difference to the Wilson term that it does
not break chiral symmetry. Such “minimally doubled
fermions” have been proposed by Karsten [27] and
Wilczek [28], and later by Creutz [29] and Borici [30].
More recently, yet another variety with “twisted ordering”
has been proposed by Creutz and Misumi [31]. Also the
proposal of augmenting the Karsten-Wilczek action by a
“flavored chemical potential term” has been made [32,33].
From the viewpoint of computational efficiency, all these
formulations augur well, since they are ultralocal with on-
axis links only. In the literature issues of mixing with lower-
dimensional operators have been addressed, and how one
can defeat them with appropriate tuning strategies [34–42].
Also the consistency of these formulations with the index
theorem has been verified [43,44]. Furthermore, some
minimally doubled actions have been shown to possess
an extra “mirror fermion” symmetry [45], and it has been
demonstrated that the Karsten-Wilczek determinant is
invariant under all of the discrete symmetries [46].
Still, some basic features of minimally doubled fermion

actions have hardly been explored, for instance the respec-
tive quark-level free-field dispersion relations (including
the cutoff effects on a heavy quark mass) and spectral
bounds. In this article we try to fill some of these gaps for
Karsten-Wilczek (KW) and Borici-Creutz (BC) fermions.
To understand how these formulations differ from the naive
one we think it is useful to introduce a lifting parameter r,
similar to what is done for Wilson fermions. Hence for
r ¼ 0 we start with the naive action, and we expect to see a
cascade of species reductions as r increases, eventually
realizing two species at r ¼ 1. Since chiral symmetry holds
throughout, the Nielsen-Ninomiya theorem demands that
the reduction proceeds in steps of (integer multiples of) 2.
The remainder of this article is organized as follows.

In Sec. II we give a brief review of the situation with naive
and Wilson fermions, mostly to specify our notation. The
results for KW fermions are presented in Sec. III, and those
for BC fermions in Sec. IV. We summarize our findings in
Sec. V, and more lengthy calculations are arranged in
Appendixes A–E.

II. NAIVE AND WILSON FERMIONS

Throughout this article ∂μ and ∂�
μ denote the discrete

forward and backward derivative, respectively, and ∇μ ¼
ð∂μ þ ∂�

μÞ=2 is the symmetric derivative. These operators
are gauged in the obvious manner; for instance the
symmetric covariant derivative is

∇μψðxÞ ¼
1

2
½UμðxÞψðxþ μ̂Þ −U†

μðx − μ̂Þψðx − μ̂Þ�; ð1Þ

where UμðxÞ is the parallel transporter from xþ μ̂ to x, and
μ̂ denotes a times the unit vector in direction μ. Similarly,
△μ ¼ ∂�

μ∂μ ¼ ∂μ∂�
μ denotes the second discrete derivative,

that is,

△μψðxÞ ¼ UμðxÞψðxþ μ̂Þ − 2ψðxÞ þ U†
μðx − μ̂Þψðx − μ̂Þ;

ð2Þ

in the presence of a gauge field UμðxÞ.
With this notation the naive Dirac operator is defined as

Dnaiðx; yÞ ¼
X
μ

γμ∇μðx; yÞ þmδx;y; ð3Þ

where the anti-Hermitian behavior ∇†
μ ¼ −∇μ and the

anticommutation property fγμ; γ5g ¼ 0 of the Hermitian
γ-matrices imply that the naive Dirac operator is γ5-
Hermitian, i.e., γ5Dnaiγ5 ¼ D†

nai. In the free-field limit this
operator assumes a diagonal form in momentum space,

DnaiðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ þm

¼ i
X
μ

γμp̄μ þm with p̄μ ¼
1

a
sinðapμÞ; ð4Þ

which again highlights the anti-Hermitian nature of the
derivative (momentum) term.
The Wilson Dirac operator follows by adding a

Hermitian and positive semidefinite term of dimension
five to the naive Dirac operator

DWðx; yÞ ¼
X
μ

γμ∇μðx; yÞ −
ar
2

X
μ

△μðx; yÞ þmδx;y: ð5Þ

The Hermitian behavior△†
μ ¼ △μ together with the proper-

ties used in the naive case imply that the Wilson (W)
operator is γ5-Hermitian, i.e., γ5DWγ5 ¼ D†

W. An unpleas-
ant feature is that the term

P
μ △μðx; yÞ mixes (on inter-

acting gauge backgrounds) with the identity. As a result, the
bare mass m in (5) gets renormalized, and chiral symmetry
is broken [47]. In the free-field limit the Wilson operator
assumes a diagonal form in momentum space,

DWðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ þ ar

X
μ

f1 − cosðapμÞg þm

¼ i
X
μ

γμp̄μ þ
ar
2

X
μ

p̂2
μ þm with

p̂μ ¼
2

a
sin

�
apμ

2

�
; ð6Þ
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which again highlights the anti-Hermitian and Hermitian
positive semidefinite nature of the two terms, respectively.
Specifically for r ¼ 1 the 15 unwanted species do not
propagate in any of the on-axis directions [47].
With these expressions in hand, we are in a position to

study the quark-level free-field dispersion relations. For
both naive and Wilson fermions, the energy aE can be
given as an analytic function of the spatial momentum ap⃗;
see Appendix A for a brief account of this standard
calculation. The results are shown in Fig. 1 for the naive
formulation and in Fig. 2 for the Wilson action at r ¼ 1.
In either figure the situation at am ¼ 0 and at am ¼ 0.5 is
compared to the respective continuum dispersion relation.
Apart from the unwanted zeros (or minima) at ajp⃗j ¼
π;

ffiffiffi
2

p
π;

ffiffiffi
3

p
π the naive action features well for small

enough momenta. In particular at ajp⃗j ¼ 0 it features
better than the Wilson action, since the gap to the con-
tinuum curve is smaller. This can be understood on
analytical grounds, too. The energy at zero momentum
is nothing but the heavy quark mass. As detailed in
Appendix B, it is known to be afflicted with cutoff effects
OððamÞ2Þ in the naive case, but OðamÞ in the Wilson case.
From expression (4) or (6) one finds the eigenvalues of

the free-field operators. Since each γμ (μ ¼ 1;…; 4) has
eigenvalues �1, it follows that the upper end of the
massless naive eigenvalue spectrum is realized for apμ

along the hyperdiagonal (1,1,1,1), or flipped versions
thereof, so

jImðλnaiÞj ≤ 2; ð7Þ

and similarly it follows that the Wilson eigenvalue spec-
trum is contained in the rectangle
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2.5
Naive operator, L/a=64, am=0
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2.5
Naive operator, L/a=64, am=0.5

FIG. 1. Free-field dispersion relation aE versus ajp⃗j of the
naive Dirac operator at am ¼ 0 and am ¼ 0.5. The dashed curves
give the continuum dispersion relations, and the vertical lines
show the end of the Brillouin zone in the (1,0,0), (1,1,0), and
(1,1,1) directions, respectively.
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FIG. 2. Same as Fig. 1, but for the Wilson operator at r ¼ 1.
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0 ≤ ReðλWÞ ≤ 8r; jImðλWÞj ≤ 2: ð8Þ

The complex eigenvalue spectrum of the Wilson operator at
am ¼ 0 is shown in Fig. 3. The symmetry about the real
axis reflects the pairing property imposed by the γ5-
Hermiticity. As is well known, the five branches in the
Wilson eigenvalue spectrum correspond to species with
multiplicities 1, 4, 6, 4, 1, and chiralities þ;−;þ;−;þ,
respectively [47]. In total eight species thus have correct
chirality, and eight have opposing chirality. The free-field
eigenvalue spectrum of the naive (or staggered) operator
follows by horizontally projecting the λW onto the imagi-
nary axis (and reducing degeneracies by a factor of 4 in the
staggered case). Under this operation the separation
between right-chirality and opposite-chirality species gets
lost, and this feature will carry on to minimally doubled
actions.

III. KARSTEN-WILCZEK FERMIONS

The Karsten-Wilczek proposal is to restrict the Wilson
term in (5) to the spatial components

DKWðx; yÞ ¼
X
μ

γμ∇μðx; yÞ − i
ar
2
γ4

X3
i¼1

△iðx; yÞ þmδx;y;

ð9Þ

with an extra factor iγ4 to make it anti-Hermitian and
anticommuting with γ5 [27,28]. As a result the KWoperator
is γ5-Hermitian, i.e., γ5DKWγ5 ¼ D†

KW. An issue discussed
in the literature is that γ4

P
i △iðx; yÞ mixes (on interacting

backgrounds) with γ4 [34–42]. In the free-field limit the
KWoperator assumes a diagonal form in momentum space,

DKWðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ

þ iarγ4
X3
i¼1

f1 − cosðapiÞg þm

¼ i
X
μ

γμp̄μ þ i
ar
2
γ4

X3
i¼1

p̂2
i þm; ð10Þ

which again highlights the anti-Hermitian nature of either
term. This formulation was shown to have two species for
r ¼ 1 in the original works [27,28], but how this number
decreases from 16, at r ¼ 0, to the minimally doubled value
has, to the best of our knowledge, not been investigated. We
find that the number of species is reduced in three steps (in
d ¼ 4 dimensions). At r ¼ 1=6; 1=4; 1=2 the number of
species is reduced by 2, 6, 6, respectively, so the species

1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

Wilson, L/a=32, r=1

FIG. 3. Free-field Wilson eigenvalue spectrum at r ¼ 1 in the
complex plane.
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FIG. 4. Same as Fig. 1, but for the KW operator at r ¼ 1.
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chain is 16 → 14 → 8 → 2. See Appendix C for details,
e.g., the situation with d ≠ 4.
Starting from Eq. (10) one can work out the free-field

dispersion relation of KW fermions: see Appendix A for
details. For a given momentum configuration ap⃗ the
Euclidean energy aE is, in general, complex valued, and
its real part is plotted in Fig. 4 for r ¼ 1. Again, two values
of the quark mass are used, am ¼ 0 and am ¼ 0.5. In either
case the KW dispersion relation follows the continuum
curve faithfully, out to momentum values ajp⃗j ≃ 1. In
particular at ajp⃗j ¼ 0 it features much better than the
Wilson action, reminiscent of the naive action. This is not a
coincidence, since the rest energy has the same functional
dependence on am as the naive action; see Appendix B for
details. In other words, cutoff effects on this quantity start at
OððamÞ2Þ only, unlike the OðamÞ signature of Wilson
fermions.
From Eq. (10) one finds the eigenvalues of the free-field

KWoperator. The result for r ¼ 1 and am ¼ 0 is shown in
Fig. 5. On a 324 lattice one finds 4 × 324 purely imaginary
and γ5-paired eigenvalues, as expected. Plotting the eigen-
values against the index means that the inverse slope
encodes for the density of the λKW=i on the imaginary axis.
It is instructive to repeat this for a series of r values; the

result is shown in Fig. 6, with vertical lines marking the
abscissa values r ¼ 1=6; 1=4; 1=2 where the number of
species changes. The spectral range is seen to increase with
growing r. In addition, the low-energy end of the eigen-
value spectrum seems unstable for small r, but stable in a
broad range around r ¼ 1.
Given Fig. 6, one may wonder about the existence of an

analytic function which describes the upper end as a
function of r. In Appendix E we derive the free-field
spectral bound

jImðλKWÞj ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4þ 6rÞ=ð1 − 3r2Þ
p

ðr ≤ 1=3Þ
1þ 6r ðr ≥ 1=3Þ

; ð11Þ

in d ¼ 4 dimensions. Hence at r ¼ 1 the imaginary parts
λKW=i cover the range ½−7; 7�, to be compared to ½−2; 2� for
naive and staggered fermions. On the other hand, the
smallest nonzero KW eigenvalue is found in essentially
the same place1 as the smallest staggered eigenvalue; see

10 6 2 10 6 3 10 6 4 10 6

-6

-4

-2

0

2

4

6

Karsten-Wilczek, L/a=32, r=1

FIG. 5. Free-field eigenvalue spectrum of the KW operator at
r ¼ 1. The imaginary part is plotted against the index.

FIG. 6. Imaginary part of the free eigenvalues of the KW
operator in linear and logarithmic representation (for the upper
half-spectrum) versus the lifting parameter r. The vertical lines at
r ¼ 1=6; 1=4; 1=2 mark the transitions to 14, 8, and 2 species,
respectively.

1In Fig. 7 one finds the small (in absolute magnitude) KW
eigenvalues by projecting the black dots onto the y axis, and the
staggered counterparts by projecting them onto the x axis. Hence,
minðjλKWjÞ ≃ 0.2, and minðjλstagjÞ ≃ 0.2 in a 324 box, if we
disregard the nontopological zero modes. In large boxes the
spectral gap decreases as 1=L, so we anticipate minðjλjÞ ≃ 0.1 in a
644 box for both KW and staggered fermions.
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Fig. 7. This amounts to an enhancement of the condition
number of D†D, compared to the staggered formulation at
the same am, by a factor up to 3.52 ¼ 12.25 (in the
chiral limit).

IV. BORICI-CREUTZ FERMIONS

The basis for Borici-Creutz fermions in d spacetime
dimensions is the idempotent operator

Γ¼ 1ffiffiffi
d

p
X
μ

γμ with Γ2 ¼ 1

2d

�X
α

γα;
X
β

γβ

�
¼ 2d
2d

¼ 1;

ð12Þ

fΓ; γμg ¼ 2ffiffi
d

p , and fΓ; γ5g ¼ 0. This suggests to define the

set of dual gamma matrices

γ0μ ¼ ΓγμΓ ¼
�

2ffiffiffi
d

p − γμΓ
�
Γ ¼ 2ffiffiffi

d
p Γ − γμ; ð13Þ

which are Hermitian and satisfy the Dirac-Clifford algebra,
since (13) implies fγ0μ; γ0νg ¼ 2δμν and fΓ; γ0μg ¼ 2ffiffi

d
p .

Furthermore, one finds

fγμ; γ0νg ¼ γμ

�
2ffiffiffi
d

p Γ − γν

�
þ
�

2ffiffiffi
d

p Γ − γν

�
γμ

¼ 2ffiffiffi
d

p fγμ;Γg − fγμ; γνg ¼ 4

d
− 2δμν; ð14Þ

fγ0μ; γνg ¼
�

2ffiffiffi
d

p Γ − γμ

�
γν þ γν

�
2ffiffiffi
d

p Γ − γμ

�

¼ 2ffiffiffi
d

p fΓ; γνg − fγμ; γνg ¼ 4

d
− 2δμν: ð15Þ

The BC proposal is to dress the Wilson term in (5) with
i times (13), i.e.,

DBCðx; yÞ ¼
X
μ

γμ∇μðx; yÞ − i
ar
2

X
μ

γ0μ△μðx; yÞ þmδx;y;

ð16Þ

where our second term differs in sign from the original
proposal [30]. Note that the second term is anti-Hermitian
and anticommutes with γ5, since

γ0μγ5 ¼ ΓγμΓγ5 ¼ −Γγμγ5Γ¼ Γγ5γμΓ¼ −γ5ΓγμΓ¼ −γ5γ0μ;

ð17Þ

and this renders the BC operator γ5-Hermitian, i.e.,
γ5DBCγ5 ¼ D†

BC. An issue discussed in the literature is
whether

P
μ γ

0
μ△μ mixes (on interacting backgrounds) with

Γ [34–42]. In the free-field limit the BC operator assumes a
diagonal form in momentum space,

DBCðpÞ ¼ i
X
μ

γμp̄μ þ iar
X
μ

γ0μf1 − cosðapμÞg þm

¼ i
X
μ

γμp̄μ þ i
ar
2

X
μ

γ0μp̂2
μ þm ð18Þ

in which the bracket f1 − cosðapμÞg may be split and the
sum over γ0μ performed by means of

X
μ

γ0μ ¼ 2
ffiffiffi
d

p
Γ −

X
μ

γμ ¼ 2
ffiffiffi
d

p
Γ −

ffiffiffi
d

p
Γ ¼

ffiffiffi
d

p
Γ: ð19Þ

Furthermore, the free-field form (18) highlights the invari-
ance under any permutation of the d axes. In Appendix C
we discuss, for d ¼ 4, how the number of species is
reduced by six at r ¼ 1=

ffiffiffi
3

p
and by eight at r ¼ 1=

ffiffiffi
2

p
;

so the species chain is 16 → 10 → 2. Of course, the number
of species is unchanged by a sign flip of r.
In two (Euclidean) spacetime dimensions it is customary

to use γ1 ¼ σ1, γ2 ¼ σ2. Similarly, the chirality operator is
defined as γ5 ¼ −iγ1γ2 ¼ −iσ1σ2 ¼ σ3. Upon using the
simplifications

Γ ¼ 1ffiffiffi
2

p ðσ1 þ σ2Þ

¼ 1ffiffiffi
2

p
�

0 1 − i

1þ i 0

�
¼

�
0 e−iπ=4

eþiπ=4 0

�
; ð20Þ

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Karsten-Wilczek versus staggered, L/a=32, r=1

FIG. 7. Sorted free-field eigenvalues (with a twofold degen-
eracy removed) of the KWoperator at r ¼ 1 plotted versus sorted
staggered eigenvalues (with a fourfold degeneracy removed). In
both cases the imaginary part ImðλÞ ¼ λ=i at am ¼ 0 is used, and
plenty of degeneracies remain. The dotted line shows the identity
for comparison.
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σ01 ¼ Γσ1Γ ¼ 1

2
ðσ1 þ σ2Þσ1ðσ1 þ σ2Þ

¼ 1

2
ðσ1 þ σ2 þ σ2 þ σ2σ1σ2Þ ¼ σ2; ð21Þ

σ02 ¼ Γσ2Γ ¼ 1

2
ðσ1 þ σ2Þσ2ðσ1 þ σ2Þ

¼ 1

2
ðσ1σ2σ1 þ σ1 þ σ1 þ σ2Þ ¼ σ1; ð22Þ

the operators (9) and (16) are seen to take the simple form

DKWðx; yÞ ¼
X
μ

σμ∇μðx; yÞ − i
ar
2
σ2△1ðx; yÞ þmδx;y;

ð23Þ

DBCðx; yÞ ¼
X
μ

σμ∇μðx; yÞ − i
ar
2
σ2△1ðx; yÞ

− i
ar
2
σ1△2ðx; yÞ þmδx;y; ð24Þ

which shows that the BC operator is not a symmetrized
form of the KWoperator; it has an extra term. This explains
why we deviate, in the sign of the mass-dimension five term
in Eqs. (16) and (18), from the literature. With our con-
vention the joint terms in Eqs. (23) and (24) have like signs.
Starting from Eq. (18) one can work out the free-field

dispersion relation of BC fermions; see Appendix A for
details. For a given momentum configuration ap⃗ the
Euclidean energy aE is, in general, complex valued, and
its real part is plotted in Fig. 8 for r ¼ 1. Again, two values
of the quark mass are used, am ¼ 0 and am ¼ 0.5. In either
case the BC dispersion relation follows the continuum
curve reasonably well, out to momentum values ajp⃗j ≃ 1

2
, a

range slightly narrower than what was found in the KW
case. Specifically at ajp⃗j ¼ 0 it features much better
than the Wilson action, though a little worse than the
KW action. In Appendix B the rest energy of a heavy BC
fermion is found to have a contribution ∝ 19

96
ðamÞ2, nearly

as good as ∝ 1
6
ðamÞ2 of the KW action (both values are for

r ¼ 1 in d ¼ 4 dimensions). Unlike the KWenergy, the BC
energy has an imaginary contribution ∝ 1

4
am, which is not

a desirable property. What is particularly disconcerting
in the free-field dispersion relation of a BC fermion at
heavy quark mass is that the global minimum is not
necessarily at ajp⃗j ¼ 0. For am ¼ 0.5 the effect happens
to be numerically small, but a spontaneous breaking
of translation invariance (even if confined to Weiss-type
subdomains of the Brillouin zone) would cause a headache.
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Borici-Creutz operator, L/a=64, am=0, r=1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
Borici-Creutz operator, L/a=64, am=0.5, r=1

FIG. 8. Same as Fig. 1, but for the BC operator at r ¼ 1.
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FIG. 9. Free-field eigenvalue spectrum of the BC operator at
r ¼ 1. The imaginary part is plotted against the index.
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From Eq. (18) one finds the eigenvalues of the free-field
BC operator. The result for r ¼ 1 and am ¼ 0 is shown in
Fig. 9. Similar to the KW case, eigenvalues come in γ5 pairs
and are purely imaginary. The only difference to Fig. 5 is
that the BC range is slightly narrower.
It is instructive to repeat this for a series of r values; the

result is shown in Fig. 10, with vertical lines marking the
abscissa values r ¼ 1=

ffiffiffi
3

p
; 1=

ffiffiffi
2

p
where the number of

species changes. The spectral range is seen to increase with
growing r. In addition, the low-energy end of the eigenvalue
spectrum seems far less stable than in the KW case, and the
canonical choice r ¼ 1 seems to represent a small island of
stability.
Given Fig. 10, one may wonder about the existence of an

analytic function which describes the upper end as a function
of r. In Appendix E we derive the free-field spectral bound

jImðλBCÞj ≤ 2ðrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
Þ; ð25Þ

in d ¼ 4 dimensions. Hence at r ¼ 1 the imaginary parts
λBC=i cover the symmetric range ½−4.8284; 2þ ffiffiffi

8
p �, to be

compared to ½−2; 2� for naive and staggered fermions. For
r ¼ 1 the smallest nonzero BC eigenvalue is found in essen-
tially the same place2 as the smallest staggered eigenvalue;
see Fig. 11. This amounts to an enhancement of the con-
dition number of D†D, compared to the staggered formu-
lation at the same am, by a factor up to ð1þ ffiffiffi

2
p Þ2 ¼ 5.8284

(in the chiral limit). Hence, the slowdown (relative to the
staggered formulation) implied by the larger condition
number is not as pronounced as in the KW case, but still
significant.

V. SUMMARY

In this paper we tried to fill some of the most obvious
gaps in the knowledge about the two most popular
minimally doubled fermion actions, namely the formula-
tions due to Karsten-Wilczek and Borici-Creutz, respec-
tively. The gaps concern the eigenvalue spectra and the
dispersion relations (including the leading cutoff effects on
the heavy fermion mass) in the free-field limit. We studied
these issues as a function of the lifting parameter r, in order

FIG. 10. Imaginary part of the free eigenvalues of the BC
operator in linear and logarithmic representation (for the upper
half-spectrum) versus the lifting parameter r. The vertical lines at
r ¼ 1=

ffiffiffi
3

p
and 1=

ffiffiffi
2

p
mark the transitions to ten and two species,

respectively.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Borici-Creutz versus staggered, L/a=32, r=1

FIG. 11. Sorted free-field eigenvalues (with a twofold degen-
eracy removed) of the BC operator at r ¼ 1 plotted versus sorted
staggered eigenvalues (with a fourfold degeneracy removed). In
both cases the imaginary part ImðλÞ ¼ λ=i at am ¼ 0 is used, and
plenty of degeneracies remain. The dotted line shows the identity
for comparison.

2In Fig. 11 one finds the small (in absolute magnitude) BC
eigenvalues by projecting the black dots onto the y axis and the
staggered counterparts by projecting them onto the x axis. Hence,
minðjλBCjÞ ≃ 0.2, and minðjλstagjÞ ≃ 0.2 in a 324 box, if we
disregard the nontopological zero modes. In large boxes the
spectral gap decreases as 1=L, so we anticipate minðjλjÞ ≃ 0.1 in a
644 box for both BC and staggered fermions.
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to see how the number of species gets reduced from 16 (at
r ¼ 0) to 2 (at r ¼ 1). Our investigation was limited to KW
and BC fermions, but there are two more approaches,
“twisted ordering” and “flavored chemical potential term”
where a Wilson-like parameter r can be introduced to study
how the number of species gets reduced [31–33].
Regarding the eigenvalue spectra we find an extension,

relative to the staggered/naive one, by a factor of 3.5 for
KW fermions, or 1þ ffiffiffi

2
p

≃ 2.4142 for BC fermions (both
at r ¼ 1 and vanishing quark mass). This leads to an
enhancement of the condition number of D†D (as relevant
for generating dynamical ensembles) by a factor up to
12.25, or 5.8284, respectively, compared to the staggered/
naive case. This, together with the matrix size being a factor
of 4 larger than for staggered fermions limits our optimism
regarding the computational efficiency of these two for-
mulations. At a finite quark mass the spectral bounds (11)
and (25) generalize to maxðjλj2Þ ¼ ImðλÞ2 þ ðamÞ2, with
ImðλÞ given by (11) and (25), respectively.
In addition, we studied the dispersion relations. On the

one hand, we find that the KW operator features very well
in this respect. It follows the continuum dispersion relation
more closely than the Wilson operator. In particular, at
ap⃗ ¼ 0⃗ the cutoff effects on the heavy quark mass start at
OððamÞ2Þ, just as the naive/staggered action, and not at
OðamÞ as the Wilson operator. On the other hand, the
dispersion relation of the BC operator in d ¼ 4 dimensions
shows some more problematic features, including a funny
behavior at small ajp⃗j and an imaginary part of the heavy
quark rest mass which starts at OðamÞ.
Obviously, there remain many unexplored issues with

these fermion formulations. We think it would be interest-
ing to study the behavior of small eigenvalues on interact-
ing backgrounds (especially some with nonzero topological
charge), and how they implement the constraints imposed
by the Nielsen-Ninomiya theorem. Our Figs. 7 and 11 are
inspired by Figs. 6 and 7 of Ref. [26], and we hope to see
the “fingerprint property” of low-energy fermion eigenval-
ues3 confirmed with the KW and BC formulations, too.
Also some more light on the mixing pattern with lower-
dimensional operators (beyond what was found in [34–42])
might prove useful. Overall, we feel a collaboration aiming
for exploratory large-scale production runs with minimally
doubled fermions would be well advised to give first
priority to the KW formulation.
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APPENDIX A: DISPERSION RELATIONS

1. Naive fermions

The naive operator and its Green’s function take the form

Dnai ¼
X
μ

γμ∇μ þm ¼ i
X
μ

γμp̄μ þm; ðA1Þ

Gnai ¼
−i
P

μγμp̄μ þm

ðiPργρp̄ρ þmÞð−iPσγσp̄σ þmÞ

¼ −i
P

μγμp̄μ þm

p̄2 þm2
: ðA2Þ

The dispersion relation follows from searching for zeros of
the denominator with p4 → iE, so

0 ¼
X
i

sin2ðapiÞ − sinh2ðaEÞ þ ðamÞ2 ðA3Þ

means that the physical solution is given by the positive
root

aE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asinh

�X
i

sin2ðapiÞ þ ðamÞ2
�s
: ðA4Þ

2. Wilson fermions

The Wilson operator and its Green’s function take the
form

DW ¼
X
μ

γμ∇μ −
ar
2
△þm ¼ i

X
μ

γμp̄μ þ
ar
2
p̂2 þm;

ðA5Þ

GW ¼ −i
P

μγμp̄μ þ ar
2
p̂2 þm

ðiPργρp̄ρ þ ar
2
p̂2 þmÞð−iPσγσp̄σ þ ar

2
p̂2 þmÞ

¼ −i
P

μγμp̄μ þ ar
2
p̂2 þm

p̄2 þ ðar
2
p̂2 þmÞ2 ðA6Þ

with p̄μ ¼ 1
a sinðapμÞ and p̂μ ¼ 2

a sinð
apμ

2
Þ. It follows that

p̂2 ¼
X
μ

p̂2
μ ¼

4

a2
X
μ

sin2
�
apμ

2

�
¼ 2d

a2
−

2

a2
X
μ

cosðapμÞ;

ðA7Þ
or ar

2
p̂2 ¼ dr

a − r
a

P
μ cosðapμÞ, and searching for a zero of

the denominator with p4 → iE yields

3By this we mean that the pattern of low-energy Dirac operator
eigenvalues is characteristic of the gauge background and nearly
independent of the fermion formulation, at least at small enough
lattice spacings.
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sinh2ðaEÞ ¼
X
i

sin2ðapiÞ þ
�
dr − r coshðaEÞ − r

X
i

cosðapiÞ þ am

�
2

¼
X
i

sin2ðapiÞ þ r2cosh2ðaEÞ − 2r coshðaEÞ
�
drþ am − r

X
i

cosðapiÞ
�
þ ½� � ��2: ðA8Þ

For r ¼ 1 the identity cosh2 − sinh2 ¼ 1 turns this into a linear equation in coshðaEÞ,

2 coshðaEÞ
�
dþ am −

X
i

cosðapiÞ
�
¼ 1þ

X
i

sin2ðapiÞ þ
�
dþ am −

X
i

cosðapiÞ
�
2

; ðA9Þ

which one solves for aE > 0 by means of acoshðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ for x > 1. For r ≠ 1 one stays with a quadratic

equation in coshðaEÞ

0 ¼ 1þ
X
i

sin2ðapiÞ þ ðr2 − 1Þcosh2ðaEÞ − 2r coshðaEÞ
�
drþ am − r

X
i

cosðapiÞ
�
þ ½� � ��2; ðA10Þ

which one addresses by first solving for a real positive coshðaEÞ and then inverting the cosh.

3. Karsten-Wilczek fermions

The KW operator and its Green’s function take the form

DKW ¼
X
μ

γμ∇μ − i
ar
2
γd

Xd−1
i¼1

△i þm ¼ i
X
μ

γμp̄μ þ i
ar
2
γd

Xd−1
i¼1

p̂2
i þm; ðA11Þ

GKW ¼ −i
P

μγμp̄μ − i ar
2
γd

P
d−1
i¼1 p̂

2
i þm

ðiPργρp̄ρ þ i ar
2
γd

P
d−1
i¼1 p̂

2
i þmÞð−iPσγσp̄σ − i ar

2
γd

P
d−1
j¼1 p̂

2
j þmÞ

¼ −i
P

μγμp̄μ − i ar
2
γd

P
d−1
i¼1 p̂

2
i þm

ðPd−1
i¼1 γip̄i þ γdp̄d þ ar

2
γd

P
d−1
i¼1 p̂

2
i Þ2 þm2

¼ −i
P

μγμp̄μ − i ar
2
γd

P
d−1
i¼1 p̂

2
i þmP

d−1
i¼1 p̄

2
i þ ðp̄d þ ar

2

P
d−1
i¼1 p̂

2
i Þ2 þm2

; ðA12Þ

where in the last step specific properties of the Dirac-Clifford algebra were used. Searching for a zero of the denominator
with ar

2

P
i p̂

2
i ¼ r

a

P
if1 − cosðapiÞg and p4 → iE yields

0 ¼
Xd−1
i¼1

sin2ðapiÞ þ
�
i sinhðaEÞ þ r

Xd−1
i¼1

f1 − cosðapiÞg
�

2

þ ðamÞ2; ðA13Þ

which does not necessarily yield a real solution for E. In such a situation one should go for a complex E, and treat its real
part as the “energy” of the respective mode. In other words,

sinhðaEÞ ¼ ir
Xd−1
i¼1

f1 − cosðapiÞg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd−1
i¼1

sin2ðapiÞ þ ðamÞ2
vuut ðA14Þ

yields a complex sinhðaEÞ, and through the asinh function the definition of a complex aE is obtained, whose positive real

part is plotted against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d−1
i¼1 p

2
i

q
.
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4. Borici-Creutz fermions

The BC operator and its Green’s function take the form

DBC ¼
X
μ

γμ∇μ − i
ar
2

X
μ

γ0μ△μ þm ¼ i
X
μ

γμp̄μ þ i
ar
2

X
μ

γ0μp̂2
μ þm; ðA15Þ

GBC ¼ −i
P

μγμp̄μ − i ar
2

P
μγ

0
μp̂2

μ þm

ðiPργρp̄ρ þ i ar
2

P
ργ

0
ρp̂2

ρ þmÞð−iPσγσp̄σ − i ar
2

P
σγ

0
σp̂2

σ þmÞ

¼ −i
P

μγμp̄μ − i ar
2

P
μγ

0
μp̂2

μ þmP
ρ;σγργσp̄ρp̄σ þ ar

2

P
ρ;σγργ

0
σp̄ρp̂2

σ þ ar
2

P
ρ;σγ

0
ργσp̂2

ρp̄σ þ a2r2
4

P
ρ;σγ

0
ργ

0
σp̂2

ρp̂2
σ þm2

; ðA16Þ

and our task is to further simplify the denominator. The first term is symmetric in p̄ρ ↔ p̄σ; it may be rewritten as
1
2

P
ρ;σfγρ; γσgp̄ρp̄σ ¼

P
λ p̄

2
λ , where the Dirac-Clifford property of the γ matrices has been used. For exactly the same

reason the fourth term may be rewritten as a2r2
8

P
ρ;σfγ0ρ; γ0σgp̂2

ρp̂2
σ ¼ a2r2

4

P
λ p̂

4
λ , where the Dirac-Clifford property of

the γ0 matrices has been used. The two cross-terms are a bit trickier to deal with. It proves useful to notice that the second
term can be inflated to look like ar

4

P
ρ;σ γργ

0
σp̄ρp̂2

σ þ ar
4

P
ρ;σ γσγ

0
ρp̄σp̂2

ρ. Similarly, the third term can be brought
into the form ar

4

P
ρ;σ γ

0
ργσp̂2

ρp̄σ þ ar
4

P
ρ;σ γ

0
σγρp̂2

σp̄ρ. Accordingly, the second and third terms can be combined into
ar
4

P
ρ;σfγρ; γ0σgp̄ρp̂2

σ þ ar
4

P
ρ;σfγ0ρ; γσgp̂2

ρp̄σ, and the relations (14) and (15) suggest replacing the latter expression by
ar
d

P
ρ;σ p̄ρp̂2

σ − ar
2

P
λ p̄λp̂2

λ þ ar
d

P
ρ;σ p̂

2
ρp̄σ − ar

2

P
λ p̂

2
λp̄λ. Putting everything together we thus arrive at

GBC ¼ −i
P

μγμp̄μ − i ar
2

P
μγ

0
μp̂2

μ þmP
λp̄

2
λ − ar

P
λp̄λp̂2

λ þ a2r2
4

P
λp̂

4
λ þ 2ar

d

P
ρ;σp̄ρp̂2

σ þm2
; ðA17Þ

and our task is to search for a zero of the denominator, i.e., to solve

0 ¼
X
λ

p̄2
λ − ar

X
λ

p̄λp̂2
λ þ

a2r2

4

X
λ

p̂4
λ þ

2ar
d

X
ρ;σ

p̄ρp̂2
σ þm2

¼
X
λ

�
p̄λ −

ar
2
p̂2
λ

�
2

þ 2ar
d

X
ρ;σ

p̄ρp̂2
σ þm2 ðA18Þ

with the substitution p4 → iE for aE. Using p̄ρ ¼ 1
a sinðapρÞ and p̂2

σ ¼ 2
a2 f1 − cosðapσÞg yields

0 ¼
X
λ

½sinðapλÞ − rf1 − cosðapλÞg�2 þ
4r
d

X
ρ;σ

sinðapρÞf1 − cosðapσÞg þ ðamÞ2; ðA19Þ

which the substitution then brings into the form (with i, j running from 1 to d − 1)

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2 þ ½i sinhðaEÞ − rf1 − coshðaEÞg�2

þ 4r
d

X
i;j

sinðapiÞf1 − cosðapjÞg þ
4ir
d

sinhðaEÞ
X
j

f1 − cosðapjÞg

þ 4r
d

X
i

sinðapiÞf1 − coshðaEÞg þ 4ir
d

sinhðaEÞf1 − coshðaEÞg þ ðamÞ2: ðA20Þ

In d ¼ 2 spacetime dimensions this expression simplifies to (each sum contains a single term)

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2 − sinh2ðaEÞ þ r2f1 − coshðaEÞg2

þ 2r
X
i;j

sinðapiÞf1 − cosðapjÞg þ 2ir sinhðaEÞ
X
j

f1 − cosðapjÞg

þ 2r
X
i

sinðapiÞf1 − coshðaEÞg þ ðamÞ2; ðA21Þ

DISPERSION RELATION AND SPECTRAL RANGE OF … PHYS. REV. D 102, 014516 (2020)

014516-11



while in d ¼ 4 spacetime dimensions one finds

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2 − sinh2ðaEÞ þ r2f1 − coshðaEÞg2

þ r
X
i;j

sinðapiÞf1 − cosðapjÞg þ ir sinhðaEÞ
X
j

f1 − cosðapjÞg

þ r
X
i

sinðapiÞf1 − coshðaEÞg − ir sinhðaEÞf1 − coshðaEÞg þ ðamÞ2: ðA22Þ

In the special case r ¼ 1 the d ¼ 2 version simplifies to

0 ¼
X
i

½sinðapiÞ − f1 − cosðapiÞg�2 þ
�
2þ 2

X
i

sinðapiÞ
�
f1 − coshðaEÞg

þ 2
X
i;j

sinðapiÞf1 − cosðapjÞg þ 2i sinhðaEÞ
X
j

f1 − cosðapjÞg þ ðamÞ2; ðA23Þ

while the d ¼ 4 version takes the form

0 ¼
X
i

½sinðapiÞ − f1 − cosðapiÞg�2 þ
�
2þ

X
i

sinðapiÞ − i sinhðaEÞ
�
f1 − coshðaEÞg

þ
X
i;j

sinðapiÞf1 − cosðapjÞg þ i sinhðaEÞ
X
j

f1 − cosðapjÞg þ ðamÞ2: ðA24Þ

These equations look complicated, and this is why we shall work our way backwards, from the simplest case to the more
complicated case.
A peculiar feature of the d ¼ 2, r ¼ 1 case is that the equation is linear in sinhðaEÞ and coshðaEÞ. This suggests

multiplying Eq. (A23) with expðaEÞ to obtain

0 ¼
X
i

½sinðapiÞ − f1 − cosðapiÞg�2eaE þ
�
1þ

X
i

sinðapiÞ
�
f2eaE − e2aE − 1g

þ 2
X
i;j

sinðapiÞf1 − cosðapjÞgeaE þ i½e2aE − 1�
X
j

f1 − cosðapjÞg þ ðamÞ2eaE; ðA25Þ

which is a quadratic equation in eaE. Evidently, this means that we should go for the two complex eaE as a function of ap1,
to obtain a complex aE whose positive real part is plotted against jp1j. By contrast, the d ¼ 4, r ¼ 1 case has a mixed term
in sinhðaEÞ coshðaEÞ. The hyperbolic semiangle substitution t ¼ tanhðaE=2Þ, whereupon sinhðaEÞ ¼ 2t=ð1 − t2Þ,
coshðaEÞ ¼ ð1þ t2Þ=ð1 − t2Þ, and 1 − coshðaEÞ ¼ −2t2=ð1 − t2Þ turns Eq. (A24) into

0 ¼
X
i

½sinðapiÞ − f1 − cosðapiÞg�2 −
�
2þ

X
i

sinðapiÞ −
2it

1 − t2

�
2t2

1 − t2

þ
X
i;j

sinðapiÞf1 − cosðapjÞg þ
2it

1 − t2
X
j

f1 − cosðapjÞg þ ðamÞ2; ðA26Þ

and upon multiplying this equation with ð1 − t2Þ2 one finds the (possibly modified) condition

0 ¼
X
i

½sinðapiÞ − f1 − cosðapiÞg�2ð1 − t2Þ2 − 2

�
2þ

X
i

sinðapiÞ
�
t2ð1 − t2Þ þ 4it3

þ
X
i;j

sinðapiÞf1 − cosðapjÞgð1 − t2Þ2 þ 2i
X
j

f1 − cosðapjÞgtð1 − t2Þ þ ðamÞ2ð1 − t2Þ2; ðA27Þ

which amounts to a fourth-order polynomial in t.
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For generic r we resort to the hyperbolic semiangle substitution, regardless of the spacetime dimension. For d ¼ 2 we
obtain the relation

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2 þ
4½r2 − 1�t4
ð1 − t2Þ2

þ 2r
X
i;j

sinðapiÞf1 − cosðapjÞg þ 2ir
2t

1 − t2
X
j

f1 − cosðapjÞg

− 2r
X
i

sinðapiÞ
2t2

1 − t2
þ ðamÞ2; ðA28Þ

and upon multiplying this equation with ð1 − t2Þ2 one finds the (possibly modified) condition

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2ð1 − t2Þ2 þ 4½r2 − 1�t4

þ 2r
X
i;j

sinðapiÞf1 − cosðapjÞgð1 − t2Þ2 þ 4ir
X
j

f1 − cosðapjÞgtð1 − t2Þ

− 4r
X
i

sinðapiÞt2ð1 − t2Þ þ ðamÞ2ð1 − t2Þ2; ðA29Þ

which amounts to a fourth-order polynomial in t. Note that for r2 ¼ 1 the second term in Eq. (A28) vanishes. It is then
sufficient to multiply the equation with 1 − t2, and one ends up with a quadratic polynomial in t (equivalent to the procedure
used above). In other words, after setting r ¼ 1 and dropping a factor 1 − t2, Eq. (A29) is equivalent to Eq. (A25). For d ¼ 4
the same semiangle substitution yields

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2 −
4t2

ð1 − t2Þ2 þ
4r2t4

ð1 − t2Þ2

þ r
X
i;j

sinðapiÞf1 − cosðapjÞg þ ir
X
j

f1 − cosðapjÞg
2t

1 − t2

− r
X
i

sinðapiÞ
2t2

1 − t2
þ ir

2t
1 − t2

2t2

1 − t2
þ ðamÞ2; ðA30Þ

and upon multiplying this equation with ð1 − t2Þ2 one finds the (possibly modified) condition

0 ¼
X
i

½sinðapiÞ − rf1 − cosðapiÞg�2ð1 − t2Þ2 − 4t2 þ 4r2t4

þ r
X
i;j

sinðapiÞf1 − cosðapjÞgð1 − t2Þ2 þ 2ir
X
j

f1 − cosðapjÞgtð1 − t2Þ

− 2r
X
i

sinðapiÞt2ð1 − t2Þ þ 4irt3 þ ðamÞ2ð1 − t2Þ2; ðA31Þ

which amounts to a fourth-order polynomial in t. Upon
setting r ¼ 1 Eq. (A31) simplifies to Eq. (A27) without
further ado.
Using the built-in capabilities of a computer algebra

program or a numerical package such as MATLAB/OCTAVE,
it is straightforward to find all (in general complex-
valued) solutions to a fourth-order polynomial with given
numerical coefficients. In this spirit we evaluate, for a
given ðp1; p2; p3Þ configuration, the four solutions t and
apply aE ¼ 2atanhðtÞ to obtain the energies. The one

with the smallest positive real part is interpreted as the
energy of the fermion in that momentum configuration,
and its imaginary part gives the damping of the pertinent
mode. This is the numerical basis of all dispersion
relations shown in this article. On the analytical side,
one may proceed one step further upon expanding the
physical solution in powers of am. This yields results
relevant to assess the suitability of these actions for
heavy-quark physics, as discussed in the main part of the
article and Appendix B.
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APPENDIX B: SUITABILITY FOR
HEAVY-QUARK PHYSICS

1. Naive fermions

At ap⃗ ¼ 0⃗ the naive dispersion relation simplifies to

sinhðaEÞ ¼ am; ðB1Þ

and this means that the series expansion in powers of am
takes the form

aE ¼ am

�
1 −

1

6
ðamÞ2 þ 3

40
ðamÞ4 þOððamÞ6Þ

�
: ðB2Þ

Hence, the rest mass of a fermion in the naive discretization
has cutoff effects OððamÞ2Þ.

2. Wilson fermions

At ap⃗ ¼ 0⃗ the Wilson dispersion relation for arbitrary d
and r ¼ 1 simplifies to

coshðaEÞ ¼ 1

2ð1þ amÞ þ
1þ am

2
; ðB3Þ

which is solved if expðaEÞ ¼ 1þ am, that is for
aE ¼ logð1þ amÞ. The series expansion,

aE ¼ am

�
1 −

1

2
amþ 1

3
ðamÞ2 − 1

4
ðamÞ3 þOððamÞ4Þ

�
;

ðB4Þ

shows that such cutoff effects scale asOðamÞ. For arbitrary
d and generic r one starts from the quadratic equation ðr2 −
1Þ cosh2ðaEÞ − 2rðrþ amÞ coshðaEÞ þ 1þ ðrþ amÞ2 ¼
0 whereupon

coshðaEÞ ¼ rðrþ amÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ramþ ðamÞ2

p
r2 − 1

; ðB5Þ

out of which only the second solution (with negative sign)
is physical, since it is the one which agrees, in the limit
r → 1, with the solution found in this special case. This
yields the expansion

aE ¼ am

�
1 −

r
2
amþ 3r2 − 1

6
ðamÞ2

−
½5r2 − 3�r

8
ðamÞ3 þOððamÞ4Þ

�
; ðB6Þ

which, again, in the special case r ¼ 1 is found to agree
with the previous expansion. The lesson is that cutoff
effects of Wilson fermions are linear in am. It is impossible
to get rid of this undesirable term through a clever choice of
r, since for r ¼ 0 we are back to 2d species.

3. Karsten-Wilczek fermions

At ap⃗ ¼ 0⃗ the KW dispersion relation simplifies to 0 ¼
− sinh2ðaEÞ þ ðamÞ2 and thus to the form (B1) of the naive
action. Accordingly, the expansion of the rest energy of a
static KW fermion in powers of am agrees with (B2).
Hence, the KW action yields a two species formulation
which maintains the desirable heavy-quark features of the
naive discretization.

4. Borici-Creutz fermions

At ap⃗ ¼ 0⃗ the BC dispersion relation in d spacetime
dimensions takes the form

0 ¼ ½i sinhðaEÞ − rf1 − coshðaEÞg�2

þ 4ir
d

sinhðaEÞf1 − coshðaEÞg þ ðamÞ2; ðB7Þ

which for d ¼ 2 simplifies to 0 ¼ − sinh2ðaEÞ þ
r2f1 − coshðaEÞg2 þ ðamÞ2, while for d ¼ 4 it takes the
form 0¼−sinh2ðaEÞþr2f1−coshðaEÞg2− irsinhðaEÞ×
f1−coshðaEÞgþðamÞ2.
It seems instructive to first consider the case r ¼ 1. In

this case the d ¼ 2 version assumes the compact form
0 ¼ 2 − 2 coshðaEÞ þ ðamÞ2, while the d ¼ 4 version can
be rewritten as 0 ¼ ½2 − i sinhðaEÞ�½1 − coshðaEÞ� þ
ðamÞ2. In d ¼ 2 dimensions the solution at r ¼ 1 is

coshðaEÞ ¼ 1þ 1

2
ðamÞ2 ½d ¼ 2; r ¼ 1�; ðB8Þ

which expands as

aE ¼ am

�
1 −

1

24
ðamÞ2 þ 3

640
ðamÞ4 þOððamÞ6Þ

�
½d ¼ 2; r ¼ 1�:

In d ¼ 4 dimensions even at r ¼ 1 the solution can only be
given as the logarithm of the roots of the polynomial
iz4 − ð4þ 2iÞz3 þ ð8þ 4ðamÞ2Þz2 − ð4 − 2iÞz − i, and a
power expansion yields

aE ¼ am

�
1þ i

4
am −

19

96
ðamÞ2 − i

8
ðamÞ3 þ 923

10240
ðamÞ4

þOððamÞ5Þ
�

½d ¼ 4; r ¼ 1�: ðB9Þ

For r ≠ 1 and d ¼ 2 we notice that Eq. (B7) is quadratic
in coshðaEÞ, whereupon

coshðaEÞ ¼ −r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − r2ÞðamÞ2

p
1 − r2

½d ¼ 2�;
ðB10Þ
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but only the first solution (with positive sign) is physical,
since it is the one which agrees in the limit r → 1 with the
solution (B8) found previously. It expands as

aE ¼ am

�
1þ 3r2 − 4

24
ðamÞ2 þ 35r4 − 80r2 þ 48

640
ðamÞ4

þOððamÞ6Þ
�

½d ¼ 2�; ðB11Þ

and a quick check reveals that each coefficient in the
r ¼ 1 expansion is recovered in that limit. For r ≠ 1 and
d ¼ 4 the solution of Eq. (B7) can only be given as the
logarithm of the roots of the polynomial ðirþ r2 − 1Þz4 þ
ð−2ir − 4r2Þz3 þ ð4m2 þ 6r2 þ 2Þz2 þ ð2ir − 4r2Þz − 1−
irþ r2 ¼ 0, and a power expansion yields

aE ¼ am

�
1þ ir

4
am −

3r2 þ 16

96
ðamÞ2 þ i½r3 − 3r�

16
ðamÞ3

−
805r4 − 960r2 − 768

10240
ðamÞ4

þOððamÞ5Þ
�

½d ¼ 4�; ðB12Þ

which, for r → 1, would indeed simplify to (B9).
In short, we find that in d ¼ 2 dimensions the rest mass

of a BC fermion has discretization effects OððamÞ2Þ for
generic r. For r2 ¼ 4=3 they are even pushed to OððamÞ4Þ.
By contrast, in d ¼ 4 dimensions the rest mass of a BC
fermion has OðamÞ cutoff effects, but this order affects
only the imaginary part. Quite generally, it seems that in
d ¼ 4 dimensions the real part of E=m is even in r and am,
while the imaginary part is odd in r and am.
Another way to see the difference between the cases

d ¼ 2 and d ¼ 4 is to apply the hyperbolic semiangle
substitution to Eq. (B7). Multiplying it with ð1 − t2Þ2 yields

0 ¼ −4t2 þ 8irt3 þ 4r2t4 −
16ir
d

t3 þ ðamÞ2ð1 − t2Þ2;

where t ¼ tanhðaE=2Þ. Specifically for d ¼ 2 the trouble-
some cubic term is gone

0 ¼ −4t2 þ 4r2t4 þ ðamÞ2ð1 − t2Þ2 ½d ¼ 2�; ðB13Þ

and the equation is biquadratic, while for d ¼ 4 one ends
up with

0 ¼ −4t2 þ 4irt3 þ 4r2t4 þ ðamÞ2ð1 − t2Þ2 ½d ¼ 4�;
ðB14Þ

which is a genuine fourth-order equation in t.

APPENDIX C: CHECK OF ZERO LOCATION
IN GREEN FUNCTIONS

1. Naive fermions

The denominator of Gnai at am ¼ 0 is a2p̄2 ¼P
μ sin

2ðapμÞ. It has 16 zeros in the Brillouin zone, one
at apμ ∈ f0; πg for each μ, if the range in each direction is
taken to be � − π

2
; 3π
2
�.

2. Wilson fermions

The denominator of GW at am ¼ 0 is a2p̄2 þ ða2r
2
p̂2Þ2;

evidently it is only zero if a2p̄2 ¼ 0 and a2p̂2 ¼ 0 hold
simultaneously. The first term has 16 zeros in the Brillouin
zone, the second one only one, at (0,0,0,0). The Wilson
term thus lifts 15 of the 16 species of the naive action to a
level 2r=a, 4r=a, 6r=a, and 8r=a, with degeneracies 4, 6, 4,
and 1, respectively.

3. Karsten-Wilczek fermions

The denominator of GKW at am ¼ 0 is zero ifP
d−1
i¼1 p̄

2
i þ ðp̄d þ ar

2

P
d−1
i¼1 p̂

2
i Þ2 ¼ 0. This holds if

0 ¼
X
i

sin2ðapiÞ ∧ 0 ¼ sinðapdÞ þ 2r
X
i

sin2
�
api

2

�

ðC1Þ

hold simultaneously. The first requirement implies api ∈
f0; πg for each i, if the range is taken to be � − π

2
; 3π
2
�.

Hence we need to evaluate the second requirement for
the 2d−1 spatial momentum configurations, e.g., (0, 0, 0),
ð0; 0; πÞ, ð0; π; 0Þ, ðπ; 0; 0Þ, ð0; π; πÞ, ðπ; 0; πÞ, ðπ; π; 0Þ,
ðπ; π; πÞ for d ¼ 4. For (0, 0, 0) the second requirement
reads 0 ¼ sinðapdÞ þ 0, and this implies apd ∈ f0; πg.
For each of ð0; 0; πÞ, ð0; π; 0Þ, ðπ; 0; 0Þ the second require-
ment reads 0 ¼ sinðapdÞ þ 2r, which has two solutions
(in apd) for jrj < 1

2
that merge into one at jrj ¼ 1

2
, hence

the number of flavors changes here by 6. For each of
ð0; π; πÞ, ðπ; 0; πÞ, ðπ; π; 0Þ the second requirement reads
0 ¼ sinðapdÞ þ 4r, which has two solutions for jrj < 1

4
that

merge into one at jrj ¼ 1
4
, and hence the number of flavors

changes here by 6. For ðπ; π; πÞ the second requirement
reads 0 ¼ sinðapdÞ þ 6r, which has two solutions for jrj <
1
6
that merge into one at jrj ¼ 1

6
. In summary, jrj ¼ 1

6
marks

the watershed (for d ¼ 4) between a deformed naive
fermion and a 14 species formulation, jrj ¼ 1

4
marks the

transition to eight species, and jrj ¼ 1
2
marks the transition

to a minimally doubled lattice fermion with poles at
(0,0,0,0) and ð0; 0; 0; πÞ.
In view of a similar discussion below for BC fermions, it

is perhaps useful to illustrate the solutions to the system
(C1) in the ðr; ap4Þ plane; see Fig. 12. The degeneracies
and multiplicities of the modes are given in the legend and
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the caption. The main mode (0, 0, 0, 0) is labeled “survivor
ð1;þÞ,” since it is nondegenerate with correct chirality. The
doubler mode ð0; 0; 0;�πÞ is labeled “survivor ð1;−Þ,”
since it is nondegenerate with opposite chirality.
A contour plot for KW fermions in d ¼ 2 dimensions is

shown in Fig. 13. The momentum range is � − 5
4
π; 3

4
π½ for

both ap1 and ap2. At r ¼ 0 one starts with the naive action.
At infinitesimally small r the poles at ð−π; 0Þ and ð−π;−πÞ
(which have opposite chiralities) start moving toward each
other. At r ¼ 1=2 they meet at ð−π;−π=2Þ and annihilate.
The two remaining poles are located at (0,0), with correct
chirality on topologically charged backgrounds, and at
ð0;−πÞ, with opposite chirality. Their position is indepen-
dent of r.

4. Borici-Creutz fermions

For BC fermions in d ¼ 2 dimensions, Eq. (A19) at
am ¼ 0 simplifies to

0 ¼ ½sinðap1Þ − rf1 − cosðap1Þg�2
þ ½sinðap2Þ − rf1 − cosðap2Þg�2 þ 2r½sinðap1Þ
þ sinðap2Þ�½2 − cosðap1Þ − cosðap2Þ�: ðC2Þ

Let us first search for a symmetric mode, i.e., one with
p1 ¼ p2 ≡ p. In this case we have

0 ¼ ½cosðapÞ − 1�½ðr2 − 1Þ cosðapÞ
− 2r sinðapÞ − ðr2 þ 1Þ�; ðC3Þ

and thus one solution, ap ¼ 0, is independent of r. To the
second square bracket we apply the trigonometric semi-
angle substitution t ¼ tanðap=2Þ with sinðapÞ ¼ 2t=ð1þ
t2Þ and cosðtÞ ¼ ð1 − t2Þ=ð1þ t2Þ. Upon multiplying the
result with 1þ t2, the second factor becomes

0 ¼ ðr2 − 1Þð1 − t2Þ − 2r2t − ðr2 þ 1Þð1þ t2Þ
¼ −2ðrtþ 1Þ2; ðC4Þ

and this yields the twofold zero t ¼ −1=r, and hence
ap ¼ −2 arctanð1=rÞ.
For the nonsymmetric modes it is useful to notice that

(C2) is the sum of two squares

0 ¼ ½sinðap1Þ þ rf1 − cosðap2Þg�2
þ ½sinðap2Þ þ rf1 − cosðap1Þg�2; ðC5Þ

and one can thus reformulate the condition as a system of
two coupled equations

0 ¼ sinðap1Þ þ rf1 − cosðap2Þg ∧ 0

¼ sinðap2Þ þ rf1 − cosðap1Þg: ðC6Þ

The aforementioned trigonometric semiangle substitution
turns this into

0 ¼ t1
1þ t21

þ rt22
1þ t22

∧ 0 ¼ t2
1þ t22

þ rt21
1þ t21

; ðC7Þ

which, after multiplication by ð1þ t21Þð1þ t22Þ, leads to the
conditions

0 ¼ t1ð1þ t22Þ þ rt22ð1þ t21Þ ∧ 0

¼ t2ð1þ t21Þ þ rt21ð1þ t22Þ: ðC8Þ

There are four real solutions, ft1 ¼ 0; t2 ¼ 0g, ft1 ¼ −1=r;
t2 ¼ −1=rg,

0 0.2 0.4 0.6 0.8 1

-3

-2.5

-2

-1.5

-1

-0.5

0

r<1/2 (3,+)
r<1/2 (3,-)
r<1/4 (3,-)
r<1/4 (3,+)
r<1/6 (1,+)
r<1/6 (1,-)
survivor (1,-)
survivor (1,+)

FIG. 12. Illustration of the free-field pole structure of the
Karsten-Wilczek operator in d ¼ 4 dimensions. The momentum
ap4 is always plotted as a function of the parameter r. The
threefold degenerate solution that emerges from ð0; 0; πÞ,
ð0; π; 0Þ, or ðπ; 0; 0Þ, together with ap4 ¼ �π, has correct
chirality. It annihilates, at r ¼ 1=2, with the threefold degenerate
counterpart that emerges from ap4 ¼ 0 with opposite chirality.
The threefold degenerate solution that emerges from ð0; π; πÞ,
ðπ; 0; πÞ, ðπ; π; 0Þ, together with ap4 ¼ �π, has opposite chiral-
ity. It annihilates, at r ¼ 1=4, with the threefold degenerate
counterpart that emerges from ap4 ¼ 0with correct chirality. The
nondegenerate solution that emerges from ðπ; π; πÞ, together with
ap4 ¼ �π, has correct chirality. It annihilates, at r ¼ 1=6, with
the nondegenerate counterpart that emerges from ap4 ¼ 0 with
opposite chirality. The nondegenerate solution that emerges from
(0, 0, 0) and ap4 ¼ �π has opposite chirality and lives for any r.
The nondegenerate solution stemming from the same spatial
momentum, but with ap4 ¼ 0, has correct chirality and lives for
any r.
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KW in 2D, log(denominator), r=0.001
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FIG. 13. Contour plots of the denominator of the KW propagator in d ¼ 2 spacetime dimensions for r ∈ f0.001; 0.2; 0.4; 0.6; 1; 3g.
Two poles annihilate at r ¼ 1=2.
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�
t1 ¼

r2 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3
; t2 ¼

r2 − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3

�
;

�
t1 ¼

r2 − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3
; t2 ¼

r2 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3

�
; ðC9Þ

where the first two are again symmetric in p1 ↔ p2, and the
last two interchange under t1 ↔ t2. For the square root in
(C9) to be real, one needs 1 − 2r2 − 3r4 ≥ 0, and this means
r2 ≤ 1=3. At r ¼ 1=

ffiffiffi
3

p
the solutions become t1 ¼ t2 ¼

−
ffiffiffi
3

p
, and thus coincide with the symmetric solution, t ¼

−1=r ¼ −
ffiffiffi
3

p
at this point. In short, for 0 < r < 1=

ffiffiffi
3

p
we

have a four species action (with two symmetric and two
nonsymmetric modes), while for 1=

ffiffiffi
3

p
< r the BC action in

d ¼ 2 dimensions encodes for two species (which live on the
diagonal of the Brillouin zone).
A contour plot for BC fermions in d ¼ 2 dimensions is

shown in Fig. 14. The momentum range is � − 5
4
π; 3

4
π½ for

both ap1 and ap2. At r ¼ 0 one starts with the naive action.
For infinitesimally small r the poles in the ðap1; ap2Þ plane
at ð−π; 0Þ and ð0;−πÞ start moving toward the diagonal,
and the pole at ð−π;−πÞ moves along the diagonal, while
the pole at (0,0) stays invariant. At r ¼ 1=

ffiffiffi
3

p
the three

moving poles merge into a single pole. For r > 1=
ffiffiffi
3

p
one

stays with one pole at (0,0), with correct chirality on
topologically charged backgrounds, and the merged pole,
with opposite chirality. For r → ∞ the two surviving pole
positions are arbitrarily close to each other.
For BC fermions in d ¼ 4 dimensions, Eq. (A19) at

am ¼ 0 simplifies to

0 ¼ ½sinðap1Þ − rf1 − cosðap1Þg�2 þ � � � þ ½sinðap4Þ − rf1 − cosðap4Þg�2
þ r½sinðap1Þ þ � � � þ sinðap4Þ�½4 − cosðap1Þ − � � � − cosðap4Þ�: ðC10Þ

Let us first focus on a symmetric mode, i.e., put p1 ¼ p2 ¼ p3 ¼ p4 ≡ p. In this case we have

0 ¼ ½cosðapÞ − 1�½ðr2 − 1Þ cosðapÞ − 2r sinðapÞ − ðr2 þ 1Þ�; ðC11Þ

exactly as in d ¼ 2 dimensions, and the solution is again given by ap ¼ 0 or ap ¼ −2 arctanð1=rÞ.
For the asymmetric modes it is useful to notice that (C10) is the sum of four squares

0 ¼ ½sinðap1Þ þ
r
2
f2þ cosðap1Þ − cosðap2Þ − cosðap3Þ − cosðap4Þg�2

þ ½sinðap2Þ þ
r
2
f2 − cosðap1Þ þ cosðap2Þ − cosðap3Þ − cosðap4Þg�2

þ ½sinðap3Þ þ
r
2
f2 − cosðap1Þ − cosðap2Þ þ cosðap3Þ − cosðap4Þg�2

þ ½sinðap4Þ þ
r
2
f2 − cosðap1Þ − cosðap2Þ − cosðap3Þ þ cosðap4Þg�2; ðC12Þ

and one can thus reformulate the condition as a set of four coupled equations

0 ¼ sinðap1Þ þ
r
2
f2þ cosðap1Þ − cosðap2Þ − cosðap3Þ − cosðap4Þg

0 ¼ sinðap2Þ þ
r
2
f2 − cosðap1Þ þ cosðap2Þ − cosðap3Þ − cosðap4Þg

0 ¼ sinðap3Þ þ
r
2
f2 − cosðap1Þ − cosðap2Þ þ cosðap3Þ − cosðap4Þg

0 ¼ sinðap4Þ þ
r
2
f2 − cosðap1Þ − cosðap2Þ − cosðap3Þ þ cosðap4Þg: ðC13Þ

By adding two successive equations, this system may be reformulated as
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BC in 2D, log(denominator), r=0.001
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FIG. 14. Contour plots of the denominator of the BC propagator in d ¼ 2 spacetime dimensions for r ∈ f0.001; 0.2; 0.4; 0.6; 1; 3g.
Three poles merge into one at r ¼ 1=

ffiffiffi
3

p
≃ 0.57735.
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0 ¼ sinðap1Þ þ sinðap2Þ þ rf2 − cosðap3Þ − cosðap4Þg;
0 ¼ sinðap2Þ þ sinðap3Þ þ rf2 − cosðap4Þ − cosðap1Þg;
0 ¼ sinðap3Þ þ sinðap4Þ þ rf2 − cosðap1Þ − cosðap2Þg;
0 ¼ sinðap4Þ þ sinðap1Þ þ rf2 − cosðap2Þ − cosðap3Þg; ðC14Þ

or one might add three and subtract one out of the four equations to obtain

0 ¼ − sinðap1Þ þ sinðap2Þ þ sinðap3Þ þ sinðap4Þ þ 2rf1 − cosðap1Þg;
0 ¼ þ sinðap1Þ − sinðap2Þ þ sinðap3Þ þ sinðap4Þ þ 2rf1 − cosðap2Þg;
0 ¼ þ sinðap1Þ þ sinðap2Þ − sinðap3Þ þ sinðap4Þ þ 2rf1 − cosðap3Þg;
0 ¼ þ sinðap1Þ þ sinðap2Þ þ sinðap3Þ − sinðap4Þ þ 2rf1 − cosðap4Þg: ðC15Þ

Finally, one might add all four equations to obtain

0 ¼ sinðap1Þ þ � � � þ sinðap4Þ þ rf4 − cosðap1Þ − � � � − cosðap4Þg; ðC16Þ

and an obvious question is which one of the four equivalent
systems (C13), (C14), (C15), or (C16) would be most
useful for finding actual solutions.
The last version is useful for finding the symmetric

mode. With p1¼���¼p4≡p Eq. (C16) simplifies to
0¼ sinðapÞþrf1−cosðapÞg, or 0 ¼ sinðap

2
Þ½cosðap

2
Þ þ

r sinðap
2
Þ�. This means sinðap

2
Þ ¼ 0 or cosðap

2
Þ ¼

−r sinðap
2
Þ. Hence ap ∈ f0;−2 arctanð1=rÞg, as was found

previously.
The last but one version is useful for solutions with 3-to-1

momentum pairing. Without loss of generality we assume
p1 ¼ p2 ¼ p3 ≡ p, p4 ≡ q, so Eq. (C15) takes the form

0 ¼ 1 sinðapÞ þ sinðaqÞ þ 2rf1 − cosðapÞg;
0 ¼ 3 sinðapÞ − sinðaqÞ þ 2rf1 − cosðaqÞg; ðC17Þ

and the trigonometric semiangle substitution t ¼ tanðap=2Þ;
u ¼ tanðaq=2Þ turns this into

0 ¼ t
1þ t2

þ u
1þ u2

þ r

�
1 −

1 − t2

1þ t2

�
;

0 ¼ 3t
1þ t2

−
u

1þ u2
þ r

�
1 −

1 − u2

1þ u2

�
: ðC18Þ

After multiplication by ð1þ t2Þð1þ u2Þ one ends up with

0 ¼ 1tð1þ u2Þ þ uð1þ t2Þ þ 2rt2f1þ u2g;
0 ¼ 3tð1þ u2Þ − uð1þ t2Þ þ 2ru2f1þ t2g; ðC19Þ

and the real-valued solutions include t ¼ u ¼ 0 and t ¼ u ¼
−r (which are the previously found symmetric solutions) as
well as two nontrivial solutions for jrj ≤ 1=

ffiffiffi
2

p
, namely

�
t ¼ rð1 − sÞ

2r4 þ r2 þ 2s − 2
; u ¼ 2r2 þ s − 1

rð2r2 − 1Þ
�
;

�
t ¼ rð1þ sÞ

2r4 þ r2 − 2s − 2
; u ¼ 2r2 − s − 1

rð2r2 − 1Þ
�

ðC20Þ

with s≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2r4 − r2 þ 1

p
. For r → 1=

ffiffiffi
2

p
the last two

solutions become�
t → −

1ffiffiffi
2

p ; u → −∞
�
;�

t → −
1ffiffiffi
2

p ; u → þ∞
�
; ðC21Þ

meaning ap → − arctanð1= ffiffiffi
2

p Þ and aq →∓ π. We also
determine the values the solutions (C20) assume at
r ¼ 1=

ffiffiffi
3

p
; we find

ft → −
ffiffiffi
3

p
; u → −

ffiffiffi
3

p
g;�

t → −
ffiffiffi
3

p

5
; u → 3

ffiffiffi
3

p �
; ðC22Þ

which means that only the first one of these two solutions
matches onto the symmetric solution at r ¼ 1=

ffiffiffi
3

p
. With

respect to thegeneral solution (C20) letus recall that thechoice
p4 ≡ q was one out of four possibilities, and hence we have
eight rather than two nontrivial solutions.
The second version is useful for solutions with 2-to-2

momentum pairing. Without loss of generality we assume
p1 ¼ p2 ≡ p, p3 ¼ p4 ≡ q, so Eq. (C14) takes the form

0 ¼ sinðapÞ þ rf1 − cosðaqÞg;
0 ¼ sinðaqÞ þ rf1 − cosðapÞg; ðC23Þ
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but this is identical to the system (C6) for BC fermions in d ¼ 2 dimensions. It follows that ft ¼ 0; u ¼ 0g and ft ¼
−1=r; u ¼ −1=rg are the symmetric solutions, and(

t ¼ r2 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3
; u ¼ r2 − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3

)
;

(
t ¼ r2 − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3
; u ¼ r2 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2 − 3r4

p

2r3

)
ðC24Þ

are the nonsymmetric ones. Evidently, the second solution
emerges from the first one by interchanging t ↔ u. The
square root is real for jrj ≤ 1=

ffiffiffi
3

p
, and at this point

the nonsymmetric solutions take the form t ¼ −1=r ¼
−

ffiffiffi
3

p
; u ¼ −1=r ¼ −

ffiffiffi
3

p
, which means that they merge

into the symmetric solution. We recall that the choice p1 ¼
p2 ≡ p was one out of three possibilities, and hence we
have six rather than two nonsymmetric solutions.
The first version of the system was not used at all. It

seems (C13) would be most useful for finding a totally
unsymmetric mode, i.e., one with pairwise unequal p1, p2,
p3, p4. Apart from having already found 2þ 8þ 6 ¼ 16
solutions (for r small enough), permutations demanded by
invariance under the exchange of any axes would beef up a
totally unsymmetric solution to 4! ¼ 24 solutions, and that
is too many of them.
Overall, we thus arrive at the following picture for BC

fermions in d ¼ 4 dimensions. For infinitesimally small r
there is an invariant solution, ap ¼ ð0; 0; 0; 0Þ, a symmetric
solution, ap ¼ − arctanð1=rÞð2; 2; 2; 2Þ, eight solutions
with 3-to-1 momentum pairing of the type (C20), and
six solutions with 2-to-2 momentum pairing of the type
(C24). The first two solutions have the correct chirality on
topologically charged backgrounds, the 3-to-1 paired
solutions all have opposite chirality, and the 2-to-2 paired
solutions have correct chiralities again. At r ¼ 1=

ffiffiffi
3

p
a

dramatic merger and exchange of chiralities takes place,
since the 2-to-2 paired solutions cease to exist, but their
chiralities are transferred to the remaining modes in the
sense that the 3-to-1 paired solutions fall into two sub-
categories (the four of them who passed through the central
point now have correct chirality), and the symmetric
solution gets flipped to opposite chirality at this point.
In short, for r slightly above 1=

ffiffiffi
3

p
the BC action has ten

species (five of each chirality). At r ¼ 1=
ffiffiffi
2

p
the second

change takes place, since the eight solutions with 3-to-1
pairing annihilate each other (in two different points of the
Brillouin zone, and they can do so, since four of them have
correct chirality and four of them have opposite chirality).
Slightly above this value of r the BC action is minimally
doubled, i.e., has one species of each chirality.
Following a similar attempt in the KW case, we try to

illustrate the various modes in the ðr; apÞ or ðr; aqÞ plane in
Fig. 15. At r ¼ 1=

ffiffiffi
3

p
the dramatic merger and exchange of

chiralities takes place, as discussed above. At r ¼ 1=
ffiffiffi
2

p
the

second reduction in the number of species takes place,
since at this point all 3-to-1 paired solutions annihilate each
other. The trivial solution (0,0,0,0) has correct chirality, the
symmetric solution has correct chirality for r < 1=

ffiffiffi
3

p
, and

opposite chirality for r > 1=
ffiffiffi
3

p
.

In d ¼ 4 dimensions it is more difficult to visualize the
moving of the various poles as a function of r than in d ¼ 2
dimensions. While it seems impossible to visualize the
original system (C10), we can visualize each one of the
successor relations (C13), (C14), (C15), and (C16) under
the assumption of the associate momentum pairing.
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symm.(1,+/-)
trivial (1,+)

FIG. 15. Illustration of the free-field pole structure of the
Borici-Creutz operator in d ¼ 4 dimensions. Throughout, the
momentum ap or aq is plotted as a function of the lifting
parameter r. The full/dashed lines give 2 arctanðtÞ; 2 arctanðuÞ
with the 3-to-1 solutions t, u defined in the upper/lower line of
(C20). The dash-dotted lines give 2 arctanðtÞ; 2 arctanðuÞwith the
2-to-2 solutions t, u defined in the upper line of (C24). The lower
line of that system interchanges t ↔ u, and would give the same
graph. The fat-dotted lines indicate the symmetric solution
−2 arctanð1=rÞ and the trivial solution. The horizontal dotted
lines are at lattice momentum −3π=8, −2π=3, and −π, respec-
tively. The vertical dotted lines are at r ¼ 1=

ffiffiffi
2

p
, and r ¼ 1=

ffiffiffi
3

p
,

respectively. In d ¼ 2 dimensions all 3-to-1 paired solutions
would be absent, the dash-dotted curve would refer to (C9), and
the fat-dotted curves would be unchanged.
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BC in 4D, log(3-to-1 pairing), r=0.001
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FIG. 16. Contour plots for the solutions to (C17) for r ∈ f0.001; 0.3; 0.65; 0.75; 1; 3g. There are touch- and endpoints at
r ¼ 1=

ffiffiffi
3

p
≃ 0.57735, and r ¼ 1=

ffiffiffi
2

p ¼ 0.70711. See text for details.
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Equation (C13) would be most useful without any pairing,
but we just learned that this cannot yield a solution.
Equation (C14) is most useful with 2-to-2 pairing, and
the reduced form, Eq. (C23), can be visualized as a
contour plot of ½sinðapÞ þ rf1 − cosðaqÞg�2 þ ½sinðaqÞ þ
rf1 − cosðapÞg�2. But this is identical to the functional
that was visualized in the d ¼ 2 case, so the figure
would look like Fig. 14, with the axes indicating the
joint momenta p and q, respectively. Equation (C15)
is most useful with 3-to-1 pairing, and the reduced
form, Eq. (C17), can be visualized as a contour plot of
½sinðapÞ þ sinðaqÞ þ 2rf1 − cosðapÞg�2 þ ½3 sinðapÞ−
sinðaqÞ þ 2rf1 − cosðaqÞg�2. Here p is the threefold
momentum, and q is the single momentum. The pertinent
contours, with momentum range � − 5

4
π; 3

4
π½ for both ap

and aq, are shown in Fig. 16. For small r one sees the trivial
solution t ¼ u ¼ 0, the symmetric solution t ¼ u ¼ −r, as
well as the upper line of (C20). At r ¼ 1=

ffiffiffi
3

p
the pole

above the diagonal hits the symmetric solution, and the
dramatic exchange of chiralities (which involves solutions
which are not visualized in Fig. 16) takes place. And at

r ¼ 1=
ffiffiffi
2

p
the two poles below the diagonal annihilate each

other, and after this point the BC action is minimally
doubled.

APPENDIX D: HYPERDIAGONAL
PROPAGATION OF BORICI-CREUTZ

FERMIONS

Recall that the substitution p4 → iE would bring
Eq. (A19) to the form (A20). If we let the fermion
propagate along the hyperdiagonal direction, we should
use the substitution iE ¼ ðp1 þ p2Þ=

ffiffiffi
2

p
in d ¼ 2 dimen-

sions, and iE ¼ ðp1 þ p2 þ p3 þ p4Þ=2 in d ¼ 4 dimen-
sions. The “spatial” momenta should be orthogonal to this
direction, hence q≡ ðp1 − p2Þ=

ffiffiffi
2

p
in d ¼ 2 dimensions,

and q1 ≡ ð−p1 þ p2 þ p3 − p4Þ=2; q2 ≡ ðp1 − p2 þ p3 −
p4Þ=2; q3 ≡ ðp1 þ p2 − p3 − p4Þ=2 in d ¼ 4 dimensions,
since this definition establishes the orthogonality rela-
tion q1⊥q2⊥q3⊥q1.
In d ¼ 2 dimensions, Eq. (A19) simplifies to

0 ¼ ½sinðap1Þ − rf1 − cosðap1Þg�2 þ ½sinðap2Þ − rf1 − cosðap2Þg�2
þ 2r½sinðap1Þ þ sinðap2Þ�½2 − cosðap1Þ − cosðap2Þ� þ ðamÞ2; ðD1Þ

and with p1 ¼ ðqþ iEÞ= ffiffiffi
2

p
and p2 ¼ ð−qþ iEÞ= ffiffiffi

2
p

it takes the form

0 ¼ −2ir sinhð
ffiffiffi
2

p
aEÞ þ ðr2 − 1Þ cosð

ffiffiffi
2

p
aqÞ coshð

ffiffiffi
2

p
aEÞ

þ 4 cos

�
aqffiffiffi
2

p
��

−r2 cosh
�
aEffiffiffi
2

p
�
þ ir sinh

�
aEffiffiffi
2

p
��

þ 1þ 3r2 þ ðamÞ2; ðD2Þ

which is a quartic equation in eaE=
ffiffi
2

p
. Specifically at q ¼ 0 it simplifies to

0 ¼ −2ir sinhð
ffiffiffi
2

p
aEÞ þ ðr2 − 1Þ coshð

ffiffiffi
2

p
aEÞ

þ 4

�
−r2 cosh

�
aEffiffiffi
2

p
�
þ ir sinh

�
aEffiffiffi
2

p
��

þ 1þ 3r2 þ ðamÞ2; ðD3Þ

and upon setting r ¼ 1 it further simplifies to

0 ¼ 4

�
1 − cosh

�
aEffiffiffi
2

p
���

1þ i sinh
�
aEffiffiffi
2

p
��

þ ðamÞ2: ðD4Þ

This equation has formally four solutions

aE ¼
ffiffiffi
2

p
lnðRootOfð−iþ i z4 þ ð2 − 2iÞ z3 − ð4þm2Þ z2 þ ð2þ 2iÞ zÞÞ; ðD5Þ

out of which the physical one expands as

aE ¼ am
�
1 −

ffiffiffi
2

p
i

4
am −

1

3
ðamÞ2 þ

ffiffiffi
2

p
i

4
ðamÞ3 þ 17

40
ðamÞ4 þOððamÞ5Þ

�
½r ¼ 1�: ðD6Þ

For generic r the expanded solution reads
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aE ¼ am

�
1 −

ffiffiffi
2

p
ir

4
am −

�
r2

4
þ 1

12

�
ðamÞ2 þ

ffiffiffi
2

p
irð5r2 þ 3Þ

32
ðamÞ3

þ
�
7r4

32
þ 3r2

16
þ 3

160

�
ðamÞ4 þOððamÞ5Þ

�
; ðD7Þ

which, in the limit r → 1, is seen to coincide with the previous expansion.
As an aside we mention that choosing the propagation direction orthogonal to the hyperdiagonal axis, i.e., p1 ¼

ðqþ iEÞ= ffiffiffi
2

p
and p2 ¼ ðq − iEÞ= ffiffiffi

2
p

, yields

0 ¼ ð4ðr2 − 1Þcos2ðq=
ffiffiffi
2

p
Þ − 2ðr2 − 1ÞÞcosh2ðE=

ffiffiffi
2

p
Þ

þ ð−4r2 cosðq=
ffiffiffi
2

p
Þ þ 4r sinðq=

ffiffiffi
2

p
ÞÞ coshðE=

ffiffiffi
2

p
Þ

þ ð−2r2 þ 2Þcos2ðq=
ffiffiffi
2

p
Þ − 4r sinðq=

ffiffiffi
2

p
Þ cosðq=

ffiffiffi
2

p
Þ þ 4r2 þm2; ðD8Þ

which is a quadratic equation in coshðaE= ffiffiffi
2

p Þ. Specifically at q ¼ 0 it simplifies to

0 ¼ 2ðr2 − 1Þ cosh2
�
aEffiffiffi
2

p
�
− 4r2 cosh

�
aEffiffiffi
2

p
�
þ 2r2 þ 2þ ðamÞ2; ðD9Þ

and upon setting r ¼ 1 it further simplifies to 0 ¼ −4 coshðaE= ffiffiffi
2

p Þ þ 4þ ðamÞ2. This equation is linear in coshðaE= ffiffiffi
2

p Þ
and yields coshðaE= ffiffiffi

2
p Þ ¼ 1þ ðamÞ2=4 which, in turn, expands as

aE ¼ am

�
1 −

1

48
ðamÞ2 þ 3

2560
ðamÞ4 þOððamÞ6Þ

�
½r ¼ 1�: ðD10Þ

The quadratic equation (D9) has the unique physical solution

cosh

�
aEffiffiffi
2

p
�

¼ 2r2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2ðr2 − 1ÞðamÞ2

p
2ðr2 − 1Þ ; ðD11Þ

since the other mathematical solution does not match onto the r ¼ 1 case, and expands as

aE ¼ am

�
1þ 3r2 − 4

48
ðamÞ2 þ 35r4 − 80r2 þ 48

2560
ðamÞ4 þOððamÞ6Þ

�
: ðD12Þ

In this peculiar case choosing r2 ¼ 4=3 shifts the leading cutoff effects in aE to OððamÞ4Þ.
In d ¼ 4 dimensions, Eq. (A19) simplifies to

0 ¼ ½sinðap1Þ − rf1 − cosðap1Þg�2 þ � � � þ ½sinðap4Þ − rf1 − cosðap4Þg�2
þ r½sinðap1Þ þ � � � þ sinðap4Þ�½4 − cosðap1Þ − � � � − cosðap4Þ� þ ðamÞ2; ðD13Þ

and with p1 ¼ ð−q1 þ q2 þ q3 þ iEÞ=2, p2 ¼ ðq1 − q2 þ q3 þ iEÞ=2, p3 ¼ ðq1 þ q2 − q3 þ iEÞ=2, and p4 ¼ ð−q1 −
q2 − q3 þ iEÞ=2 it takes the form

0 ¼ 8 sin

�
aq1
2

�
sin

�
aq2
2

�
sin

�
aq3
2

��
ir2 sinh

�
aE
2

�
þ r cosh

�
aE
2

��

þ 8 cos

�
aq1
2

�
cos

�
aq2
2

�
cos

�
aq3
2

��
−r2 cosh

�
aE
2

�
þ ir sinh

�
aE
2

��
− 2iðr2 − 1Þ sinðaq1Þ sinðaq2Þ sinðaq3Þ sinhðaEÞ
þ 2ðr2 − 1Þ cosðaq1Þ cosðaq2Þ cosðaq3Þ coshðaEÞ
þ 2ir½cosðaq1Þ cosðaq2Þ cosðaq3Þ − cosðaq1Þ − cosðaq2Þ − cosðaq3Þ� sinhðaEÞ
þ 2r sinðaq1Þ sinðaq2Þ sinðaq3Þ coshðaEÞ þ 6r2 þ 2þ ðamÞ2; ðD14Þ
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which is a biquadratic equation in coshðaE=2Þ and
sinhðaE=2Þ. At zero momentum orthogonal to the
(þþþþ) propagation direction, i.e., at q1 ¼ q2 ¼
q3 ¼ 0, it simplifies to

0 ¼ 4ðr2 − 1Þ cosh2
�
aE
2

�

þ 8

�
r2 þ ir sinh

�
aE
2

���
1 − cosh

�
aE
2

��
− 4ðr2 − 1Þ þ ðamÞ2; ðD15Þ

and upon setting r ¼ 1 it further simplifies to

0 ¼ 8

�
1 − cosh

�
aE
2

���
1þ i sinh

�
aE
2

��
þ ðamÞ2:

ðD16Þ

This equation has formally four solutions, but only

aE ¼ 2 log

�
1 − i
4

h
2iþ amþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4iamþ ðamÞ2

q i�
ðD17Þ

is physical, since it expands as

aE ¼ am

�
1 −

i
4
am −

1

6
ðamÞ2 þ i

8
ðamÞ3

þ 17

160
ðamÞ4 þOððamÞ5Þ

�
; ðD18Þ

while the remaining ones have a constant imaginary part
and/or start with a negative slope in am. The quartic
equation (D15) has the unique physical solution

aE ¼ 2 log

�
1 − ir

2ð1þ r2Þ

×

�
2irþ amþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4iramþ ðamÞ2

q ��
; ðD19Þ

since the remaining ones do not match onto the r ¼ 1 case,
and it expands as

aE ¼ am

�
1 −

ir
4
am −

3r2 þ 1

24
ðamÞ2 þ irð5r2 þ 3Þ

64
ðamÞ3

þ 35r4 þ 30r2 þ 3

640
ðamÞ4 þOððamÞ5Þ

�
; ðD20Þ

which, in the limit r → 1, is found to reproduce the
previous result.
In short, for BC fermions with propagation in the

hyperdiagonal direction we find similar properties than

with the standard propagation along the dth axis. In d ¼ 2
and d ¼ 4 dimensions the rest mass of a BC fermion with
diagonal propagation direction has OðamÞ cutoff effects,
but this order affects only the imaginary part. The coef-
ficient of the OððamÞ2Þ cutoff effects is −½3r2 þ 1�=12 in
d ¼ 2 dimensions and −½3r2 þ 1�=24 in d ¼ 4 dimensions.
Again, it seems that the real part of E=m is even in r and
am, while the imaginary part is odd in r and am. Overall,
we do not see any compelling advantage of the (þþ) or
(þþþþ) propagation direction over the standard propa-
gation in the dth direction. A peculiarity of d ¼ 2 space-
time dimensions is that the propagation direction can be
chosen orthogonal to the hyperdiagonal direction, and in
this case the OðamÞ cutoff effects disappear, and for r2 ¼
4=3 the leading cutoff effect in the heavy-quark mass is
pushed to OððamÞ4Þ.

APPENDIX E: SPECTRAL BOUNDS

1. Karsten-Wilczek operator

Plugging in the momenta in Eq. (10) at m ¼ 0 yields

aDKW=i ¼
Xd−1
i¼1

γi sinðapiÞ

þ γd

�
sinðapdÞ þ 2r

X
i

sin2
�
api

2

��
2

; ðE1Þ

and with ωKW ≡maxðλKW=iÞ it follows that the symmetry
among the spatial axes implies

ω2
KW ¼ ðd − 1Þsin2ðapÞ

þ
�
sinðapdÞ þ 2ðd − 1Þrsin2

�
ap
2

��
2

; ðE2Þ

for some appropriately chosen momentum configuration.
Obviously, setting apd ¼ π=2 helps to reach the maximum.
Using 2 sin2ðap=2Þ ¼ 1 − cosðapÞ we thus need to maxi-
mize

ω2
KW ¼ ðd − 1Þ sin2ðapÞ þ f1þ ðd − 1Þr½1 − cosðapÞ�g2

ðE3Þ

over p ∈ ½−π; π�. We need to keep in mind that at either end
point we have the value

ω2
KW ¼ f1þ 2ðd − 1Þrg2 ¼

� ð1þ 6rÞ2 ½d ¼ 4�
ð1þ 2rÞ2 ½d ¼ 2� : ðE4Þ

Taking the derivative with respect to ap and setting it to
zero yields

0 ¼ cosðapÞ þ f1þ ðd − 1Þr½1 − cosðapÞ�gr; ðE5Þ
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and this leads to the solution

cosðapÞ ¼ ðd − 1Þr2 þ r
ðd − 1Þr2 − 1

¼
� ð3r2 þ rÞ=ð3r2 − 1Þ ½d ¼ 4�
r=ðr − 1Þ ½d ¼ 2� : ðE6Þ

Plugging the d ¼ 4 result into the general expression yields

ω2
KW ¼ 3

�
1 −

ð3r2 þ rÞ2
ð3r2 − 1Þ2

�
þ
�
1þ 3r

�
1 −

3r2 þ r
3r2 − 1

��
2

¼ 4þ 6r
1 − 3r2

; ðE7Þ

and equating this with the end point value shows that the
switching between the two solutions happens at r ¼ 1=3.
Plugging the d ¼ 2 result into the general expression yields

ω2
KW ¼ 1 −

r2

ðr − 1Þ2 þ
�
1þ r

�
1 −

r
r − 1

��
2

¼ 2

1 − r
;

ðE8Þ

and equality with the end point value is reached at r ¼ 1=2.
To summarize, in d ¼ 4 dimensions we find the spectral

bound (11). In d ¼ 2 dimensions

jImðλKWÞj ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð1 − rÞp
r ≤ 1=2

1þ 2r r ≥ 1=2
; ðE9Þ

and the bound for large r generalizes to 1þ 2ðd − 1Þr in d
dimensions. For r → 0 the general result tends to

ffiffiffi
d

p
,

which is the upper bound of the staggered free-field
eigenvalue spectrum.
The upper envelope of the numerical data in Fig. 6 is well

consistent with the bound (11). For r < 1=3 the value is
(depending on the volume) very close to the bound; this is
unsurprising, since the bound comes from an “internal
value.” For r > 1=3 the bound is saturated by the numerical
value; again this is unsurprising, since the bound stems
from an “end point value.”

2. Borici-Creutz operator

Plugging in the momenta in Eq. (18) at m ¼ 0 and using
Eq. (13) yields

aDBC=i ¼
X
μ

γμ sinðapμÞ

þ 2r
X
μ

�
2ffiffiffi
d

p Γ − γμ

�
sin2ðapμ=2Þ; ðE10Þ

and with the definition (12) we obtain the expression

aDBC=i ¼
X
μ

γμ sinðapμÞ þ
4r
d

X
ν

γν ·
X
μ

sin2ðapμ=2Þ

− 2r
X
μ

γμ sin2ðapμ=2Þ; ðE11Þ

where we may interchange the indices μ ↔ ν in the middle
term. This yields

aDBC=i ¼
X
μ

γμ

�
sinðapμÞ þ

4r
d

X
ν

sin2ðapν=2Þ

− 2rsin2ðapμ=2Þ
�
; ðE12Þ

and with ωBC ≡maxðλBC=iÞ it follows that the momentum
symmetry implies

ω2
BC ¼ dfsinðapÞ þ 2r sin2ðap=2Þg2: ðE13Þ

Using 2 sin2ðap=2Þ ¼ 1 − cosðapÞ we thus need to
maximize

ω2
BC ¼ dfsinðapÞ þ r½1 − cosðapÞ�g2 ðE14Þ

over p ∈ ½−π; π�, and we take the liberty to maximize or
minimize, instead,

sinðapÞ þ r½1 − cosðapÞ� ðE15Þ

over the same interval. At either end point the original
expression takes the value d4r2. Taking the derivative of the
alternative expression with respect to ap and setting it to
zero yields

0 ¼ cosðapÞ þ r sinðapÞ; ðE16Þ

which finds the solutions

ap ¼ arctan

�
−1
r

�
þ πZ: ðE17Þ

Plugging in the version which realizes the global maximum
of the original expression, and using sinðarctanðxÞÞ ¼
x=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, cosðarctanðxÞÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, we find

ω2
BC ¼ d

�
1=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=r2
p þ r

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=r2
p ��

2

¼ dfrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
g2: ðE18Þ

In summary, since this value is always larger than the end
point value, we have

STEPHAN DÜRR and JOHANNES H. WEBER PHYS. REV. D 102, 014516 (2020)

014516-26



jImðλBCÞj ≤
ffiffiffi
d

p
ðrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
Þ; ðE19Þ

which was quoted as Eq. (25) for d ¼ 4. In the limit r → 0,
it takes the value

ffiffiffi
d

p
, which is known to be the upper bound

of the staggered free-field eigenvalue spectrum.

The upper envelope of the numerical data in Fig. 10 is
well consistent with the bound (25). The bound is usually
not saturated (except for r ¼ 0 and r ¼ 1), but the
numerical value is (depending on the volume) very close
to the bound.
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