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We study the deconfinement transition line in QCD for quark chemical potentials up to μq ∼ 5 T
(μB ∼ 15 T). To circumvent the sign problem we use the complex Langevin equation with gauge cooling.
The plaquette gauge action is used with two flavors of naive Wilson fermions at a relatively heavy pion
mass of roughly 1.3 GeV. A quadratic dependence describes the transition line well on the whole chemical
potential range.
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I. INTRODUCTION

The study of the phase diagram of QCD on the temper-
ature (T)-quark chemical potential (μ) plane using first
principles methods is hampered by the sign problem at
μ > 0, which invalidates naive Monte-Carlo simulations
using importance sampling. The μ ¼ 0 axis is well known
[1–3], which features a crossover phase transition around
T ≈ 150 MeV for physical quark masses. The common lore
suggests that this phase transition should get stronger as the
chemical potential is increased, eventually reaching a
critical point and changing into a first order phase transition
line for higher μ.
In order to investigate the transition line in QCD, one has

to circumvent the sign problem in some way. Previous
studies used the reweighting method [4–6], the Taylor
expansion from μ ¼ 0 [7–12] or analytic continuation from
μ ≤ 0 [13–16]. These methods deliver solid results for
quark chemical potentials up to μq=T ≃ 1.
In the literature the small chemical potential behavior of

the transition line is approximated with a polynomial
behavior (using the baryon chemical potential μB ¼ 3μq):

TcðμBÞ
Tcð0Þ

¼ 1 − κ2

�
μB
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�

2
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�
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�

4

þOðμ6BÞ: ð1Þ

(In the following μ denotes the quark chemical potential.)
The value of the curvature κ2 turns out to be quite small

[10,11], just as κ4, which is consistent with zero within the
statistical error bars of the state of the art [16].
In this paper we employ the complex Langevin (CL)

equation [17,18]. In the last decade the method has enjoyed
a revival of interest, initiated by studies aiming at appli-
cation for physical simulations [19,20] (see also the recent
reviews [21,22]). The CL equation complexifies the field
manifold using analytical continuation of the variables (not
to be confused with the analytical continuation in μ
mentioned above) to circumvent the sign problem, and
allows for direct simulations at μ > 0. The aim of this study
is to show that the CL simulations allow following the
transition line to previously unaccessible chemical potential
values. Here we use the plaquette gauge action with naive
Wilson fermions with relatively heavy quark masses to
study the transition line for μ=T values up to 5.
In Sec. II we describe the setup of our simulations and

discuss their behavior as we get closer to the continuum
limit as well as other known issues of CL simulations. In
Sec. III we present in detail our methods for mapping out
the phase transition line, and also present the numerical
results. Finally we conclude in Sec. IV.

II. SIMULATION SETUP

A. Complex Langevin for QCD

For the link variables Ux;ν of gauge theories on the
SU(N) manifold the discretized update with Langevin time
step ϵ is written as [23]:

Ux;νðτ þ ϵÞ ¼ exp

�
i
X
a

λaðϵKaxν þ
ffiffiffi
ϵ

p
ηaxνÞ

�
Ux;νðτÞ; ð2Þ

with λa the generators of the gauge group, i.e., the Gell-
Mann matrices, and a Gaussian white noise ηaxν with
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hηaxαηbyβi ¼ 2δabδxyδαβ. The drift force Kaxν¼−DaxνS½U�
is calculated from the action using the left derivative

DaxνfðUÞ ¼ ∂αfðeiαλaUx;νÞjα¼0: ð3Þ

For complex actions the drift force Kaxν is in general
complex, thus the manifold of the link variables has to be
complexified to SL(N,C). In the case of lattice QCD with
fermions the measure of the theory is written as

ρeff ¼ e−SYM detMðμÞ ð4Þ

with the determinant of the fermionic Dirac matrix
MðμÞ, resulting in a nonholomorphic action Seff ¼ SYM −
ln detMðμÞ, andmeromorphic drift terms. Simulating such a
theory is not guaranteed to give correct results if the zeroes of
the measure are visited by the process [24–27].
To monitor the process on the complex manifold

SLð3; CÞ, we use the unitarity norm (UN)

NU ¼ 1

4Ω

X
x;ν

X
i;k

jðUx;νU
†
x;ν − 1Þj2ik: ð5Þ

whereΩ ¼ N3
sNt is the space-time volume of the lattice. To

avoid an uncontrolled growth of the unitarity norm and thus
a quick breakdown of the simulation we use the gauge
cooling procedure [28,29]. The system then shows a quick
thermalization of the physical quantities such as the
plaquette or Polyakov loop (well before Langevin time τ ¼
10 is reached), while the unitarity norm tends to grow
slowly, and saturates for large Langevin time τ around
NU ∼Oð1Þ. As observed earlier [30], in this state, in spite
of the gauge cooling, the process has distributions with
slow decay in the noncompact directions where the
boundary terms can no longer be neglected and spoil the
correctness proof of the method [31]. We therefore use
the first part of the Langevin time evolution after the
physical quantities have equilibrated but the unitarity norm
is still small. This is motivated by the observation that
oftentimes when CL simulations yield wrong results they
do so only after a certain time, i.e., they first thermalize to
the correct solution and after some time start deviating from
this solution again. This has been observed in a simple U(1)
plaquette model in [31]. We show the behavior of the
unitarity norm in this model, the observable eiφ as well as
the boundary term as a function of Langevin time in Fig. 1.
Here, the observable first thermalizes to the correct value
and stays at this value up to t ≈ 20. At t ≈ 20 the process
develops a non-negligible boundary term, which happens
when the unitarity norm reached a value above UN ¼ 0.2.
Hence, in this model we would retain correct expectation
values if we stopped the simulation at an average unitarity
norm of that value. Similar behavior has been observed in
real time simulations for SU(2) gauge theory in [32,33] for
the spatial plaquette. The generalization to QCD from those

simple examples is not straightforward. Hence, we first
look at HDQCD [34,35], where the spatial hopping terms
in the Dirac matrix are dropped and it is a good approxi-
mation to full QCD for heavy quarks at high density. In
HDQCD CL works very well in certain parameter regions
and it was possible to map out the full phase diagram [30].
We investigated the occurrence of boundary terms in

HDQCD in [36] and found that as β increases at fixed κ and
μ the boundary terms tend to become smaller and smaller,
thus moving CL so close to the correct value as obtained
from reweighting that it becomes indistinguishable from
the correct result within error bars. However, even at β ¼
6.0 if one waits long enough CL becomes slightly wrong.
We show what happens in HDQCD for V ¼ 64, β ¼ 6.0,
κ ¼ 0.12, Nf ¼ 1, μ ¼ 0.85 in Fig. 2. The top plot shows
that initially, the observable fluctuates around a plateau at
the correct value, which is computed by reweighting. After
t ≈ 40 the fluctuations start to become larger and another
equilibrium is reached. This coincides with the average
unitarity norm reaching a value of UN ≈ 0.2 at t ¼ 40.
Hence, if we cut off the unitarity norm at this value, the
observable yields a result consistent with the reweighting
value. Note that for this plot some blocking was done, so
the points shown are averaged over a small time window.
The idea of using only short times is also supported when
looking at the distribution at the observable itself or the
criterion from [37], as seen in the center and bottom plot of
Fig. 2. Here one can see that for long times, the distribu-
tions clearly develop tails indicating a failure of CL.
However, when only taking short times, where the observ-
able thermalized to the intermediate plateau, there are no
tails or only very small tails indicating that CL gives the
correct result here.
To summarize, we have established the connection

between the UN, the observable’s plateau and the boundary
terms [31,36]: In some cases it is possible to introduce a
regularizing term in the action such that the diffusion

FIG. 1. Behavior of the observable eiφ, the unitarity norm and
the boundary term in a simple U(1) plaquette model with action
S ¼ iβ cosðφÞ, with β ¼ 0.1 as investigated in [31].
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toward large UN is suppressed. This leads to the system
staying in the “plateau” region asymptotically, such that the
boundary terms vanish, the UN stays small, and the
expectation value of the observables is at the correct value.
This shows that the correct plateau of the observable gets its
contributions from configurations with small UN, the
boundary terms (which spoil correctness) get their con-
tribution from configurations with large UN, which is
reached at large Langevin times, after the system has left
the plateau region. This argument suggests that the exist-
ence of an early plateau at small UN provides the correct
expectation value of observables.
The second issue concerns meromorphy of the drift. The

fermionic determinant has zeroes on the complexified
SLð3; CÞ manifold, which in turn lead to singularities in

the drift terms. These singularities can in certain cases lead
to the breakdown of the complex Langevin method. In [27]
it was shown that a sufficient condition for the correctness
of the results is that the zeroes are outside the distribution
on the complex manifold.
We investigate the eigenvalue distribution of the Dirac

matrix to gain an insight into this question. Calculating the
whole spectrum of the Dirac matrix is very costly, and we
are interested only in the small eigenvalues which can
potentially cause problems, therefore we use the Krylov-
Schur algorithm to calculate the smallest eigenvalues of the
Dirac matrix. We find in the interesting region close to the
transition temperature that for our rather large masses used
in the present investigation the spectrum of the Dirac matrix
seems to show a very fast decay at small eigenvalues. In
Fig. 3 we show typical histograms of the eigenvalues with
smallest absolute values, for various μ values, on a lattice
which is close to the transition temperature.

B. Toward the continuum limit

In this subsection we describe the properties of complex
Langevin simulations of full QCD as the continuum limit is
approached. One observes that the behavior of the unitarity
norm improves closer to the continuum limit. In Fig. 4 we
show typical simulations where the lattice spacing is
decreased, while keeping every other quantity fixed in
physical units. The initial thermalization rate as measured
using e.g., plaquettes or Polyakov loops remains approx-
imately constant, see for the Polyakov loop in Fig. 5. The
autocorrelation times scale approximately with the lattice
spacing, and the rise of the unitarity norm is slower for the
smaller lattice spacing, such that closer to the continuum
there are more statistically independent samples generated
before the unitarity norm grows too high.

FIG. 2. Results in HDQCD at β ¼ 6.0, κ ¼ 0.12, NF ¼ 1, μ ¼
0.85 on a 64 lattice. Top: behavior of the spatial plaquette and the
unitarity norm as a function of Langevin time. Center: histogramof
the spatial plaquette at different time intervals. Bottom: histogram
of the absolute value of the drift at different time intervals.

FIG. 3. The histogram of the absolute value of the smallest
eigenvalues of the Dirac matrix calculated on a 163 × 12 lattice at
β ¼ 5.9, κ ¼ 0.15, NF ¼ 2.
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Our strategy thus relies on the system having a short
thermalization time for the physical observables, and a
longer thermalization time for the complexified process,
providing a plateau region where physical observables of
interest can be sampled. This strategy potentially breaks
down if the plateau region is not reached before the
fluctuations in the imaginary directions grow large, e.g.,
around a second order phase transition or on large lattices.
Closer to the continuum limit however the situation
improves: the time window for the plateau region increases.
Moreover, in the statewhere the process has thermalized and
there is a discrepancy between complexLangevin and correct
results (caused by boundary terms), the discrepancy quickly
diminishes as one decreases the lattice spacing [36].
Our goal is to scan the transition region of QCD up to

large μ=T. We have seen that for HDQCD the complex
Langevin method does not converge to the correct results
for small lattice coupling β. We expect a similar behavior
for full QCD (see [38] for a similar behavior with staggered
quarks). Therefore we stay at a safe value for β and scan the
temperature by varying the temporal lattice extent Nt. This
allows us to start deep in the confining phase and increase
the temperature reaching the deconfining phase (where CL
simulations already produced results concerning the
thermodynamics of QCD [39]). This does not keep the
aspect ratio of Ns=Nt intact, which does have an effect on
some observables as we will see.
We use the plaquette gauge action and unimprovedWilson

fermions with NF ¼ 2. To convert to physical units we have
measured the lattice spacing and pion masses, see in Table I.
To calculate the drift force for the fermions we use a
noisy estimator [40]. We use an adaptive algorithm [41] to
control the Langevin stepsize ϵ in the update such that
maxðjKaxνjϵÞ < d with the control parameter d typically set
to d ∼ 0.001–0.004.
In Fig. 6 we show the typical number of the required CG

iterations used for the calculation of the fermionic drift
terms. The clear upward trend at the end of some of the runs
is a consequence of the unitarity norm growing too large,
and making the Dirac operator more ill conditioned. (Some
runs were cut short before that happened.) In Hybrid
Monte Carlo (HMC) simulations this quantity is normally
used to judge the thermalization time of the system, as it is
connected to the lowest eigenmodes of the Dirac operator,

FIG. 4. Testing the behavior of the unitarity norm as the
continuum limit is approached, using complex Langevin simu-
lations with naive gauge action and Wilson fermions using NF ¼
2 with parameters as indicated.

FIG. 5. The initial thermalization of the Polyakov loop as the
continuum limit is approached, using complex Langevin simu-
lations with naive gauge action and Wilson fermions using NF ¼
2 with parameters as in Fig. 4.

TABLE I. Pion masses and lattice spacing (defined using the w0

scale as in [42]) measured on a 243 × 48 lattice at various κ and β
values. The plaquette action is used with naiveWilson fermions at
NF ¼ 2.

κ β a (fm) mπa mπ (GeV)

0.14 5.9 0.09152� 0.00045 1.01� 0.0065 2.18� 0.025
0.15 5.9 0.0655� 0.001 0.4209� 0.017 1.27� 0.072
0.14 6 0.0736� 0.00024 0.9173� 0.0095 2.46� 0.033
0.15 6 0.05819� 0.00055 0.2994� 0.013 1.02� 0.054
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which thermalize the slowest. Here some care is required,
as the condition number of the Dirac operator is somewhat
sensitive to the unitarity norm, as the nonunitary part of the
link variables typically increases the magnitude of the high
eigenvalues and thus increases the condition number. Note
also that the spectrum of the Dirac operator might behave in
a nontrivial way in CL simulations [43]. Nevertheless the
curves suggest that the initial thermalization to a “meta-
stable” state is relatively quick, while the increase of the
unitarity norm takes longer.
It has been noted several times [44,45] that CL simu-

lations can converge to wrong results even at vanishing
chemical potential μ ¼ 0, where the difference to the
correct results quickly decreases with decreasing lattice
spacing. This happens due to the boundary terms at infinity
growing large as the process thermalizes on the complexi-
fied manifold [36]. However, within our setup we stop the
run once the unitarity norm reaches a value of UN ≈ 0.1, in
accordance with the plateau region discussed above. With
this procedure we expect to get correct results as long as
there are no physical effects requiring extremely long

thermalization such as a second order phase transition.
In Fig. 7 we compare the plaquette expectation value for a
Ns ¼ 12, β ¼ 5.9, μ ¼ 0, κ ¼ 0.15 simulation from CL
and HMC. One can see that the visible deviations are small
and agree with zero within statistical errors. The same effect
for stout-smeared staggered quarks with Nf ¼ 4 was
observed in [39]. Hence, we conclude that within our
setup there is practically no deviation at μ ¼ 0.

III. METHODS AND RESULTS FOR THE PHASE
TRANSITION

We wish to extract the transition line from different
observables. Natural choices are based on the Polyakov
loop, the chiral susceptibility and the density and all their
corresponding susceptibilities or higher derivatives. Since
the chiral condensate has proved to be quite noisy, and it
has additive and multiplicative renormalization, here we
concentrate on the Polyakov loop P, defined as the spatial
average of the trace of temporal loops:

Pbare ¼
1

3N3
s

X
x

Tr
YNτ−1

τ¼0

Uxþτ0̂;0; ð6Þ

FIG. 7. Comparison of the plaquette from CL and HMC
simulations at μ ¼ 0. Top: direct comparison of the plaquette,
mind the small range of the y-axis. Bottom: relative deviation of
the HMC and CL plaquettes.

FIG. 6. The number of required iterations for the calculation of
the fermionic drift force for typical runs using the parameters as
indicated in the figure.
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with x indexing a spatial slice of the lattice. Similarly we
use the average of the trace of the inverse Polyakov loops:

P0
bare ¼

1

3N3
s

X
x

Tr

�YNτ−1

τ¼0

Ux;τ;0;

�−1

: ð7Þ

The Polyakov loop renormalizes multiplicatively as

Pren ¼ e−cðaÞNtPbare: ð8Þ

Hence, if we consider ratios of Polyakov loop observables
renormalization drops out entirely. In the following we will
not look at the Polyakov loop itself but at a combination of
the Polyakov loop and the inverse Polyakov loop

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PbareP0

bare

q
: ð9Þ

Note that at nonzero chemical potential Pbare ≠ ðP0
bareÞ†,

and at finite temperature P0 is expected to rise slightly
earlier as the chemical potential is increased [28].
The first two of our observables are related to the third

order Binder cumulant

B3ðOÞ ¼ hO3i
hO2i3=2 : ð10Þ

We will look at the following observables built from the
Polyakov loop.
(1) B3ðP − hPiÞ, which takes into account fluctuations

properly.
(2) B3ðPÞ, which is the third order cumulant for the

unsubtracted Polyakov loop. Note that this does not
take into account fluctuations properly, but we will
show that the resulting phase transition line is similar
to the first one.

A. The phase transition from B3ðP− hPiÞ
A standard way to investigate phase transitions is a

volume scaling analysis of cumulants like B3ðP − hPiÞ
[46,47]. This analysis works well in the case of an actual
phase transition. In QCD we have a crossover instead, so
a priori this analysis does not work. However, there are
many possibilities to define the phase transition temper-
ature in the case of a crossover transition, see e.g., [12]. In
order to find a criterion, we first look at μ ¼ 0 for κ ¼ 0.15,
in different volumes. This is visualized in Fig. 8. The top
plot shows that the usual volume scaling seems to work.
The cumulants for different volumes cross at the point
where B3ðP − hPiÞ ¼ 0. We use this do define Tc via

B3ðP − hPiÞjT¼Tc
¼ 0: ð11Þ

For the qualitative understanding of the behavior of B3ðP −
hPiÞ as a function of T note that B3ðP − hPiÞ essentially

measures the asymmetry of the distribution of P. At large
temperatures when hPi is large a symmetric distribution is
expected. In contrast, at low temperatures hPi should be
small, while the observable P [defined in (9)] is positive
definite, therefore the distribution of P should be
asymmetric.
Note that the bottomplot in Fig. 8 suggests that this scaling

analysis seems not toworkwhen looking at the cumulant as a
function of 1=Nt, however the crossing points get closer as
the volume increases. Thus, the criterion can still be used and
should be valid in the thermodynamic limit.
We use this method to extract the phase transition

temperature at different μ. In practice we apply a linear
fit to B3ðP − hPiÞ as a function of 1=NT close to the zero
crossing and define Tc from the crossing of the fit function.
Statistical errors are calculated using the bootstrap method.
Results are shown in Sec. III C.

B. The phase transition from B3ðPÞ
One disadvantage of fluctuation quantities such as

B3ðP − hPiÞ is that they are quite noisy and require high

FIG. 8. Third order cumulant for different volumes as a
function of β at Nt ¼ 8 (top) and as a function of 1=Nt ¼ Ta
at β ¼ 5.9 (bottom).

M. SCHERZER, D. SEXTY, and I.-O. STAMATESCU PHYS. REV. D 102, 014515 (2020)

014515-6



statistics runs. While the method presented in the previous
Sec. III A is close to the standard treatment of phase
transitions, there are other ways to do that. Here, we are
interested in the method used in [10,11]. The idea here is
the following: We have an observableOðT; μÞ, which is not
constant around the critical temperature (typically it has an
inflection point). We note thatOðT; μ > 0Þ is well approxi-
mated (for small μ values and close to Tcð0Þ) with
OðT − Tshift; μ ¼ 0Þ. We then identify Tshift as the shift
of the critical temperature. We formalize this using the
following definition: Provided we know Tcðμ ¼ 0Þ (using
an independent definition e.g., from a peak of a suscep-
tibility), we define

Ocðμ ¼ 0Þ ¼ Oðμ ¼ 0; Tcðμ ¼ 0ÞÞ; ð12Þ

and define the phase transition temperature via

OðTc; μÞ ¼ Ocðμ ¼ 0Þ: ð13Þ

Note that this procedure relies very much on a precise
determination of Tcðμ ¼ 0Þ, which can be performed using

HMC simulations, which are typically faster than CL
simulations and thus allow for more statistics.
To define Tc in practice we have used spline interpo-

lation to define a continuous function for B3ðPÞ as a
function of 1=Nt. Similarly to the first definition, statistical
errors are calculated using the bootstrap method. Again, we
will show results of this procedure in Sec. III C.

C. Results

In this section, we show numerical results of our
simulations. We have used the plaquette gauge action with
two flavors of naive Wilson fermions, at β ¼ 5.9 and
κ ¼ 0.15. This corresponds to a relatively heavy pion mass
of ≈1.3 GeV, as seen in Table I. We use the temporal extent
of the lattice to vary the temperature, and we show results
for two different spatial volumes Ns ¼ 12, 16, as smaller
volumes proved to be too noisy.

1. The cumulants

We show B3ðP − hPiÞ for Ns ¼ 12, 16 in Fig. 9 and
B3ðPÞ for the same volumes in Fig. 10.
We find that the simulations are much noisier for smaller

μ, while the curves become much smoother and better

FIG. 9. B3ðP − hPiÞ as a function of 1=Nt for Ns ¼ 12 (top)
and Ns ¼ 16 (bottom). Only the region of the zero crossing
is shown.

FIG. 10. B3ðPÞ as a function of 1=Nt for Ns ¼ 12 (top) and
Ns ¼ 16 (bottom). Only the region of interest is shown.
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behaved for larger μ. We find that in the remaining analysis
it is hard to extract a transition temperature at μ ¼ 0 due to
too low statistics. Instead, in the following we use Tc from
the HMC analysis, see Fig. 8. Note however, that there is no
discrepancy between HMC and CL, as can be seen
in Fig. 7.

2. Phase transition temperatures and curvature of the
transition line

Once we have extracted the transition temperatures in all
cases, we can compute the curvature of the transition line.
This is a standard value regularly computed using lattice
simulations, however in conventional lattice simulations it

is only accessible around μ ¼ 0 using Taylor expansion,
imaginary chemical potentials or reweighting. We fit our
results with a quadratic function of the form

TcðμÞ ¼ Tcð0Þ − κ2
9μ2

Tcð0Þ
; ð14Þ

and after the fit normalize to TcðμÞ=Tcð0Þ. We show the
resulting phase transitions in Fig. 11 for two different
volumes, note that both axes have been normalized with
Tcð0Þ, i.e., the parameter that comes from the fit of Eq. (14)
to the data.

3. Comparison of the methods to define TcðμÞ
Results of the different methods are compared in

Table II. We used a value of a ¼ 0.0655ð1Þ fm for κ ¼
0.15 measured via gradient flow using the w0 scale to
convert the transition temperature into physical units, see
also in Table I. One notes a good agreement between the
different methods of the definition of the transition temper-
ature. Finite volume effects are especially visible in the
value of Tcð0Þ.
In Fig. 12 we show the curvature κ2 as function of the κ

parameter in order to ascertain its dependence on the pion
mass. As expected, at very high fermionic mass (corre-
sponding to a small κ parameter) we observe a small κ2
parameter, as also seen in a strong coupling and hopping
parameter expansion [48], and in an earlier study of
HDQCD [30]. Curiously, we observe a nonmonotonic
behavior showing a maximum at intermediate masses.

IV. CONCLUSIONS

In this paper we have studied the deconfinement tran-
sition of QCD for a range of chemical potentials up to
μ=T ∼ 5, using the plaquette gauge action with naive

FIG. 11. Critical temperature as a function of chemical poten-
tial from different methods. Top: Ns ¼ 12; Bottom: Ns ¼ 16.

TABLE II. The fitted curvature and Tcð0Þ according to (14)
where TcðμÞ is obtained from different methods: the zero crossing
of B3ðP − hPiÞ as described in Sec. III A and the “shift method”
described in Sec. III B. The curvature is given for μB ¼ 3μ, see
Eq. (1). The column Tcð0Þ is the parameter resulting from the
quadratic fit.

Method Ns κ2 Tcð0Þ × a Tcð0Þ=MeV

fit B3ðP − hPiÞ 12 0.001002(96) 0.1004(8) 303(2)
shift B3ðPÞ 12 0.001167(55) 0.0987(9) 297(3)
fit B3ðP − hPiÞ 16 8.1ð2.4Þ10−4 0.091(3) 270(10)
shift B3ðPÞ 16 0.001042(53) 0.0926(9) 279(3)

FIG. 12. The curvature parameter κ2 as a function of the κ
parameter of the fermion action as measured on lattices with
Ns ¼ 12 and β ¼ 5.9.
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Wilson fermions at NF ¼ 2. To circumvent the sign
problem at μ > 0 we have used the complex Langevin
equation.
To stabilize the simulation we use adaptive step size and

gauge cooling. To limit the effects from the boundary terms
spoiling the correctness proof we monitor the unitarity
norm UN (5). Following the results from simple models
and from HDQCD we read the observables’ averages from
the thermalized plateau developing at small UN. We also
made sure that our simulation does not go near the zeroes of
the determinant.
We have defined the transition temperature using either

the zero crossing of the third order Binder cumulant of the
Polyakov loop, as well as a “shift method” where we
assume that the temperature dependence of some observ-
able BðTÞ changes to BðT − TshiftÞ at nonzero μ (in a range
close to Tc), which then allows the definition of the
shifted TcðμÞ.
We have carried out most simulations at β ¼ 5.9, κ ¼

0.15 which correspond to a relatively heavymπ ≈ 1.3 GeV,
at spatial volumes Ns ¼ 12 and Ns ¼ 16. The measured
transition temperatures are well described with a quadratic
dependence on μ up to μ ∼ 5 T. We observe a good
agreement between various definitions of the transition
temperature.
The determination of the transition temperature with the

Binder cumulant works relatively well, in spite of the
transition being a smooth crossover. This might signal that

a second order transition is nearby. A candidate for that is
the transition line at the upper right corner of the Columbia
plot [49], where the deconfinement transition is expected to
turn first order at heavy quark masses. To investigate the
applicability of the method further studies are needed at
smaller quark masses and larger spatial volumes.
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